
Learning Global Agile Software Engineering Using
Same-Site and Cross-Site Teams

Maria Paasivaara⇤, Kelly Blincoe†, Casper Lassenius⇤, Daniela Damian†
Jyoti Sheoran†, Francis Harrison†, Prashant Chhabra†, Aminah Yussuf†, Veikko Isotalo⇤

⇤Software Process Research Group, Aalto University
FI-00076 Aalto, FINLAND
firstname.lastname@aalto.fi

†SEGAL, University of Victoria
Victoria, BC, Canada

kblincoe@acm.org, danielad@cs.uvic.ca

Abstract—We describe an experience in teaching global soft-
ware engineering (GSE) using distributed Scrum augmented with
industrial best practices. Our unique instructional technique had
students work in both same-site and cross-site teams to contrast
the two modes of working. The course was a collaboration
between Aalto University, Finland and University of Victoria,
Canada. Fifteen Canadian and eight Finnish students worked
on a single large project, divided into four teams, working on
interdependent user stories as negotiated with the industrial
product owner located in Finland. Half way through the course,
we changed the teams so each student worked in both a local and
a distributed team. We studied student learning using a mixed-
method approach including 14 post-course interviews, pre-course
and Sprint questionnaires, observations, meeting recordings, and
repository data from git and Flowdock, the primary communi-
cation tool. Our results show no significant differences between
working in distributed vs. non-distributed teams, suggesting that
Scrum helps alleviate many GSE problems. Our post-course
interviews and survey data allows us to explain this effect; we
found that students over time learned to better self-select tasks
with less inter-team dependencies, to communicate more, and to
work better in teams.

I. INTRODUCTION

Challenges arise when software development is distributed
across multiple geographic locations, referred to as Global
Software Engineering (GSE). Communication is particularly
difficult in GSE due to the time-zone differences, geographic
distances and cultural differences. Despite their emphasis
on face-to-face communication, agile development methods
have been increasingly adopted in distributed settings in
industry. Agile methods emphasize frequent communication,
transparency of progress and short iterations, and they have
been found to address many challenges faced in GSE [1]–[3].

In line with this shift in industry trends, examples of
software engineering curricula teaching GSE using agile
methods have emerged [4]–[7]. The reported courses are
practical, project-driven, utilize agile development methods
like Scrum [8] and are arranged in collaboration between
two or more universities, enabling students to learn GSE in
realistic settings [9]. In our project-driven GSE course, we
found that the use of agile methods, augmented with GSE

best practices, helped the students to learn important GSE
competencies [7]. Scrum has short Sprints with several formal
meetings for Sprint Planning, Demos and Retrospectives, as
well as emphasizes early and frequent communication within
and between teams, and with the Product Owner (PO). Using
such a process allows the students to experience many phases
of the life-cycle of a distributed project, while reflecting on
and continually improving their team working practices. In
our previous edition of the course [7], students worked only in
distributed teams. In the latest instance of the course, described
in this paper, they experience working both in distributed, as
well as local Scrum teams, since both modes of working are
common in industry.

In this paper, we describe the latest edition of our GSE
course, taught in collaboration between Aalto University, Fin-
land and University of Victoria, Canada. Similar to the past
edition of this course, students worked on a single large project
for an industrial customer utilizing distributed Scrum and GSE
best practices, such as site visits, frequent synchronization,
and multiple communication modes. New to this years edition
of the course, we structured the project so that each student
spent, after the training Sprints, two two-week Sprints working
in a same-site team and two two-week Sprints working in a
cross-site team to better understand the differences between the
two modes of working. Using post-course interviews, iteration
questionnaires and repository data, we describe the differences
students reported in working in same-site and cross-site teams,
examine how the students’ GSE competencies improve over
time, and how the students perceived the new course format.

We found that students learned important GSE competencies
throughout the course including the ability to select tasks
that minimized inter-team dependencies, reducing coordina-
tion overhead. Surprisingly, students did not perceive major
differences between working in local and distributed teams
and, in some cases, even preferred the distributed teams, since
all communication was easily traceable within Flowdock1, the
teams’ preferred mechanism for communication. Flowdock

1http://www.flowdock.com

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1109/ICSE.2015.157

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

was used also in the local teams, but the distributed teams
conformed better to the agreed communication practices, as
students recognized their importance in particular when work-
ing in a distributed manner.

II. PREVIOUS WORK

A. GSE Challenges and the Agile Solution
GSE brings many challenges including cultural, language

and background differences, lack of overlapping working
hours, lack of frequent contact, lack of trust and lack of
willingness to communicate openly [10]. Communication is
impacted by each of these challenges, making it the single
biggest challenge of GSE.

Agile development methods, and Scrum in particular, are
becoming mainstream in industrial GSE [1], [2]. Agile meth-
ods have been found to address challenges deriving from a
distributed way of working [2]. Scrum emphasizes communi-
cation and provides a structure for frequent formal commu-
nication both within and between the teams, as well as with
the Product Owner through Daily Scrums, Scrum-of-Scrums,
Sprint Plannings, Demos and Retrospectives. Daily Scrums are
brief daily status meetings for each Scrum team. When several
teams are working on the same project, Scrum-of-Scrums
meetings are held for inter-team coordination. Teams meet
in the beginning of each Sprint in Sprint Planning meetings
to plan and estimate the new user stories to be implemented.
Demos and Retrospectives are held at the end of each iteration
to showcase newly implemented functionality and to improve
the process [8]. Research on the usage of Scrum in distributed
projects has found these formal meetings encourage team
members between sites to communicate frequently and facili-
tate informal communication after the meetings, as participants
notice that there are issues needed to be solved or questions
to ask [3]. A systematic literature review found that modified
Scrum practices can help mitigate communication challenges
resulting from time-zone differences [1] .

