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ABSTRACT 
We describe a method for determining coordination 
requirements in collaborative software development. Our 
method uses “live” data based on developer activity rather 
than relying on historical data such as source code commits 
which is prevalent in existing methods. We introduce 
proximity, a measure of the strength of the work 
dependencies that lead to coordination requirements among 
members of a software development organization. Our 
proximity measure relies on a tool which captures the 
interactions of a developer with her IDE. It quantifies the 
similarity between records of interactions of developers as 
they work on their assigned tasks. We describe an algorithm 
that measures proximity between pairs of tasks or pairs of 
developers. Through an empirical study on an open source 
project that routinely records environment interaction data, 
we show how proximity accurately determines coordination 
requirements. The proximity measure thus enables 
proactive detection of coordination requirements and makes 
possible real time intervention and coordination facilitation 
via management-, design- and team-related decisions.  

Author Keywords 
Awareness, Proximity, Management, Coordination 
Requirements, Socio-Technical, Task Context, Tools. 

ACM Classification Keywords 
H5.3. Information interfaces and presentation (e.g., HCI): 
Group and Organization Interfaces.  

1.  INTRODUCTION 
The coordination of concurrent activities by multiple 
developers remains problematic for software development 
organizations [18]. Software engineering pioneers such as 

Parnas [20] and Brooks [2] recognized the importance of 
efficiently managing work dependencies and coordination 
overhead arising within a development team. Such 
dependencies are becoming more critical as software 
organizations become larger and more distributed [3,13,14]. 

Dependencies between tasks often result in Coordination 
Requirements (CRs) among team members. Cataldo et al. 
[4,6] introduced a framework to detect and quantify CRs 
between pairs of software developers by identifying the 
technical dependencies between software artifacts modified 
during their assigned tasks. This formalization of CRs led to 
the definition of Socio-Technical Congruence (STC) in 
software development. STC is an index that measures the 
degree to which actual acts of coordination mirror 
coordination requirements. Empirical studies suggest that 
high levels of STC are beneficial: when coordination 
activities focus on the empirically identified CRs, 
productivity is likely to improve [4,6,25]. 

Current methods for detecting CRs and calculating socio-
technical congruence have two serious drawbacks. First, 
CRs are identified by mining the source control repository 
of the project for changes to artifacts committed by a 
developer. This type of data is typically available only 
towards the end of the development work for a task. 
Second, for each file committed to a source code repository, 
a developer may have consulted several other files. 
Knowledge of this source code reference behavior is 
inaccessible from commit records.  

Without a “live” view of activities, CRs and STC are not 
actionable devices for managing coordination in software 
projects. Several potential applications for such a live view 
have been discussed. Ehrlich et al. have elaborated a way to 
rank CRs in a project, enabling prioritization of those 
whose resolution can improve STC the most [11]. Valetto et 
al. proposed a set of management-, design-, and team-
related decisions that can be used as alternatives to resolve 
CRs; each with its associated costs and risks [27]. These 
and other techniques require the ability to detect, analyze 
and manipulate CRs as they emerge. 
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To surface CRs in a timely way, we introduce a measure we 
call proximity, which characterizes the similarity of 
working sets of artifacts employed by developers as they 
work. Proximity can be applied to pairs of tasks as well as 
pairs of developers who carry out those tasks. 

To measure proximity, we need to record developers’ 
actions on artifacts as they occur. Several such recording 
frameworks exist. Because of its popularity, we focus on 
the Mylyn framework (formerly Mylar) [16,17]. By means 
of a field study, we show how our proximity measure 
detects CRs at least as accurately as other methods such as 
that described in Cataldo et al. [4,6] We also show that it 
can detect CRs substantially earlier than other methods. 
Thus, proximity can provide enhanced support to the 
management of coordination in software projects. 

The rest of the paper is organized as follows: in Section 2 
we discuss related work; in Section 3 we present our 
method, including the data we use and our proximity 
algorithm; in Section 4, we describe in detail the setting, 
method and results of our empirical study; in Section 5, we 
discuss the significance of our contributions; finally, in 
Section 6, we offer some concluding remarks. 

2.  RELATED WORK 
In the course of any non-trivial software project, it is 
paramount to be able to manage work dependencies. If such 
dependencies are not recognized early, they must be 
reconciled later. This often leads to lower product quality 
and developer productivity [5,14,25]. 

The design literature, beginning with Parnas’ recognition of 
the workflow implications of modularization [20], focuses 
on ways to streamline the technical dependencies between 
modules as a way to maximize task parallelism [25,26]. In 
software, such technical dependencies are often derived 
from a syntactic analysis of the code base. As an alternative 
to identify technical dependencies, Gall et al. introduced the 
notion of logical coupling based on the “files changed 
together” heuristic [12] which aims at identifying semantic 
relationships that may not manifest in the syntax of the 
programmatic implementation of the software product. 
Whereas syntactic dependencies exist a priori with respect 
to a project and an organization, logical couplings reflect 
accumulated empirical evidence about how the 
development work unfolds in the project. 

The shift from studying technical dependencies per se to 
exploring the complex interplay they have with 
organizational structure and project dynamics continues in 
recent research on the socio-technical aspects of software 
engineering. For example, several field studies show how 
information hiding may hamper the ability of development 
team members to coordinate with one another by decreasing 
awareness of important work decisions [3,13]. Herbsleb et 
al. [15] argued for a systematic framework to satisfy, as 
opposed to try to reduce, work dependencies by explicitly 
computing and orchestrating the coordination needs of a 

project. Works on CRs and STC in software development 
are part of this thread of research [4,5,6]. 

