
Implicit Coordination in Software Development

Kelly Blincoe, Giuseppe Valetto
Department of Computer Science, Drexel University

Philadelphia, PA USA
kelly.blincoe@drexel.edu, valetto@cs.drexel.edu

Abstract— This research proposal focuses on finding evidence
of implicit coordination in software, analyzing the effects of
that implicit coordination, and creating tools to further exploit
the use of the inherently cheaper coordination means.

Research Area/Subarea- Software Engineering. Social and
Organization aspects of Software Engineering, Developers
Coordination and Cooperation.

I. DESCRIPTION OF THE RESEARCH PROBLEM AND ITS

IMPORTANCE IN THE FIELD

As software development organizations continuously
grow in size, and become more global, coordination
problems are amplified; consequently, the study of social and
organizational dynamics in software engineering is
increasingly gathering attention. For example, socio-
technical congruence [3][4] provides the means to look
jointly at the technical tasks of software development and the
coordination requirements associated with these tasks. It
offers a formal, quantitative means to analyze how much a
project benefits (e.g. in terms of task performance) when its
coordination requirements are met.

However, there is still much to discover in this area of
software engineering. Many existing empirical studies on
team coordination use explicit (and easily traceable) means
of communication such as email, chat or meetings. We
believe it is equally important to take into account other
means of coordination. For example, forms of stigmergic
communication [5] can occur in a software project in many
ways. Developers can communicate implicitly via comments
left behind in code, design specifications, change requests,
commit logs, etc. [6]. This is arguably a cheap, efficient way
to coordinate, for example, for developers that must
overcome geographical barriers when interacting explicitly.

II. BACKGROUND AND RELATED WORK

Software is often developed in response to large complex
problems, so the technical solution is usually not trivial. An
attempt is made to design software in a way that it can be
easily broken into small, manageable modules. Decomposing
the software solutions in this manner allows developers to
work in parallel on largely separate tasks [1]. However, since
it is not possible to resolve all module interdependencies,
developers must coordinate with each other to assure proper
development boundaries, and to assure a working integration
to the dependencies among their work. This coordination
does not come cheaply; it can add to the project cost and
delay schedules. Even worse, developers may not always be
aware that they need to coordinate with each other. If

coordination is insufficient there may be problems
downstream in the development process, for instance when
trying to integrate those modules in the final product.

To further complicate matters, the software industry is
extremely competitive and organizations are forced to bid for
new work aggressively. A project’s originally proposed cost
and schedule are often unrealistic. When a team begins to
fall behind, often management tries to add additional
members to the team to stay on schedule. While this may
seem like a logical solution, it tends to complicate the
situation, as observed by Brooks [2], because a larger team
has increased coordination needs and must pay an overhead.

The issues above are manifestation of an essential
complexity of software development, that is, its socio-
technical nature [8]. That is particularly relevant in largely
distributed projects, since remote interactions add significant
overheads and delays [30][31][61]. Also, distance reduces
the communication richness that people can experience: in
particular, regarding informal communication, which has an
important role in socio-technical systems [31][34][50].
According to [7], Software Engineering has traditionally
approached these issues of coordination in three principal
ways: trying to boost the individual productivity; or devising
more efficient methods for the modular partitioning of work;
or regulating the interactions among developers by strictly
enforcing formal software processes. Lately, some
researchers have turned to studying forms of implicit,
coordination – such as stigmergic communication - because
of their promise to substantially decrease the cost of the
ineludible coordination overhead of software development
activities [6][9][10]. This research proposal moves in that
same general direction.

III. DESCRIPTION OF THE RESEARCH ISSUE/FOCUS

We propose a program of research to shed light on
implicit means of coordination in software development by
empirically studying software projects. The motivation is
that a better understanding can lead to an enhanced and
explicit support of implicit coordination. That, in turn, can
yield advantages for projects that, like most Global Software
Development efforts, face significant barriers or steep
overheads with regard to explicit coordination means. An
expected advantage is an increase in software productivity.

The first element of our research program aims at
defining and cataloguing the means of implicit coordination
that are commonly used in software development practice,
and/or are emerging as an effect of innovations in
technologies and tools used by developers, in particular in
large-scale and globally distributed software production

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1109/ICGSE.2010.53

environments. The second element of our program aims at
detecting instances of implicit coordination in the course of
project activities, then collecting and analyzing data about
the level of implicit coordination occurring and its effects.
Our main hypothesis is that projects with higher levels of
implicit coordination will have higher performance in
orchestrating and executing interdependent tasks
successfully. We quantify higher performance here by a
decrease in coordination overhead with no effect or an
increase in software quality. If that hypothesis is correct, we
would like to extend our work by looking at the relationships
between explicit and implicit coordination, and investigate
whether an increase in implicit coordination benefit
performance even when it is not accompanied by additional
explicit acts of coordination. Finally, the third element of our
research program aims at creating tools to promote and
support forms of implicit coordination across the software
development process.