B. Teaching GSE
The GSE teaching literature has identified skills that GSE

professionals need and are, thus, important to be taught to stu-
dents learning GSE (e.g. [11], [12]): regular communication
with distributed team members [12], [13], team dynamics [12]
working in culturally diverged teams [13], managing time [13],
and using collaborative technologies [13]. Notably, all of
these are soft skills. Product architecture is another important
aspect of GSE since, arguably, modular architectures offer the
potential to reduce cross-site communication [14]. However,
the evolving nature of designs over the course of a project
limits a design’s ability to predict and optimize project cross-
site communication [15]. The need to respond to changing
architectural dependencies further emphasizes the importance
of developing communication skills in GSE courses.

Teaching the soft skills required for GSE is best done
through practical experience in which students can learn by
doing [11]. A systematic mapping study of 19 GSE courses [9]
found only one course that was theoretical in nature, while all

others had a distributed project as a central element. Despite
the fact that agile methods are gaining popularity in industry,
most reported GSE courses still use a waterfall process.
Moreover, only a subset of the reported courses teach students
the whole life-cycle of a software development project. In fact,
the systematic literature review [11] concludes that it is not
possible for instructors to cover all of the stages of GSE and
therefore one specific aspect should be focused on. As evident
from this and our previous papers, we do not share this view.

In the previous instance of our course, we found that the
Scrum method, along with supporting collaboration practices
and tools, supports the learning of important GSE compe-
tencies, such as distributed communication and teamwork,
building and maintaining trust, using appropriate collaboration
tools, and inter-cultural collaboration [7]. Scharff et al. [4]–
[6] found that Scrum increased the transparency of both the
process and the developed software product in their GSE
course using Scum practices over three years after transitioning
from teaching the course using the waterfall methodology.

We are not aware of any reports of courses where the
students are members of both local and distributed teams. In
this paper, we describe our experience in structuring the course
project in this way and add to the empirical evidence that
students learn strategies to overcome GSE challenges through
self-selection in project task allocations.

C. Sociotechnical Congruence
In large and distributed software projects, developers often

work on tasks in parallel. When technical dependencies exist
between these tasks, developers often need to coordinate
their work. When work dependencies exist and developers do
not coordinate, productivity and quality problems can occur,
including increased task resolution time, increased software
faults, build failures, redundant work, and schedule slips [16]–
[19]. Therefore, when coordination is focused between the
team members with work dependencies (coordination needs),
the project can see performance and quality benefits. Cataldo
et al. [16] conceptualised a way to measure the extent to which
coordination needs and coordination behavior are aligned in
practice, called Socio-Technical Congruence (STC). STC is
expressed as the ratio between coordination needs that are
satisfied by actual acts of coordination and the set of all
coordination needs. For example, if a team has technical
dependencies resulting in 10 coordination needs between the
developers and 4 pairs of those developers coordinate their
work, the STC score would be 4/10 or 0.4. In this paper, we
use this STC measure to analyze how coordination between
the students aligns with their coordination needs.

III. COURSE DESIGN

A. Learning Goals
Our main goal, similar to our previous course, was to

teach students GSE competences by emulating a modern real-
world GSE environment through the use of agile practices
that involve significant inter-team, inter-site and inter-cultural
communication, as well as to teach and expose students to

various collaborative technologies that provide infrastructural
and cognitive support for effective communication in global
teams. In addition, we wanted students to experience working
both in site-specific (local) as well as cross-site (distributed)
Scrum teams. Reflecting upon the differences between the
two teams physical structures, through surveys and process
introspection, was one of our additional instructional strategies
in this edition of the course.

B. Course Setup

We ran the course jointly between Aalto University, Finland,
and University of Victoria, Canada, over a 3-month period,
from January to April 2014, with slightly different configura-
tions at the two locations. The course at Aalto University was
a capstone project-based course without lectures, while the
University of Victoria course setup included a more traditional
structure in which students participated in lectures, as well
as in-class and online discussions of experience. The Finnish
course started in September 2013, and the Canadians joined
in January 2014.

In total, we had 23 students participating, 15 in Canada
and 8 in Finland. The students worked on a single large
project, building a mobile client from scratch for Agilefant2,
an existing backlog management system developed at Aalto
University, and now commercialized by a university spin-off.

C. Project Process: Distributed Scrum

Similar to our previous course, we used Scrum [8], [20]
as the basic process framework. We organized the students
into four scrum teams, each consisting of 4–6 members.
Each team had a Scrum Master (SM), which changed every
Sprint. The teams self-selected their SMs, e.g. based on team
member’s skills and preferences. The Product Owner (PO)
for all teams was a representative from the spin-off company
commercializing Agilefant, located in Finland. Thus, the PO
can be seen as external industrial customer.

The first two Sprints, which are not analyzed in our case
study, were each one week long. Their purpose was to fa-
miliarize the students with the project codebase, the Scrum
methodology, and the development and communication tools.
Sprint 0 involved only Canadian teams. Sprint 1 had four
global teams, each distributed between Finland and Canada.

As illustrated in Figure 1, the remaining four Sprints were
each two-weeks long and each had two global software teams
(a mix of Canadian and Finnish students) and two local
software teams where all members were from the same site.
To accomplish this, two of the globally distributed teams from
Sprint 1 remained intact for Sprints 2 and 3. The remaining
two teams were split into two local teams with all Canadian
students on one team and all Finnish students on the other
team. In Sprints 4 and 5, teams were switched. The members
of the two global teams from the previous Sprints were
converted into two local teams and the students from the two
local teams reverted back to their Sprint 1 global teams.

