
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Facilitating Coordination between Software
Developers: A Study and Techniques for
Timely and Efficient Recommendations

Kelly Blincoe, Giuseppe Valetto, and Daniela Damian, Members, IEEE

Abstract—When software developers fail to coordinate, build failures, duplication of work, schedule slips and software defects
can result. However, developers are often unaware when they need to coordinate, and existing methods and tools that help
make developers aware of their coordination needs do not provide timely or efficient recommendations. We describe our
techniques to identify timely and efficient coordination recommendations, which we developed and evaluated in a study of
coordination needs in the Mylyn software project. We describe how data obtained from tools that capture developer actions
within their Integrated Development Environment (IDE) as they occur can be used to timely identify coordination needs; we also
describe how properties of tasks and machine learning can focus coordination recommendations to those that are more critical
to the developers to reduce information overload and provide more efficient recommendations. We motivate our techniques
through developer interviews and report on our quantitative analysis of coordination needs in the Mylyn project. Our results
imply that by leveraging IDE logging facilities, properties of tasks and machine learning techniques awareness tools could make
developers aware of critical coordination needs in a timely way. We conclude by discussing implications for software
engineering research and tool design.

Index Terms— Human Factors in Software Design, Management, Metrics/Measurement, Productivity, Programming Teams

—————————— ! ——————————

1 INTRODUCTION
OFTWARE developers often work on tasks in parallel
when working on large projects. Technical dependen-

cies between tasks can result in coordination needs be-
tween the developers. When those developers are una-
ware or do not obtain timely awareness [27] of the coor-
dination that is required to manage their work dependen-
cies (their coordination needs), there is potential for prob-
lems with respect to software productivity or quality [10],
[60]. Studies have found that unfulfilled coordination
needs can result in an increase in task resolution time, an
increase in software faults, build failures, redundant
work, and schedule slips [12], [19], [21], [24]. Therefore,
awareness of coordination needs can be critical.

To provide the most benefits, awareness must be both
timely and efficient. Awareness is timely if coordination
needs are made known as they emerge, while develop-
ment is still underway. Without timely awareness, devel-
opers may continue to work in isolation, without recog-
nizing and acting on their coordination needs. Awareness
is efficient if the recommendations on coordination needs
(1) minimize information overload and (2) are easily un-
derstood by the developers. Without efficient recommen-
dations, developers may incur additional and unneces-
sary coordination overhead. There are no existing meth-
ods or tools that provide both timely and efficient aware-
ness of coordination needs to developers.

In this paper, we describe techniques to provide timely
and efficient coordination recommendations. Our tech-
niques leverage logging facilities that capture developers’
actions in their Integrated Development Environments
(IDE) as they occur to automatically detect developer co-
ordination needs. We developed our techniques in an
extensive study of coordination needs of one software
project, the Mylyn developmentproject. The Mylyn pro-
ject was a useful case to study because Mylyn is the most
well known and widely used software development sup-
port tool that, to fulfill its own purposes, records all de-
veloper IDE interactions as they occur. The Mylyn devel-
opment team makes routine use of the Mylyn tool and,
thus, its repository provides a large dataset of logged de-
veloper actions for analysis. Other examples of tools that
capture developer actions as they occur within an IDE are
Tasktop Dev and Cubeon.

We used the data available from IDE logging for timely
coordination recommendations in our Proximity method
[8]. Statistical analysis proved that Proximity’s recom-
mendations were timely, but its recommendations are not
efficient. Proximity identifies coordination needs between
pairs of developers which can result in information over-
load on large teams [11], [20]. Further, its recommenda-
tions can be unclear for developers since developers often
work on multiple tasks in parallel and the recommenda-
tions do not identify the tasks that need coordinaton.

To understand how to produce efficient coordination
recommendations, we interviewed developers. Following
their advice, we (1) modified the original Proximity con-
cept to identify coordination needs between pairs of tasks
instead of developers, and (2) sought to minimize coordi-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• K. Blincoe is with the Software Engineering Global Interaction Lab, Uni-

versity of Victoria, Victoria, BC, Canada. E-mail: kblincoe@acm.org.
• G. Valetto is with Fondazione Bruno Kessler, Trento, Italy. E-mail: valet-

to@fbk.eu.
• D. Damian is with the Software Engineering Global Interaction Lab, Uni-

versity of Victoria, Victoria, BC, Canada. E-mail: danielad@uvic.ca.

S

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1109/TSE.2015.2431680

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

nation recommendations to those that are more critical to
developers. To identify ways to focus on the more critical
coordination needs, we used content analysis and manual
coding techniques in an in-depth repository analysis of
task reports and developers' associated discussions.

This analysis led us to leverage properties of tasks and
the software artifacts edited for the tasks. We developed
ProximityML [6], which uses machine learning tech-
niques on Proximity scores and these task properties to
identify the more critical coordination needs between task
pairs. We found ProximityML to be timely and efficient.

Overall, the contributions of this work include:
1. We report on a study of coordination and coordina-

tion needs in which we used developer interviews,
repository data and statistical analysis to conceptual-
ize timely and efficient coordination needs.

2. We show that logging of developer actions within
their IDE can support timely, automatic and non-
intrusive coordination recommendations.

3. We provide quantitative evidence that properties of
tasks and their associated artifacts can be used to
identify the more critical coordination needs.

4. We describe machine learning techniques to identify
timely and efficient coordination recommendations.

Our previous conference publications reported on
some elements of this work [6], [8]; however, this paper
introduces numerous extensions to our work and pro-
vides a full overview of our techniques and their devel-
opment through the study of coordination needs of the
Mylyn team. Specifically this paper extends our previous
publications by describing: (1) the motivation for our
techniques through developer interviews, (2) a method
for evaluating and understanding developers’ critical co-
ordination needs through content analysis and manual
coding, (3) improved machine learning techniques and
consideration of different task properties in ProximityML
that improved the precision of our results from 0.09 to
0.77, and (4) further evaluation of our results by consider-
ing an additional research question focusing on the relia-
bility and timeliness of ProximityML.

