
Timely Detection of Coordination Requirements to Support Collaboration among
Software Developers

Kelly Blincoe
Computer Science Department

Drexel University
kelly.blincoe@drexel.edu

Abstract— Work dependencies often exist between the
developers of a software project. These dependencies
frequently result in a need for coordination between the
involved developers. However, developers are not always
aware of these Coordination Requirements. Current methods
which detect the need to coordinate rely on information which
is available only after development work has been completed.
This does not enable developers to act on their coordination
needs. I have investigated a more timely method to determine
Coordination Requirements in a software development team as
they emerge.

I. PROBLEM AND MOTIVATION
In large software projects, multiple developers must work

together and concurrently. This requires a division of work
which often results in dependencies between tasks. Software
engineering pioneers, such as Parnas [14] and Brooks [2],
recognized the importance of efficiently managing work
dependencies to manage the coordination overhead arising
within a development team.

Work dependencies often result in Coordination
Requirements (CRs) among team members. Developers,
however, often remain unaware of the work dependencies
that exist and the coordination that is required to fulfill these
dependencies. When developers do not follow up on existing
Coordination Requirements, there is a potential for problems
that may affect the efficiency of the development process or
the quality of the software product [4,10,17].

Although CR detection techniques exist, they do not yet
detect CRs in a timely fashion or assess the relative
importance or criticality of CRs. Such a detection method is
required to effectivel\ raise developers¶ aZareness [8] of
their coordination needs and empower them to act upon
those needs. This would make the CR concept actionable and
open coordination strategies that can fulfill CRs efficiently.

II. BACKGROUND AND RELATED WORK
Cataldo et al. [5] introduced a framework to detect and

quantify CRs between pairs of software developers by
identifying the technical dependencies between software
artifacts modified during assigned tasks. Empirical evidence
suggests that when coordination activities focus on the
identified CRs, productivity is likely to improve [4,5,17].
This has led to the concept of Socio-Technical Congruence
(STC) [3,5] which states that when coordination is focused
between the team members with identified CRs we can
obtain benefits for the software project.

Taking advantage of those benefits requires the timely
detection of CRs, but with current detection methods, CRs
are not an actionable concept. CRs are usually identified by
examining the task¶s artifact commits made by developers in
the project¶s source control repository. Commit data is
typically available only after the majority of development
work for a task has been completed. Also, commit data is
incomplete for two reasons. First, the commit history may
portray inaccurate author information due to limited commit
privileges. Second, for each file committed to a source code
repository, a developer may have consulted several other
files pertinent to her work. Knowledge of this source code
reference behavior is inaccessible from commit records.

Several tools, such as Ariadne [6], EEL [13], and
Tesseract [16], employ conceptualizations of CRs that rely
upon commit records to establish technical dependencies
among tasks in order to provide developers with
coordination awareness. Therefore, these tools cannot
provide timely notifications of CRs. Other tools attempt to
leverage ³live´ Zorkspace information. For example,
Palantír uses notifications to keep a developer abreast with
Zhat happens in her colleagues¶ Zorkspaces [15]. Palantír
also makes use of information from the configuration
management system. However, instead of looking at commit
data, it looks at the artifacts in each developer¶s Zorkspace
and compares them to the state of the ³master cop\´ for the
same artifacts maintained in the configuration management
repository. It then notifies developers of ongoing changes
occurring to the artifacts they have in their own workspace.
While these notifications are timely, they only regard direct
same-artifact conflicts, which are a narrow subset of CRs.
Another tool, CollabVS, also notifies developers of artifact
conflicts, and it captures additional conflicts by considering a
subset of syntactical dependencies between artifacts [7].
HoZever, it does not rank the ³strength´ or importance of the
detected CRs and does not account for CRs that do not arise
from other types of dependencies.

III. APPROACH
I have proposed an alternative approach to the current

reliance on technical dependencies for CR detection which is
timely and turns CRs into an actionable concept for
managing coordination in software projects. My approach
examines the similarity of artifact working sets as they are
constructed during developers¶ tasks. Working sets can be
obtained b\ recording developers¶ actions on artifacts as the\

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1109/ICSE.2012.6227230

occur. The Mylyn framework [11,12] is one tool that
performs this recording function. I have developed the
proximity measure which looks at artifact consultation and
modification activities captured by Mylyn and weighs the
overlap which exists between the working sets associated to
pairs of developers or tasks. I have found that proximity is
indicative of the need to coordinate [1].

The proximity algorithm considers all actions recorded
for each artifact in each working set in order to apply a
numeric weight to that artifact¶s pro[imit\ contribution.
Weights are applied based on the type of overlap where the
most weight is given when an artifact is edited in both
working sets and the least amount of weight is given when
an artifact is simply consulted in both working sets. Artifacts
that do not appear in both working sets will not receive any
weight. The weights, which are directly based on weights
Mylyn itself uses for its degree-of-interest model [13], are
shown in Figure 1 which also provides an example of the
proximity computation process [1]. The algorithm then
computes the ratio of actual to potential overlap. Actual
overlap considers the intersection of the two working sets
while potential overlap considers the union of the two
working sets. Potential overlap represents the maximum
possible proximity score had there been perfect overlap
between the two sets of actions. The proximity measure is
the ratio between actual overlap and potential overlap.