2http://www.agilefant.com

!

"
"

"

"

"
"

"
"

"

"

"
"

"
"

"

"

"
"

"
"
"

"
"

PO !

"
"

"

"

"
"

"
"

"

"

"
"

"
"

"

"

"
"

"
"
"

"
"

PO !

"
"

"

"

"
"

"
"

"

"

"
"

"
"

"

"

"
"

"
"
"

"
"

PO

Canada

Finland

Sprint 1 Sprint 2 & 3 Sprint 4 & 5

Fig. 1: Team Setup. There were four distributed teams in Sprint 1.
In Sprints 2&3, two teams remained in tact, while the other students
organized into local teams. The setup was reversed for Sprints 4&5.

Each Sprint started with a synchronous Sprint Planning
meeting for all teams organized via Google Hangout, held
in each locations’ open work area (termed war rooms in
the agile methodology). The PO presented an overview of
the user stories to be developed in the Sprint, then the
teams self-selected their user stories. After story selection, the
teams split into separate videoconference sessions to estimate
the user stories and perform an initial task breakdown. The
PO connected with each distributed team individually and
explained the user stories in more detail, giving the team a
basis for story-point estimation. Immediately after these team-
specific sessions, each team communicated their plan to the
PO and each other in another joint videoconference session.

During the Sprints, teams held two weekly 15 minute video-
conference Daily Scrum meetings, followed by informal hang-
out sessions. The needs and topics for these informal follow-up
discussions arose from Daily Scrum meetings. Since the time
allocated to this project was 10–12hours/week/student, this
frequency for Daily Scrums was determined as adequate. In
addition to these required meetings, students were encouraged
to have informal meetings whenever they felt it was necessary.

At the end of each Sprint, each team held a Retrospec-
tive meeting, using Google Hangout when the team was
distributed, to reflect and improve their ways of working,
followed by a joint Demo to the PO and the other teams in
the two connected war rooms. The Demos, Retros and Sprint
Planning meetings all took place every second week during a
time-boxed 2.5 hour slot. The order of the team specific Sprint
Planning sessions and Retros varied from team to team, so that
the teams could use the PO’s time efficiently.

According to the GSE best practices, we encouraged the
students to use multiple communication modes and suitable
tools to support different communication and collaboration
purposes. The main tools used were Google Hangout, GitHub,
git, AgileFant, and Flowdock. Moreover, in accordance with
GSE best practices [21], the Finnish instructor, the PO and
two Finnish students visited Canada for ten days in January
2014, when the Canadian course commenced. During the visit,
Scrum training, as well as technical training was given. During
this time, Sprint 0 was run, and Sprint 1 started.

IV. METHODOLOGY

The aim of the research presented in this paper was to
study the new course format for teaching students GSE by
having them work in both local and globally distributed Scrum
teams in order to learn the differences between the two modes
of work. In addition, we were interested in studying student
learning over time as the course progressed.

We posed the following research questions:
RQ1 Did students experience differences in working in

global vs. local teams, and if so, what?
RQ2 Did students learn effective strategies for dealing

with GSE challenges over time?
RQ3 How did the students perceive the new course for-

mat?
For each of these research questions, we considered the

following GSE elements: Scrum practices, communication,
teamwork, inter-team collaboration, and task allocation. For
this analysis, we collected data using a mixed-method ap-
proach combining qualitative and quantitative methods [22].
We used surveys, observations, video recordings of meetings,
collection of communication data, and interviews to triangulate
results. In addition, we collected data from tools used during
the course, including GitHub, git, AgileFant, and Flowdock.
The collected data is shown in Table I.

A. Asynchronous Communication Network

To identify which users communicated with each other
both within and across teams, we analyzed the Flowdock
communication instances. Flowdock was the most commonly
used tool for all course communication.

Flowdock allows users to tag other users within messages
to indicate whom the message is directed to. This feature
was used consistently in Sprints 3-5 allowing us to automati-
cally determine communication links between users for these
Sprints. As tags were not utilized consistently in Sprint 2,
we manually inspected each message to identify which users
each message was directed to. We also manually inspected
the approximately 15% of messages from Sprints 3-5 which
did not contain any tags. Once the message recipients were
established, we created directed communication links between
each message’s sender and the message recipients.

After the course, two students with intimate knowledge
of the user stories manually mapped each message to its
associated user story or stories by considering the message
content and the description of each user story.

B. Sociotechnical Congruence

STC is the ratio of satisfied coordination needs to all
coordination needs. We computed coordination needs between
users by considering the technical dependencies between user
stories. In cases where users worked on the same user story or
on dependent user stories, we interpreted it as a coordination
need. Users were linked to user stories if they were listed as
the assignee within Agilefant or if they were the author of one
of the commits associated with the user story.

To identify dependencies between user stories, we consid-
ered the technical dependencies occurring between artifacts in-
volved in those user stories through logical coupling [23]. Log-
ical coupling tracks files that have been historically checked
in together and aims at identifying semantic relationships that
may not manifest in the syntax of the programmatic implemen-
tation of the software product. For this case study, files were
considered dependent if they had historically been checked in
together four or more times. Artifacts were associated to user
stories by considering all development artifacts (JavaScript,
HTML, CSS and XML files) involved in commits related to
a user story. The mappings were done using a combination of
automated and manual work.

C. Surveys
Prior to the project start, students filled out a background

questionnaire with questions on their prior experiences with
software projects and agile methods, as well as their expecta-
tions for the course. At the end of each Sprint, students filled
out a questionnaire about their view of the Scrum process
and practices, project and team success, trust [24], teamwork
quality [25], [26], main challenges experienced, and main
learnings during the last Sprint.