2 BACKGROUND
2.1 Importance of Coordination in Software

Engineering
Large software projects have many work dependencies
[65]. Dependencies between tasks can lead to coordina-
tion needs between the task assignees [12], [24], [40], and
these work dependencies must be managed [13], [40],
[67]. Initially, research focused on ways to streamline the
technical dependencies between modules as a way to
maximize task parallelism [2], [60], [70]. However, it is
not possible to eliminate all dependencies. Therefore, re-
search began to focus on ways to satisfy, as opposed to
reduce, work dependencies through coordination [40].

It has been found that a decrease in communication,
the main form of coordination in software teams [47], can
cause team members to be unaware of work dependen-
cies resulting in coordination problems [23], [33], [39].
Missed coordination can result in build failures, duplica-

tion of work, schedule slips and software defects [12],
[19], [21], [24]. On the other hand, it has been shown that
aligning software teams based on the tasks they must
complete can bring about productivity benefits [15], [49]
and communication can reduce integration problems [38].
Coordination, therefore, has important effects on software
quality and productivity.

Even if developers are willing to coordinate, they may
often be unaware of their coordination needs. Maintain-
ing awareness of coordination needs can be especially
difficult when teams are geographically distributed [37].
Even in collocated teams, keeping aware of coordination
needs is difficult since developers’ coordination needs are
often fluid and change throughout development [22].

2.2 Providing Awareness of Coordination Needs
There are two existing methods of providing awareness
of coordination needs: configuration management conflict
detection and Coordination Requirements detection. We
first define and review the concepts of timeliness and effi-
ciency from existing literature before we discuss the time-
liness and efficiency of these methods.

Timeliness. Timeliness is a key requirement for pre-
senting awareness information [30], [35], [42], [55], [63],
[68]. Timeliness is important because awareness is only
valuable if it is obtained when the information is useful.
For example, becoming aware of a coordination need is
only beneficial if the coordination need still exists. In the
words of a senior developer that we interviewed, “If you
find out next week that you should have talked to this guy last
week, that’s not helpful.” We define timely as occurring
while development is underway. With timely awareness
of coordination needs, developers can act upon and re-
solve their coordination needs as they surface to reap the
proven productivity and quality benefits.

Efficiency. Gutwin and Greenburg [34] note that
awareness can make coordination more efficient. Of
course, the awareness must be accurate. Futher, to create
efficiency, awareness must provide “the appropriate
amount of information, relevant to the user’s sphere of
activity [4].” We, therefore, consider three characteristics
of the coordination needs in defining efficiency: the accu-
racy of the recommendations, the amount of information
and the relevance to the user’s current activity. Methods
that notify developers of a large number of coordination
needs risk information overload [41], [69]. Many recom-
mendations force developers to take time away from de-
velopment to sift through large amounts of data, which is
inefficient. Likewise, methods that do not provide details
such as which tasks or files another developer is working
on may not provide enough details to enable developers
to relate the coordination need to their current task and
efficiently act on their coordination needs. Developers are
left to understand the source of the coordination need on
their own. Therefore, efficient awareness must be accurate
and reduce the number of recommendations while
providing enough details on each coordination need for it
to be easily understood.

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 3

2.2.1 Configuration Management Conflict Detection
Configuration management conflict detection tools, like
Palanti ́r [64] and CollabVS [25], were the first to attempt
to provide awareness of coordination needs. They alert
developers of possible conflicts by providing alerts when
other developers are making changes to the files they are
currently modifying in their local workspace.

While these methods are timely, their notifications are
incomplete. They monitor the changes developers are
making in their local workspaces and provide notifica-
tions while development is underway. However, they do
not identify all indirect conflicts that can occur when
changes in one file affect another file. Therefore, they do
not provide a comprehensive view of coordination needs.

These methods are also inefficient. They risk infor-
mation overload since they provide notification of every
potential conflict at the source code level, and any con-
current modification will generate a notification regard-
less of complexity. This amount of information can be
distracting for developers and is likely to contain a high
number of trivial conflicts and false positives. This is inef-
ficient since developers must sift through a large number
of notifications to determine which conflicts really matter.

2.2.2 Coordination Requirement Detection
Cataldo et al. [12] were the first to introduce a framework
for establishing a comprehensive view of coordination
needs between developers. Their method performs matrix
multiplication on task assignments and task dependen-
cies to quantify the need to coordinate between develop-
ers working on dependent tasks in what they called Coor-
dination Requirements. Coordination Requirements are a
computable approximation of the coordionation needs
that occur in software development projects. Although
many awareness tools [3], [24], [56], [62] have been creat-
ed based on this method, its computations rely on commit
data. This commit data is typically available only towards
the end of the development work for a task, so the aware-
ness this approach provides is not timely.

This method is also inefficient since it establishes Co-
ordination Requirements between pairs of developers.
Recent studies [11], [20] found that tools that recommend
which developers should coordinate risk information
overload on large teams. In addition, providing infor-
mation only on which developers should coordinate may
not enable developers to efficiently act on their coordina-
tion needs. Since developers are often working on multi-
ple tasks in parallel, coordination needs at the developer
level may encompass the work dependencies of many
tasks. This puts the burden on the developers to identify
what to coordinate about and introduces inefficiency.

There are, therefore, no existing methods that compute
coordination recommendations (as approximations of
coordination needs) that are both timely and efficient. In
addition, the method that is timely does not produce a
comprehensive view of coordination needs. Our research
intends to fill this gap and is guided by the following re-
search questions:

RQ1: Can a comprehensive set of coordination recommenda-
tions be identified in a timely way?

RQ2: Can a smaller set of more efficient coordination rec-
ommendations be identified?

