
Understanding “Watchers” on GitHub
Jyoti Sheoran, Kelly Blincoe, Eirini Kalliamvakou, Daniela Damian, Jordan Ell

Software Engineering Global Interaction Lab
University of Victoria
Victoria, BC, Canada

jsheoran@uvic.ca, kblincoe@acm.org, ikaliam@uvic.ca, danielad@cs.uvic.ca, jell@uvic.ca

ABSTRACT
Users on GitHub can watch repositories to receive notifications
about project activity. This introduces a new type of passive
project membership. In this paper, we investigate the behavior of
watchers and their contribution to the projects they watch. We
find that a subset of project watchers begin contributing to the
project and those contributors account for a significant percentage
of contributors on the project. As contributors, watchers are more
confident and contribute over a longer period of time in a more
varied way than other contributors. This is likely attributable to
the knowledge gained through project notifications.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – programming
teams.

General Terms
Management, Human Factors, Languages.

Keywords
GitHub, Repositories, Watchers, Software Teams.

1. INTRODUCTION
Open source software projects are initiated and maintained by a
community of motivated developers that collectively create
software. However, their contribution is often voluntary, and
projects must sustain a pool of interested developers to receive
contributions. Open source software development teams often
exhibit a layered structure consisting of groups of developers
varying in size and contribution focus. Core contributors are the
smallest group and focus on building the codebase. Peripheral
contributors are more active in bug reporting and submitting
patches. There are also groups of active users that do not
contribute code but provide feedback on new releases and
undertake supporting activities [1]. Project success is related to
the size of the developer community around it, which acts as a
pool of potential contributors [2]. Without a renewable source of
contributors, an open source software project can stagnate or fail.
GitHub is a popular code-hosting site that hosts a large number of
open source software projects. It provides social features that
allow for a community of contributors to be built around the

codebase. Any user can “watch” a public repository to receive
notifications about events in a repository such as new commits,
pull requests, and issues. “Watching” a repository signals interest
in the repository’s activity and a potential interest in contributing
[3]. It can be seen as a passive type of project membership.

In August 2012, GitHub changed how “watching” works [4].
“Starring” replaced the existing watching functionality, and any
repositories a user had previously watched now appeared in their
stars list. Starring allows users to mark repositories of interest to
them, but they do not receive notifications about those
repositories. At the same time, the new watching functionality
was introduced which provided more detailed notifications on
repositories. A user, therefore, who has chosen to watch a
repository over simply starring the repository, has shown an
interest in knowing the details of the activity involved in that
project. Receiving such detailed notifications about a repository
requires a time investment on the part of the watcher to read
through these notifications and understand the project activity.

To explore whether watchers on open source software projects are
potential contributors that will sustain the project’s evolution, we
investigate whether watchers eventually contribute to the projects
they watch. We are guided by the following research questions:
RQ1: Do watchers become contributors? We look for evidence of
project watchers taking a more active role on the project by
contributing to the project. We examine the following
contribution types: issue reporting, issue assignment, commenting
on issues, creating pull requests, commenting on pull requests,
committing code, and commenting on commits.
RQ2: Do watchers behave differently than other contributors?
We investigate the first type of contribution, length of
contribution and variety of contribution for both watchers and
other contributors to look for different patterns of behavior
between the two groups.
RQ3: Does a project’s programming language impact how its
watchers behave? We investigate whether watchers are more
likely to contribute to projects based on the project’s
programming language. We also examine differences in the type
of the first contribution and the length of time it takes watchers to
begin contributing by programming language.

2. RELATED WORK
Watchers on GitHub introduce a new type of passive project
membership. Very little research has investigated watchers on
GitHub. Through developer interviews, Dabbish et al. found that
GitHub users consider the number of watchers on a project as a
signal of community importance and project quality [3]. Users
also learn of interesting projects by considering the watching
activity of other, influential users [3][5]. Marlow et al. found that
projects with a greater number of users authorized to make
changes directly to the main branch without approval also have a
larger number of watchers [6]. However, the limited research on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MSR'14, May 31 - June 07 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05…$15.00.
http://dx.doi.org/10.1145/2597073.2597114

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1145/2597073.2597114

watchers has not considered the influence of watchers to the
project through contribution activity. Our work addresses this gap.

3. RESEARCH METHODOLOGY
We used the MSR 2014 Mining Challenge MySQL Dataset [7],
which contains data on 91 GitHub repositories and their forks. Of
these, we analyzed the 72 projects that include information on
watchers. For each project, we included data from the main
branch and its forks [8]. The dataset contains user information
from 19-Oct-2007 to 10-Oct-2013. During this time, 55,265 users
contributed and 141,300 users began watching a project.