D. Post-course interviews
After the course, 12 students, 4 from Finland and 8

from Canada, were interviewed about their experiences and
learning. In addition, we interviewed the Finnish PO. The
interviews were semi-structured and lasted for about one hour.
The discussions were recorded, transcribed and analysed by
thematic coding in the qualitative analysis software Atlas.ti3.

V. RESULTS

In this section, we describe our survey, interview and repos-
itory analysis results on the following GSE elements: Scrum
practices, communication, teamwork, inter-team collaboration,
and task allocation. We also present the student reaction to this
new course format.

A. Scrum Practices
As explained in the course design, the teams were required

to use all Scrum practices and roles during the project.
In the iteration surveys, we asked students to evaluate the

Scrum process itself and various Scrum rituals. Our findings,
shown in Figure 2a, indicate that students were satisfied with
Scrum and the Scrum practices, something we expected based
on our previous experiences [7], and also corroborated in the
interviews, as the following quote shows.

I think it’s [Scrum] good, especially for this project when we
have some distributed teams. [...] It keeps everybody working.
You can’t slack. And it keeps the project going in the [sic] good
direction. It makes everybody to become more and more engaged
in this project. — Team Member, Canada

Quite surprisingly, however, the differences between satis-
faction with the Scrum practices were not significant when
working in local vs. distributed teams, see Figure 2a. While

3http://www.atlasti.com

TABLE I: Data Collection

Data collection Purpose / Instruments Data collected

Pre-course survey Student background, expectations 23 responses
Sprint surveys Scrum practices, Trust, Teamwork, Communication 20-23 responses
Flowdock communication Communication Actors, Messages
Observations Teamwork, communication 5 Demos & Sprint Planning meetings, Retros, Daily Scrums,

Teamwork in war rooms
Student logs Communication, encountered issues, tasks, learning
Agilefant Estimation accuracy, work breakdown Task estimates and actuals, burndown
Interviews Learning, communication, communication tools, improve-

ment ideas
13 interviews, 40-90 min each (8 Canadian & 4 Finnish
students, Finnish PO)

(a) Distributed vs. Local Teams (b) Scrum Practices over Time (Labels on the left indicate Sprint numbers 2–5)

Fig. 2: Students Experiences with Scrum

not statistically significant, nor surprising, students reported
that the Scrum practices were slightly less suited to working
in a distributed team than in a local one and that the process
conformance was slightly poorer when the teams were dis-
tributed. However, in the interviews they stated the opposite:
several students mentioned that in distributed teams they were
actually following the agreed practices a bit better than in the
collocated teams, e.g., communicating right away in Flowdock
when working on tasks or having problems, instead of waiting
for the next face-to-face meeting, which did happen when
working in a local team.

When interpreting this data, it is good to keep in mind that
the course required all Scrum practices to be used, giving the
teams fairly little leeway in adapting the practices.

Looking at the Scrum practices over time, Figure 2b, the
situation looks quite stable, with high levels of satisfaction
throughout the course, and slightly better process conformance
over time, which seems quite natural, as students gained more
experience with the process and practices.

B. Communication
The Scrum process forces people to communicate by having

many meetings. Thus, a big part of the communication both
inside and between our Scrum teams took place in these formal
synchronous meetings: local meetings were normally face-to-
face, whereas global meetings were arranged using videocon-

ferencing with Google Hangout. In addition to Google Hang-
out, the teams used several tools for informal communication:
email, Flowdock, Agilefant, GitHub, Git and even phones.

According to our interviews, Flowdock emerged as the
most important communication forum after the synchronous
video meetings. Flowdock was used as a chat tool to let
other team members, distant or local, know what each team
member was working on and to ask questions. In Flowdock,
all communication is visible to everyone, but you can also
target messages to specific recipients using tags. While these
messages are still visible to everyone, the person(s) tagged in
the message receives a notification through email or the mobile
app on their phone ensuring they are aware of the message.

We examined the communication that occurred within Flow-
dock to identify how the teams fulfilled their coordination
needs. We saw that over time, the students fulfilled a greater
number of their coordination needs through communication
as evidenced by the increasing STC scores shown in Table
II. As shown in the table, the students did not increase their
communication, rather their coordination needs were reduced
and their coordination became more focused.

According to the iteration surveys, the students were very
satisfied with the amount of communication inside their project
team (Figures 3a and 3b). Moreover, from Figures 3c and 3d
we can see that the students were highly satisfied with com-

(a) Distributed vs. Local (b) Subjective Communication Amount over Time (Labels on the left indicate
Sprint numbers 2–5)

(c) Communication Satisfaction in Distributed vs. Local Teams (d) Communication Satisfaction over Time (Labels on the left indicate Sprint
numbers 2–5)

Fig. 3: Communication Satisfaction and Subjective Amount

munication practices used in the project and in their own team.
We saw almost no differences between local and distributed
teams. The only slight difference was that the students reported
that their team better followed the agreed communication
practices when distributed. This finding was confirmed by
the interviews and the reason given was that the students
thought it more important to follow the agreed practices when
distributed, while local teams could more easily have ad-
hoc communication. In the second iteration with the same
team (Sprints 3 and 5), the students felt they were following
slightly better the agreed communication practices. The high
satisfaction with communication practices and having almost
no difference between local and global teams seems to indicate
that the Scrum communication practices are well suited for
distributed teams and that Scrum practices might mitigate the
communication differences between local and global teams.

C. Teamwork
In the post-course interviews, the students reported that the

course project highlighted the big difference between working
in a distributed and a local team: in a local team, you could

receive help and answers fast, and face-to-face interactions
encouraged trust.