RQ3: Can this smaller set of more efficient coordination rec-
ommendations be identified in a timely way?

3 DEVELOPING TECHNIQUES FOR TIMELY AND
EFFICIENT COORDINATION NEED DETECTION
3.1 Methodology
To answer our research questions, we performed an ex-
tensive study of the coordination data and developers’
coordination needs in the Mylyn software project. We
followed an iterative process of technique design, devel-
opment and evaluation. Our research methods included
interviews with Mylyn developers, in-depth analysis of
coordination needs from the project repository, and statis-
tical validation of our techniques. An overview of how
our techniques were developed is depicted in Fig. 1.

Mylyn is a tool that transforms a developer’s IDE to a
task-centric view to make context switching between
tasks easier. For this, Mylyn records all developer IDE
interactions as they occur. These events are stored as con-
text data for the task in focus. The techniques we devel-
oped use data on developer actions, which we obtained
from the Mylyn plugin [44]. The Mylyn developers make
routine use of the Mylyn plugin and use the bug-tracking
database, Bugzilla, to define and assign developer tasks.
We refer to Bugzilla change requests as tasks. The team
documents all task details on the Bugzilla task report and
uses these reports as a form of coordination.

We analyzed eight releases of the Mylyn project, re-
leases 2.0 to 3.3, which spanned nearly three years of de-
velopment. Each release lasted three to nine months.
There were 51 contributors over all eight releases, with up
to 32 contributors active during a release. Over the eight
releases, there were 1,127 change requests that had both
Mylyn context data and commit data. We determined the

Fig. 1. Developing our Techniques through a study of coordination
needs of Mylyn developers.

Develop'Proximity'
'

'Timely '''''''''Efficient'

Iden6fy'Coordina6on'Needs'
between'Pairs'of'Tasks''

Minimize'the'Number'of'
Recommenda6ons''

Modifying'Proximity'to'
Iden6fy'Coordina6on'Needs'

between'Pairs'of'Tasks'

Develop'ProximityML'
'

'Timely '''''''''Efficient'

Developer'Interviews'
What%is%efficiency?%

InFdepth'Study'of'Mylyn'Cri6cal'
Coordina6on'Needs'

•  Finding'cri6cal'coordina6on'
needs'experienced'by'team'

•  Defining'measures'of'cri6cality''
•  Understanding'what'

dis6nguishes'cri6cal'
coordina6on'needs'

Proper6es'that'dis6nguish'
cri6cal'coordina6on'needs'

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

time of development for a change request by the artifact
selection and edit activity obtained through the Mylyn
context data attached to the Bugzilla record.

RQ1: Can a comprehensive set of coordination recommenda-
tions be identified in a timely way? To address our first re-
search question, we developed Proximity [8], a technique
that identifies coordination needs between pairs of devel-
opers by leveraging logging facilities that monitor and
record fine-grained actions developers take within their
IDEs. We evaluated the accuracy and timeliness of Prox-
imity scores relative to the Coordination Requirements of
Cataldo et al.’s method [12]. This method was used for
comparison since it is the most well known method for
detecting coordination needs, and many awareness tools
are based on this method. Proximity considers developer
actions as they occur by utilizing IDE logging facilities,
while the Cataldo et al. approach considers developer
modification activity after development is mostly com-
plete by examining commit records. We refer to the
Cataldo et al.’s computed Coordination Requirements as
CCRs throughout the remainder for brevity.

We found Proximity’s recommendations of coordina-
tion needs between pairs of developers to be accurate and
timely. However, we also observed that the recommenda-
taions were not efficient since considering coordination
needs between pairs of developers can result in infor-
mation overload [11], [20] and recommendations which
only note which developers must coordinate can be
vague when developers are working on multiple tasks in
parallel. Proximity is described in Section 3.2.

RQ2: Can a smaller set of more efficient coordination rec-
ommendations be identified? We conducted semi-structured
interviews with six developers of the Mylyn project to
gain a deep understanding on coordination needs (Sec-
tion 3.3.1). Our interviewees recommended identifying

coordination needs between pairs of tasks (instead of de-
velopers) since tasks are their unit of work. Further, they
said the number of recommendations must be minimized
to those coordination needs that are more critical to the
developers. We explored techniques to address each rec-
ommendation: to identify coordination needs between
pairs of tasks, we modified Proximity (Section 3.3.2); to
minimize the number of coordination recommendations,
we performed a thorough analysis of coordination needs
resulting in a deep understanding of how to focus on
more critical coordination needs (Section 3.3.3). Our anal-
ysis involved the following:
• Identify a set of the more critical coordination needs

experienced by the team through content analysis and
manual coding [48] of the task records; these coordina-
tion needs served as our ground truth for evaluation
of our resulting technique, ProximityML. We devel-
oped a coding scheme, which details scoring criteria,
for this analysis. The coding scheme was verified
through interviews with Mylyn developers

• Conceptualize measures of criticality of coordination
needs using task duration and complexity.

• Analyze properties of the critical coordination needs
experienced by the team to find ways to automatically
identify only the more critical coordination needs.

This analysis resulted in a set of properties of the de-
velopment tasks and the software artifacts manipulated
during the completion of those tasks that can be used to
distinguish between critical and trivial coordination
needs. To answer RQ2, we developed ProximityML, a
technique that uses machine learning on Proximity scores
in combination with these properties to efficiently identi-
fy coordination needs (Section 3.3.4). We evaluated the
accuracy (Section 3.3.4.1.1) and criticality (Section
3.3.4.1.2) of the resulting coordination recommendations
using the ground truth established through content anal-
ysis and manual coding.

TABLE 1
SUMMARY OF RESEARCH METHODS AND VALIDATION STEPS.

Research Question Step Validation

RQ1 Develop Proximity
Statistical analysis. (1) Accuracy: Compare Proximity to CCRs through correlations
and precision/recall. (2) Timeliness: Compare time of detection of Proximity and
CCRs with Probability Density functions.

