
ProxiScientia: Toward Real-Time Visualization of Task and Developer Dependencies
in Collaborating Software Development Teams

Arber Borici⇤, Kelly Blincoe†, Adrian Schröter⇤, Giuseppe Valetto† and Daniela Damian⇤
⇤Software Engineering Global Interaction Lab
University of Victoria, Victoria, BC, Canada

borici@uvic.ca, schadr@acm.org, danielad@cs.uvic.ca
†Department of Computer Science

Drexel University, Philadelphia, PA, USA
kelly.blincoe@drexel.edu, valetto@cs.drexel.edu

Abstract—This paper introduces ProxiScientia, a visualiza-
tion tool that provides awareness support to developers, as
they engage in collaborative software development activities.
ProxiScientia leverages streams of fine-grained events that are
generated by team members as they interact with software
artifacts in their development environments. The main goal of
the tool is to make each developer aware of coordination needs
and opportunities as they arise, by depicting ego-centered views
of the developers and tasks that most closely impact their work,
and showing how they change in real time. In this paper, we
illustrate the conceptualization of ProxiScientia and discuss its
initial evaluation.

Keywords-Socio-technical; task context; visualization; tools;
proximity; awareness; collaboration

I. INTRODUCTION

In contemporary software development projects, the ef-
ficient coordination of concurrent activities among team
members remains a challenge. The detection of existing
and emerging coordination needs (also called Coordination
Requirements, or CRs) among team members is difficult,
especially in large-scale projects with many work depen-
dencies that evolve dynamically. Furthermore, it is critical
that detection of Coordination Requirements be timely, so
that developers can become aware of, and possibly act upon,
them as early as possible. We call this form of awareness
“coordination awareness.” Achieving and maintaining co-
ordination awareness is already complex in medium-scale
software projects. It becomes daunting in large-scale projects
with hundreds of teammates, thousands of tasks and artifacts,
and countless acts of work occurring concurrently, often
dispersed across multiple geographical workplaces [1].

Research on the socio-technical aspects of Software En-
gineering has produced methods to detect Coordination
Requirements and proposed a metric, called Socio-Technical
Congruence (STC), which indicates how many of those
CRs get fulfilled by a software organization [2]. Empirical
evidence suggests that high levels of STC are beneficial to
developer and project productivity [3], and therefore impor-
tant for the efficient governance of collaborative software de-

velopment [4]. However, the timely and actionable detection
of CRs in a way that enables developers to recognize and re-
solve them early and quickly is still problematic, since most
of the proposed CR detection methods have been reliant on
mining software development traces in project repositories,
such as source control and bug tracking systems, and are
therefore retrospective. Such historical data cannot provide
for actionable coordination awareness. To that end, Blincoe
et al. [5] recently proposed a technique, which allows
detection of CRs as they emerge, and provides a quantitative
relationship, called proximity, indicating the strength of the
need to coordinate between pairs of developers or pairs of
development tasks. Proximity can be thus used to elaborate
ranks and distances between developers or tasks.

Building on the proximity concept, we have begun to
develop ProxiScientia, a tool that gathers data from the work
environment of developers, continuously computes proxim-
ity, and presents to each developer appropriate visualizations
of her coordination needs. ProxiScientia displays an ego-
centered view of all other tasks that may impact a given
developer’s current work, or all developers with whom it
may be important to collaborate.

In the remainder of this paper, we first provide back-
ground on Coordination Requirements and proximity. Then
we discuss other visualization tools that aim at supporting
coordination awareness in software engineering. Next, we
describe the conceptualization of ProxiScientia and illustrate
the design decisions for its current prototype. We then
discuss the strategy for its evaluation, together with some
early results. Finally, we offer our conclusions and future
work.

II. BACKGROUND AND RELATED WORK

Software development environments are moving towards
more team-based environments and away from the tradi-
tional individual development environments. Perhaps the
most prominent example of a team-based environment is
IBM Jazz R� [6]. Jazz facilitates collaboration among devel-
opers of the same project. For instance, developers can view

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at: https://doi.org/10.1109/
CHASE.2012.6223024

the feed of recent activity or start a chat with teammates.
However, Jazz and other team-oriented environments on

the market do not explicitly make developers aware of
emerging work dependencies and coordination needs. Recent
case and field studies underline the necessity of understand-
ing social and technical relationships in complex collabora-
tive software projects [5], [7]. A visualization tool providing
this awareness has two main objectives. First, the tool should
accurately detect work dependencies between developers and
tasks that originate coordination needs. Second, the tool
should enable developers to address those needs efficiently.
In what follows, we review the relevant literature in light of
these two objectives.