It became so much simpler when we had [a local team in Finland]
because we could see each other so often and we did not need
to think, whether the Canadians were sleeping or something like
that. . . — Team Member, Finland

We were positively surprised that the students did not report
big challenges when working in distributed teams. According
to the interviews, there seems to be two clear reasons for that:
1) the Scrum rituals, such as Sprint planning meetings, daily
Scrums and Scrum-of-Scrum meetings, supported by good
communication and coordination tools, such as Flowdock and
Agilefant, helped the team members to stay informed, and 2)

TABLE II: Sociotechnical Congruence over Time

Sprint Fulfilled Coordination Needs Coordination Needs STC

2 6 65 0.09
3 44 220 0.20
4 41 110 0.37
5 40 86 0.47

the teams managed to divide the work between the sites in each
team in such a way that each site could work independently
and the 10 hour time difference between sites was not overly
disruptive.

We didn’t face any challenges [when working in a distributed
team compared to a local team] because our tasks were modu-
larized but, obviously if the tasks were interdependent, then we
would have needed a lot more communication.

— Team Member, Canada
It’s funny because they say communication is a problem in global,
and this is true maybe. But in my experience, it’s not, I did com-
municate better with my local team than I did with global team.
[...] Which is true. But, I didn’t see too much communication with
my global team so necessary for the productivity to be successful.
[...] Because we had, we split our tasks very well.

— Team Member, Canada

We saw evidence of this in the Flowdock communication
logs. The cross-site teams had no more distributed communica-
tion within Flowdock than the local teams; 48% of Flowdock
messages created by members of local teams were distributed
communication, while 45% of the distributed team members
messages were distributed. A Chi-Squared test of difference
of proportions showed no difference in the breakdown of dis-
tributed and local communication when comparing distributed
and local teams (x2=2, p=0.16). Details in Table III.

TABLE III: Local vs. Distributed Communication

Local
Messages

Distributed
Messages

Distributed
Messages Ratio

Local teams 75 69 48%
Distributed teams 91 74 45%

The fact that the distributed teams worked well could
also be seen in the teamwork quality measurement taken
after each Sprint [26]. The means were 75.08 for distributed
teams and 72.08 for local teams. Thus, interestingly, students
reported teamwork quality to be a bit higher when working in
distributed teams. This difference is not, however, statistically
significant (Exact Wilcoxon signed rank test, p=0.07). Still,
this is a very interesting finding as you could have expected the
opposite: that the teamwork quality would have been clearly
higher in local teams, when students can meet and work
frequently face-to-face.

TABLE IV: Teamwork by site and distribution

Distribution Teamwork quality

Finnish students Canadian students

Local 66.73 75.11
Distributed 71.79 76.92

We also evaluated the STC by considering the local versus
distributed communication within Flowdock. A coordination
need was counted as local if both people involved in the co-
ordination need were collocated. Otherwise, the coordination
need was distributed. As shown in Table V, in all Sprints,
the local STC scores are higher than the distributed STC
scores. This indicates that when a coordination need exists
between two developers who are collocated, it is more likely

to be fulfilled. While, the difference in STC scores is only
statistically significant for two of the four Sprints, the lack of
significance in Sprint 5 is likely due to only the small dataset.
Further, the local students are likely to have coordinated
their work in other, non-traceable face-to-face communication.
This shows that while the students did not report differences
between local and distributed coordination, there is evidence
that a difference did exist.

TABLE V: Sociotechnical Congruence in Distributed vs. Local Teams

Sprint Local STC Distributed STC Chi-Squared Test

2 4/33=0.12 2/32=0.06 x2=0.67,p=0.41
3 40/107=0.37 4/113=0.04 x2=39.34,p<0.001
4 28/50=0.56 13/60=0.22 x2=13.75,p<0.001
5 22/38=0.58 18/48=0.38 x2=3.55,p=0.06

A few interviewed team members reported that after work-
ing in a global team, where they were vigilant about frequent
communication, when they switched to a local team, they
became too relaxed. They assumed within their local teams
they would easily be aware of each others activities, and they
did not distribute tasks well or communicate effectively. This
resulted in duplicate work and reduced productivity.

Because we are local we expected that, you just work with it
and.... so, story weren’t split into tasks, people weren’t being
assigned immediately. We were like, oh these three people work
on this story. [...] maybe because we thought we are co-located
we are quite relaxed about, we are not so strict in being explicit
on who is doing what. So we don’t split and, that slows down
productivity also. — Team Member, Canada

Two of the teams worked in a local team during the first
two non-training Sprints and were transitioned to global teams
for the last two Sprints. We received positive feedback from
them on this order, as taking good practices into use in a local
team was seen easier, and thus the global team could benefit
from the lessons learned during the local Sprints.

I think one of the disadvantages for most of those teams was,
they’ve switched at the end. So they were local at the very end,
whereas we switched at the beginning [...] So we, started working
on agile, trying to get the practices in, and when we switched the
Canadian team, we tried to merge our, team ideas of how to do
things. [...] as we worked through that, things just got smoother
and smoother, because it was on the Canadian local team. [...]
because you had face-to-face communication [...] By the time we
went back to the international teams, we had a better idea of,
what works [...] So we were, better able to implement that with
the international teams, which I think was really helpful.

— Team Member, Canada

The interviews indicate that there might be good reasons to
start the project by local Sprints and then move on to a more
challenging environment. Therefore, we believe that this is an
interesting topic for further investigation.

Surprisingly, several students commented in the interviews
that they actually preferred working in their distributed team
than in their local team. They mentioned several reasons for
that: work was better organized in a distributed team, the
distributed team was smaller, communication and ’who was
doing what’ was more transparent in a distributed team as
most communication was immediately available in Flowdock,
while local teams sometimes waited until the next face-to-face

meeting, and finally the Finns were thanked for bringing up
problems in a distributed team, whereas some students felt that
local Canadian teams avoided facing problems.

