
Uncovering Critical Coordination Requirements through
Content Analysis

Kelly Blincoe
Computer Science Department

Drexel University
Philadelphia, PA, USA

kelly.blincoe@drexel.edu

Giuseppe Valetto
Computer Science Department

Drexel University
Philadelphia, PA, USA

valetto@cs.drexel.edu

Daniela Damian
Software Engineering Global

Interaction Lab
University of Victoria
Victoria, BC, Canada

danielad@cs.uvic.ca

ABSTRACT
In this paper, we describe a way to identify the critical
coordination needs that exist in a software development project
through post-mortem content analysis and manual coding of task
pairs. Our coding scheme provides guidelines on how to score the
strength of the relationship of task pairs based on four
characteristics. Such a method and coding scheme has the
potential to become a research tool that can be used within the
community of researchers and practitioners interested in the socio-
technical aspects of software development to identify coordination
needs for their analysis in future studies. We seek community
feedback to help improve the proposed coding scheme.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – productivity,
programming teams.

General Terms
Management, Performance, Human Factors.

Keywords
Task Dependencies; Proximity; Coordination Requirements;
Awareness; Collaborative Software Development; Machine
Learning; Content Analysis; Manual Coding

1. MOTIVATION
Large, complex software projects are often designed to streamline
the technical dependencies between modules as a way to
maximize task parallelism [6]. However, it is not possible to
eliminate all dependencies between modules, and those
dependencies often result in coordination needs between project
tasks and the corresponding developers [4]. Cataldo et al. found
that when coordination activities focus on the tasks where
dependencies exist, productivity is likely to improve and the
chance for errors is reduced [4]. If developers are made aware of
their coordination needs early, more effective coordination can
occur while the development tasks are still underway. To
accomplish this, dependencies could be garnered from
architecture design documents or from a syntactic analysis of the

code. However, dependencies often change during the lifecycle of
the project, and these traditional methods may not capture all
types of dependencies or pick them up in a timely way.

In our recent work, we introduced a quantitative measure, called
Proximity, for detecting and quantifying the need to coordinate
between software developers [3]. Proximity uses electronic traces
of artifact consultations and edits within a developer’s IDE to
identify coordination needs in near real-time. Proximity has been
shown empirically to provide an accurate view of coordination
needs and provides more timely awareness than other techniques.
However, Proximity and other methods are limited in that they
detect coordination requirements only between pairs of developers
and do not provide additional context. Developers may work on
multiple tasks at the same time, so a coordination requirement
between two developers may encompass the work dependencies
of many tasks. We extended the Proximity method to detect
coordination needs between pairs of tasks instead but found that,
at this level of granularity, Proximity tends to introduce too much
noise and to list too many candidate task pairs with coordination
needs [2].

To resolve this concern, we used machine learning techniques to
supplement the Proximity metric and identify only the most
critical coordination needs between pairs of tasks [2]. We defined
critical coordination needs as those that can cause the most
disruption to task duration when left unmanaged. However, a
reliable way of capturing critical coordination requirements is not
currently recorded in any existing software repositories. In an
empirical study of our machine learning approach, we considered
the dependencies established by the team within the task records
as a ground truth for coordination needs. However, we found that
these identified dependencies are often incomplete and inaccurate
for use in determining coordination needs [2]. This is in line with
a recent study by Aranda and Venolia [1] that found errors and
omissions in repositories like Bugzilla. Thus, we were not able to
validate our results against any form of ground truth.

Without a complete source of ground truth of coordination
requirements to measure against, it is difficult for researchers
interested in performing analysis of teamwork, coordination and
awareness in software engineering to evaluate their algorithms
and techniques. To account for this shortfall, we propose
performing content analysis [5] of task pairs to manually code
their likeliness of having or not having coordination requirements.

Methods and procedures for manual coding are well established in
other research fields. To perform such an analysis, a coding
scheme must be developed which details the characteristics of
interest along with scoring criteria. Manual coding can be quite
time intensive, so the approach is not recommended as a project
management strategy that should be applied to all development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SSE'13, August 18, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2313-0/13/08... $15.00.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1145/2501535.2501536

task pairs in a project. Instead, the manual coding scheme we
contribute in this paper can be applied on a subset of task pairs to
develop a better understanding of critical coordination needs.
Heuristics like this are important because they can become
research instruments that can be used in future studies of
coordination.
In the remainder of the paper, we propose a set of task pair
characteristics that should be included in a coding scheme for this
type of content analysis (Section 2) and present preliminary
results from coding a small set of task pairs (Section 3). We
conclude with a discussion on future work (Section 4) and a
summary of our contribution (Section 5).