The study of Coordination Requirements 
Cataldo et al. [4,6] describe STC as an index based on the 
alignment between team interactions and technical 
dependencies. Conway [7] was the first to describe the 
possibility of such an alignment. STC measures the extent 
to which CRs and coordination behavior are aligned in 
practice. STC is expressed as a simple ratio between CRs 
that are satisfied by actual acts of coordination and the set 
of outstanding CRs between developer pairs. Those CRs 
can be identified according to the following formula: 

CR = TA x TD x TAt 
In this formula [6], TA is a people-by-task matrix 
representing task assignments, and TAt is its transpose. TD 
is a task-by-task matrix capturing the work dependencies 
between tasks. Those are established by considering the 
technical dependencies occurring between artifacts 
involved in those tasks. According to this formula, a CR 
between two developers Alice and Bob can be represented 
graphically as in Fig. 1. Arc TDab represents a technical 
dependency between software artifacts Sa and Sb. These 
artifacts are involved in tasks to which Alice and Bob, 
respectively, are assigned (denoted by arcs TAa, TAb). 

Among the methods for computing technical dependencies, 
Cataldo et al. offer empirical evidence that logical coupling 
obtained by tracking files that have been historically 
checked in together provides a more reliable representation 
of the technical dependencies relevant for CR detection 
than syntactic coupling does [5]. However, logical 
dependencies are computed based on past project history 
and are only visible after work is completed. Even when 
syntactic dependencies are chosen, as done by Ehrlich et al. 
[11], they only become fully known following a commit. 

In prevalent CR detection methods, the association of 
developers to artifacts they work on becomes visible only 
after code is committed. That limits the potential of CRs as 
a means to support coordination as the development work 
unfolds. Our research aims to close that gap. 

Applications of Coordination Requirements 
Awareness [10] is one of the ways used to conceptualize 
coordination. A recent work shows that, for a software 
engineer, the most important form of awareness is locating 
and keeping up to date with other developers whose work is 
relevant to her own [1]. Examples of systems that try to 
achieve   that    by    employing    abstractions    similar    to 

 
 

Figure 1. Representation of a Coordination Requirement. 



 

 

CRs include Ariadne [8], EEL [19], Tesseract [23], and 
Codebook [1]. Those systems offer various mechanisms 
including visualization of socio-technical networks 
(Ariadne and EEL), dashboards (Tesseract), and query and 
search facilities (Codebook) to try to identify and show 
important work relationships within a team. All of those 
systems rely upon the commit logs in the source code 
repository to establish technical dependencies among 
artifacts. They use these dependencies to compute transitive 
relationships between developers. Therefore, these 
approaches suffer from the same drawback we mentioned 
earlier, that is, they are hampered in their ability to detect 
CRs and provide timely awareness support. Among them, 
the work most similar to our approach is EEL because of 
the way it combines the concepts of working set and CRs. 
However, our proximity measure aims at bypassing reliance 
on any specific conceptualization of technical dependency 
relationships and removing the reliance on post-mortem 
data. 

There are other awareness approaches in collaborative 
software development that have tried to leverage live 
workspace information. For example, Palantír uses 
notifications to keep a developer abreast with what happens 
in her colleagues’ workspaces [22]. Notifications relate 
only to changes occurring to the same artifacts a developer 
has in her own workspace. Palantír thus provides each 
developer with timely information about any arising same-
artifact conflicts which can be seen as a narrow subset of 
CRs. CollabVS is another awareness system that uses 
notifications. Compared to Palantír, it has an expanded 
model of interest. The CollabVS model captures additional 
conflicts by considering a subset of syntactical 
dependencies between artifacts [9]. It issues instantaneous 
warnings to developers as an individual instance of conflict 
emerges, but it does not offer a model for quantifying the 
strength of CRs. By introducing the proximity measure, we 
contribute such a model and can draw a complete and 
explicit view of coordination across the whole team. 

3.  TASK CONTEXT AND PROXIMITY 

Task Context 
The main goal of our research is to identify CRs accurately 
and early enough to enable decisions on how to best resolve 
those work dependencies. For example, if Alice and Bob 
are assigned to tasks that require extensive negotiation and 
synchronization around interdependent software artifacts, 
early design decisions to refactor those dependencies and 
modify modularization can be taken to improve Alice’s and 
Bob’s productivity. 

We look to capture meaningful data from development 
work as it happens in order to build an incremental record 
of the development activities carried out on the working set 
of artifacts for a task. Several facilities of this kind have 
been described in the literature [21,24]. Here we focus on 
Mylyn, a tool that captures the interactions of a developer 
with her IDE and constructs a data structure called a “task 

context” [16,17]. Mylyn is an Eclipse plugin whose goal is 
to provide an individual developer with a task-centric 
interface. It adapts the Eclipse GUI and focuses its 
presentation on what is most relevant for that developer in 
the context of the task she is performing. To achieve that, 
Mylyn stores significant GUI events, such as software 
element manipulation, artifact consultation, or the issuing 
of IDE commands in a task context event. Those events are 
weighted according to a model of interest that takes into 
account – among other things – action type, frequency of 
interaction, and a decay factor [16]. Mylyn task contexts 
therefore characterize a task in terms of its working set, the 
relative importance of artifacts in the working set, and the 
nature of the interactions with those artifacts. Since this 
kind of data is of general significance, Mylyn has started to 
extend to a number of other prominent development 
environments besides Eclipse. 

A sequence of task context events in Mylyn is therefore a 
list of IDE interactions by the developer described in an 
XML dialect. The pertinent information associated to each 
action includes:  

• Kind: type of interaction (selection, edit, etc.) 
• Structure Handle: a unique ID that identifies a 

software artifact.  
• Start Date: a timestamp 
• End Date a timestamp  

We are interested in only selection and edit events. 
Selection events are captured when a developer opens a file 
in the Eclipse IDE. Additional selection events can be 
captured whenever a developer navigates to a class, method 
or field defined in that file. Edit events are captured as the 
developer makes changes to those file locations.  