A. Detecting Coordination Needs in Software Development

The analysis and support of work dependencies and
coordination in software development teams originates with
Conway [8] and Parnas [9], who recognized that it is pos-
sible to reduce coordination needs by minimizing technical
dependencies between software components under the re-
sponsibility of different developers or teams. More recently,
Baldwin et al. [10] showed how modular software design
enables more parallel development, paving the way for larger
development teams. With scale comes an increased need
to coordinate developers through organizational structures,
processes, and communication and coordination mecha-
nisms [7]. A method to detect Coordination Requirements
(CR) [2] led to the development of the Socio-Technical
Congruence (STC) index, which compares acts of coordina-
tion actually carried out vs. perceived coordination require-
ments [3]. The authors mine archival data to compute CRs
and STC, which is more useful for retrospective analysis
rather than for providing coordination awareness.

Recently, Blincoe et al. have developed proximity, a
method that reveals how close the work contexts of develop-
ers or tasks are to one another by considering an intersection
of the corresponding artifact working sets and the actions
developers have with those artifacts, weighted based on the
type of interaction [5]. Our tool, which can visualize CRs in
real time as they occur during a software project, is based
on the proximity concept and metric.

B. Visualization Tools that Support Coordination Awareness

Other works have addressed the visualization of socio-
technical relationships in a software project. Tukan [11] is
an online Smalltalk plug-in that conducts semantic analysis
on programs to determine which artifacts are related. It pro-
vides awareness for developer activities as well as potential
conflicts. The visual presentation involves a graph, wherein
nodes may represent artifacts (such as classes or methods)
or relationships (such as inheritance or composition). Au-
gur [12] employs program analysis to visualize developer
activity in temporal and contextual details in distributed
development teams. It presents a listing of program lines in

code artifacts with a zoom option. Ariadne [13] visualizes
social and code dependencies, whereas Tesseract [14] builds
upon Ariadne by integrating information from multiple
communication repositories. FastDASH [15], which targets
mainly small teams, notifies developers of artifact changes
and provides a dashboard showing all concurrent activities
happening within the team. It does not, however, analyze
those activities to infer and abstract coordination require-
ments. All of these tools obtain information about artifact
changes from the configuration management system of the
project. The drawback of such tools is that fresh data is not
available until code has been committed. For that reason, the
awareness they provide to developers may not be actionable,
since when code is committed much of the development
work is often already completed.

Palantir [16] has a different approach, since it monitors
both the centralized code repository and the workspace of
individual developers. It visualizes in real-time differences
between code files in a developer’s workspace and those
same files in other workspaces. While Palantir can provide
timely notifications as soon as these conflicts appear, they
represent only a small subset of coordination requirements
that can emerge between a pair of developers.

Like Palantir, RaisAware [17] monitors edit events in
the developer’s workspace. It expands the reach of Palantir
by detecting and showing visualizations of direct same-
file conflicts as well as indirect work dependencies that
may originate from both syntactic dependencies between
software artifacts and logical dependencies based on the
“files changed together” heuristics, derived from past history
of commits. RaisAware visualizes complex networks and
artifacts linked together, which are valuable for exploration
of the common work environment, but does not try to
synthesize or quantify CRs. It also looks only at edited
artifacts, and not at the whole working set, which also
includes consulted artifacts.

C. The Proximity Algorithm
Proximity is a measure of similarity between develop-

ers’ activities expressed in terms of overlaps between their
task contexts. A task context aggregates the working set
of artifacts for a task, together with the metadata about
the developer’s interactions with those artifacts. These in-
teractions can be captured by tools such as Mylyn [18],
which records interactions like artifact modification and
consultation as they happen. To compute proximity between
a pair of developers A and B, the algorithm collects all
events produced by A and B into two working sets, WA and
WB. The proximity between WA and WB is then computed
by applying weights to each artifact that overlap in the two
sets. The weights differ based on the type of interactions. A
higher weight is assigned to modification, and alower, but
still significant, weight to consultation. Complete details on
proximity can be found in [5].

