

Proximity: a Measure to Quantify the Need for Developers’
Coordination

Kelly Blincoe
Computer Science Department

Drexel University
Philadelphia, PA, USA

kelly.blincoe@drexel.edu

Giuseppe Valetto
Computer Science Department

Drexel University
Philadelphia, PA, USA
valetto@cs.drexel.edu

Sean Goggins
College of Information, Science

and Technology
Drexel University

Philadelphia, PA, USA
sgoggins@drexel.edu

ABSTRACT
We describe a method for determining coordination
requirements in collaborative software development. Our
method uses “live” data based on developer activity rather
than relying on historical data such as source code commits
which is prevalent in existing methods. We introduce
proximity, a measure of the strength of the work
dependencies that lead to coordination requirements among
members of a software development organization. Our
proximity measure relies on a tool which captures the
interactions of a developer with her IDE. It quantifies the
similarity between records of interactions of developers as
they work on their assigned tasks. We describe an algorithm
that measures proximity between pairs of tasks or pairs of
developers. Through an empirical study on an open source
project that routinely records environment interaction data,
we show how proximity accurately determines coordination
requirements. The proximity measure thus enables
proactive detection of coordination requirements and makes
possible real time intervention and coordination facilitation
via management-, design- and team-related decisions.

Author Keywords
Awareness, Proximity, Management, Coordination
Requirements, Socio-Technical, Task Context, Tools.

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces.

1. INTRODUCTION
The coordination of concurrent activities by multiple
developers remains problematic for software development
organizations [18]. Software engineering pioneers such as

Parnas [20] and Brooks [2] recognized the importance of
efficiently managing work dependencies and coordination
overhead arising within a development team. Such
dependencies are becoming more critical as software
organizations become larger and more distributed [3,13,14].

Dependencies between tasks often result in Coordination
Requirements (CRs) among team members. Cataldo et al.
[4,6] introduced a framework to detect and quantify CRs
between pairs of software developers by identifying the
technical dependencies between software artifacts modified
during their assigned tasks. This formalization of CRs led to
the definition of Socio-Technical Congruence (STC) in
software development. STC is an index that measures the
degree to which actual acts of coordination mirror
coordination requirements. Empirical studies suggest that
high levels of STC are beneficial: when coordination
activities focus on the empirically identified CRs,
productivity is likely to improve [4,6,25].

Current methods for detecting CRs and calculating socio-
technical congruence have two serious drawbacks. First,
CRs are identified by mining the source control repository
of the project for changes to artifacts committed by a
developer. This type of data is typically available only
towards the end of the development work for a task.
Second, for each file committed to a source code repository,
a developer may have consulted several other files.
Knowledge of this source code reference behavior is
inaccessible from commit records.

Without a “live” view of activities, CRs and STC are not
actionable devices for managing coordination in software
projects. Several potential applications for such a live view
have been discussed. Ehrlich et al. have elaborated a way to
rank CRs in a project, enabling prioritization of those
whose resolution can improve STC the most [11]. Valetto et
al. proposed a set of management-, design-, and team-
related decisions that can be used as alternatives to resolve
CRs; each with its associated costs and risks [27]. These
and other techniques require the ability to detect, analyze
and manipulate CRs as they emerge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2012, February 11–15, 2012, Seattle, Washington.
Copyright 2011 ACM XXX-X-XXXXX-XXX-X/XX/XX...$5.00.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1145/2145204.2145406

To surface CRs in a timely way, we introduce a measure we
call proximity, which characterizes the similarity of
working sets of artifacts employed by developers as they
work. Proximity can be applied to pairs of tasks as well as
pairs of developers who carry out those tasks.

To measure proximity, we need to record developers’
actions on artifacts as they occur. Several such recording
frameworks exist. Because of its popularity, we focus on
the Mylyn framework (formerly Mylar) [16,17]. By means
of a field study, we show how our proximity measure
detects CRs at least as accurately as other methods such as
that described in Cataldo et al. [4,6] We also show that it
can detect CRs substantially earlier than other methods.
Thus, proximity can provide enhanced support to the
management of coordination in software projects.

The rest of the paper is organized as follows: in Section 2
we discuss related work; in Section 3 we present our
method, including the data we use and our proximity
algorithm; in Section 4, we describe in detail the setting,
method and results of our empirical study; in Section 5, we
discuss the significance of our contributions; finally, in
Section 6, we offer some concluding remarks.

2. RELATED WORK
In the course of any non-trivial software project, it is
paramount to be able to manage work dependencies. If such
dependencies are not recognized early, they must be
reconciled later. This often leads to lower product quality
and developer productivity [5,14,25].

The design literature, beginning with Parnas’ recognition of
the workflow implications of modularization [20], focuses
on ways to streamline the technical dependencies between
modules as a way to maximize task parallelism [25,26]. In
software, such technical dependencies are often derived
from a syntactic analysis of the code base. As an alternative
to identify technical dependencies, Gall et al. introduced the
notion of logical coupling based on the “files changed
together” heuristic [12] which aims at identifying semantic
relationships that may not manifest in the syntax of the
programmatic implementation of the software product.
Whereas syntactic dependencies exist a priori with respect
to a project and an organization, logical couplings reflect
accumulated empirical evidence about how the
development work unfolds in the project.

The shift from studying technical dependencies per se to
exploring the complex interplay they have with
organizational structure and project dynamics continues in
recent research on the socio-technical aspects of software
engineering. For example, several field studies show how
information hiding may hamper the ability of development
team members to coordinate with one another by decreasing
awareness of important work decisions [3,13]. Herbsleb et
al. [15] argued for a systematic framework to satisfy, as
opposed to try to reduce, work dependencies by explicitly
computing and orchestrating the coordination needs of a

project. Works on CRs and STC in software development
are part of this thread of research [4,5,6].