2. CHARACTERISTICS OF TASK PAIRS
INDICATIVE OF COORDINATION
REQUIREMENTS
Some issue tracking repositories, like Bugzilla, include a way to
mark dependencies between tasks. However, we found that the
dependencies captured in this field are not always representative
of actual coordination needs [2]. Project members may be
unaware of some of their coordination needs, and, therefore, those
will not be captured. In addition, project members may use this
dependency relationship to capture other types of dependencies
that are not necessarily indicative of coordination needs. For
example, an umbrella task may be created along with a set of
subtasks that the umbrella task depends on as a way of managing
complex tasks. In this case, coordination requirements may

actually exist among some of the subtasks rather than between
each subtask and the umbrella task as captured through the
dependency relationship. In addition, these relationships do not
distinguish between critical and trivial dependencies, and
coordination may not be required for trivial dependencies. For
these reasons, we look for other ways of capturing the critical
coordination needs.

We propose a set of characteristics of task pairs that may be
indicative of coordination needs. Each characteristic is meant to
indicate, on a scale, the strength of the relationship between the
tasks. The stronger the relationship the higher the indication for
coordination. Those characteristics along with the rationale for
their selection are described in the following sections. The coding
guidelines are shown in Table 1.

Task Summary Similarity: Task summaries have been used
successfully in identifying duplicate bug reports with natural
language processing [7]. This implies that developers are
providing appropriate keywords in the task summaries to allow
for automatic detection of duplicates. If duplicates can be detected
in this way, it possible that similar summaries may also be an
indicator for coordination needs.

Task Discussion Similarity: Task summaries are submitted when
a bug report is initially created. As development work is
underway, developers may discuss the task and provide more
details once they gain a better understanding of the task. We,
therefore, also include discussion similarity as a characteristic in
our coding scheme.

Table 1. Coding Guidelines
 No Coordination Need Critical Coordination Need

Characteristic No Somewhat Very

Task Summary Similarity The two task summaries do not
appear similar in any way.

A small portion of the main
keywords overlap in the two
task summaries.

A majority of the main
keywords overlap in the two
task summaries.

Task Discussion Similarity The discussions of the two
tasks do not share any of the
same concepts.

The two task discussions refer
to common aspects of the
system from the perspective of
EITHER the user (system
functions) or the system
architecture (specific reference
to code, modules, etc.)
OR
The two task discussions
indicate that the problems may
be occurring in the same area
of the code.

The two task discussions refer
to common aspects of the
system from the perspective of
BOTH the user (system
functions) and the system
architecture (specific reference
to code, modules, etc.)
OR
The two task discussions refer
to the same or similar
problems.

Evidence of Task Conflict The discussion in the two tasks
does not seem to indicate that
the two tasks were conflicting
in any way.

The discussion in one of the
tasks does not explicitly
mention a conflict between the
two tasks. However, based on
reviewing the timing of the
tasks and their discussions, it
seems there may have been a
conflict between the two tasks
that the team may not have
been not aware of at the time.

It is apparent based on the
timing of the tasks and the
discussion thread that there was
a conflict between the pair of
tasks. The conflict is clearly
discussed and may or may not
explicitly link the two tasks by
ID.

Artifact Overlap The two tasks have no common
files in their working sets
(artifacts edited or consulted).

At least one, but no more than
30%, of the union of the files is
shared across the two tasks’
working sets.

More than 30% of the union of
the files is shared across the
two tasks’ working sets.

Evidence of Task Conflict: Task conflict is the epitome of a
coordination need. This can be seen as a more specific case of
discussion similarity, but it may be useful to distinguish between
criticality of coordination needs.

Artifact Overlap: Developers who are working on the same
artifacts at the same time may need to coordinate their work. We
found that looking at overlap between artifact consultations and
edits was indicative of a need to coordinate between developers
[3].
To apply this heuristic, one or more coders must analyze the task
pairs and score each pair using the coding guidelines outlined in
Table 1. Considering the subjective nature of this activity, higher
confidence can be obtained by having multiple coders perform the
content analysis and coding independently. As a way to calibrate
amongst the coders and prevent discrepancies in the coder output,
the coders should compare their findings and discuss any
differences after an initial small subset of the coding activity [5].