III. CONCEPTUALIZATION OF A PROXIMITY
VISUALIZATION TOOL

We have leveraged a framework proposed in [1] to es-
tablish the goals of ProxiScientia, define its stakeholders
and decide how to best translate the coordination insight
provided by the proximity into effective visual awareness
support. The framework has guided the elicitation of the
tool requirements and the implementation of the current
prototype.

The framework comprises five dimensions: intent, infor-
mation, presentation, interaction, and effectiveness. Intent
describes the motivation behind the proposed tool. The in-
formation dimension captures the data sources which will be
used by the tool. Presentation entails the way the information
will be visualized for viewing by the stakeholders. It also
captures the various visualization variables and techniques
that will be employed. The interaction dimension captures
the temporal operability of the tool (online or offline; real-
time or not) along with the different user interaction modes.
Finally, effectiveness refers to the usability of the tool and
the proposed evaluation.

A. Intent

ProxiScientia is aimed at visualizing CRs in real time to
maintain and increase awareness of coordination needs and
opportunities in distributed software development projects.
Developers are the main users of the real-time visualizations.
For any complex collaborative software project, our tool
must help the individual developer become aware of coor-
dination needs induced by dependencies of her current task
with other ongoing tasks. Becoming aware of these CRs in
a timely fashion can result in more streamlined and efficient
coordination, and can save developer’s time. For example,
by eschewing communication breakdowns, awareness can
result in more productive and organized software develop-
ment and improved quality [19]. Also project managers are
ProxiScientia stakeholders. The tool can help managers to
alert developers of the need to coordinate their activities
before complications arise. The tool can also be integrated
with existing decision support systems to streamline the
development process and its governance.

In terms of cognitive support, ProxiScientia reveals who
is working on what in the context of the current project, and
aims at minimal disruption of the developer’s mental context.
It can also be extended, for example to provide insight on
the rationale and chronology of developer activities that are
carried out on a working set of artifacts.

B. Information

ProxiScientia is based on the proximity algorithm [5].
Proximity extracts context data as each developer interacts
with her development environment at different levels of
artifact granularity—files, classes, and class elements. The

amount of data generated this way can become quite signif-
icant in a large-scale software project, as many developers
work concurrently on a number of tasks. ProxiScientia deals
with such a large amount of information by filtering the vast
majority of it behind the scenes, and synthesizing a simple
numeric measure. That measure must offer each developer
adequate cognitive support for her coordination awareness
needs and must be useful for the presentation of results
pertinent to that developer.

C. Presentation
The tool uses awareness information in two ways: to

build developer-centric and task-centric proximity clouds,
i.e. graphical representations of the proximity semantic
relationships. In particular, we consider ego-centered views
through radar graphs (already implemented) and heat maps
(conceptualized, but not yet implemented).

For the developer-centric view, the tool mines data rele-
vant to the given developer for the task in focus to auto-
matically and periodically compute proximity with all other
developers in real time. The view is a radar graph with the
current developer positioned in the center. The edges denote
the proximity relationships of the current developer to all
other developers. This view may also be construed as a
user-centric social network. Figure 1 illustrates a developer-
centric view for developer Sue. It shows, for instance, that
Kate and Jack are the two developers closest to Sue.

Figure 1. Developer-centric radar view of proximity relationships for task
T3315. The view is generated for Sue, highlighted in green.

The task-centric view is also visualized as a radar graph
but with the current task positioned in the center and all
related tasks revolving around the central task. The edges,
again, represent the proximities between the current task
and all relevant tasks computed in real time. A sample
task-centric view is shown in Figure 2. Higher proximity
values indicate greater need to coordinate. The visualizations
display the reciprocal values of the scaled proximity values
on the edges, for a more intuitive representation, based on
the distance between developers’ or task icons. The tool
visualizes only the closely related developers/tasks that may
need coordination. Unrelated developers/tasks are left out

Figure 2. Task-centric radar view of proximity relationships for developer
Kate. The current task in focus, T1440, is highlighted in green.

of the visualization to minimize the amount of information
presented. Also, in its present implementation, ProxiScientia
filters out developers or tasks whose proximity value is larger
than two standard deviations from the average proximity;
this filtering is a default that must be validated and could be
changed as an individual preference setting.