IV. RESULTS
To evaluate the accuracy of the proximity measure, I

performed in [1] an empirical study that compared proximity
to the CRs detected by the algorithm proposed by Cataldo et
al. [5]. I found that higher values of proximity correlate with
the likelihood of a CR. In our main data set, a Spearman
correlation of 0.69 was found with a p-value of 2.4e-11. I also
found that proximity has high levels of precision and recall
when matched to the CRs conceptualized in Cataldo et al.
(which in this case are assumed to be ground truth). I also
found out that all cases when the CRs and proximity scores
do not align, turned out to be either false positives or

negatives of the traditional CR detection method. More
importantly, several of those cases highlight drawbacks of
that method¶s reliance on post-mortem information and
dependency conceptualizations [1].

To evaluate the timeliness of the proximity measure, I
obtained the date when the first contribution to the proximity
score occurred, by examining the timestamps for the
overlapping events recorded in the working set pairs. I then
compared that date with both the first day of concurrent work
and the day in which the first CR is identified for the same
pairs. I found that proximity significantly improves the
timeliness of CR detection. Fig. 2 shows the probability
density functions of proximity detection, CR detection and
task duration in our main data set [1].

V. CONTRIBUTIONS
A socio-technical model constructed using developers¶

actions on artifacts as they occur and employing the
proximity measure Zill provide an actionable and ³live´
view of CRs as they are established. This allows project
governance decisions aimed at the resolution of CRs and
prioritization of CRs that may improve productivity the most
[9,18]. Based on the proximity measure, it is possible to
devise tools that make developers aware of their coordination
requirements as they happen.

VI. ONGOING AND FUTURE WORK
A plugin for the Jazz IDE [19], which implements the

proximity algorithm and uses it to provide developers with
visualizations of their coordination needs with co-workers,
has been implemented. A live user study to assess how the
tool and proximity measure support coordination in Jazz
teams is under way.

The next step in my investigation of CRs is to determine
if there are certain types of technical dependencies between
software development tasks that do not require coordination.
Currently, it is assumed that all work dependencies require
coordination and generate CRs, but this is not necessarily
true. If one could discriminate between inter-related tasks
that require coordination and those that don¶t, the tool which
implements the proximity algorithm could ignore the latter
avoiding excessive coordination overhead and enabling
developers to focus their attention on tasks where
coordination and collaborative work is essential.

Figure 2. Timeliness Probability Density [1]

Figure 1. Proximity algorithm [1].

REFERENCES
[1] Blincoe, K., Valetto, G. and Goggins, S. 2012. Proximity: a Measure

to Quantif\ the Need for Developers¶ Coordination. Proc CSCW
2012.

[2] Brooks, F.P. 1995. The Mythical Man-Month: Essays on Software
Engineering. Addison Wesley. Reading, MA.

[3] Cataldo, M, Herbsleb, J., Carley, K. 2008. Socio-Technical
Congruence: A Framework for Assessing the Impact of Technical and
Work Dependencies on Software Development Productivity. Proc.
ESEM 2008.

[4] Cataldo, M., Mockus, A., Roberts, J.A and Herbsleb, J.D. 2009.
Software Dependencies, Work Dependencies and Their Impact on
Failures. IEEE Transactions on Software Engineering, Vol. 35, No.
6, pp. 864-878

[5] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley, K.M. 2006.
Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools. Proc. CSCW 2006.

[6] de Souza, C.R., Quirk, S., Trainer, E., and Redmiles, D.F. 2007.
Supporting collaborative software development through the
visualization of socio-technical dependencies. Proc. of the 2007
international ACM conference on Supporting group work. 147-156.

[7] Dewan, P. and R. Hegde. 2007. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software Development.
Proc. E-CSCW 2007. p. 159-178.

[8] Dourish, P., and Bellotti, V. Awareness and Coordination in Shared
Workspaces. Proc. CSCW 1992: p. 107-114.

[9] Ehrlich, K., Helander, M., Valetto, G., Davies, S., and Williams, C.
2008. An analysis of congruence gaps and their effect on distributed
software development. Proc. STC 2008.

[10] Herbsleb, J.D. and Grinter, R.E. 1999. Splitting the organization and
integrating the code: Conway's law revisited. Proc. ICSE 1999, 85-95.

[11] Kersten, M. and Murphy, G.C. 2005. Mylar: a degree-of-interest
model for IDEs. Proc. AOSE 2005, 159-168.

[12] Kersten, M. and Murphy, G.C. 2006. Using task context to improve
programmer productivity. Proc. FSE 2006.

[13] Minto, S. and Murphy, G.C. 2007. Recommending emergent teams.
Proc. MSR 2007.

[14] Parnas, D.L. 1972. On the criteria to be used in decomposing systems
into modules. Communications of the ACM. 15, 12, 1058.

[15] Sarma, A., Noroozi, Z., and van der Hoek, A. Palantír: raising
awareness among configuration management workspaces. Proc. ICSE
2003.

[16] Sarma, A., Maccherone,L., Wagstrom, P., and Herbsleb, J. 2009.
Tesseract: Interactive visual exploration of socio-technical
relationships in software development. Proc ICSE 2009, 23-33.

[17] Sosa, M.E., Eppinger, S.D., and Rowles, C.M. 2004. The
misalignment of product architecture and organizational structure in
complex product development. Management Science. 50, 12, 1674-
1689.

[18] Valetto, G., Chulani, S., and Williams, C. 2008. Balancing the value
and risk of socio-technical congruence. Proc. STC 2008.

[19] IBM Rational Jazz.
http://www-01.ibm.com/software/rational/jazz/features/