The study of Coordination Requirements
Cataldo et al. [4,6] describe STC as an index based on the
alignment between team interactions and technical
dependencies. Conway [7] was the first to describe the
possibility of such an alignment. STC measures the extent
to which CRs and coordination behavior are aligned in
practice. STC is expressed as a simple ratio between CRs
that are satisfied by actual acts of coordination and the set
of outstanding CRs between developer pairs. Those CRs
can be identified according to the following formula:

CR = TA x TD x TAt
In this formula [6], TA is a people-by-task matrix
representing task assignments, and TAt is its transpose. TD
is a task-by-task matrix capturing the work dependencies
between tasks. Those are established by considering the
technical dependencies occurring between artifacts
involved in those tasks. According to this formula, a CR
between two developers Alice and Bob can be represented
graphically as in Fig. 1. Arc TDab represents a technical
dependency between software artifacts Sa and Sb. These
artifacts are involved in tasks to which Alice and Bob,
respectively, are assigned (denoted by arcs TAa, TAb).

Among the methods for computing technical dependencies,
Cataldo et al. offer empirical evidence that logical coupling
obtained by tracking files that have been historically
checked in together provides a more reliable representation
of the technical dependencies relevant for CR detection
than syntactic coupling does [5]. However, logical
dependencies are computed based on past project history
and are only visible after work is completed. Even when
syntactic dependencies are chosen, as done by Ehrlich et al.
[11], they only become fully known following a commit.

In prevalent CR detection methods, the association of
developers to artifacts they work on becomes visible only
after code is committed. That limits the potential of CRs as
a means to support coordination as the development work
unfolds. Our research aims to close that gap.

Applications of Coordination Requirements
Awareness [10] is one of the ways used to conceptualize
coordination. A recent work shows that, for a software
engineer, the most important form of awareness is locating
and keeping up to date with other developers whose work is
relevant to her own [1]. Examples of systems that try to
achieve that by employing abstractions similar to

Figure 1. Representation of a Coordination Requirement.

CRs include Ariadne [8], EEL [19], Tesseract [23], and
Codebook [1]. Those systems offer various mechanisms
including visualization of socio-technical networks
(Ariadne and EEL), dashboards (Tesseract), and query and
search facilities (Codebook) to try to identify and show
important work relationships within a team. All of those
systems rely upon the commit logs in the source code
repository to establish technical dependencies among
artifacts. They use these dependencies to compute transitive
relationships between developers. Therefore, these
approaches suffer from the same drawback we mentioned
earlier, that is, they are hampered in their ability to detect
CRs and provide timely awareness support. Among them,
the work most similar to our approach is EEL because of
the way it combines the concepts of working set and CRs.
However, our proximity measure aims at bypassing reliance
on any specific conceptualization of technical dependency
relationships and removing the reliance on post-mortem
data.

There are other awareness approaches in collaborative
software development that have tried to leverage live
workspace information. For example, Palantír uses
notifications to keep a developer abreast with what happens
in her colleagues’ workspaces [22]. Notifications relate
only to changes occurring to the same artifacts a developer
has in her own workspace. Palantír thus provides each
developer with timely information about any arising same-
artifact conflicts which can be seen as a narrow subset of
CRs. CollabVS is another awareness system that uses
notifications. Compared to Palantír, it has an expanded
model of interest. The CollabVS model captures additional
conflicts by considering a subset of syntactical
dependencies between artifacts [9]. It issues instantaneous
warnings to developers as an individual instance of conflict
emerges, but it does not offer a model for quantifying the
strength of CRs. By introducing the proximity measure, we
contribute such a model and can draw a complete and
explicit view of coordination across the whole team.

3. TASK CONTEXT AND PROXIMITY

Task Context
The main goal of our research is to identify CRs accurately
and early enough to enable decisions on how to best resolve
those work dependencies. For example, if Alice and Bob
are assigned to tasks that require extensive negotiation and
synchronization around interdependent software artifacts,
early design decisions to refactor those dependencies and
modify modularization can be taken to improve Alice’s and
Bob’s productivity.

We look to capture meaningful data from development
work as it happens in order to build an incremental record
of the development activities carried out on the working set
of artifacts for a task. Several facilities of this kind have
been described in the literature [21,24]. Here we focus on
Mylyn, a tool that captures the interactions of a developer
with her IDE and constructs a data structure called a “task

context” [16,17]. Mylyn is an Eclipse plugin whose goal is
to provide an individual developer with a task-centric
interface. It adapts the Eclipse GUI and focuses its
presentation on what is most relevant for that developer in
the context of the task she is performing. To achieve that,
Mylyn stores significant GUI events, such as software
element manipulation, artifact consultation, or the issuing
of IDE commands in a task context event. Those events are
weighted according to a model of interest that takes into
account – among other things – action type, frequency of
interaction, and a decay factor [16]. Mylyn task contexts
therefore characterize a task in terms of its working set, the
relative importance of artifacts in the working set, and the
nature of the interactions with those artifacts. Since this
kind of data is of general significance, Mylyn has started to
extend to a number of other prominent development
environments besides Eclipse.