Besides radar graphs, we envision that future versions of
ProxiScientia must include additional views to satisfy the
needs of all of its stakeholders, from developers to managers
to testers. We are considering a heat map view on top of
a spatial representation of the working set of a user or
a task. Each concurrent activity that intersects with that
working set must yield heat, proportional to the proximity
score calculated between that activity and the current user
or task. The various regions on the heat map shall thus vary
in luminosity over time. In addition to this visual feature,
the heat map shall also provide contextual information upon
request by being interactive. The user can click on the
heated regions for additional information, or even to observe
the stream of events other developers have been generating
relative to those artifacts.

D. Interaction
As entailed in the intent dimension, ProxiScientia aims at

providing cognitive support in real time. The tool periodi-
cally updates and stores context information automatically
and recomputes proximity for the current developer and
the task in focus based on the context information. In
a future release, it will also allow the user to explicitly
request additional information from the tool, for example,
by hovering over a particular area in the proximity cloud to
view detailed annotations or locally generated reports.

As with any awareness tool, there is a tradeoff between
providing enough information to make the user aware and
minimizing disruptions to the user’s work. Interaction with
the tool could pose a contingent disruptive interruption threat
to the user’s prospective memory, which entails remember-
ing a task that needs to be done in the future [20] (cited
in [21]). In particular, the disruption has the largest effect
on workers whose information workload is especially large

and critical. Other variables such as task complexity and
duration, as well as the number of interruptions, must be
taken into consideration when evaluating the effectiveness
of the tool. We present below a relevant cognitive support
strategy that attempts to address the awareness vs. disruption
tradeoff and to minimize the interruption threat.

1) The “Push and Pull” Cognitive Support Strategy:
In ProxiScientia we want to establish a dialectic relation-
ship between the developer and her work environment as
the main form of cognitive support towards coordination
awareness. We envision to that end a “push–pull” strategy,
according to which ProxiScientia users can be presented with
timely and relevant awareness information quickly and with
minimal disruption, but are also enabled to explore, seek
more detail, and hence gain a deeper understanding about
coordination from the awareness information that has been
pushed to them. In the push mode, ProxiScientia enriches
the developer’s experience and environment by proactively
presenting cues that the tool deems relevant for the de-
veloper’s coordination needs: the radar views described in
the Presentation dimension above represent instances of the
push mode. The complementary pull model, which is not
yet fully implemented, enables the developer to follow the
cues presented to her, drill deeper, and request additional
information. For example, the ability to interact and click on
the heat map visualization is an instance of the pull mode.

Developers will also be given the option to customize
presentation settings, such as the refresh rate at which the
tool conveys visual information about proximity, and the
filter threshold for proximity scores. ProxiScientia can be
integrated into the developer’s work environment as a plugin.
Currently, the ProxiScientia prototype is implemented as a
plugin for the Jazz platform (also known as Rational Team
Concert), whose development tool suite heavily borrows
from the Eclipse IDE. When the developer logs onto Jazz,
ProxiScientia loads the developer-centric and task-centric
views with the most recent context data and then refreshes
the view in real-time. Context data is obtained through the
Mylyn plugin [18] for the Eclipse IDE and is sent to a
centralized database on the server. The server also computes
the proximity scores among all users, by default every 30
seconds, and sends them back to the visualization plugin
which acts as the client. This way, the ProxiScientia visual-
ization can also be deployed as a stand-alone application for
stakeholders who do not employ an IDE such as a project
manager.

E. Effectiveness
Two key aspects of effectiveness are the scalability and

the evaluation of the visualization tool. A detailed discus-
sion on the evaluation of the tool is found in the next
section. In regard to scalability, the awareness provided by
ProxiScientia must be beneficial to small, medium, or large
software development teams alike, in the face of their diverse

coordination requirements [22]. The key threat to scalability
is the vast amount of context data generated throughout the
development cycle of a given project that is going to be fed
to the server for proximity calculation. The handling of that
data and the computation of pairwise proximity scores and
the corresponding coordination relationships must remain
efficient. There may be a trade-off between the frequency
with which that computation occurs and the number of pairs
in the system to which proximity must be applied. A related
aspect is determining a minimum value of the proximity
metric that can be used as a threshold of significance for
the coordination needs of pairs. That threshold can be seen
as a tuning parameter for ProxiScientia, which needs to be
determined via empirical validation.

F. Comparison to Other Tools

We have used the same framework that has guided us in
conceptualizing the tool to carry out a side-by-side compar-
ison of ProxiScientia with three closely related visualization
tools: Tukan, Palintir, and Tesseract (see Table I). The salient
findings are reported below.