The Mylyn structure handle provides more granularity than 
simply file names. It identifies the file name, class name 
and even the name of the class element (method or 
attribute) when available. We can thus choose to consider 
artifacts at different granularity levels allowing us to 
determine if two developers were working on the same area 
of code within a large file. This level of granularity is not 
available when looking only at commit information.  

Note that the original purpose of Mylyn task contexts is to 
support the work of an individual developer during a single 
task or to allow a single developer to easily switch between 
tasks without loss of focus. Instead, we use that same 
information to support a collaborative goal. We want to 
detect areas in the project that are relevant for the 
coordination of concurrent tasks by looking at the amount 
of overlap between the working sets of the developers 
assigned to those tasks. To achieve that, we introduce our 
proximity measure which applies to task contexts and, by 
extension, to tasks and developers. 



 

 

 

 
Proximity 
Proximity is a relative measure that conveys the amount of 
similarity between the development activities recorded in 
any two working sets. A working set can be construed at 
different levels simply by aggregating context events 
appropriately. To compute proximity between developers, 
each developer’s working set will include all task context 
events produced for all tasks carried out by that developer 
during a time frame of interest. To compute the proximity 
of tasks, the working set of a task includes all context 
events produced for that task by all developers who worked 
on that task. 

When calculating proximity between two working sets, our 
algorithm considers all actions recorded for each artifact in 
each working set in order to apply a weight to that artifact’s 
proximity contribution. There are several types of actions 
captured by Mylyn. For this study we consider only select 
and edit actions. Other actions used within Mylyn, such as 
prediction, propagation and manipulation, were purposely 
left out of our algorithm. Since these event types are 
specific to Mylyn, including them would make the 
replication of our experiments and findings outside of the 
Mylyn framework difficult. Manipulation actions represent 
information that developers can explicitly provide to Mylyn 
to emphasize the importance (or lack thereof) of a given 
artifact for the task at hand. Prediction and propagation 
events occur when Mylyn itself “suggests” other artifacts, 
which are not included in a developer’s working set, but 
appear to be structurally relevant.  

We base our weights on the factors that Mylyn itself uses 
when computing its Degree-Of-Interest (DOI) model for 
each artifact present in a task context [16]. The DOI 
provides Mylyn with a way to prioritize the presentation of 
elements in its task-based interface. The factors used in the 
Mylyn DOI model are 1 for select events and 0.7 for edit 

events where higher values indicate higher interest. Those 
factors have been extensively validated in practice by the 
Mylyn user community.  

Since edit events in the GUI are always preceded by at least 
one selection event, our algorithm weighs an edit overlap as 
1.7. An edit overlap occurs when both developers edit the 
same artifact. Each developer contributes 1.7 to the overlap 
score for a total score of 3.4, which is the maximum score 
for an overlap. In a mixed overlap, one developer edits the 
artifact while the other developer selects or views the same 
artifact. In this case, one developer provides a score of 1.7 
for the edit event and the other developer provides a score 
of 1 for the selection event for a total score of 2.7. In a 
selection overlap, neither developer edits the artifact, but 
both developers select and view the artifact. In this case, 
each developer contributes a score of 1 for a total score of 
2. We then calculate our weights as percentages of the 
maximum possible overlap score: 

• Edit overlap: 1.7 + 1.7 = 3.4, 3.4/3.4 = 1 
• Mixed overlap: 1.7 + 1 = 2.7, 2.7/3.4 = .79 
• Selection overlap: 1 + 1 = 2, 2/3.4 = .59 

With those weights we compute two scores: an actual 
overlap and a potential overlap. Actual overlap is the 
intersection of the two working sets. Potential overlap is the 
union of the two working sets representing the maximum 
similarity score had there been perfect overlap between the 
two sets. Our proximity measure is the ratio between the 
actual overlap and the potential overlap. Fig. 2 shows the 
results of our algorithm on two sample working sets. The 
actual overlap includes files B, C and E since these three 
files are included in both working sets. B has an overlap 
score of .79 since working set X edited the file while 
working set Y only selected the file. C and E have an 
overlap score of 1 since both working sets edited these files. 
The Potential overlap includes all five files since we are 
now taking the union of the two sets. B, C, D and E each 
have an overlap score of 1 since at least one of the working 
sets edits each of these files. File A has an overlap score of 
.59 since only selection events exist for this file.  

As a final step of our algorithm, we apply a scaling factor 
where we consider the total number of events recorded 
within all working sets. The scaling factor is the ratio 
between the number of overlapping events for each pair and 
the average number of overlapping events computed across 
all pairs in the population. The rationale for this scaling 
factor is to place greater weight on those pairs engaged in 
complex development activities, where coordination is 
likely to be more necessary, than for pairs involved in 
simple tasks. When performing a complex task, a developer 
is likely to spend a lot of time on the task and will therefore 
create many context events. Conversely, a developer 
completing a task via a trivial change will likely produce a 
small number of events. 

 
Figure 2. Proximity Algorithm. 



 

 

Research Objectives 
This study explores the extent to which our proximity 
measure enables the detection and management of CRs 
between software developers. Having introduced the 
semantics of proximity and its measurement technique, we 
now state our main research objectives: 

Research Question RQ1: to what extent are the proximity 
relationships obtained with task context information 
(aggregated at the developer level) analogous to CRs 
determined using information about artifact commits and 
technical dependency relationships? RQ1 speaks to the 
feasibility of detecting CRs by leveraging developers’ 
working sets and their overlap, thus bypassing the analysis 
of technical dependencies between artifacts. 

Research Question RQ2: can CR detection based on task 
contexts and proximity provide more accurate results than 
current methods? RQ2 speaks to the ability of leveraging 
the detailed information offered by task contexts to improve 
precision, recall, or both in detecting CRs. 