Determining a threshold for when coordination needs exist based
on the scores of each task pair may be dependent on each data set.
There are a number of possibilities for this threshold. For
example, one must decide whether a coordination need exists if
any of the characteristics show similarity or if all of the
characteristics show similarity. Also, do coordination
requirements exist when characteristics are ranked as somewhat
similar or must they be very similar? This is likely dependent on
individual data sets and the habits of the development team.

3. PRELIMINARY RESULTS
We carried out a preliminary study on the Mylyn open source
project. We collected all Bugzilla change requests (tasks) from
releases 3.1 and 3.2. We selected a set of 248 task pairs. Of those
248 pairs, 124 were selected as potential critical coordination
needs and 124 that were likely not coordination needs. We
selected the potential critical coordination needs if the pairs met
any of following criteria: the tasks had a high Proximity score [3]
where high is calculated as mean + (2 x stddev,) of Proximity
scores over all pairs, the tasks were marked as dependent or
duplicate within their Bugzilla records, the tasks were cross-
referenced in their discussions, the tasks shared the same umbrella
task, the tasks were marked with the same tag. These can be seen
as the pool of all potential coordination needs of which we wish to
identify the most critical. Two external coders familiar with
software development practices independently performed the
content analysis and coding of the task pairs. For each
characteristic, the coders have a high level of agreement (Table 2).
We considered for each of the characteristics, a score of
somewhat or very as a positive identification of a coordination
need. For our evaluation, we look only at pairs where there was at
least a binary agreement between the coders, that is, the coders
agreed on a positive or negative response. However, for the
positive cases, the coders may have selected different strengths of
relationship.

Table 2. Coder Agreement

Characteristic % Agree % Agree
Binary

Task Summary Similarity 91% 91%

Task Discussion Similarity 94% 94%

Evidence of Task Conflict 93% 93%

Artifact Overlap 91% 96%

For each of the characteristics, the coders identified positives for
only task pairs from the pool of 124 suggested potential
coordination requirements. The 124 cases that were selected as
not likely coordination requirements were rated negatively for
each characteristic by the coders.

Task Summary Similarity: The two coders found 11 pairs with
task summary similarity. Of these, only three had been identified
by the developers as dependent tasks. The remaining were not
explicitly identified by the team, but were included as potential
coordination needs in our pool due to either their high Proximity
or shared tags. A review of the remaining eight task pairs shows
that task summary similarity, at least in this data set, does not
seem to be an accurate indicator of critical coordination needs.
Many of these task pairs shared keywords, but they do not appear
to be solving the same problems or conflicting in any way with
the exception of one task pair. That pair is also identified by each
of the other characteristics and will be discussed later. The three
pairs that were identified by the team are also captured by
additional characteristics of the coding scheme. We conclude that
including summary similarity as a characteristic may not be
necessary.

Task Discussion Similarity: Only six pairs were identified with
discussion similarity by the coders. Three of these pairs had been
marked as dependent by the development team and two additional
pairs had been cross-referenced in their discussions. The
remaining task pair had high Proximity, but it does not appear to
have been marked by the team in any way as a dependency. The
two tasks both addressed bugs with the way hyperlinks were
working and they had significant overlap in the artifacts that were
involved.

Evidence of Task Conflict: The coders found only five pairs with
evidence of task conflicts. Three of these pairs overlap with those
identified with task discussion similarity including the case
discussed above. The remaining two had both been identified by
the development team; one through discussion cross-reference and
one as an explicitly marked dependency.

Artifact Overlap: The highest number of pairs (33) was identified
by this characteristic; 22 of those were not identified using any of
the other characteristics. Only one of the 22 had been identified by
the development team through cross-reference in the discussion.
The remaining pairs were selected as potential dependencies in
our data set because of their high Proximity or shared tags. Since
it is possible that artifact overlap exists for even trivial
coordination requirements, we postulate that this characteristic
may be better used to confirm rather than predict critical
coordination needs Further investigation is needed. It is also
possible, for future studies, to automatically calculate this
characteristic rather than relying on manual coding.

In our results, some overlap exists between the four characteristics
as illustrated in Figure 1. As mentioned, task summary similarity
does not seem to be necessary due to its high overlap with the
other characteristics. Those captured by summary similarity alone
do not appear to be critical coordination needs. The remaining
three characteristics each capture at least one critical coordination
need not identified by the other two characteristics.