I think I like the international team, a lot better. One, they are
smaller. We had a lot better system for distributing our work.
So we had [names of the team members] peer programming. Me
and [name], would pair together and then [name] and [name].
[...] Having those interdependent three pairs, removed most of
the dependencies, so it worked really well for us.

— Team Member, Canada
The funny thing was, particularly in my team, we worked better
with the Finnish team than our own local team. [...] It could
be because, Finnish people [...] are very straightforward. So, if
they’re silent we know that there is no problem. Or if there is a
problem they used to speak. And we used to figure it out. But with
Canadian local team, even if there’s a big problem, nobody says
anything. There’s no meeting, nothing, no resolution. Sometimes
it was way too polite and people don’t say anything.

— Team Member, Canada

We examined how the teamwork quality developed over
time. In Table VI, we can see that the teamwork quality
improves slightly during the second Sprint for each team
(Sprints 3 and 5), with the last Sprint being clearly the best.
This result is expected, as the interviewed team members
reported that during the first Sprint in a new team they learned
to know each other and collaborate, while during the second
Sprint they learned to work efficiently together.

TABLE VI: Teamwork quality over time

Sprint Teamwork Quality

2 72.50
3 73.20
4 72.47
5 76.05

D. Inter-team Collaboration
As all the teams were building a common product and

taking stories from the same backlog, inter-team collaboration
was a crucial part of the work. The teams were expected to
take care of collaboration and coordination between the teams
by themselves, as in Scrum there are no project managers.
According to the iteration surveys (Figure 3b) students were
not satisfied with the amount of communication between their
own team and other teams: almost half of the students felt that
the amount of communication between the teams was too low.

In agile development, Scrum-of-Scrums [27] is used for
inter-team coordination. Scrum-of-Scrums is a short status
meeting with one representative from each team occurring
daily or a few times per week. There, each team representative
shares information from his or her own team by answering the
three Scrum questions. After the meeting, each representative
shares with their own team the relevant learnings.

We implemented a weekly Scrum-of-Scrums meeting during
the course to share information and coordinate between the
teams. Even though the teams found this practice useful,
they had several challenges in implementing it: difficulties
in knowing what kind of information would be of interest
to the other teams and what might not be that interesting;
the team representatives were not always well prepared for

TABLE VII: Dependencies.

Sprint Stories Dependencies
with Dependencies Intra-team Inter-team

2 41% 14% 86%
3 38% 23% 77%
4 36% 27% 73%
5 34% 52% 48%

the meeting, i.e. they did not know well enough what their
own team members had been doing; the team representatives
did not always know which information would be interesting
and important to report back to their team members, thus this
reporting back was not always taken care of well; and finally,
team representatives did not always participate in the meeting.
Due to these challenges the Scrum-of-Scrum meetings were
not as useful as they could have been. Some interviewees also
mentioned the lack of inter-team communication as problem-
atic. The quotes below highlight some of the challenges teams
faced regarding Scrum-of-Scrums.

And then you don’t know that what information you need to share,
what information you don’t need to share. I think it [Scrum-of-
Scrums] would have been more successful if everyone would have
been there. — Team Member, Canada
But people did not always show up. [...] and when they did
show up they just told that our team has been doing this, I
don’t know anything about that, and I have done this. So the
big picture was missing. [....] And when I followed the discussion
[of some team] in the forum, it was possible to notice that the
person [participating in Scrum-of-Scrums] had not distributed the
information. — Team Member, Finland

Despite the challenges with Scrum-of-Scrums meeting, the
students considered it a useful practice and believed it should
be continued and improved in the future: invite everybody
to participate; adjust the time of the meeting to better ac-
commodate the students; and, stress more in the beginning of
the course why Scrum-of-Scrums are useful, how they should
be organized, and how the students should prepare for them.
The challenges the students reported are similar to findings in
studies in industry [28].

E. Task Allocation
User stories were created by the Product Owner and self-

selected by the teams. If dependencies exist between user
stories, the teams responsible for those stories must coordinate
their work, introducing additional coordination overhead. The
PO created user stories with less dependencies over time,
as shown in Table VII. However, dependencies between user
stories cannot be fully eliminated. We, thus, analysed depen-
dencies between stories to determine if teams were making
smart choices when they selected their stories to minimize the
number of dependencies across teams. For this analysis, we
associated each story to the first Sprint in which it was worked
since we were interested in studying the story selection. Thus,
stories which were not completed in the Sprint in which
they were initially selected, deferred stories, do not appear
in multiple Sprints for this analysis.

We saw that the teams made better choices over time when
self-assigning user stories, as the number of dependencies

within teams increased over time while the number of de-
pendencies across teams decreased. In the interviews, several
students explained that they selected user stories or tasks that
were related to the stories or tasks that they worked during
the previous Sprint. The students, therefore, likely gained a
better understanding of the product’s architecture throughout
the course enabling them to better understand the dependencies
that existed between the stories and make better decisions.
Further, in the surveys, the students reported that the amount
of communication between teams was too low. This was likely
motivation for the students to eliminate the need to coordinate
outside established team boundaries by reducing dependencies
across teams.

F. The New Course Format
The students’ reaction to this new course format, in which

they worked in both local and global teams as opposed to only
global teams, was positive. Regarding learning, the students
were highly positive. The interviewed students felt they had
reached or even exceeded their learning goals. They reported
that the switch from global to local teams and vice versa
helped them learn hands-on the differences between working
in local and distributed teams.