A sequence of task context events in Mylyn is therefore a
list of IDE interactions by the developer described in an
XML dialect. The pertinent information associated to each
action includes:

• Kind: type of interaction (selection, edit, etc.)
• Structure Handle: a unique ID that identifies a

software artifact.
• Start Date: a timestamp
• End Date a timestamp

We are interested in only selection and edit events.
Selection events are captured when a developer opens a file
in the Eclipse IDE. Additional selection events can be
captured whenever a developer navigates to a class, method
or field defined in that file. Edit events are captured as the
developer makes changes to those file locations.

The Mylyn structure handle provides more granularity than
simply file names. It identifies the file name, class name
and even the name of the class element (method or
attribute) when available. We can thus choose to consider
artifacts at different granularity levels allowing us to
determine if two developers were working on the same area
of code within a large file. This level of granularity is not
available when looking only at commit information.

Note that the original purpose of Mylyn task contexts is to
support the work of an individual developer during a single
task or to allow a single developer to easily switch between
tasks without loss of focus. Instead, we use that same
information to support a collaborative goal. We want to
detect areas in the project that are relevant for the
coordination of concurrent tasks by looking at the amount
of overlap between the working sets of the developers
assigned to those tasks. To achieve that, we introduce our
proximity measure which applies to task contexts and, by
extension, to tasks and developers.

Proximity
Proximity is a relative measure that conveys the amount of
similarity between the development activities recorded in
any two working sets. A working set can be construed at
different levels simply by aggregating context events
appropriately. To compute proximity between developers,
each developer’s working set will include all task context
events produced for all tasks carried out by that developer
during a time frame of interest. To compute the proximity
of tasks, the working set of a task includes all context
events produced for that task by all developers who worked
on that task.

When calculating proximity between two working sets, our
algorithm considers all actions recorded for each artifact in
each working set in order to apply a weight to that artifact’s
proximity contribution. There are several types of actions
captured by Mylyn. For this study we consider only select
and edit actions. Other actions used within Mylyn, such as
prediction, propagation and manipulation, were purposely
left out of our algorithm. Since these event types are
specific to Mylyn, including them would make the
replication of our experiments and findings outside of the
Mylyn framework difficult. Manipulation actions represent
information that developers can explicitly provide to Mylyn
to emphasize the importance (or lack thereof) of a given
artifact for the task at hand. Prediction and propagation
events occur when Mylyn itself “suggests” other artifacts,
which are not included in a developer’s working set, but
appear to be structurally relevant.

We base our weights on the factors that Mylyn itself uses
when computing its Degree-Of-Interest (DOI) model for
each artifact present in a task context [16]. The DOI
provides Mylyn with a way to prioritize the presentation of
elements in its task-based interface. The factors used in the
Mylyn DOI model are 1 for select events and 0.7 for edit

events where higher values indicate higher interest. Those
factors have been extensively validated in practice by the
Mylyn user community.

Since edit events in the GUI are always preceded by at least
one selection event, our algorithm weighs an edit overlap as
1.7. An edit overlap occurs when both developers edit the
same artifact. Each developer contributes 1.7 to the overlap
score for a total score of 3.4, which is the maximum score
for an overlap. In a mixed overlap, one developer edits the
artifact while the other developer selects or views the same
artifact. In this case, one developer provides a score of 1.7
for the edit event and the other developer provides a score
of 1 for the selection event for a total score of 2.7. In a
selection overlap, neither developer edits the artifact, but
both developers select and view the artifact. In this case,
each developer contributes a score of 1 for a total score of
2. We then calculate our weights as percentages of the
maximum possible overlap score:

• Edit overlap: 1.7 + 1.7 = 3.4, 3.4/3.4 = 1
• Mixed overlap: 1.7 + 1 = 2.7, 2.7/3.4 = .79
• Selection overlap: 1 + 1 = 2, 2/3.4 = .59

With those weights we compute two scores: an actual
overlap and a potential overlap. Actual overlap is the
intersection of the two working sets. Potential overlap is the
union of the two working sets representing the maximum
similarity score had there been perfect overlap between the
two sets. Our proximity measure is the ratio between the
actual overlap and the potential overlap. Fig. 2 shows the
results of our algorithm on two sample working sets. The
actual overlap includes files B, C and E since these three
files are included in both working sets. B has an overlap
score of .79 since working set X edited the file while
working set Y only selected the file. C and E have an
overlap score of 1 since both working sets edited these files.
The Potential overlap includes all five files since we are
now taking the union of the two sets. B, C, D and E each
have an overlap score of 1 since at least one of the working
sets edits each of these files. File A has an overlap score of
.59 since only selection events exist for this file.

As a final step of our algorithm, we apply a scaling factor
where we consider the total number of events recorded
within all working sets. The scaling factor is the ratio
between the number of overlapping events for each pair and
the average number of overlapping events computed across
all pairs in the population. The rationale for this scaling
factor is to place greater weight on those pairs engaged in
complex development activities, where coordination is
likely to be more necessary, than for pairs involved in
simple tasks. When performing a complex task, a developer
is likely to spend a lot of time on the task and will therefore
create many context events. Conversely, a developer
completing a task via a trivial change will likely produce a
small number of events.

Figure 2. Proximity Algorithm.

Research Objectives
This study explores the extent to which our proximity
measure enables the detection and management of CRs
between software developers. Having introduced the
semantics of proximity and its measurement technique, we
now state our main research objectives:

Research Question RQ1: to what extent are the proximity
relationships obtained with task context information
(aggregated at the developer level) analogous to CRs
determined using information about artifact commits and
technical dependency relationships? RQ1 speaks to the
feasibility of detecting CRs by leveraging developers’
working sets and their overlap, thus bypassing the analysis
of technical dependencies between artifacts.