In terms of intent, ProxiScientia provides timely cognitive
support to a wider audience of stakeholders than current
existing tools. It provides authorship information for changes
to artifacts, but does not provide a rationale for those
changes, such as does Tesseract, for example. In terms
of information, ProxiScientia does not conduct semantic
analysis of program code or make use of syntactic units
like the other three tools. Instead, its CR conceptualization
descends from contextual data extracted from the working
sets of developers and their artifact interactions, which allow
it to visualize developer or task dependencies in real time.
All of the tools visualize awareness information graphically.
ProxiScientia uses ego-centered networks (radar graphs)
and heat maps. The evaluation of the current prototype of
ProxiScientia, which has been developed in accordance with
the conceptualization we have just described, is under way
as we write this paper. We report some early results and our
overall evaluation strategy in the subsequent section.

IV. EVALUATION

As a first step in evaluating ProxiScientia, we carried
out an expert judgment study involving six participants
having strong background knowledge of the Eclipse IDE and
experience in distributed software development. A sample
screenshot of the simulated proximity visualizations that we
employed for that study is provided in Figure 3. According
to the short survey we conducted, ProxiScientia was con-
sidered useful to maintain awareness in terms of both tasks
and developers by finding related entities. The responses also
showed that most users do not believe ProxiScientia poses
a large disruptive interruption threat. To further evaluate
ProxiScientia we have designed a controlled field study

Table I
SUMMARY OF PROXISCIENTIA AND OTHER AWARENESS

VISUALIZATION TOOLS. THE TABLE AND THE DATA ABOUT TUKAN AND
PALANTIR ARE ADAPTED FROM [1].

ProxiScientia Tukan Palantir Tesseract
Team size Any Any Any Any
Developer Yes Yes Yes Yes
Manager Yes
Tester/Documenter Yes
Researcher Yes Yes
Present Yes Yes Yes
Recent past Yes Yes Yes Yes
Historical Yes
Authorship Yes Yes Yes Yes
Rationale Yes
Syntactic units Yes Yes Yes
Semantic Analysis Yes Yes
Context Data Yes Yes
Online Yes Yes Yes
Customizable Low Low Low
Zoomable Yes Yes
Hypertext
Graphical Yes Yes Yes Yes
Graph view Yes Yes Yes Yes
Other views Yes Yes
Visual variables Yes Yes Yes Yes
Animation Partial
Availability Yes
Adopted
Case Study Yes Yes Informal
User Study In progress

Figure 3. A cropped screenshot of ProxiScientia integrated in the Eclipse
IDE: User-to-user proximities displayed in the lower-right view.

ending April 2012. The study focuses on an agile devel-
opment project that will be completed during a course on
global software development held the University of Victoria,
Canada, in conjunction with a similar course held at Aalto
University, Finland. Students of both institutions are placed
into three geographically distributed teams, which need to
collaborate to complete one unified project. Each team is
assigned user stories of similar complexity and type. The
user stories introduce both intra-team and inter-team work

dependencies. We hypothesize that the increased awareness
of coordination needs provided by our tool will increase
productivity and lower coordination issues. To validate that
principal hypothesis, and control for any differences and
idiosyncratic properties of the three teams, we intend to
vary the project iterations (agile “sprints”) during which each
team is allowed access to the tool visualizations. The course
project will include five two-week sprints.

All teams will be be introduced to the tool, its purpose
and its semantics during the first sprint, which will serve as a
“practice” sprint to allow the teams to get familiarized with
the whole set of processes, tools and best practice they need
to adopt in the context of a globally distributed software
development project. Following that first sprint, one team
will be given access to ProxiScientia during sprints two
and three and another team will be given access to the tool
during the last two sprints. The remaining team will not be
given access to the tool and will serve as a control group
throughout the course of the project. We will collect context
events, proximity scores and communication traces during
the sprints. We will also collect user surveys after each sprint
to elicit user feedback on their perceived coordination needs,
as well as the use of the tool. Our goal is to answer the
following research questions:

RQ1: Does the support by ProxiScientia make CR an
actionable concept?