We collected contribution related information for each contributor
on each project. We identified seven different contribution types:
writing code, creating pull requests, reporting an issue, assigning
an issue, commenting on commits, commenting on issues and
commenting on pull requests. For each contribution type, we
obtained the timestamp when the contribution was made.

GitHub commits have two associated users - author and
committer. The author is the user who writes the code, while the
committer commits the code. In 90% of commits, the author and
the committer are the same user. We consider the author as the
contributor since they are the one who completed the work.

GitHub introduced a Fork & Pull model for code contribution.
Anyone can create a fork of a repository. Forking is similar to
creating a local copy of the repository. New contributors who do
not have access to the main repository can fork the repository and
make code changes to the local (forked) project. A pull request is
then created to alert the maintainers of the main repository that the
fork owner has changes that he would like to be pulled into the
main repository. Typically, a code review is performed prior to
the change being merged into the main repository. Prior to
GitHub, forks had a negative connotation among developers, but
they are now a measure of a project’s popularity.

4. RESULTS
We ran Pearson correlations between the number of watchers and
the number of issues, forks, and commits for each project (results
in Table 1). Pearson correlations were used because these
measures are normally distributed. Projects that are popular,
measured by fork count, attract more watchers. This is not
surprising since forking a project shows an interest in that project,
and 46% of users who fork a project are also watching the project.
More active projects, measured by the number of issues, also have
more watchers. However, the number of commits, another
measure of project activity, does not correlate with the number of
watchers. This suggests that watchers may be more interested in
project issues than of the details of code changes.
Table 1. Correlations between Watchers and Project Activity.

Project Statistic Pearson Correlation to
Number of Watchers

Number of Forks 0.81***
Number of Issues 0.47***

Number of Commits 0.07***
(* p < 0.05, ** p < 0.01, *** p < 0.001)

RQ1: Do watchers become contributors?

Many projects have a large pool of watchers. A small percentage
of these watchers ultimately contribute to the project in some way.
Across all projects, 4.7% of watchers later became contributors.
This ratio is fairly consistent across the individual projects. The
mean percentage of watchers who become contributors on an

individual project is 5.4%, with a median of 5.0%. However,
while the ratio of watchers who become contributors (4.7%) is not
large, those watchers account for a large portion of the total
population of contributors (20.7%). This is consistent across
individual projects (mean = 22.7% and median = 22.4%).

On average, watchers start contributing after 55 weeks of
watching, (median = 48). However, this varies greatly depending
on the type of their first contribution. Table 2 shows the average
duration between becoming a watcher and the watcher’s first
contribution for each contribution type. Surprisingly, commenting
on a commit has the quickest turnaround, which can be viewed as
a type of code review. While commenting on pull requests,
another type of code review, takes nearly twice as long.

Table 2. Average Duration between Becoming Watcher and
First Contribution by First Contribution Type.

First Contribution Type Mean Time Before First
Contribution (weeks)

Comment on Commit 36.7

Assigned Issue 37.3

Submit Code 51.8

Report Issue 56.1

Create Pull Request 61.4

Comment on Pull Request 63.1

Comment on Issue 91.1

Answer to RQ1: While the percentage of watchers who became
contributors is not large, their number in the total contributor
population is significant. This indicates that having a large pool of
watchers is important to recruiting the project’s future
contributors and to the health of the project.

RQ2: Do watchers behave differently than other contributors?

Watchers who became contributors are more confident than other
contributors, based on their first contribution type. 87.6% of
watchers who contribute start contributing by reporting issues,
submitting code and creating pull requests. These types of
contributions are likely the most valuable to open source projects
when compared to comments on issues and comments on pull
requests. Only 56.2% of other contributors start with these types
of contributions. Contributors who were not first watchers are
most likely to start contributing by simply commenting on an
issue. This type of action is likely to require the least amount of
confidence since many comments on issues just note agreement
with the described issue. On the other hand, comments on
commits are likely to describe a problem with the code [3], and a
contributor must feel very confident in their opinion to critique the
work of others so publicly. Contributors who were watchers first
are much more likely to make a commit comment as their first
contribution. Table 3 shows the first contribution type for
watchers and other contributors. Chi-squared tests show that for
all contribution types except code submission, the difference in
proportion between the watchers and other contributors is
significant. The table excludes issue assignment because it
accounts for less than 0.1% of first contributions.

Besides being more confident in their first contribution, watchers
are also more likely to have sustained contribution than other
contributors. Watchers contribute for 16.4 weeks on average,
whereas other contributors contribute for only 7.5 weeks on

average, where contribution duration is computed as first
contribution to last contribution. However, the contribution
duration is not normally distributed; the median for both groups is
0 weeks. The median number of contributions from both groups
of contributors is one, showing that “drive-by” [9] contributions
are common. However, a Mann-Whitney test shows that the
distribution of contribution durations is significantly different
between watchers and other contributors (W= 279824330,
p<0.001), but there is not a significant difference in the number of
contributions between the two groups. This shows that while
watchers may not contribute more than other contributors, their
vested interest in the project through receiving notifications
causes them to contribute over a longer time period.