Research Question RQ2: can CR detection based on task
contexts and proximity provide more accurate results than
current methods? RQ2 speaks to the ability of leveraging
the detailed information offered by task contexts to improve
precision, recall, or both in detecting CRs.

Research Question RQ3: can the data provided by task
contexts support the detection of CRs significantly earlier
than current methods? RQ3 speaks to the possibility of
supporting timely decisions on how to handle CRs as they
form in the project and has immediate consequence on
coordination management practices and technologies.

4. CASE STUDY - MYLYN
We carried out an empirical study on the open source
project which developed the Mylyn framework itself.
Contributors to the Mylyn Eclipse plugin use Mylyn for
their work and conventionally publish the task context data
in the project’s Bugzilla repository (code contributions
without attached context data are often rejected). Sixty-nine
other projects in the Eclipse community alone report freely
available Mylyn task contexts. We selected the Mylyn
project because it provides the largest amount of and most
complete task context information.

Data Collection and Preparation
We collected development data over eight releases of
Mylyn (v2.0 - v3.3). These releases span almost three years,
from December 2006 until October 2009. Mylyn data is
captured as an attachment file to a Bugzilla entry (which
denotes a development task). Our analysis focuses on the
1,970 Bugzilla entries which contain such attachments
during the study period. For those tasks, we also collected

all code commits recorded in the project’s SVN repository
and all patch description files. Patch descriptions are
attached by those developers who contribute code but do
not have commit privileges and report the diff information
for all artifacts that were modified as part of a patch. They
are thus semantically equivalent to commits. Work on
Mylyn during the study period involved 51 distinct
developers who attached task context data (context
attachers) and 8 distinct developers who committed code
(committers). Each release has between 10 and 32 distinct
context attachers and 4 to 6 distinct committers.

We compiled three data sets, summarized in Table 1. For
the first data set, DS1, we looked at the activity of the group
of committers. Each Bugzilla task may have one or more
context attachments. We expanded the contexts attached to
the 1,970 tasks to enumerate the 588,796 selection and edit
events contained within. The majority of these events relate
to Java source code files. Some pertain to .class, .jar, and
other file types which are by-products, rather than objects,
of development work. We thus focused only on the 450,747
context events dealing with Java source code artifacts.

We similarly filtered the SVN commits to include only java
files, yielding 27,074 commits of individual artifacts over
the same time period. Most of the commits, 25,135 or
92.8%, were linked directly to 1,835 unique tasks via the
Bugzilla task IDs conventionally inserted by developers in
their commit comments. We then intersected those 1,835
tasks for which we have commit data with the 1,970 tasks
which have context data attachments. This resulted in 1,127
tasks which have both context data attached and associated
commit records. This set includes 10,647 artifact commits
and 450,757 context events.

Upon further examination of DS1, we noticed that a number
of file changes reported in commits for a given task were
not matched by any edit events in that task’s context data.
In the time period considered, we identified 6,507 commits
out of 10,647 that are not matched by any proof of editing
of the same file in the associated task contexts by the
developer who committed the change. One reason is that,
although it is customary to submit context when committing
a change for a task, Mylyn developers do not always abide
to this convention. Another reason is that the developer who
commits a change is not always the developer who
contributed it. We split DS1 in two: DS1-a includes the
4,140 commits for which we have matching events within
task contexts; DS1-b includes the other 6,507 commits.

Data Set Actors Artifact info Context info Matching artifact commit and context info

DS1
DS1-a

8 committers
4,140 SVN commits 450,757 task context events YES

DS1-b 6,507 SVN commits 450,757 task context events NO

DS2 34 patch contributors 1,387 patch file edits 345,521 task context events YES

DS3 DS1-a and DS2 combined YES

Table 1. Data sets.

Since looking at just commit data, as in DS1, would limit
our analysis to the few developers with commit privileges,
we compiled a different data set. DS2 considers the patch
description files attached to Bugzilla records. Those files
contain data on 7,196 java file changes spanning 936 tasks.
Mylyn contexts attached to those tasks yield 345,521
context events for java artifacts contributed by 47
developers. Again, we match the patch description files
retrieved from Bugzilla to task context events, leaving
1,387 file changes with associated task context data
contributed from 34 different developers.

It is important to notice that DS1 and DS2 are disjoint.
There is only a single developer, common to both sets. This
ensures there are no overlapping pairs of developers among
the two sets. Therefore, DS1 and DS2 represent
complementary analyses over the full picture of the project
activity. The 1,387 patch file changes in DS2 represent
substantially different development work from what is
captured in DS1. The one common developer is responsible
for 219 changes in DS2, and a manual inspection revealed
that only 11 of those 219 changes overlap with commits
made by the same developer in DS1 (5%).

Finally, we combined DS1-a and DS2 into a third data set
DS3, which incorporates all records of file changes (either
via commit traces or patch diff files) and all context events.

Results of the Field Study

RQ1: Is Proximity a Good Proxy for Coordination
Requirements?
We started our analysis with DS1-a. We used the 4,140
commits in that set to calculate CRs between committers
according to the method described by Cataldo et al. As
recommended in [4,6], to define technical dependencies
between software artifacts, we used the “files committed
together” heuristic introduced by Gall [12] which defines
logical coupling between artifacts. We then computed our
proximity scores for the same set of committers. Initially,
since Cataldo’s method calculates CRs at the file level, we
considered only the file associated with each context event
and ignored the finer-grained information made available
by Mylyn at the method and attribute level. Since releases
are a logical unit of concurrency for tasks in an open source
project, we looked at work in each release separately. DS1-
a yielded 70 pairs of committers across all eight releases.