Research Question RQ3: can the data provided by task 
contexts support the detection of CRs significantly earlier 
than current methods? RQ3 speaks to the possibility of 
supporting timely decisions on how to handle CRs as they 
form in the project and has immediate consequence on 
coordination management practices and technologies. 

4.  CASE STUDY - MYLYN 
We carried out an empirical study on the open source 
project which developed the Mylyn framework itself. 
Contributors to the Mylyn Eclipse plugin use Mylyn for 
their work and conventionally publish the task context data 
in the project’s Bugzilla repository (code contributions 
without attached context data are often rejected). Sixty-nine 
other projects in the Eclipse community alone report freely 
available Mylyn task contexts. We selected the Mylyn 
project because it provides the largest amount of and most 
complete task context information. 

Data Collection and Preparation 
We collected development data over eight releases of 
Mylyn (v2.0 - v3.3). These releases span almost three years, 
from December 2006 until October 2009. Mylyn data is 
captured as an attachment file to a Bugzilla entry (which 
denotes a development task).  Our analysis focuses on the 
1,970 Bugzilla entries which contain such attachments 
during the study period. For those tasks, we also collected 

all code commits recorded in the project’s SVN repository 
and all patch description files. Patch descriptions are 
attached by those developers who contribute code but do 
not have commit privileges and report the diff information 
for all artifacts that were modified as part of a patch. They 
are thus semantically equivalent to commits. Work on 
Mylyn during the study period involved 51 distinct 
developers who attached task context data (context 
attachers) and 8 distinct developers who committed code 
(committers). Each release has between 10 and 32 distinct 
context attachers and 4 to 6 distinct committers.  

We compiled three data sets, summarized in Table 1. For 
the first data set, DS1, we looked at the activity of the group 
of committers. Each Bugzilla task may have one or more 
context attachments. We expanded the contexts attached to 
the 1,970 tasks to enumerate the 588,796 selection and edit 
events contained within. The majority of these events relate 
to Java source code files. Some pertain to .class, .jar, and 
other file types which are by-products, rather than objects, 
of development work. We thus focused only on the 450,747 
context events dealing with Java source code artifacts.  

We similarly filtered the SVN commits to include only java 
files, yielding 27,074 commits of individual artifacts over 
the same time period. Most of the commits, 25,135 or 
92.8%, were linked directly to 1,835 unique tasks via the 
Bugzilla task IDs conventionally inserted by developers in 
their commit comments. We then intersected those 1,835 
tasks for which we have commit data with the 1,970 tasks 
which have context data attachments. This resulted in 1,127 
tasks which have both context data attached and associated 
commit records. This set includes 10,647 artifact commits 
and 450,757 context events. 

Upon further examination of DS1, we noticed that a number 
of file changes reported in commits for a given task were 
not matched by any edit events in that task’s context data. 
In the time period considered, we identified 6,507 commits 
out of 10,647 that are not matched by any proof of editing 
of the same file in the associated task contexts by the 
developer who committed the change. One reason is that, 
although it is customary to submit context when committing 
a change for a task, Mylyn developers do not always abide 
to this convention. Another reason is that the developer who 
commits a change is not always the developer who 
contributed it. We split DS1 in two: DS1-a includes the 
4,140 commits for which we have matching events within 
task contexts; DS1-b includes the other 6,507 commits. 

Data Set Actors Artifact info Context info Matching artifact commit and context info 

DS1 
DS1-a  

8 committers 
4,140 SVN commits 450,757 task context events YES 

DS1-b 6,507 SVN commits 450,757 task context events NO 

DS2 34 patch contributors 1,387 patch file edits 345,521 task context events YES 

DS3  DS1-a and DS2 combined YES 

Table 1. Data sets.



 

 

 

Since looking at just commit data, as in DS1, would limit 
our analysis to the few developers with commit privileges, 
we compiled a different data set. DS2 considers the patch 
description files attached to Bugzilla records. Those files 
contain data on 7,196 java file changes spanning 936 tasks. 
Mylyn contexts attached to those tasks yield 345,521 
context events for java artifacts contributed by 47 
developers. Again, we match the patch description files 
retrieved from Bugzilla to task context events, leaving 
1,387 file changes with associated task context data 
contributed from 34 different developers.   

It is important to notice that DS1 and DS2 are disjoint. 
There is only a single developer, common to both sets. This 
ensures there are no overlapping pairs of developers among 
the two sets. Therefore, DS1 and DS2 represent 
complementary analyses over the full picture of the project 
activity. The 1,387 patch file changes in DS2 represent 
substantially different development work from what is 
captured in DS1. The one common developer is responsible 
for 219 changes in DS2, and a manual inspection revealed 
that only 11 of those 219 changes overlap with commits 
made by the same developer in DS1 (5%). 

Finally, we combined DS1-a and DS2 into a third data set 
DS3, which incorporates all records of file changes (either 
via commit traces or patch diff files) and all context events. 

Results of the Field Study 

RQ1: Is Proximity a Good Proxy for Coordination 
Requirements? 
We started our analysis with DS1-a. We used the 4,140 
commits in that set to calculate CRs between committers 
according to the method described by Cataldo et al. As 
recommended in [4,6], to define technical dependencies 
between software artifacts, we used the “files committed 
together” heuristic introduced by Gall [12] which defines 
logical coupling between artifacts. We then computed our 
proximity scores for the same set of committers. Initially, 
since Cataldo’s method calculates CRs at the file level, we 
considered only the file associated with each context event 
and ignored the finer-grained information made available 
by Mylyn at the method and attribute level. Since releases 
are a logical unit of concurrency for tasks in an open source 
project, we looked at work in each release separately. DS1-
a yielded 70 pairs of committers across all eight releases.  