IV. PROPOSED METHODOLOGY

This kind of empirical research is best approached by a
mix of methods, including ethnographic studies, data mining
and analysis, and construction and deployment of tools that
can help by validating research hypotheses:
• Observation of developers’ behaviors and data

collection through surveys and interviews will enable
the first stage of the research program described above.

• The analysis of activity traces that are recorded in
software artifacts and repositories can be a useful
complement to those ethnographic observations. But its
main role will be in enabling the collection of data about
instances of implicit coordination. This kind of mining
can occur post mortem, but also online, assuming the
capability to instrument repositories and/or development
tools in use within a project. The mined data will enable
the verification of research hypotheses on the role of
implicit coordination for development performance.

• Tools development has a twofold role. Tools can
experimentally validate analysis results, for example,
highlight what modes of implicit coordination are better
used in various global development scenarios. Based on
that, we can incrementally build a suite of tools for
effective support of those scenarios.

V. EXPECTED CONTRIBUTIONS

If we could recognize when and how implicit
coordination is used by software developers, and quantify its
positive effect on teamwork and performance, then software
development organizations could devise ways to
systematically leverage these more efficient means of
coordination and reap the corresponding benefits.
We foresee that, in the end, those benefits will be reified as
new development tools, or new features in existing tools. An

example could be a tool that collects comments in the code
base and compares them to the comments in previous
versions. Such a tool could verify whether developers are
creating comments for the purpose of coordination.
Comments that are changed could, for instance, be questions
posed to other developers, or tags and flags meant to
coordinate inter-dependent tasks, which are removed once
addressed, or modified as this kind of stigmergic
conversation continues. If it is found that developers employ
this means for coordination, such a tool could be enhanced,
e.g. by highlighting in some way this kind of comments for
those developers who work on relevant tasks. This tool could
also allow developers to create special types of comments
that are explicitly created for this purpose, thus facilitating
this channel of communication, and making it a first-class
way of interaction with other developers. Many other tools
like this one can possibly be devised, each of which could
implement a different way to reduce the overhead costs
associated with coordination in large-scale and global
software engineering activities.

REFERENCES
[1] D. L. Parnas, On the Criteria to be Used in Decomposing Systems in

Modules, Communications of the ACM, 15(2), pp. 1053-1058, 1972.

[2] F. P. Brooks, The Mythical Man Month, Anniversary Edition:
Addison-Wesley Publishing Company, 1995.

[3] Marcelo Cataldo , Patrick A. Wagstrom , James D. Herbsleb ,
Kathleen M. Carley, Identification of coordination requirements:
implications for the Design of collaboration and awareness tools,
Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, November 04-08, 2006, Banff, Alberta,
Canada

[4] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, and C.
Williams, Using Software Repositories to Investigate Socio-technical
Congruence in Development Projects. In Proceedings of the ICSE
International Workshop on Mining Software Repositories (MSR
2007), Minneapolis, MI, USA, May 2007.

[5] Elliott, M.A. Stigmergic Collaboration: The Evolution of Group
Work. M/C Journal 9(2), 2006

[6] F. Bolici, J. Howison, and K. Crowston, Coordination without
discussion? Socio-technical congruence and Stigmergy in Free and
Open Source Software projects, in the 2nd ICSE International
Workshop on Socio-Technical Congruence (STC 2009) Vancouver,
BC, Canada, May 2009.

[7] Kraut, R.E. and Streeter, L.A. Coordination in software development.
Communications of the ACM 38(3):69-81, March 1995.

[8] Emery, F.E., and E.L. Trist. Socio-technical Systems. In Management
Sciences Models and Techniques , vol. 2. London, 1960.

[9] Heylighen, F. Why is open access development so successful?
Stigmergic organization and the economics of information. In B.
Lutterbeck, M. Baerwolff, and R. A. Gehring, (eds.),Open Source
Jahrbuch 2007. Lehmanns Media, 2007.

[10] Robles, G., Merelo, J.J., and Gonzalez-Barahona, J.M.: Self-
Organized Development in Libre Software Projects: A Model Based
on the Stigmergy Concept. In: Proceedings of the 6th International
Workshop on Software Process Simulation and Modeling, 2005.

View publication statsView publication stats