You learn the difference pretty well. [...] I think the switch is
educational. [...] Because it helps you to compare and contrast
the differences between working in a local and working in a
distributed team and what the challenges are for each. And we
did have challenges in our local team too that were different
from the distributed team. Such as getting together is in itself a
big challenge. — Team Member, Canada

However, the students were so committed to the project that
most of our interviewees actually mentioned that when the
teams changed, it slowed down their overall productivity and
without the team changes they could have contributed even
more to the project.

During the first Sprint we learned what this team can do, we
learned who are in this team and at what level they can do work,
or what kind of work they can do, and during the second Sprint
we worked and then the new Sprint already started and we had
to start that all over again. So it slowed down the pace quite a
lot, before the new team could get started and we could figure out
what this new team is capable of. — Team Member, Finland

Overall, the student feedback on the course was highly
positive: the students especially appreciated the possibility to
work in a large, globally distributed project, for a real customer
and for a product that is and will be used by real end-users,
while at the same time learning the agile methods and practices
that are successfully used in industry. They highlighted that
learning Scrum, as well as the best practices for GSE projects,
would not have been possible through theory and reading
books alone. Instead, being able to use Scrum in practice, face
GSE challenges in real-life and solve those challenges was a
far better way to learn.

Practical experience is good. [...] I strongly believe the challenges
was the spice in it. [...] Meeting obstacles and solving those
obstacles was perfect learning curve in my opinion, and that’s
what made this course excellent. — Team Member, Canada

The only significant change to the course the students would
have made was to make it longer, so they could work for a
longer period in the same team.

VI. DISCUSSION

In this section, we summarize our results and answer the
research questions.

RQ1 Did students experience differences in working in
global vs. local teams, and if so, what?

Surprisingly, our results show that there were only non-
significant differences between working in distributed versus
non-distributed teams in terms of communication, teamwork
and conformance to the used Scrum practices. Students were
highly satisfied with the communication and Scrum prac-
tices in both types of teams. Regarding teamwork quality,
surprisingly, distributed team members reported slightly, but
not significantly, higher satisfaction in both the surveys and
the interviews. We found these results surprising, since we
would have expected to find clear differences between local
and global teams, as it is well-known that globally distributed
teams have many more challenges than local ones regarding
communication and collaboration. The higher teamwork qual-
ity in global teams was particularly interesting, as it clearly
contradicted our expectations since the global teams were
unable to meet face-to-face and their synchronous commu-
nication was limited by a time difference of 10 hours. We
suspect that the main reason for these findings, is that the
Scrum process supported communication and collaboration in
distributed teams extremely well, and thus helped alleviate
many GSE challenges.

RQ2 Did students learn effective strategies for dealing with
GSE challenges over time?

We were positively surprised by the fact that the student
teams did not have big challenges in distributed collaboration.
Besides learning the Scrum method and formal communication
possibilities that it offers, our students learned effective infor-
mal communication strategies, e.g., they adopted Flowdock as
the primary communication and coordination tool. Students
reported that using this tool made it easier to stay aware of
their teammates activities since all communication was in one
repository.

Moreover, the students learned to divide work efficiently;
our analysis showed that they made better choices over time
in selecting stories to Sprints, as dependencies across teams
decreased in later Sprints.

RQ3 How did the students perceive the new course format?
Students were highly satisfied with the course. Especially,

they appreciated the possibility to work in a large, globally
distributed project, for a real customer and for a product that
is and will be used by real end-users, while at the same time
learning the agile methods and practices that are currently
becoming a standard in many companies.

Our new course format gave the students a possibility to
practice working in both global and local teams, experience
the challenges and try out good practices in both types of
teams, as well as contrast their experiences. Student reaction
to this new course format was positive. From the learning
point of view the students were very satisfied with the new
format, and encouraged us to keep it in the future, as they felt

they had reached and even exceeded the learning goals of the
course. However, looking at the project from a productivity
and efficiency point of view, the team switches in the middle
of the project, of course, did not make sense. As the project
was for a real customer the students felt that they could have
contributed to the project even more without the switches.
Thus, our students hoped that the future editions of the course
would be longer, so that students would have more time
working in each type of team, instead of having to switch
teams right away when having just learned how to collaborate
in that team and when the team starts to be productive.

VII. CONCLUSIONS

In this paper we presented an new course format for
teaching students global software engineering using Scrum
practices adapted to a globally distributed environment. The
new element of this course was the innovative team set-up that
provided all students a possibility to work both in a local and
a global team, and thus contrast their experiences from both.

We studied the teams and student learning using a mixed-
method approach. Surprisingly, our main finding was that the
students did not report significant differences between working
in local versus global teams in regards to communication,
teamwork and conformance to Scrum practices used. This
result contradicts clearly with our previous knowledge on
GSE, as globally distributed teams normally face many more
challenges than local teams especially regarding communica-
tion and collaboration. The main explanation to this finding
seems to be the Scrum method that helps alleviate many GSE
challenges. We feel that this finding would be an interesting
and important topic for further studies.

Overall, our students were highly satisfied with the course
and with working in both local and global teams. Based on
our experience we warmly encourage other teachers to try out
a similar course format: even though this format needs a lot of
preparation from the instructors, based on the student reaction
and learning, it provided excellent results.

REFERENCES

[1] E. Hossain, M. A. Babar, and H.-y. Paik, “Using scrum in global soft.
development: A systematic literature review,” in Proc. of the 4th IEEE
Intl. Conf. on Global Soft. Eng., 2009, pp. 175–184.

[2] G. Hanssen, D. Smite, and N. Moe, “Signs of agile trends in global
soft. eng. research: A tertiary study,” in Intl. Conf. on Global Soft. Eng.
Workshop (ICGSEW), 2011, pp. 17 –23.