First, we checked that higher values of proximity correlate 
with the likelihood of a CR by performing a point-biserial 
correlation with a binary vector denoting the presence of 
CRs. We then performed a Spearman correlation between 
the count of CRs for each pair and their proximity scores. 
We chose to use a Spearman correlation because both the 
CR counts and proximity scores are not normally 
distributed. Both tests were statistically significant and 
provided us with strong positive correlations, as shown in 
Table 2. Moreover, we observed that 46 of the 70 pairs of 
committers had some CR, and 43 of those 46 pairs (93.5%)  

Test Unit of Work p-value rho 

Spearman File 2.4e-11 0.69 

Point-biserial File 4.9e-07 0.55 

Spearman Granular 6.8e-09 0.62 

Point-biserial Granular 8.8e-06 0.49 

Table 2. DS1-A: CR V PROXIMITY CORRELATIONS 

have proximity > 0. Conversely, of the 24 pairs with no 
CRs, seven present a proximity score of 0. 

We repeated these tests by computing proximity at the 
finest granularity level for artifacts reported in Mylyn 
context events. Our expectation was that analysis of 
contexts at finer granularity would yield less proximity and 
lower levels of correlation with CRs calculated with 
Cataldo’s method. The results shown in Table 2 are in line 
with those expectations, but correlations between proximity 
and CRs are still strong and significant. Of the 46 CR pairs, 
42 (91.3%) have proximity > 0. Therefore, the additional 
granularity removes proximity from one of the 43 pairs 
with proximity when looking at file level granularity. Eight 
pairs have a granular proximity score of 0. 

These findings seem to confirm that proximity is a valid 
proxy for CRs. However, DS1-a contains rather 
homogenous commit and context data: artifacts that are 
committed are likely to show up prominently in select and 
edit actions within the task contexts of their respective 
committer. Therefore, we performed analogous tests on 
DS1-b. In this data set, the CR and proximity analyses are 
performed on two completely distinct sets of artifacts since 
recorded context events do not align with the artifacts that 
were committed. However, since we are still looking at 
manifestations of the work done by the same developers 
within the same set of tasks, we speculated that proximity 
scores should remain a good indicator of CRs. The results 
of our tests on DS1-b, in Table 3, show strong and 
statistically significant positive correlations. Among the 75 
developer pairs showing up in this data set, 33 have a CR, 
and all 33 pairs have a proximity score > 0 at both the file 
and granular level of analysis. Of the 42 pairs with no CRs, 
10 of the pairs also have a proximity score of 0 at the file 
level and 14 at the more granular level. These results show 
that the proximity relationship can capture CRs by 
examining working set information even when that 
information is partial.  

We then moved our analysis of RQ1 from the restricted 
core group of Mylyn committers of data set DS1 to the  
Test Unit of Work p-value rho 

Spearman File 8.7e-09 0.60 

Point-biserial File 1.1e-08 0.59 

Spearman Granular 2.5e-07 0.54 

Point-biserial Granular 1.8e-07 0.55 

Table 3. DS1-B :CR V PROXIMITY CORRELATIONS.  



 

 

Test Unit of Work p-value rho 

Spearman File < 2.2e-16  0.55  

Point-biserial File < 2.2e-16  0.54  

Spearman Granular < 2.2e-16  0.57  

Point-biserial Granular < 2.2e-16  0.55  

Table 4. DS2 CR V PROXIMITY CORRELATIONS  

larger group of project contributors represented in data set 
DS2. DS2 yielded 277 developer pairs; of which 37 have 
CRs. Of these, 28 (75.7%) have file-level proximity > 0 and 
24 (64.9%) have granular proximity > 0. Of the 240 pairs 
with no CRs, 206 also have a proximity score of 0 at the file 
level and 222 at the granular level. Table 4 shows strong 
positive correlations that are also statistically significant. 

Our largest data set, DS3, which combines DS1-a and DS2, 
includes a total of 347 developer pairs. The correlation 
results for this data set are shown in Table 5. Using DS3, 
we further investigated the relationship between CRs and 
our proximity measure by means of a regression model. We 
employed a zero-inflated negative binomial regression 
(zinb) since the CR count is highly skewed and presents 
many zeroes (264 out of 347 developer pairs have no CRs). 
The zinb model is statistically significant (χ2=161.69, df=2, 
p < 2.2e-16). Results from the regression are shown in 
Table 6 for both the count and the excess zeroes portions of 
the model (white and grey rows, respectively). In particular, 
a one-unit increase in proximity (a large increase in the 
proximity scale) causes a 2.20-times increase in the log of 
expected CR count. That is an expected ~9-times increase 
in CRs for each one-unit increase in proximity. To 
investigate the influence of the select events in defining our 
proximity metric, we recomputed proximity including only 
edit event overlaps. We then ran the same zinb regression 
and obtained a new model. This new model captures only 
direct edit conflicts and is, therefore, similar to what could 
be observed with tools like Palantír. It is still statistically 
significant (χ2=157.17, df=2, p < 2.2e-16). We then 
compared the AIC scores of the new model and our original 
model of Table 6. We found that our original model has 
considerably better support since it has a lower AIC. The 
difference in the AIC scores is 4.51416. Thus, our original 
proximity model is almost 10 times as likely as the edit 
event-only model to minimize information loss.  

We conclude that the proximity measure is a valid proxy to 
CRs determined using information about artifact commits 
and technical dependency relationships. 

RQ2: How Accurate is Proximity in Determining Actual 
Coordination Requirements? 
To investigate RQ2, we first reviewed how developer pairs 
with CRs match against pairs with proximity >0, and 
conversely how developer pairs with no CRs match against 
pairs with proximity = 0 in terms of precision and recall. 
Results at the granular level are reported in Table 7. We 
assume here that CRs detected with the Cataldo et al. 
method are the ground truth.  