RQ2

What is Efficency? Semi-structured interviews with six developers of the Mylyn project.

In-depth Study of Mylyn
Critical Coordination Needs

Content analysis and manual coding of 350 task pairs to identify set of critical co-
ordination needs experienced by the team.
Statistical analysis of task properties comparing properties of critical coordination
needs to task pairs without critical coordination needs through Chi-Square and
Mann-Whitney Tests.

Develop ProximityML

Statistical analysis. (1) Accuracy: Compare ProximityML to ground truth estab-
lished through content analysis and manual coding through precision/recall.
Cross-validation of classifier. (2) Criticality: Analysis of change size and task dura-
tion of resulting recommendations.

RQ3

Statistical analysis. (1) Reliability: Analysis of the fluctuations of ProximityML
recommendations over time. (2) Timeliness: Compare ProximityML’s time of de-
tection of a coordination need with the time the need was recognized by the team
and the start of overlapping work.

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 5

RQ3: Can this smaller set of more efficient coordination
recomendations be identified in a timely way? Finally, we
evaluated ProximityML’s reliability (Section 3.4.1) and
timeliness (Section 3.4.2) to ensure that the addition of
machine learning and additional properties did not affect
the timeliness provided by the Proximity algorithm. For
this analysis, we streamed pre-collected data, one event at
a time, to replicate the actual progression of development
work and the live collection of the data. We identified
when ProximityML identified each coordination recom-
mendation. We compared ProximityML’s detection of the
coordination need with the time the need was recognized
by the team and the start of overlapping work.

Table 1 summarizes the validation steps for each of the
three research questions.

3.2 Timely Detection of Coordination Needs:
Proximity

RQ1: Can a comprehensive set of coordination recommenda-
tions be identified in a timely way?

We developed Proximity [8], a method that computes
timely coordination needs between software developers
using IDE logging data. Proximity is timelier than the
existing Coordination Requirement detection methods
because, instead of obtaining data from commits, it moni-
tors the actions developers take in their IDE as they occur.
When a developer looks at or edits an artifact in their IDE,
the Mylyn framework captures that action. The actions
are collected non-intrusively while the developers work
and are stored as context data for the task in focus.

Proximity looks at artifact consultation and modifica-
tion activities logged by Mylyn and weighs the overlap
that exists between pairs of developers. It considers all
actions recorded for each artifact in each developer’s
working set in order to apply a numeric weight to that
artifact’s Proximity contribution. Weights are applied
based on the type of overlap where the most weight is
given when an artifact is edited in both working sets
(weight = 1) and the least is given when an artifact is
simply consulted in both working sets (weight = 0.59).
When an artifact is edited in one and consulted in the
other working set, this is a mixed overlap (weight = 0.79).
The weights are based on the weights Mylyn uses for its
degree-of-interest model [44].

Fig. 2 illustrates an example Proximity computation.
The algorithm computes the ratio of actual to potential
overlap. Actual overlap is calculated as the intersection of
the two working sets. In fig. 2, b.java has an actual over-
lap score of 0.79 because it was edited in developer X’s

working set and consulted in developer Y’s working set.
Potential overlap represents the maximum possible Prox-
imity score had there been perfect overlap between the
two sets of actions and is calculated as the union of the
two working sets. In fig. 2, b.java has a potential overlap
score of 1 since it was edited in one of the working sets.

Proximity outputs a score for each pair of developers
indicating the strength of their coordination need. A score
> 0 indicates a coordination need, and higher scores de-
note stronger coordination needs. Scores are scaled by the
number of overlapping events to place greater weight on
complex tasks that likely require coordination.

3.2.1 Evaluation of Proximity

3.2.1.1 Efficiency: Accuracy
To evaluate the accuracy of our Proximity scores, we cal-
culated Proximity scores and CCRs for each pair of de-
velopers in each release. We performed a point-biserial
correlation with Proximity scores and a binary vector de-
noting the presence of a CCR. Higher values of proximity
correlate with the likelihood of a CCR (rho=0.55, p<0.001).
We performed a Spearman correlation between the count
of CCRs for each developer pair and the proximity scores
(rho=0.69, p<0.001). We used a Spearman correlation be-
cause the data was not normally distributed. Both tests
were statistically significant and showed strong positive
correlations (results in Table 2).

We observed high levels of precision and recall when
comparing against the CCRs (Table 3). Moreover, a thor-
ough examination of the supposed false positives and
false negatives revealed that Proximity can be even more
accurate than CCRs. For example, we saw many cases
where CCRs were not detected simply because work by
one or both of the developers was never committed to the
code base. However, Mylyn context events prove that
those developers were, for some time, engaged in devel-
opment on the very same artifacts - the epitome of a co-
ordination need. In open source projects, where commit

Fig. 2. Proximity Algorithm Example.

TABLE 2
PROXIMITY VS CCRS CORRELATIONS

Test p-value Rho
Spearman 2.4e-11 0.69

Point-biserial 4.9e-07 0.55

TABLE 3
PROXIMITY VS CCRS PRECISION/RECALL

Precision Recall
42/58 = 0.72 42/46 = 0.91

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

access is limited to only a select few developers, Proximi-
ty produces coordination recommendations between the
actual code contributors rather than incorrectly detecting
coordination needs simply because a user committed
someone else’s code contribution.

We also observed cases where CCRs were identified
due to a technical dependency between two semantically
unrelated tasks because they involved files that had been
historically changed together by other developers often
enough to cause a logical dependency to be established.

Additionally, the context events used in Proximity
provide more granular information than is available from
commit data. The Mylyn context data identifies the file
name, class name and even the name of the class element
(method or attribute) being consulted or edited. This al-
lows Proximity to determine coordination needs more
granularly, for example, to see whether two developers
were working on the same area of code within a large file.