First, we checked that higher values of proximity correlate
with the likelihood of a CR by performing a point-biserial
correlation with a binary vector denoting the presence of
CRs. We then performed a Spearman correlation between
the count of CRs for each pair and their proximity scores.
We chose to use a Spearman correlation because both the
CR counts and proximity scores are not normally
distributed. Both tests were statistically significant and
provided us with strong positive correlations, as shown in
Table 2. Moreover, we observed that 46 of the 70 pairs of
committers had some CR, and 43 of those 46 pairs (93.5%)

Test Unit of Work p-value rho

Spearman File 2.4e-11 0.69

Point-biserial File 4.9e-07 0.55

Spearman Granular 6.8e-09 0.62

Point-biserial Granular 8.8e-06 0.49

Table 2. DS1-A: CR V PROXIMITY CORRELATIONS

have proximity > 0. Conversely, of the 24 pairs with no
CRs, seven present a proximity score of 0.

We repeated these tests by computing proximity at the
finest granularity level for artifacts reported in Mylyn
context events. Our expectation was that analysis of
contexts at finer granularity would yield less proximity and
lower levels of correlation with CRs calculated with
Cataldo’s method. The results shown in Table 2 are in line
with those expectations, but correlations between proximity
and CRs are still strong and significant. Of the 46 CR pairs,
42 (91.3%) have proximity > 0. Therefore, the additional
granularity removes proximity from one of the 43 pairs
with proximity when looking at file level granularity. Eight
pairs have a granular proximity score of 0.

These findings seem to confirm that proximity is a valid
proxy for CRs. However, DS1-a contains rather
homogenous commit and context data: artifacts that are
committed are likely to show up prominently in select and
edit actions within the task contexts of their respective
committer. Therefore, we performed analogous tests on
DS1-b. In this data set, the CR and proximity analyses are
performed on two completely distinct sets of artifacts since
recorded context events do not align with the artifacts that
were committed. However, since we are still looking at
manifestations of the work done by the same developers
within the same set of tasks, we speculated that proximity
scores should remain a good indicator of CRs. The results
of our tests on DS1-b, in Table 3, show strong and
statistically significant positive correlations. Among the 75
developer pairs showing up in this data set, 33 have a CR,
and all 33 pairs have a proximity score > 0 at both the file
and granular level of analysis. Of the 42 pairs with no CRs,
10 of the pairs also have a proximity score of 0 at the file
level and 14 at the more granular level. These results show
that the proximity relationship can capture CRs by
examining working set information even when that
information is partial.

We then moved our analysis of RQ1 from the restricted
core group of Mylyn committers of data set DS1 to the
Test Unit of Work p-value rho

Spearman File 8.7e-09 0.60

Point-biserial File 1.1e-08 0.59

Spearman Granular 2.5e-07 0.54

Point-biserial Granular 1.8e-07 0.55

Table 3. DS1-B :CR V PROXIMITY CORRELATIONS.

Test Unit of Work p-value rho

Spearman File < 2.2e-16 0.55

Point-biserial File < 2.2e-16 0.54

Spearman Granular < 2.2e-16 0.57

Point-biserial Granular < 2.2e-16 0.55

Table 4. DS2 CR V PROXIMITY CORRELATIONS

larger group of project contributors represented in data set
DS2. DS2 yielded 277 developer pairs; of which 37 have
CRs. Of these, 28 (75.7%) have file-level proximity > 0 and
24 (64.9%) have granular proximity > 0. Of the 240 pairs
with no CRs, 206 also have a proximity score of 0 at the file
level and 222 at the granular level. Table 4 shows strong
positive correlations that are also statistically significant.

Our largest data set, DS3, which combines DS1-a and DS2,
includes a total of 347 developer pairs. The correlation
results for this data set are shown in Table 5. Using DS3,
we further investigated the relationship between CRs and
our proximity measure by means of a regression model. We
employed a zero-inflated negative binomial regression
(zinb) since the CR count is highly skewed and presents
many zeroes (264 out of 347 developer pairs have no CRs).
The zinb model is statistically significant (χ2=161.69, df=2,
p < 2.2e-16). Results from the regression are shown in
Table 6 for both the count and the excess zeroes portions of
the model (white and grey rows, respectively). In particular,
a one-unit increase in proximity (a large increase in the
proximity scale) causes a 2.20-times increase in the log of
expected CR count. That is an expected ~9-times increase
in CRs for each one-unit increase in proximity. To
investigate the influence of the select events in defining our
proximity metric, we recomputed proximity including only
edit event overlaps. We then ran the same zinb regression
and obtained a new model. This new model captures only
direct edit conflicts and is, therefore, similar to what could
be observed with tools like Palantír. It is still statistically
significant (χ2=157.17, df=2, p < 2.2e-16). We then
compared the AIC scores of the new model and our original
model of Table 6. We found that our original model has
considerably better support since it has a lower AIC. The
difference in the AIC scores is 4.51416. Thus, our original
proximity model is almost 10 times as likely as the edit
event-only model to minimize information loss.

We conclude that the proximity measure is a valid proxy to
CRs determined using information about artifact commits
and technical dependency relationships.

RQ2: How Accurate is Proximity in Determining Actual
Coordination Requirements?
To investigate RQ2, we first reviewed how developer pairs
with CRs match against pairs with proximity >0, and
conversely how developer pairs with no CRs match against
pairs with proximity = 0 in terms of precision and recall.
Results at the granular level are reported in Table 7. We
assume here that CRs detected with the Cataldo et al.
method are the ground truth.