Test Unit of Work p-value rho 

Spearman File < 2.2e-16 0.68 

Point-biserial File < 2.2e-16 0.66 

Spearman Granular < 2.2e-16 0.68 

Point-biserial Granular < 2.2e-16 0.66 

Table 5. DS3 CR V PROXIMITY CORRELATIONS 

Considering all proximity scores > 0 as indicators of CRs 
may cast a net that is too wide. A sensitivity analysis to 
understand the impact and appropriateness of different 
proximity thresholds will be part of our future work. 
However, conceptually, a threshold of 0 seems sensible. 
The lowest possible CR score of 1 indicates that a 
developer pair worked on only one pair of dependent files. 
The lowest proximity score of 0.01 also indicates (at least) 
one artifact overlapping in the developers’ working sets. 
Since CRs computed according to Cataldo et al. are 
themselves only an approximation of ground truth, we then 
proceeded to manually examine some of the mismatches. 
Our goal was to determine if proximity is conducive to 
identify actual CRs more accurately by weeding out either 
false positives or false negatives of that method. 

For potential false positives, we reviewed the four cases in 
DS1-a where developer pairs with CRs had granular 
proximity=0. The record of changes made by each pair of 
developers held in the relevant task contexts determined 
that in each case the developers operate on a totally disjoint 
sets of files and all of the recorded code changes were in 
areas of those files that appear unrelated to one another. An 
example is provided by the single CR that exists between 
developers 6 and 7 in release 3.2. Developer 6 committed 
BugzillaClient.java, while developer 7 committed 
BugzillaTaskEditorPage.java. The changes by developer 6 
involve a character encoding method that is private to the 
BugzillaClient class. Developer 7 added a new section to 
the Mylyn task editor. Although we could ascertain those 
changes were semantically unrelated, the two involved files 
had been historically changed together by other developers 
often enough to cause a logical dependency to be 
established by the CR detection algorithm. We noticed 
analogous incidents in the other three cases in DS1-a. Those 
CRs are therefore false positives of the traditional method 
that our proximity algorithm correctly eliminates. 

 Estimate Std. Error Z p-value 

(Intercept) 5.22 0.37 14.17 < 2.2e-16 

Proximity 2.20 0.51 4.33 < 10-4 

Log(theta) -2.01 0.14 -14.53 < 2.2e-16 

(Intercept) 2.32 0.30 7.61 < 10-13 

Proximity  -106.49 33.18 -3.21 < 0.01 

Table 6. ZINB REGRESSION: CR V PROXIMITY 



 

 

 

Data Set # of pairs Precision Recall 

DS1-a 70 42/58 = 0.72 42/46 = 0.91 

DS1-b 75 33/61 = 0.54 33/33 = 1 

DS2 277 24/40 = 0.6 24/37 = 0.65 

DS3 347 70/100 = 0.7 70/97 = 0.72 

Table 7. PRECISION AND RECALL (GRANULAR) 

Moving to potential false negatives, we examined the 16 
pairs of committers in DS1-a that present some amount of 
granular proximity but have no CR. We were able to 
recognize two distinct types of behavior in this set. In one 
case, involving developers 3 and 7 during release 3.3, 
proximity contributions came exclusively by selection and 
mixed overlaps. The pair had seven mixed overlaps and six 
selection overlaps. Meaning that developers 3 and 7 viewed 
13 of the same artifacts, of which seven were edited at some 
point by either developer 3 or developer 7, but no single 
artifact was edited by both developer 3 and developer 7. 
Since there were no overlapping commits, the traditional 
CR method does not allow for a CR to be detected. 
However, since we have the advantage of knowing not only 
what files are edited but also what files are consulted by a 
developer in the process of completing a task, our algorithm 
picks up what is likely to be an actual work dependency. 
Developer 3 and developer 7 repeatedly examined the same 
area of the software code base and consulted each other’s 
code during their work for release 3.3. 

The remaining 15 developer pairs we examined represent 
an even more interesting case. In each of these cases, the 
developers edit from 1 to 67 of the same artifacts (17 on 
average). CRs could not be established in any of these cases 
because at least one of the developers did not commit her 
changes. However, task contexts prove that those developer 
pairs were at one time engaged in development on the very 
same artifacts - the epitome of a Coordination Requirement. 
It is likely that in some cases, the two committers became 
somehow aware of the overlap and decided to avoid 
conflicts by having one of the two merge all changes and 
commit on behalf of both. Evidence of such a scenario may 
be recorded in the archived communications for the Mylyn 
project, which we intend to mine in the future.  

All cases examined in DS1-a turned out to be false positives 
or negatives of the traditional CR detection method. More 
importantly, they highlight drawbacks of that method’s 
reliance on post-mortem information and dependency 
conceptualizations. We conclude that proximity-based CR 
detection can be more accurate than existing methods. 

RQ3: Does Proximity Provide Timely Detection of 
Coordination Requirements? 
Finally, we set out to investigate whether proximity is an 
early indicator of CRs. The context events we use are, by 
their nature, antecedents to code commits. It is important to 
notice that, although the study described in this paper is 
retrospective, a method for analyzing CRs based on 
proximity and task contexts does not need to be. All 

 
context events are recorded in real time. Therefore, a tool 
could gather context data as it is created by all developers 
and compute proximity on the fly. We discuss such a tool in 
Section 5. Here, our analysis focuses on how early 
proximity produces evidence of work dependencies 
between tasks. The earlier the evidence, the more actionable 
it is in supporting decisions aimed at resolving CRs as they 
form. For this analysis, we used the two data sets for which 
we have task context data associated with file changes 
(DS1-a and DS2). We considered all pairs of developers 
who present some CR and have granular proximity >0. 
There are 36 such pairs in DS1-a and 18 in DS2. 