3.2.1.2 Timeliness
To evaluate Proximity’s timeliness, we compared the time
Proximity scores appear with the time CCRs are estab-
lished. Proximity scores are calculated using events gar-
nered instantaneously; while, CCRs are established after
changes are committed. We obtained the date when the
first contribution to the Proximity score occurred by con-
sidering the timestamp for the first overlapping event for
a developer pair recorded in the Mylyn context data. Sim-
ilarly, we considered the time the CCRs are first identified
by considering the timestamp when the first technical
dependency appears in the commits for a developer pair.
Parallel work intervals last 102 days on average. The first
evidence of Proximity is detected on average 14.2 days
after parallel work begins. The first CCR detection hap-
pens 60.7 days on average after the beginning of concur-
rent work (a delay of 46.5 days). Fig. 3 shows the proba-
bility density functions illustrating the distribution of
days before Proximity is detected, days before CCRs are
detected, and, for reference, task duration in days over
the entire dataset. It illustrates that a coordination need is
likely to be detected via Proximity much earlier than via
CCRs.

In answering RQ1: Timely coordination recommenda-
tions are possible with Proximity, which obtains develop-
er actions as they occur through existing IDE monitoring
facilities and analyzes the overlap of those actions to de-
tect a comprehensive set of coordination needs.

3.2.2 Limitations of Proximity
While Proximity was able to detect coordination needs
between pairs of developers in a timely way, it was not
efficient. Developers often work on many tasks in paral-
lel, so being aware of only which other developers they
need to coordinate with does not provide enough context
to allow for focused and efficient coordination. Develop-
ers are left to decide which of their tasks or code changes
require coordination. The techniques we developed in
answering RQ2 and RQ3 intend to address this limitation.

3.3 Efficient Detection of Coordination Needs
RQ2: Can a smaller set of more efficient coordination recom-

mendations be identified?
We interviewed developers and performed an in-

depth analysis of coordination needs on the Mylyn pro-
ject to understand how we could make our recommenda-
tions more efficient. After this deep exploration, we de-
veloped a technique, ProximityML, which automatically
detects coordination needs efficiently.

3.3.1 Developer Interviews
We conducted semi-structured interviews with six devel-
opers of the Mylyn project (one junior and five senior
developers). The goal was to understand their perspec-
tives on coordination recommendations. The interviews
lasted 45 minutes on average. We describe the two main
recommendations that emerged from these interviews.

3.3.1.1 Identify Coordination Needs for Pairs of Tasks
We asked the interviewees: “Would a tool that recommended
who to coordinate with be useful?” Many of the senior
Mylyn developers stated that coordination recommenda-
tions would be most useful at the task level as tasks are
their logical unit of work. One developer stated “if there
was a lot more, than just talk to Joe, if it said like a new defect
was filed or look at this related bug and Joe is the assignee, then
I would consider it.” Receiving recommendations at the
task level would allow for efficient coordination since
there would be appropriate context around the recom-
mendation. The developers described many issues relat-
ing to a lack of awareness of how their development tasks
affect other tasks, how other tasks affect their own tasks,
and who is responsible for tasks. They stated that this
lack of awareness often resulted in duplication of work or
unmanaged tasks. Coordination recommendations at the
task level could help to mitigate these issues. Ko et al. [45]
also found that developers are more interested in aware-
ness about what information was relevant to their tasks.

3.3.1.2 Minimize the Number of Recommendations
To better understand the types of recommendations that
would be most useful to developers we asked: How would
you decide if you would act on coordination needs? What type
of time window for recommending coordination needs do you
think would be useful and why? The interviewees stated that
the number of recommendations must be small. Too
many recommendations would overwhelm the develop-

Fig. 3. Proximity Algorithm Timeliness relative to that of CCRs.

Pr
ob

ab
ili

ty
 D

en
si

ty

Days

Proximity – first evidence
Cataldo et al. Coordination Requirement – first evidence
Task Duration

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 7

er. This could affect the efficiency of the developers and
cause them to ignore all recommendations. This is in line
with previous research on the risk of information over-
load in awareness tools [41], [69].

The developers noted that not all dependencies be-
tween tasks require coordination. For example, when
looking at a potential coordination need, one developer
stated, “[the two tasks] are both working on the same area
of code, but I don’t see a direct need for coordination.”
Another developer focused on the simplicity of some
tasks regardless of their technical dependencies saying on
simple tasks, “I wouldn’t consider coordinating anything
with anyone, I would just go in fix it, close the bug and be
done with it.” The coordination recommendations should
be limited to those that matter to the developers.

We used these two recommendations – identify coor-
dination needs between pairs of tasks and minimize the
number of recommendations – to explore ways of provid-
ing more efficient coordination recommendations. We
adjusted Proximity to identify coordination needs be-
tween pairs of tasks instead of developers to provide bet-
ter-scoped awareness (Section 3.3.2). We analyzed coor-
dination needs to identify ways to minimize the number
of recommendations (Section 3.3.3). Section 3.4 decribes
the resulting technique, ProximityML, and its evaluation.

3.3.2 Modifying Proximity to Identify Coordination
Needs between Pairs of Tasks

To detect coordination needs between pairs of tasks, we
applied Proximity at the individual task level rather than
at the developer level. This was done by aggregating the
captured developer actions at the individual task level.
Since the events were aggregated at the task level, a Prox-
imity scores indicate the existence of and strength of a
coordination need between pairs of tasks.

We calculated Proximity scores between tasks in the
Mylyn release 3.2 which had 245 tasks (29,890 task pairs).
We found 2,209 task pairs with Proximity scores>0, and
226 of the 245 tasks (>92%) were found to require coordi-

nation with at least one other task. This led us to believe
that Proximity, when computed between pairs of tasks as
opposed to pairs of developers, signaled too many coor-
dination reccomendations. We, therefore, considered
ways to minimize the number of recommendations.