Test Unit of Work p-value rho

Spearman File < 2.2e-16 0.68

Point-biserial File < 2.2e-16 0.66

Spearman Granular < 2.2e-16 0.68

Point-biserial Granular < 2.2e-16 0.66

Table 5. DS3 CR V PROXIMITY CORRELATIONS

Considering all proximity scores > 0 as indicators of CRs
may cast a net that is too wide. A sensitivity analysis to
understand the impact and appropriateness of different
proximity thresholds will be part of our future work.
However, conceptually, a threshold of 0 seems sensible.
The lowest possible CR score of 1 indicates that a
developer pair worked on only one pair of dependent files.
The lowest proximity score of 0.01 also indicates (at least)
one artifact overlapping in the developers’ working sets.
Since CRs computed according to Cataldo et al. are
themselves only an approximation of ground truth, we then
proceeded to manually examine some of the mismatches.
Our goal was to determine if proximity is conducive to
identify actual CRs more accurately by weeding out either
false positives or false negatives of that method.

For potential false positives, we reviewed the four cases in
DS1-a where developer pairs with CRs had granular
proximity=0. The record of changes made by each pair of
developers held in the relevant task contexts determined
that in each case the developers operate on a totally disjoint
sets of files and all of the recorded code changes were in
areas of those files that appear unrelated to one another. An
example is provided by the single CR that exists between
developers 6 and 7 in release 3.2. Developer 6 committed
BugzillaClient.java, while developer 7 committed
BugzillaTaskEditorPage.java. The changes by developer 6
involve a character encoding method that is private to the
BugzillaClient class. Developer 7 added a new section to
the Mylyn task editor. Although we could ascertain those
changes were semantically unrelated, the two involved files
had been historically changed together by other developers
often enough to cause a logical dependency to be
established by the CR detection algorithm. We noticed
analogous incidents in the other three cases in DS1-a. Those
CRs are therefore false positives of the traditional method
that our proximity algorithm correctly eliminates.

 Estimate Std. Error Z p-value

(Intercept) 5.22 0.37 14.17 < 2.2e-16

Proximity 2.20 0.51 4.33 < 10-4

Log(theta) -2.01 0.14 -14.53 < 2.2e-16

(Intercept) 2.32 0.30 7.61 < 10-13

Proximity -106.49 33.18 -3.21 < 0.01

Table 6. ZINB REGRESSION: CR V PROXIMITY

Data Set # of pairs Precision Recall

DS1-a 70 42/58 = 0.72 42/46 = 0.91

DS1-b 75 33/61 = 0.54 33/33 = 1

DS2 277 24/40 = 0.6 24/37 = 0.65

DS3 347 70/100 = 0.7 70/97 = 0.72

Table 7. PRECISION AND RECALL (GRANULAR)

Moving to potential false negatives, we examined the 16
pairs of committers in DS1-a that present some amount of
granular proximity but have no CR. We were able to
recognize two distinct types of behavior in this set. In one
case, involving developers 3 and 7 during release 3.3,
proximity contributions came exclusively by selection and
mixed overlaps. The pair had seven mixed overlaps and six
selection overlaps. Meaning that developers 3 and 7 viewed
13 of the same artifacts, of which seven were edited at some
point by either developer 3 or developer 7, but no single
artifact was edited by both developer 3 and developer 7.
Since there were no overlapping commits, the traditional
CR method does not allow for a CR to be detected.
However, since we have the advantage of knowing not only
what files are edited but also what files are consulted by a
developer in the process of completing a task, our algorithm
picks up what is likely to be an actual work dependency.
Developer 3 and developer 7 repeatedly examined the same
area of the software code base and consulted each other’s
code during their work for release 3.3.

The remaining 15 developer pairs we examined represent
an even more interesting case. In each of these cases, the
developers edit from 1 to 67 of the same artifacts (17 on
average). CRs could not be established in any of these cases
because at least one of the developers did not commit her
changes. However, task contexts prove that those developer
pairs were at one time engaged in development on the very
same artifacts - the epitome of a Coordination Requirement.
It is likely that in some cases, the two committers became
somehow aware of the overlap and decided to avoid
conflicts by having one of the two merge all changes and
commit on behalf of both. Evidence of such a scenario may
be recorded in the archived communications for the Mylyn
project, which we intend to mine in the future.

All cases examined in DS1-a turned out to be false positives
or negatives of the traditional CR detection method. More
importantly, they highlight drawbacks of that method’s
reliance on post-mortem information and dependency
conceptualizations. We conclude that proximity-based CR
detection can be more accurate than existing methods.

RQ3: Does Proximity Provide Timely Detection of
Coordination Requirements?
Finally, we set out to investigate whether proximity is an
early indicator of CRs. The context events we use are, by
their nature, antecedents to code commits. It is important to
notice that, although the study described in this paper is
retrospective, a method for analyzing CRs based on
proximity and task contexts does not need to be. All

context events are recorded in real time. Therefore, a tool
could gather context data as it is created by all developers
and compute proximity on the fly. We discuss such a tool in
Section 5. Here, our analysis focuses on how early
proximity produces evidence of work dependencies
between tasks. The earlier the evidence, the more actionable
it is in supporting decisions aimed at resolving CRs as they
form. For this analysis, we used the two data sets for which
we have task context data associated with file changes
(DS1-a and DS2). We considered all pairs of developers
who present some CR and have granular proximity >0.
There are 36 such pairs in DS1-a and 18 in DS2.