We obtain the time when the first contribution to the 
proximity score occurs by examining the timestamps for the 
first overlapping event recorded in all tasks contexts for the 
two developers for that release. We then compare the first 
proximity event with the first day of concurrent work by 
that pair during that release. For perspective, we also 
considered the day in which the first CR is identified for the 
same pairs. Fig. 3 shows the probability density functions 
of proximity detection, CR detection and task duration for 
data set  DS1-a. The difference in the timeliness of 
recognition of work relationship shown is evident. Similarly 
distributed probability densities were seen in DS2. We 
found that in DS1-a the first evidence of proximity is 
detected on average 14.2 days after parallel work begins. In 
DS2, it takes 6.2 days. The first CR detection happens in 
DS1-a 60.7 days on average after the beginning of 
concurrent work by a pair (a delay of 46.5 days). In DS2, 
the first CR is detected 17.9 days after the concurrent work 
begins (11.7 days later). We also compared our findings 
with the duration of the concurrent work intervals by the 
same pairs in the various releases. In data set DS1-a, 
concurrent work intervals last 102 days on average, 
whereas in DS2, they last 31.4 days on average. The 
average “advance notice” provided by proximity is 87.8 and 
25.2 days, respectively, showing that proximity 
significantly improves the timeliness of CR detection. 

5.  DISCUSSION 
Our results suggest that CRs can be determined accurately 
based exclusively on the similarity of task contexts. Our 
proximity measure adequately models the presence and 

 
Figure 3. DS1-a Timeliness Probability Density 



 

 

intensity of CRs independently of any conceptualization of 
technical dependencies. Unlike methods which rely on data 
that is available after work has been completed, we rely on 
data that is accessible while development is underway.  

Implications for Tools 
Many tools exist for enhancing developer awareness, and 
several of them leverage information about CRs [1,8,9,23].  
Many of these tools strive to identify all technical 
dependencies that exist in a software project and provide a 
comprehensive view of project coordination needs. Since 
our method provides a novel approach to the identification 
of CRs, it could be incorporated into those awareness tools 
and provide them with the benefits outlined above.  

To explore our design implications, we developed a 
prototype that calculates proximity of tasks using the 
described algorithm. The tool leverages a shared central 
database which communicates with client components 
hosted within the individual IDEs and automatically stores 
context information for the team. Existing IDEs can push 
context to the database as events occur. This allows 
proximity relationships to be continuously updated as 
development is underway with no effort on the part of the 
developers. An early observation from using this prototype 
is that the use of selection events can allow for a proximity 
relationship to appear even before any code modification 
begins. For example, if a developer starts to consult source 
files that are likely involved in some task, she can be 
provided with a list of tasks (and developers) with high 
proximity. A tool using task context information and 
proximity is not only timelier, but it can also be richer and 
more accurate. It captures the entire working set involved in 
a task and follows the evolution of that working set 
throughout the task duration, tracking how heavily each 
artifact is actually used.  

The timeliness and comprehensiveness that our proximity 
measure provides is not currently available in other 
awareness tools for software engineering. Palantír and 
CollabVS provide timely CR detection, but only observe a 
narrow subset of CRs and do not measure their severity. 
Our measure can alert developers of CRs before the 
majority of work has been completed. A tool using our 
measure could facilitate developer coordination much 
earlier in the development cycle. This could allow 
developers to negotiate design decisions and code changes 
to reduce technical dependencies. Early detection of CRs 
can significantly reduce the amount of rework required 
when conflicts are determined later in the development 
process and can even help avoid duplicate work. 

The method described can also be incorporated in a 
decision support tool. For example, it can provide a 
dynamic view of Socio-Technical Congruence to inform 
real-time decisions on aspects like task assignment, 
scheduling, team composition, or design refactoring [27]. A 
further implication of our work is the ability to rank 
detected CRs based on the corresponding proximity scores. 

Previous methods of CR detection support rank only as a 
simple count of CRs occurring within a pair of developers 
[27]. Our rank is based instead on two components: the 
amount of weighted overlap in the working sets of the pair 
and the number of overlapping context events as compared 
to the average number across the population. This way of 
ranking CRs can help de-emphasize trivial development 
activities and their impact on coordination. 

Finally, while the analysis presented in this paper focuses 
on detecting CRs between pairs of individuals, proximity 
can easily be applied at other levels such as tasks, projects 
or teams. This can be accomplished simply by aggregating 
context events appropriately. For example, to compute the 
proximity of teams, each team’s working set would include 
all context events produced by all members of that team. 
This provides the ability for awareness tools to easily 
display coordination needs at different aggregation levels.  
This enables the construction of visualizations, dashboards 
or reports oriented towards a variety of roles including 
individual developers, team leaders and project managers.  

Threats to Validity 
A general caveat is that our findings derive from a single 
project. In this case study, the number of developers 
involved and the number of CRs are relatively moderate in 
size. Our findings should be corroborated by additional 
empirical studies to ensure that our approach works for 
other projects and projects of different scales. Another 
limitation can derive from performing our analysis at the 
release level. When considering concurrent work at finer-
grained temporal units, the outlook on CRs and/or 
proximity may differ. To properly investigate how sensitive 
our findings are with respect to this issue, a project with a 
high density of CRs would make for the best follow-up case 
study. Another limitation, as mentioned earlier, is that we 
have considered any level of proximity >0 as an indicator of 
possible CRs. A sensitivity analysis is the next logical step. 

Finally, there may be issues of repeatability. Although 
Mylyn is widely adopted in open source as well as 
industrial settings, its consistent use by all developers 
during all of the project activities is not guaranteed. A 
commercial version of Mylyn (Tasktop Dev) is available 
for the Visual Studio IDE. Other commercial-grade 
facilities (such as Cubeon for the Netbeans IDE) offer 
similar features, but we cannot assume that they record the 
exact same IDE interactions. However, it is likely that any 
facility similar to Mylyn can provide the data our proximity 
algorithm needs which is – at a minimum – data about the 
developer, task, timestamp, filename and path for artifact 
selection and edit events. 