Watchers are more likely to provide more varied contributions
than other contributors. A Mann-Whitney tests shows that the
number of contribution types per contributor is significantly
greater for contributors who were watchers first compared to other
contributors (W = 299586686, p < 0.001).

Table 3. First Contribution.

Contribution Watchers Others
Chi-

Squared
Test

Report an issue 43.9% 24.5% 2042.5***
Submit code (commit) 26.3% 27.5% 7.6***
Pull requests 17.4% 4.2% 3028.4***
Comment on Issue 2.1% 39.4% 7117.7***
Comment on Commit 8.7% 4.1% 485.6***
Comment on pull request 1.2% 0.2% 267.8***

(* p < 0.05, ** p < 0.01, *** p < 0.001)

Table 5 shows the contributors second type of contribution based
on the type of their first contribution. 65.45% of watchers whose
first contribution type is code submission (either on the main
branch or on their own fork) go on to submit a pull request.
However, only 12.01% of other contributors follow up with a pull
request after submitting code. Other contributors often comment
on an issue after submitting code, indicating that they perhaps test
a code solution on their own fork prior to making a comment.

Contributors who commented on a commit or a pull request as
their first contribution are more likely to submit code in the future.
Perhaps they found the code they commented on problematic
enough that they felt compelled to submit their own solution.

40.1% of watchers contribute in another type of activity
(contribution type), whereas only 16% of other contributors later
perform a different type of contribution. Table 4 shows the
percent of contributors who perform a different type of
contribution from their first contribution type for watchers and

other contributors. 21.3% of watchers create pull requests after
contributing in some other way. Most of these watchers started
with submitting code or commenting on pull requests (Table 5).

Table 4. Contributors who Perform a Different Type of
Contribution from their First Contribution Type.

Second Type of
Contribution Watchers Others Chi-Squared

Test

All types 40.1% 16.0% 3276.7**

Report an issue 4.2% 0.7% 921.5***

Submit code 7.7% 3.4% 494.5***

Pull requests 21.3% 4.0% 4783.1**

Comment on Issue 0.6% 5.9% 681.2***

Commit comment 3.5% 1.6% 203.4***

Comment on pull request 2.7% 0.4% 668.9***

Answer to RQ2: Watchers who became contributors are more
confident, contribute over a longer period of time, and perform
more types of contribution than other contributors.

RQ3: Does a project’s programming language impact how its
watchers behave?

Watchers are not more likely to become contributors based on the
project’s programming language. The mean percentage of
watchers who become contributors is 5.2% (median 5.0%) when
separated by programming language. The mean percentage of
contributors who were first watchers is 20.0% (median 20.5%)
when divided by programming language.

The type of first contribution varies across different languages.
Table 6 shows the top five contribution types by the project’s
programming language. The projects using C++ receive
significantly more comments on commits as a first contribution
than the other projects. This could be because of the complexity of
the C++ language [10]. Contributors on Go projects are more
likely to submit code as their first contribution, while this is very
rare as a first contribution on CSS projects which are most likely
to receive issues as a first contribution.

Table 7 shows the amount of time watchers wait before
contributing, contribution duration and the number of
contributions by programming language. While the contribution
duration is fairly consistent across programming languages, the
length of time watchers wait before contributing and the number
of contributions does vary by language. Watchers contribute after

Table 5. Second Type of Contribution based on First Contribution Type.

First Contribution

Second Type of Contribution

Watchers that Contribute (%) Other Contributors (%)

RI SC PR CI CC CPR RI SC PR CI CC CPR

Report Issue (RI) - 10.66 7.04 0.50 2.41 0.55 - 2.17 2.23 0.62 0.64 0.15

Submit code (SC) 10.04 - 65.45 1.16 7.44 5.41 1.37 - 12.01 20.17 3.98 0.52

Pull Request (PR) 4.30 4.34 - 0.45 1.96 4.54 2.55 3.53 - 0.76 0.85 4.69

Comment on issue (CI) 1.62 8.44 0.64 - 0.64 0.32 0.15 5.90 0.04 - 0.72 0.004

Comment on commit (CC) 4.27 17.33 6.32 0.08 - 2.46 2.36 9.58 3.49 0.04 - 1.36

Comment on pull requests (CPR) 5.11 32.95 31.81 0.56 6.25 - 7.37 47.5 45.9 0.81 9.01 -

Table 6. First Contribution Type by Programming Language.