We obtain the time when the first contribution to the
proximity score occurs by examining the timestamps for the
first overlapping event recorded in all tasks contexts for the
two developers for that release. We then compare the first
proximity event with the first day of concurrent work by
that pair during that release. For perspective, we also
considered the day in which the first CR is identified for the
same pairs. Fig. 3 shows the probability density functions
of proximity detection, CR detection and task duration for
data set DS1-a. The difference in the timeliness of
recognition of work relationship shown is evident. Similarly
distributed probability densities were seen in DS2. We
found that in DS1-a the first evidence of proximity is
detected on average 14.2 days after parallel work begins. In
DS2, it takes 6.2 days. The first CR detection happens in
DS1-a 60.7 days on average after the beginning of
concurrent work by a pair (a delay of 46.5 days). In DS2,
the first CR is detected 17.9 days after the concurrent work
begins (11.7 days later). We also compared our findings
with the duration of the concurrent work intervals by the
same pairs in the various releases. In data set DS1-a,
concurrent work intervals last 102 days on average,
whereas in DS2, they last 31.4 days on average. The
average “advance notice” provided by proximity is 87.8 and
25.2 days, respectively, showing that proximity
significantly improves the timeliness of CR detection.

5. DISCUSSION
Our results suggest that CRs can be determined accurately
based exclusively on the similarity of task contexts. Our
proximity measure adequately models the presence and

Figure 3. DS1-a Timeliness Probability Density

intensity of CRs independently of any conceptualization of
technical dependencies. Unlike methods which rely on data
that is available after work has been completed, we rely on
data that is accessible while development is underway.

Implications for Tools
Many tools exist for enhancing developer awareness, and
several of them leverage information about CRs [1,8,9,23].
Many of these tools strive to identify all technical
dependencies that exist in a software project and provide a
comprehensive view of project coordination needs. Since
our method provides a novel approach to the identification
of CRs, it could be incorporated into those awareness tools
and provide them with the benefits outlined above.

To explore our design implications, we developed a
prototype that calculates proximity of tasks using the
described algorithm. The tool leverages a shared central
database which communicates with client components
hosted within the individual IDEs and automatically stores
context information for the team. Existing IDEs can push
context to the database as events occur. This allows
proximity relationships to be continuously updated as
development is underway with no effort on the part of the
developers. An early observation from using this prototype
is that the use of selection events can allow for a proximity
relationship to appear even before any code modification
begins. For example, if a developer starts to consult source
files that are likely involved in some task, she can be
provided with a list of tasks (and developers) with high
proximity. A tool using task context information and
proximity is not only timelier, but it can also be richer and
more accurate. It captures the entire working set involved in
a task and follows the evolution of that working set
throughout the task duration, tracking how heavily each
artifact is actually used.

The timeliness and comprehensiveness that our proximity
measure provides is not currently available in other
awareness tools for software engineering. Palantír and
CollabVS provide timely CR detection, but only observe a
narrow subset of CRs and do not measure their severity.
Our measure can alert developers of CRs before the
majority of work has been completed. A tool using our
measure could facilitate developer coordination much
earlier in the development cycle. This could allow
developers to negotiate design decisions and code changes
to reduce technical dependencies. Early detection of CRs
can significantly reduce the amount of rework required
when conflicts are determined later in the development
process and can even help avoid duplicate work.

The method described can also be incorporated in a
decision support tool. For example, it can provide a
dynamic view of Socio-Technical Congruence to inform
real-time decisions on aspects like task assignment,
scheduling, team composition, or design refactoring [27]. A
further implication of our work is the ability to rank
detected CRs based on the corresponding proximity scores.

Previous methods of CR detection support rank only as a
simple count of CRs occurring within a pair of developers
[27]. Our rank is based instead on two components: the
amount of weighted overlap in the working sets of the pair
and the number of overlapping context events as compared
to the average number across the population. This way of
ranking CRs can help de-emphasize trivial development
activities and their impact on coordination.

Finally, while the analysis presented in this paper focuses
on detecting CRs between pairs of individuals, proximity
can easily be applied at other levels such as tasks, projects
or teams. This can be accomplished simply by aggregating
context events appropriately. For example, to compute the
proximity of teams, each team’s working set would include
all context events produced by all members of that team.
This provides the ability for awareness tools to easily
display coordination needs at different aggregation levels.
This enables the construction of visualizations, dashboards
or reports oriented towards a variety of roles including
individual developers, team leaders and project managers.

Threats to Validity
A general caveat is that our findings derive from a single
project. In this case study, the number of developers
involved and the number of CRs are relatively moderate in
size. Our findings should be corroborated by additional
empirical studies to ensure that our approach works for
other projects and projects of different scales. Another
limitation can derive from performing our analysis at the
release level. When considering concurrent work at finer-
grained temporal units, the outlook on CRs and/or
proximity may differ. To properly investigate how sensitive
our findings are with respect to this issue, a project with a
high density of CRs would make for the best follow-up case
study. Another limitation, as mentioned earlier, is that we
have considered any level of proximity >0 as an indicator of
possible CRs. A sensitivity analysis is the next logical step.

Finally, there may be issues of repeatability. Although
Mylyn is widely adopted in open source as well as
industrial settings, its consistent use by all developers
during all of the project activities is not guaranteed. A
commercial version of Mylyn (Tasktop Dev) is available
for the Visual Studio IDE. Other commercial-grade
facilities (such as Cubeon for the Netbeans IDE) offer
similar features, but we cannot assume that they record the
exact same IDE interactions. However, it is likely that any
facility similar to Mylyn can provide the data our proximity
algorithm needs which is – at a minimum – data about the
developer, task, timestamp, filename and path for artifact
selection and edit events.