This research question aims at determining if ProxiScientia
provides timely coordination awareness to team members.
We will be collecting context data and computing proximity
for all three teams regardless of their use of the tool. To
answer this research question, we will use the earliest time
at which proximity indicates a coordination requirement for
each pair of developers. We will look to see if the time
between the emergence of a CR and when a developer acts
upon it is less during those sprints in which members of a
team are equipped with ProxiScientia, and hence provided
with a visualization of their CRs.

RQ2: Does the coordination awareness offered by
ProxiScientia make a difference in the SW project?

For this question we will look comparatively at various
productivity measures, such as the time to complete an
issue, for the three teams and check whether productivity
is increased by the use of ProxiScientia.

V. DISCUSSION

The design of ProxiScientia aims at fostering coordination
awareness of software developers with real-time visual cues
in order to make the concepts of CRs and STC actionable.

We are in the process of carrying out a field study to
corroborate and validate ProxiScientia against that goal,
and to evaluate the benefits it could bring to individual
developers and the development team as a whole. In the

meanwhile we are considering to extend the features and
support capabilities of ProxiScientia in the following direc-
tions:

A. Customizability

At its present state, ProxiScientia is displayed as a bi-
color graphical Eclipse plugin with two available views:
developer- and task-centric radar graphs (Figure 3). The
nodes of the graph are denoted with simple circles annotated
with a unique entity label (such as the developer’s name or
task ID) and a proximity value. The tool should allow the
user to customize the appearance of the graph, as well as
the way labeling is displayed or how much information the
labels reveal. For instance, a developer may choose to hide
proximity values. Avatars (or small photos) could also be an
available choice of customization. For example, developers
working with the IBM Jazz R� environment can choose to
use the Jazz photos of participating developers. That could
induce more awareness, given the personal contacts and ac-
quaintances of team members and their social implications.

B. Faster Coordination

ProxiScientia should enable an option for quickly initiat-
ing explicit coordination actions between developers when-
ever coordination needs arise. This could be achieved by
integrating synchronous communication mechanisms (e.g.
instant messaging, audio and video chats, and screen shar-
ing) or asynchronous ones (e.g. emails or discussion boards).
To enable these forms of communication for coordination, a
simple drop-down menu could be generated as soon as the
user clicks on a particular node on the ego-centric graph.
These features have already been experimented with in the
Jazz platform, although they were not associated to any
cognitive support dealing with the concept of CRs. Therefore
it should not difficult to integrate them with the ProxiScientia
prototype, which is also a Jazz plugin.

C. More Contextual Information

Currently, ProxiScientia provides information about the
nodes of the developers or task view in a static way. Only
the value of the proximity relationship is dynamic, as it
is frequently refreshed to remain up to date. Therefore,
ProxiScientia can be enriched with the ability to allow the
user to hover over a node on the ego-centric network to
retrieve more contextual information. This is in accord to
the push–pull cognitive support strategy discussed in the tool
conceptualization section above, and will enables the user to
“drill down” on demand and pull additional data about a CR,
once she believes ProxiScientia has brought an important
piece of awareness information to the forefront. This feature
can be integrated with the explicit coordination support
described above, to speed up the resolution of coordination
requirements. Finally, we are considering adding a menu
of additional tasks, whereby an ego-centric graph can be

generated for gathering more contextual information of other
ongoing activities besides the task in the current work focus
of the user. This could support project managers in enacting
efficient coordination of developers. Further effectiveness
studies need to be conducted in order to test the viability
of the features and properties proposed here.

VI. CONCLUSIONS

ProxiScientia is a visualization tool that provides cognitive
support to coordination awareness in software projects, by
providing developers with information about the presence
and strength of work dependencies they have with co-
workers. This tool has the potential to improve the manage-
ment of coordination needs that emerge—but often remain
undetected until they have percolating damaging effects—
in large-scale or distributed software development projects.
ProxiScientia is based upon the proximity metric, which is a
new, timely way to conceptualize coordination requirements
and measure their intensity.

We have presented ProxiScientia in terms of a formative
assessment framework for visualization tools in software
engineering, which allowed us to motivate and describe the
design choices we have made with respect to five dimen-
sions: its intent, the information it consumes and presents, its
presentation strategy, its interaction with the intended users,
and how its effectiveness can be explicated and evaluated.

A prototype of ProxiScientia has been developed as a
visual plugin to IBM’s Rational Team Concert collaborative
development environment, also known as Jazz. A prelimi-
nary evaluation has been conducted, and a controlled field
study in the context of a distributed agile development
project is under way.