3.3.3 In-depth Study of Mylyn Critical Coordination
Needs to Minimize the Number of
Recommendations

We examined ways to focus our recommendations on
those that the team would act on – the more critical coor-
dination needs. When considering any technical depend-
ency between a pair of tasks as a coordination need, we
risk identifying even very trivial dependencies that do
not need coordination. We, therefore, performed a thor-
ough analysis of task records to identify when more criti-
cal coordination needs occur using content analysis and
manual coding (Section 3.3.3.1). We define our conceptu-
alization of a critical coordination need and evaluate the
criticality of the coordination needs experienced by the
team in Section 3.3.3.2. Finally, we performed a thorough
analysis of these more critical coordination needs to iden-
tify additional properties that characterize those coordi-
nation needs (Section 3.3.3.3). We used these properties in
the development of ProximityML, which automatically
identifies these more critical coordination needs.

3.3.3.1 Finding Critical Coordination Needs
Experienced by Team

A reliable way of capturing coordination needs between
tasks is not recorded in existing software repositories.
Bugzilla, for example, allows developers to indicate de-
pendencies between tasks, but this may not capture all
coordination needs or may capture trivial dependencies
that do not require coordination. In addition, a recent
study by Aranda and Venolia [1] found repositories like
Bugzilla often provide incomplete information because of
omission, oversight, or project conventions.

To better understand the more critical coordination

TABLE 4
MANUAL CODING GUIDELINES

NO COORDINATION NEED CRITICAL COORDINATION NEED

Characteristic No Somewhat Very
Task Discussion Similarity:
Task discussions often include
details of the task and any
problems that have been en-
countered. We asked the cod-
ers to rate the similarity of the
discussions occurring on each
task.

The discussions of
the two tasks do
not share any of
the same concepts.

The two task discussions refer to com-
mon aspects of the system from the per-
spective of EITHER the user (system
features) or the system architecture (spe-
cific reference to code, modules, etc.)
OR The two task discussions indicate
that the problems may be occurring in
the same area of the code.

The two task discussions refer to
common aspects of the system from
the perspective of BOTH the user
(system features) and the system
architecture (specific reference to
code, modules, etc.) OR The two
task discussions refer to the same or
similar problems.

Evidence of Task Conflict:
Task conflict is the epitome of
a coordination need and often
indications of conflicts exist in
the task discussions (explicitly
or implicitly). We asked the
coders to look for such evi-
dence.

The discussion in
the two tasks does
not seem to indi-
cate that the two
tasks were con-
flicting in any
way.

The discussion in one of the tasks does
not explicitly mention a conflict between
the two tasks. However, based on re-
viewing the timing of the tasks and their
discussions, it seems there may have
been a conflict between the two tasks that
the team may not have been not aware of
at the time.

It is apparent based on the timing of
the tasks and the discussion thread
that there was a conflict between the
pair of tasks. The conflict is clearly
discussed and may or may not explic-
itly link the two tasks by ID.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

needs experienced by the team, we turned to content
analysis and manual coding techniques [7] that are well
established in other research fields [48] and have also re-
cently been used in Software Engineering [54]. To per-
form the manual coding, we developed a coding scheme
with detailed task pair scoring criteria. We used a data
driven method and reviewed several task pairs in which
the need for coordination is explicitly discussed within
the task reports. By analyzing these task pairs, we estab-
lished four characteristics that appeared within the task
reports indicating a coordination need. These were: (1)
task summary similarity, (2) task discussion similarity, (3)
evidence of task conflict, and (4) artifact overlap.

We obtained practical validation of these four charac-
teristics through interviews with the Mylyn developers.
Without indicating our identified characteristics, we
asked three senior developers what they would look for
within task reports that would indicate a need for coordi-
nation that they would act on All three developers stated
they would review the discussion threads on the task re-
ports looking for references to similar features or prob-
lems, similar areas of the code, or conflicts occurring be-
tween the tasks. Two of the developers did not think the
task summary would provide enough information since
the summary is often incomplete or inaccurate. None of
the developers suggested looking at overlapping artifacts
between the two tasks. Artifact overlap suffers from the
same problem that we are trying to solve, that is, it con-
siders coordination needs between too many task pairs.

We, therefore, removed two task characteristics and es-
tablished the two characteristics – task discussion similar-
ity and evidence of task conflict – that allow for the iden-
tification of the more critical coordination needs between
tasks. We put together a coding scheme that provided
guidance on how each task pair should be rated for the
two characteristics. The guidelines, which rate each char-
acteristic on a three-point scale, are shown in Table 4.

To perform the content analysis, we used the relevant
task information collected from the Bugzilla change re-
quests for releases 3.1 and 3.2, the two releases in our da-
taset with the largest number of tasks. Each task was
summarized in an easily digestible format, which allowed
for side-by-side comparison.

To prepare the set of task pairs, we identified each task
pair as either a potential critical coordination need or not.
We considered a pair of tasks as a potential critical coor-
dination need if the pair met one or more of the following
criteria: the tasks had a high Proximity score where high
is greater than mean + (2 × stddev) of Proximity scores
over all pairs; the tasks were marked as dependent or
duplicate within their Bugzilla records; the tasks were
cross-referenced in their discussions; the tasks were de-
pendent on the same task (the team often uses this rela-
tionship to track subtasks of a large task); or the tasks
were marked with the same tag. Once each task pair was
designated as either a potential coordination need or not,
we used a random number generator to select pairs from

each set. We selected 155 potential critical coordination
needs and 195 that were likely not coordination needs for
a total set of 350 pairs. The number of pairs was based on
the time availability of the coders.

We used two external people familiar with software
development practices to perform the manual coding. To
ensure higher confidence, the two coders performed the
content analysis and coding independently. After each of
the coders completed 12 task pairs, the two coders com-
pared their findings and discussed differences as a way to
calibrate amongst each other. Another comparison and
calibration round was carried out after 100 task pairs. We
checked intercoder reliability with Krippendorff’s alpha
measure [48]. We obtained a Krippendorff score of .91 for
task discussion similarity and .87 for evidence of task con-
flict, which are indicative of high intercoder reliability.