6. CONCLUSION
We introduce a proximity relationship that can be used to
infer CRs between developers as they form. We describe
the algorithm for measuring proximity based on task
context information. This context information details

activities of developers within their IDEs and is obtained
using existing tools. We show that proximity provides an
earlier indication of CRs and overcomes known drawbacks
in current CR detection methods. Proximity is promising as
a foundational measure for building more accurate and
useful representations of developer coordination. These
advances improve the quality and timeliness of
management, design and team coordination decisions.

ACKNOWLEDGEMENT
Special thanks to Dave Berry for his help with the initial
data mining, to Gail Murphy for initial discussions, advice
and encouragement, and to Patrick Wagstrom for his
feedback and suggestions. This work was partially
supported by the NSF through grant no. CCF-0916891.

REFERENCES
1. Begel, A., Phang, K.Y., and Zimmerman, T. 2010

Codebook: Discovering and Exploiting Relationships in
Software Repositories. Proc. ICSE 2010.

2. Brooks, F.P. 1995. The Mythical Man-Month: Essays on
Software Engineering. Addison Wesley. Reading, MA.

3. Cataldo, M., Bass, M., Herbsleb, J., and Bass, L. 2007.
On Coordination Mechanisms in Global Software
Development. Proc. ICGSE 2007, 71-80.

4. Cataldo, M., Herbsleb, J.D., and Carley, K.M. 2008.
Socio-Technical Congruence: A Framework for
Assessing the Impact of Technical and Work
Dependencies on Software Development Productivity.
Proc. ESEM 2008, 2-11.

5. Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb,
J. D. 2009. Software dependencies, work dependencies,
and their impact on failures. IEEE Transactions on
Software Engineering. 35, 6, 864-878.

6. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and
Carley, K.M. 2006. Identification of Coordination
Requirements: Implications for the Design of
Collaboration and Awareness Tools. Proc. CSCW 2006.

7. Conway, M.E. 1968. How do committees invent.
Datamation. 14, 4, 28-31.

8. de Souza, C.R., Quirk, S., Trainer, E., and Redmiles,
D.F. 2007. Supporting collaborative software
development through the visualization of socio-technical
dependencies. Proc. of the 2007 international ACM
conference on Supporting group work. 147-156.

9. Dewan, P. and R. Hegde. 2007. Semi-Synchronous
Conflict Detection and Resolution in Asynchronous
Software Development. Proc. E-CSCW 2007. p. 159-
178.

10. Dourish, P., and Bellotti, V. Awareness and
Coordination in Shared Workspaces. Proc. CSCW 1992:
p. 107-114.

11. Ehrlich, K., Helander, M., Valetto, G., Davies, S., and
Williams, C. 2008. An analysis of congruence gaps and

their effect on distributed software development. Proc.
STC 2008.

12. Gall, H., Hajek, K., and Jazayeri, M. 1998. Detection of
logical coupling based on product release history. Proc.
ICSM 1998.

13. Grinter, R.E., Herbsleb, J.D., and Perry, D. E. 1999. The
geography of coordination: dealing with distance in
R&D work. Proc. of the international ACM SIGGROUP
conference on Supporting group work.

14. Herbsleb, J.D. and Grinter, R.E. 1999. Splitting the
organization and integrating the code: Conway's law
revisited. Proc. ICSE 1999, 85-95.

15. Herbsleb, J.D., Mockus, A., and Roberts, J.A. 2006.
Collaboration in software engineering projects: A theory
of coordination. Proc. ICIS 2006.

16. Kersten, M. and Murphy, G.C. 2005. Mylar: a degree-
of-interest model for IDEs. Proc. AOSE 2005, 159-168.

17. Kersten, M. and Murphy, G.C. 2006. Using task context
to improve programmer productivity. Proc. FSE 2006.

18. Kraut, R. and Streeter, L. 1995. Coordination in
software development. Communications of the ACM.
38, 3, 69-81.

19. Minto, S. and Murphy, G.C. 2007. Recommending
emergent teams. Proc. MSR 2007.

20. Parnas, D.L. 1972. On the criteria to be used in
decomposing systems into modules. Communications of
the ACM. 15, 12, 1058.

21. Rothlisberger, D., Nierstrasz, O., Ducasse, S., Pollet, D.,
and Robbes, R. 2009. Supporting task-oriented
navigation in IDEs with configurable heatmaps. Proc.
ICPC 2009, pp. 253–257

22. Sarma, A., Noroozi, Z., and van der Hoek, A. Palantír:
raising awareness among configuration management
workspaces. Proc. ICSE 2003.

23. Sarma, A., Maccherone,L., Wagstrom, P., and Herbsleb,
J. 2009. Tesseract: Interactive visual exploration of
socio-technical relationships in software development.
Proc ICSE 2009, 23-33.

24. Singer, J., Elves, R., and Storey, M.-A. 2005. Navtracks:
Supporting navigation in software maintenance, Proc.
ICSM 2005, pp. 325–335.

25. Sosa, M.E., Eppinger, S.D., and Rowles, C.M. 2004.
The misalignment of product architecture and
organizational structure in complex product
development. Management Science. 50, 12, 1674-1689.

26. Sullivan, K.J., Griswold, W.G., Cai, Y., and Hallen, B.
2001. The structure and value of modularity in software
design. Proc. FSE 2001, pp. 99-108.

27. Valetto, G., Chulani, S., and Williams, C. 2008.
Balancing the value and risk of socio-technical
congruence. Proc. STC 2008.