 RI SC PR CC CI

C 26.1% 27.5% 5.9% 0.34% 36.4%

C# 9.6% 46.1% 17.4% 2.2% 24.3%

C++ 17.0% 31.9% 4.1% 18.0% 28.5%

CSS 65.5% 4.5% 3.1% 0.2% 26.4%

Go 18.5% 53.5% 8.8% 3.3% 15.1%

Java 26.2% 23.1% 6.2% 8.5% 35.4%

JavaScript 45.1% 16.1% 3.5% 2.2% 32.7%

PHP 8.6% 39.9% 12.0% 3.7% 34.3%

Python 23.2% 35.1% 11.1% 3.1% 26.7%

R 42.4% 15.8% 2.6% 0.5% 38.5%

Ruby 42.3% 19.3% 5.1% 2.4% 30.2%

Scala 22.0% 31.8% 4.0% 2.0% 38.2%

TypeScript 20.1% 29.7% 3.1% 0.4% 42.2%

All 28.5% 27.3% 6.9% 5.0% 31.7%

Table 7. Watcher Contribution by Programming Language.

Mean Time
Before First
Contribution

(weeks)

Mean
Duration of
Contribution

(weeks)

Mean
Contribution

Count

C 67.1 15.4 22.9

C# 54.1 19.6 32.8

C++ 39.0 16.3 22.0

CSS 36.8 16.2 17.4

Go 39.0 12.6 6.8

Java 47.5 16.7 21.4

JavaScript 44.8 16.8 18.3

PHP 50 16.8 13.0

Python 52.4 16.9 16.3

R 42.9 15.2 9.0

Ruby 74.7 16.9 19.9

Scala 74.4 15.6 10.7

TypeScript 38.5 13.0 26.9

All 55.2 16.4 18.5

an average of only 36.8 weeks on CSS projects, but wait an
average of 74.7 weeks on Ruby projects. Projects with longer wait
times have more code submitted as a first contribution. In regards
to number of contributions, the Go and R languages have an
average of 6.8 and 9.0 contributions per watcher. While, C#
projects have the largest number of contributions per watcher at
32.8. There is not a clear reason for the differences in contribution
counts between programming languages.
Answer to RQ3: Watchers are not more likely to become
contributors based on the project’s programming language.
However, the type of first contribution and the number of
contributions received varies across programming languages.

5. CONCLUSION
Contributors who were first watchers account for a significant
portion of contributors on GitHub projects. Many GitHub projects
do not maintain any formal project documentation, with the
exception of a brief wiki and a ReadMe file. Contributors,
therefore, learn about a project by reviewing previous comments
and developer actions. Watchers have an understanding of the
project and its workflow prior to their first contribution due to the
notifications they receive. Because of this knowledge, watchers
are more confident, contribute over a longer period of time, and
perform a greater variety of contribution types. Thus having
watchers is important for a project's growth and GitHub was
innovative to introduce such a feature. A project’s programming
language does not impact the amount of watchers it attracts, but it
does impact the activity of its contributors.

6. ACKNOWLEDGMENTS
This work was partially funded by the NECSIS grant.

7. REFERENCES
[1] K. Crowston and J. Howison, “The Social Structure of Free

and Open Source Software Development,” First Monday,
vol. 10, no. 2, 2005.

[2] G. von Krogh, S. Spaeth, and K.R. Lakhani, “Community,
Joining, and Specialization in Open Source Software
Innovation: A Case Study,” Research Policy, vol. 32, no. 7,
pp. 1217-1241, July 2003.

[3] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. “Social
Coding in GitHub: Transparency and Collaboration in an
Open Software Repository,” Proc. CSCW '12, ACM, pp.
1277-1286, 2012.

[4] https://github.com/blog/1204-notifications-stars
[5] A. Begel, J. Bosch, and M.-A. Storey, “Social Networking

Meets Software Development: Perspectives from GitHub,
MSDN, Stack Exchange, and TopCoder,” IEEE Software,
vol. 30, no. 1, pp. 52–66, 2013.

[6] J. Marlow, L. Dabbish, and J. Herbsleb. “Impression
Formation in Online Peer Production: Activity Traces and
Personal Profiles in GitHub." Proc. CSCW 13, pp. 117-128.
ACM, 2013.

[7] G. Gousios, "The GHTorent Dataset and Tool Suite." Proc.
MSR 13, pp. 233-236, IEEE Press, 2013.

[8] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.
German, and D. Damian, “The Promises and Perils of
Mining GitHub.” To appear MSR 14.

[9] R. Pham, L. Singer, O. Liskin, and K. Schneider. "Creating a
Shared Understanding of Testing Culture on a Social Coding
Site." Proc. ICSE 13, pp. 112-121, IEEE, 2013.

[10] R. Hundt, "Loop Recognition in C++/Java/Go/Scala,"
Proceedings of Scala Days 2011, 2011.