[3] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using Scrum in a
globally distributed project: A case study,” Soft. Process Improvement
and Practice, vol. 13, no. 6, pp. 527–544, 2008.

[4] C. Scharff, O. Gotel, and V. Kulkarni, “Transitioning to distributed
development in students’ global soft. development projects: The role
of agile methodologies and end-to-end tooling,” in 5th Intl. Conf. on
Soft. Eng. Advances (ICSEA), 2010, pp. 388 –394.

[5] C. Scharff, “Guiding global software development projects using scrum
and agile with quality assurance,” in 24th IEEE-CS Conf. on Soft. Eng.
Education and Training (CSEET), 2011, pp. 274 –283.

[6] C. Scharff, S. Heng, and V. Kulkarni, “On the difficulties for students
to adhere to scrum on global soft. development projects: Preliminary
results,” in Collaborative Teaching of Globally Distributed Soft. Devel-
opment Workshop (CTGDSD), 2012, pp. 25 –29.

[7] M. Paasivaara, C. Lassenius, D. Damian, P. Räty, and A. Schröter,
“Teaching students global software engineering skills using distributed
scrum,” in Companion Proceedings of 35th International Conference on
Software Engineering, ICSE 2013, 2013, pp. 1128–1137.

[8] K. Schwaber and M. Beedle, Agile Software development with Scrum.
Prentice-Hall, 2002.

[9] L. Fortaleza, T. Conte, S. Marczak, and R. Prikladnicki, “Towards a gse
intl. teaching network: Mapping global soft. eng. courses,” in Collab-
orative Teaching of Globally Distributed Soft. Development Workshop
(CTGDSD), 2012, june 2012, pp. 1 –5.

[10] A. Mockus and J. D. Herbsleb, “Challenges of global software devel-
opment,” 7th Intl. Symp. on Soft. METRICS, pp. 182–184, 2001.

[11] M. Monasor, A. Vizcaı́no, M. Piattini, and I. Caballero, “Preparing
students and engineers for global soft. development: A systematic
review,” in Intl. Conf. on Global Soft. Eng., 2010, pp. 177 –186.

[12] I. Richardson, S. Moore, D. Paulish, V. Casey, and D. Zage, “Globalizing
software development in the local classroom,” in 20th Conf. on Soft. Eng.
Education Training (CSEET), 2007, pp. 64 –71.

[13] K. Swigger, R. Brazile, F. Serce, G. Dafoulas, F. Alpaslan, and V. Lopez,
“The challenges of teaching students how to work in global soft. teams,”
in Transforming Eng. Education: Creating Interdisciplinary Skills for
Complex Global Environments, 2010, pp. 1 –30.

[14] Y. Cai and W. Baelen, “On the development of pedagogical materials
for globally distributed software engineering,” in Proc of Collaborative
Teaching of Globally Distributed Software Development - Community
Building Workshop, 2012.

[15] J. D. Herbsleb and R. E. Grinter, “Splitting the Organization and
Integrating the Code: Conway’s Law Revisited,” in Proceedings of the
21st International Conference on Software Engineering. New York,
NY, USA: ACM, 1999, pp. 85–95.

[16] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns and their
impact on development productivity and software failures,” Software
Engineering, IEEE Transactions on, vol. 39, no. 3, pp. 343–360, 2013.

[17] D. Damian, L. Izquierdo, J. Singer, and I. Kwan, “Awareness in the
wild: Why communication breakdowns occur,” in Global Software
Engineering, 2007. ICGSE 2007. Second IEEE International Conference
on. IEEE, 2007, pp. 81–90.

[18] C. R. de Souza and D. F. Redmiles, “An empirical study of software
developers’ management of dependencies and changes,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 241–250.

[19] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles, “Supporting
collaborative software development through the visualization of socio-
technical dependencies,” in Proceedings of the 2007 international ACM
conference on Supporting group work. ACM, 2007, pp. 147–156.

[20] K. Schwaber and J. Sutherland, “The scrum guide — the definitive guide
to scrum: The rules of the game,” www.scrumguides.org, 2013.

[21] M. Paasivaara and C. Lassenius, “Collaboration practices in global inter-
organizational soft. development projects,” Soft. Process Improvement
and Practice, no. 4 (8), pp. 183–199, 2003.

[22] T. Jick, “Mixing qualitative and quantitative methods: Triangulation in
action,” Administrative Science Quarterly, vol. 24 (4), 1979.

[23] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proceedings of the International
Conference on Software Maintenance, ser. ICSM ’98. Washington,
DC, USA: IEEE Computer Society, 1998, pp. 190–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=850947.853338

[24] G. Spreitzer and A. Mishra, “Giving up control without losing control
- Trust and its substitutes’ effects on managers’ involving employees in
decision making,” Group & Organization Management, vol. 24 (2), pp.
155–187, 1999.

[25] M. Hoegl and H. Gemuenden, “Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,”
Organization Science, vol. 12 (4), pp. 435–449, 2001.

[26] M. Hoegl, K. Weinkauf, and H. Gemuenden, “Interteam coordination,
project commitment, and teamwork in multiteam R&D projects: A
longitudinal study,” Organization Science, vol. 15 (1), pp. 38–55, 2004.

[27] J. Sutherland, “Agile can scale: Inventing and reinventing scrum in five
companies,” Cutter IT Journal, vol. 14, no. 12, pp. 5–11, 2011.

[28] M. Paasivaara, C. Lassenius, and V. Heikkila, “Inter-team coordination
in large-scale globally distributed scrum: Do scrum-of-scrums really
work?” in Empirical Software Engineering and Measurement (ESEM),
2012 ACM-IEEE International Symposium on, Sept 2012, pp. 235–238.