We considered any task pair that was rated positively
(somewhat or very on our scale in Table 4) for either char-
acteristic as a more critical coordination need experienced
by the team. We removed the task pairs for which the
coders had a conflicting outcome leaving us with 313 task
pairs. These task pairs serve as our ground truth, which
we use for evaluation and analysis purposes in the rest of
the paper. In this ground truth, 32 task pairs were identi-
fied as more critical coordination needs by the coders.

3.3.3.2 Defining Measures of Criticality
With a set of coordination needs that matter to the devel-
opers – the more critical coordination needs – we ex-
plored a way to measure criticality to use for the evalua-
tion of our techniques. While previous research has pro-
posed ways to rank the most important coordination
needs at the developer level by considering the number of
task dependencies involved in those coordination needs
[28], [51], no prior research has examined the criticality of
coordination needs at the task level. We considered two
measures to evaluate the criticality of coordination needs
at the task level: task duration and change size.

First, fulfilling coordination needs has been shown to
reduce task resolution time [12], therefore we examined
the durations of the tasks involved in the coordination
needs. We computed task duration using the Mylyn con-
text events. Since these events detail exactly when devel-
opers begin and complete their consultation and modifi-
cation of artifacts for each task, we can compute the actual
time developers spent working on a task. Long-duration
tasks with coordination needs are likely the ones that can
benefit the most from the productivity benefits provided
by increased awareness and focused coordination.

Second, since the Mylyn team noted that they do not
coordinate on simple or trivial tasks, we examined the
complexity of the tasks involved in coordination needs.
Cataldo et al. found that change size, measured as the
number of code files modified for a task, is an accurate
measure of task complexity [12]. We, therefore, adopted
change size as our metric of task complexity.

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 9

Change size and task duration are moderately corre-
lated in our data set (Spearman rho = 0.58, p < 2.2e-16).
Task complexity is one of many factors that may influence
a task’s duration. Considering complexity with task dura-
tion helps us to avoid a bias towards tasks whose long
duration may be due to some other factors that would not
benefit as much from awareness and coordination, like
low priority or inexperienced developers.

To examine whether the 32 coordination needs identi-
fied by the coders are indeed critical using our measures,
we analyzed their task duration and change size. The
tasks have significant differences in both measures (re-
sults in Table 5). We therefore consider task duration and
change size as our measures of criticality henceforth.

3.3.3.3 Understanding What Distinguishes Critical
Coordination Needs

To identify techniques that could minimize recommenda-
tions and focus on the more critical coordination needs,
we thoroughly examined the critical coordination needs
experienced by the team identified through manual cod-
ing. We examined task pair properties of these critical
coordination needs and compared them to the other
manually coded task pairs to identify properties that can
distinguish the more critical coordination needs. The task
properties we examined include (1) architecture-related
properties available from the project’s change request
database such as: the affected product, component, plat-
form and operating system (OS) of the task and (2) modu-
larity characteristics of the software artifacts involved in

each task.
We examined the architecture-related properties by

checking if the tasks involved in each task pair shared the
same product, component, platform, or OS. We found
that the more critical coordination needs are more likely
to share the same component, platform and OS when
compared to all other task pairs (results in Table 6).

To consider the modularity characteristics of the soft-
ware artifacts involved in each task, we derived a Design
Rule Hierarchy (DRH) [70] of the Mylyn code base for the
two releases of interest. A DRH assigns software artifacts
to modules based on technical dependencies within the
code. It clusters modules into “layers” where each layer
depends only on the layers above. The DRH modules and
layers allow us to identify potential coordination needs
by considering three categories of work:
1. Same Layer Same Module (SLSM) pairs: Two tasks

include edits to artifacts that have a dependency and
are in the same module. These represent potential
coordination needs.

2. Across Layer (AL) pairs: Two tasks include edits to
artifacts that have a dependency and are in different
modules and different layers. These represent poten-
tial coordination needs.

3. Same Layer Different Module (SLDM) pairs: Two
tasks include edits to artifacts that are in different
modules of the same layer. By definition, there are
no dependencies between these artifacts, so these are
not coordination needs.

For illustration purposes, Fig. 4 shows a hypothetical
DRH. The large thick-bordered boxes represent the layers
while the boxes within the layers represent modules. The
X’s show the dependencies between the modules. Tasks 1
and 2 are an SLSM pair since they are operating on the
same module. Tasks 2 and 3 are a SLDM pair since they

TABLE 5
CRITICALITY: MANUAL CODING RESULTS

 Coordination
Needs

Other Task
Pairs

Mann-Whitney
Test

Num. Tasks 152 93 --
Change Size 8.2 files 5.3 files U=9398; Z = 4.5;

p < 0.001; r = 0.25
Task Duration 26.8 days 19.9 days U=8603; Z = 3.1;

p=0.002; r = 0.18

Fig. 4. Design Rule Hierarchy Example [70].

TABLE 6
TASK PROPERTY COMPARISON

Property Coordination Needs Other Task Pairs Chi-Squared Test
Task Pair Count 32 281 --

with Proximity > 0 29 99 x2 = 34.2; p < 0.001; ϕ = 0.34
with same Product 26 228 x2 = 0; p = 1; ϕ = 0.001

with same Component 23 65 x2 = 29.5; p < 0.001; ϕ = 0.32
with same Platform 27 146 x2 = 10.9; p < 0.001; ϕ = 0.20

with Same OS 21 117 x2 = 5.8; p = 0.02; ϕ = 0.15
 Mann-Whitney Test

Mean SLSM 5.7 0.80 U = 7100.5; Z = 6.9; p < 0.001; r = 0.39
Mean SLDM 6.94 3.22 U = 1756.5; Z = 0.54; p = 0.29; r = 0.03

Mean AL 7.3 0.93 U = 7247.5; Z = 6.5; p < 0.001; r = 0.37

1(3(5(7(2(4(6(8(9(

1.((Physical_interface(.(

3.((Link_interface(.(

5.((Network_interface(.(

7.((Transport_interface(.(

2.((Physical(X(.(

4.((Link(X(X(.(

6.((Network(X(X(.(

8.((Transport(X(X(.(

9.((ApplicaAon(X(.(

Task(1(Task(2(Task(3(

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

are operating on the same layer but on different modules.
Tasks 1 and 3 are an AL pair since they are operating on
modules in different layers with a dependency.