6.  CONCLUSION 
We introduce a proximity relationship that can be used to 
infer CRs between developers as they form. We describe 
the algorithm for measuring proximity based on task 
context information. This context information details 



 

 

 

activities of developers within their IDEs and is obtained 
using existing tools. We show that proximity provides an 
earlier indication of CRs and overcomes known drawbacks 
in current CR detection methods.  Proximity is promising as 
a foundational measure for building more accurate and 
useful representations of developer coordination.  These 
advances improve the quality and timeliness of 
management, design and team coordination decisions.   

ACKNOWLEDGEMENT 
Special thanks to Dave Berry for his help with the initial 
data mining, to Gail Murphy for initial discussions, advice 
and encouragement, and to Patrick Wagstrom for his 
feedback and suggestions. This work was partially 
supported by the NSF through grant no. CCF-0916891.  

REFERENCES 
1. Begel, A., Phang, K.Y., and Zimmerman, T. 2010 

Codebook: Discovering and Exploiting Relationships in 
Software Repositories. Proc. ICSE 2010. 

2. Brooks, F.P. 1995. The Mythical Man-Month: Essays on 
Software Engineering. Addison Wesley. Reading, MA. 

3. Cataldo, M., Bass, M., Herbsleb, J., and Bass, L. 2007. 
On Coordination Mechanisms in Global Software 
Development. Proc. ICGSE 2007, 71-80. 

4. Cataldo, M., Herbsleb, J.D., and Carley, K.M. 2008. 
Socio-Technical Congruence: A Framework for 
Assessing the Impact of Technical and Work 
Dependencies on Software Development Productivity. 
Proc. ESEM 2008, 2-11. 

5. Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, 
J. D. 2009. Software dependencies, work dependencies, 
and their impact on failures. IEEE Transactions on 
Software Engineering. 35, 6, 864-878. 

6. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and 
Carley, K.M. 2006. Identification of Coordination 
Requirements: Implications for the Design of 
Collaboration and Awareness Tools. Proc. CSCW 2006. 

7. Conway, M.E. 1968. How do committees invent. 
Datamation. 14, 4, 28-31. 

8. de Souza, C.R., Quirk, S., Trainer, E., and Redmiles, 
D.F. 2007. Supporting collaborative software 
development through the visualization of socio-technical 
dependencies. Proc. of the 2007 international ACM 
conference on Supporting group work. 147-156. 

9. Dewan, P. and R. Hegde. 2007. Semi-Synchronous 
Conflict Detection and Resolution in Asynchronous 
Software Development. Proc. E-CSCW 2007. p. 159-
178. 

10. Dourish, P., and Bellotti, V. Awareness and 
Coordination in Shared Workspaces. Proc. CSCW 1992: 
p. 107-114. 

11. Ehrlich, K., Helander, M., Valetto, G., Davies, S., and 
Williams, C. 2008. An analysis of congruence gaps and 

their effect on distributed software development. Proc. 
STC 2008. 

12. Gall, H., Hajek, K., and Jazayeri, M. 1998. Detection of 
logical coupling based on product release history. Proc. 
ICSM 1998. 

13. Grinter, R.E., Herbsleb, J.D., and Perry, D. E. 1999. The 
geography of coordination: dealing with distance in 
R&D work. Proc. of the international ACM SIGGROUP 
conference on Supporting group work.  

14. Herbsleb, J.D. and Grinter, R.E. 1999. Splitting the 
organization and integrating the code: Conway's law 
revisited. Proc. ICSE 1999, 85-95.  

15. Herbsleb, J.D., Mockus, A., and Roberts, J.A. 2006. 
Collaboration in software engineering projects: A theory 
of coordination. Proc. ICIS 2006. 

16. Kersten, M. and Murphy, G.C. 2005. Mylar: a degree-
of-interest model for IDEs. Proc. AOSE 2005, 159-168. 

17. Kersten, M. and Murphy, G.C. 2006. Using task context 
to improve programmer productivity. Proc. FSE 2006. 

18. Kraut, R. and Streeter, L. 1995. Coordination in 
software development. Communications of the ACM. 
38, 3, 69-81. 

19. Minto, S. and Murphy, G.C. 2007. Recommending 
emergent teams. Proc. MSR 2007. 

20. Parnas, D.L. 1972. On the criteria to be used in 
decomposing systems into modules. Communications of 
the ACM. 15, 12, 1058. 

21. Rothlisberger, D., Nierstrasz, O., Ducasse, S., Pollet, D., 
and Robbes, R. 2009. Supporting task-oriented 
navigation in IDEs with configurable heatmaps. Proc. 
ICPC 2009, pp. 253–257 

22. Sarma, A., Noroozi, Z., and van der Hoek, A. Palantír: 
raising awareness among configuration management 
workspaces. Proc. ICSE 2003. 

23. Sarma, A., Maccherone,L., Wagstrom, P., and Herbsleb, 
J. 2009. Tesseract: Interactive visual exploration of 
socio-technical relationships in software development. 
Proc ICSE 2009, 23-33. 

24. Singer, J., Elves, R., and Storey, M.-A. 2005. Navtracks: 
Supporting navigation in software maintenance, Proc. 
ICSM 2005, pp. 325–335. 

25. Sosa, M.E., Eppinger, S.D., and Rowles, C.M. 2004. 
The misalignment of product architecture and 
organizational structure in complex product 
development. Management Science. 50, 12, 1674-1689. 

26. Sullivan, K.J., Griswold, W.G., Cai, Y., and Hallen, B. 
2001. The structure and value of modularity in software 
design. Proc. FSE 2001, pp. 99-108. 

27. Valetto, G., Chulani, S., and Williams, C. 2008. 
Balancing the value and risk of socio-technical 
congruence. Proc. STC 2008. 

 