If we consider any task pairs that were scored positively for at
least one of the three characteristics that we identified as good
measures of detecting critical coordination needs (task discussion
similarity, evidence of task conflict, and artifact overlap), 35
unique task pairs were coded as true coordination needs of the 124
potential coordination requirements. All of the dependencies that
were explicitly marked by the Mylyn development team are

included in this set, as well as additional pairs that may have been
missed by the team. The various indicators that we used to choose
the 124 potential coordination requirements pool for this
preliminary study may not always be indicative of critical
coordination needs, so it is not surprising that only a subset of
these were identified by the coders.
To begin to evaluate the criticality of the 35 task pairs identified
by the manual coding, we examined the task durations of tasks
involved in the critical coordination needs. The tasks involved in
these 35 pairs have a different performance profile when
compared to the tasks from the remaining 89 pairs that were not
selected as critical coordination needs. The tasks with critical
coordination needs have a mean duration of 12.5 days compared
to 9.4 days for the other tasks. A Mann-Whitney test shows the
task durations have significantly different distributions (W = 894,
p = 0.008). Since we defined critical coordination needs as those
most likely to cause disruption to task durations, these results
suggest that our approach is identifying the most critical
coordination needs. Further validation can be done through
consultation with the Mylyn development team to ensure that
additional critical coordination needs were not missed.

4. FUTURE WORK
Our preliminary results show promise for a research tool like the
one proposed to detect critical coordination needs. The high level
of agreement of the coders shows the feasibility of using such a
coding scheme. We seek feedback from the SSE workshop
community to help improve the proposed coding scheme.
Community feedback is critical to develop a well-rounded and
widely accepted research instrument that has the potential to be
used again in multiple studies across the social software
engineering community. After incorporating that feedback, we
plan to validate the coding scheme with developers.

Once the coding scheme has been enhanced and validated, we
plan to use it for our future studies of coordination needs on open-
source projects. We intend to apply it to additional task pairs to

perform a thorough analysis of our most recent work, which
focuses on automatically identifying critical coordination needs in
software projects through machine learning techniques. We will
use the output of this content analysis and manual coding to both
train the machine learning algorithm and validate its results.

5. CONCLUSION
Dependencies between tasks may not always require coordination.
We have proposed a way to identify the critical coordination
needs through content analysis and manual coding of task pairs.
Such a method and coding scheme could become a research tool
that could be used within the community to help identify
coordination needs for analysis in future studies.

6. ACKNOWLEDGMENTS
Special thanks to Sean Goggins and Nora McDonald for
dedicating their time to perform the manual coding described in
this paper and for their feedback and suggestions. This work was
partially supported by the NSF through grant no. VOSS OCI-
1221254.

7. REFERENCES
[1] Aranda, J., & Venolia, G. (2009, May). The secret life of

bugs: Going past the errors and omissions in software
repositories. In Proceedings of the 31st International
Conference on Software Engineering (pp. 298-308). IEEE
Computer Society.

[2] Blincoe, K., Valetto, G. & Damian, D. (2013, August). Do
All Task Dependencies Require Coordination? The Role of
Task Properties in Identifying Critical Coordination Needs in
Software Projects. To Appear in ESEC/FSE 2013.

[3] Blincoe, K., Valetto, G., & Goggins, S. (2012, February).
Proximity: a measure to quantify the need for developers'
coordination. In Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work (pp. 1351-1360).
ACM.

[4] Cataldo, M., Herbsleb, J. D., & Carley, K. M. (2008,
October). Socio-technical congruence: a framework for
assessing the impact of technical and work dependencies on
software development productivity. In Proceedings of the
Second ACM-IEEE international symposium on Empirical
software engineering and measurement (pp. 2-11). ACM.

[5] Krippendorff, K. (2012). Content analysis: An introduction
to its methodology. SAGE Publications, Incorporated.

[6] Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communications of the
ACM, 15(12), 1053-1058.

[7] Runeson, P., Alexandersson, M., & Nyholm, O. (2007, May).
Detection of duplicate defect reports using natural language
processing. In Software Engineering, 2007. ICSE 2007. 29th
International Conference on (pp. 499-510). IEEE.

Figure 1. Scoring Overlap between Characteristics.