REFERENCES

[1] M.-A. D. Storey, D. Čubranić, and D. M. German, “On the
use of visualization to support awareness of human activities
in software development: A survey and a framework,” in Proc.
ACM Symposium on Software Visualization, 2005, pp. 193–
202.

[2] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley, “Identification of coordination requirements: implications
for the design of collaboration and awareness tools,” in Proc.
20th Anniversary CSCW, Banff, Canada, 2006, pp. 353–362.

[3] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-
technical congruence: A framework for assessing the impact
of technical and work dependencies on software development
productivity,” in Proc. 2nd ACM-IEEE Int. Symposium on
Empirical Software Engineering and Measurement, Kaiser-
slautern, Germany, 2008, pp. 2–11.

[4] M.-A. D. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared
waypoints and social tagging to support collaboration in
software development,” in Proc. 20th Anniversary CSCW,
Banff, Canada, 2006, pp. 195–198.

[5] K. Blincoe, G. Valetto, and S. Goggins, “Proximity: a measure
to quantify the need for developers’ coordination,” in Proc.
CSCW, Seattle, WA, 2012, pp. 1351–1360.

[6] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson, “Jazzing up
eclipse with collaborative tools,” in Proc. OOPSLA Workshop
on Eclipse Technology eXchange, Anaheim, CA, 2003, pp.
45–49.

[7] M. Cataldo, M. Bass, J. D. Herbsleb, and L. Bass, “On
coordination mechanisms in global software development,”
in 2nd IEEE Int. Conf. Global Software Engineering., 2007,
pp. 71–80, iD: 1.

[8] M. Conway, “How do committees invent,” Datamation,
vol. 14, no. 4, pp. 28–31, 1968.

[9] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Commun. ACM, vol. 15, no. 12, pp.
1053–1058, 1972.

[10] C. Y. Baldwin, Design Rules: The Power of Modularity. MIT
Press, 2000.

[11] T. Schümmer and J. M. Haake, “Supporting distributed soft-
ware development by modes of collaboration,” in Proc. 7th
European Conf. on CSCW, Bonn, Germany, 2001, pp. 79–98.

[12] J. Froehlich and P. Dourish, “Unifying artifacts and activities
in a visual tool for distributed software development teams,”
in Proc. 26th Int. Conf. Software Engineering, Washington,
DC, 2004, pp. 387–396.

[13] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles,
“Supporting collaborative software development through the
visualization of socio-technical dependencies,” in Proc. Int.
ACM Conf. on Supporting Group Work, Sanibel Island, FL,
2007, pp. 147–156.

[14] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb,
“Tesseract: Interactive visual exploration of socio-technical
relationships in software development,” in Proc. 31st Int.
Conf. Software Engineering, Washington, DC, USA, 2009,
pp. 23–33.

[15] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“Fastdash: a visual dashboard for fostering awareness in
software teams,” in Proc. SIGCHI Conference on Human
Factors in Computing Systems, San Jose, California, USA,
2007, pp. 1313–1322.

[16] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantir: Raising
awareness among configuration management workspaces,”
Int. Conf. Software Engineering, p. 444, 2003.

[17] J. Costa, R. Feitosa, and C. de Souza, “Tool support for
collaborative software development based on dependency
analysis,” in 6th Int. Conf. Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom),,
2010, pp. 1–10.

[18] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” Proc. 14th ACM SIGSOFT, p. 1,
2006.

[19] D. Damian, L. Izquierdo, J. Singer, and I. Kwan, “Awareness
in the wild: Why communication breakdowns occur,” in 2nd
IEEE International Conference on Global Software Engineer-
ing, 2007, pp. 81–90.

[20] J. Ellis and L. Kvavilashvili, “Prospective memory in 2000:
Past, present, and future directions,” Applied Cognitive Psy-
chology, vol. 14, no. 7, pp. S1–S9, 2000.

[21] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study
of task switching and interruptions,” in Proc. SIGCHI Con-
ference on Human Factors in Computing Systems, Vienna,
Austria, 2004, pp. 175–182.

[22] J. M. Costa, M. Cataldo, and C. R. de Souza, “The scale
and evolution of coordination needs in large-scale distributed
projects: Implications for the future generation of collabo-
rative tools,” in Proc. Annual Conf. on Human Factors in
Computing Systems, Vancouver, Canada, 2011, pp. 3151–
3160.