The Mylyn DRH consists of 11 layers and 671 modules
in release 3.1 and 11 layers and 786 modules in release 3.2.
We identified the associated DRH layer and module for
each java artifact edited for each task and calculated the
number of SLSMs, SLDMs and ALs for each task pair.

A Mann-Whitney test of difference in distribution
shows that there is a statistically significant higher num-
ber of SLSMs and ALs in the critical coordination needs,
but there is not a significant difference for the number of
SLDMs (results shown in Table 6). This is consistent with
the results by Wong et al. [70] that found developers en-
gaged in SLSM and AL pairs coordinate significantly
more than those engaged in SLDM pairs.

In addition to Proximity scores, we determined the fol-
lowing set of task pair properties that differentiate critical
coordination needs from all other task pairs:

• Within same component
• Within same platform
• Within same operating system
• Number of SLSMs
• Number of ALs

3.3.4 Automatically Detecting Critical Coordination
Needs: ProximityML

We developed ProximityML, which considers Proximity
scores and these properties to automatically detect critical
coordination needs. It identifies coordination needs be-
tween tasks and uses Support Vector Machine (SVM)
classification techniques [16] to minimize the recommen-
dations to the more critical coordination needs. The name,
ProximityML, means Proximity + machine learning.

An SVM is a supervised machine learning classifica-
tion algorithm. Given a training set, it produces a model
that can be used to predict the classification of unknown
instances given a set of known parameters of those un-
known instances [16]. We used Proximity scores and the
other properties that were found to distinguish critical
coordination needs in Section 3.3.3.3 as the known pa-
rameters for each task pair. SVM was selected because of
its accuracy in general and its tolerance to noise and irrel-
evant, redundant and interdependent attributes [46].

In our previous publication, we used the k-nearest
neighbor algorithm [17] due to the simplicity of imple-
menting the algorithm and the exploratory nature of that
study. We also previously examined the DRH properties
differently, considering the number of overlapping layers

and modules between task pairs. Here we report from an
improved analysis that considers the number of SLSMs
and ALs as a much better predictor of coordination needs
since these types of overlaps are directly related to de-
pendencies in the code base. The results we achieved with
SVM far surpass those achieved using the k-nearest
neighbor algorithm in our previous publication where we
achieved high recall but a precision score of 0.09 [6].

We used LIBSVM [14] as our implementation of the
SVM algorithm. LIBSVM is a java software package that
provides support vector classification. It performs data
scaling, parameter selection and model creation automat-
ically. It ensures the data scaling is consistent across all
data sets based on the range of each parameter in each
set. For example, if a parameter in the training set had a
range of [-10, +10] and the same parameter had a range of
[-9, +12] in the test set, that parameter would be scaled to
a range of [-1, +1] in the training set and to a range of [-
0.9, +1.2] in the test set. To perform parameter selection,
the LIBSVM library uses the RBF (radial basis function)
kernel. It estimates the accuracy of each combination of
parameters through cross validation (CV). The parameter
combination with the highest CV score is selected.

3.3.4.1 Evaluation of ProximityML
We examined the accuracy, criticality, reliability and
timeliness of the ProximityML recommendations. We
used the dataset that had been manually coded through
content analysis as our ground truth (in Section 3.3.3.1) to
train and evaluate the machine learning algorithm. This
set includes 313 total task pairs with 32 coded as critical
coordination needs. The task pairs from release 3.1 (200
task pairs with 18 critical coordination needs) were used
as a training set, while the task pairs from release 3.2 (113
task pairs with 14 critical coordination needs) were used
as the evaluation set. Each parameter in our training set
was linearly scaled to the range [-1, +1]. The parameters
in the unknown and evaluation sets were scaled accord-
ingly based on their range compared to the training set.

3.3.4.1.1 Efficiency: Accuracy
ProximityML significantly reduced the number of coor-
dination recommendations compared to Proximity alone.
Proximity produced 2,209 coordination recommenda-
tions, whereas ProximityML only 394, a reduction of 82%.

TABLE 8
CRITICALITY: PROXIMITYML COORDINATION RECOMMENDATIONS

 Coordination
Recommendations

Other
Task Pairs

Mann-Whitney
Test

Tasks (count) 152 93 --
Change Size 5.6 files 4.0 files U = 22709; Z = 4.8;

p < 0.001; r = 0.31
Task Duration 12.16 days 2.3 days U = 9666; Z = 7.7;

p < 0.001; r = 0.49

TABLE 7
ACCURACY: GROUND TRUTH CRITICAL COORDINATION NEEDS VS

COORDINATION RECOMMENDATIONS

 Precision Recall F1-score
Proximity 0.33 1 0.5

ProximityML 0.77 0.71 0.74

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 11

We compared the Proximity and ProximityML coordi-
nation recommendations with the ground truth critical
coordination needs established through content analysis
and manual coding. The differences in precision, recall,
and f1-score of Proximity and ProximityML are shown in
Table 7 for the 113 task pairs in our evaluation set. Prox-
imityML had both high precision (low false positives) and
recall (low false negatives) resulting in high overall accu-
racy, as shown by the f1-score. While a small number of
coordination needs may be missed when employing Prox-
imityML, it does not risk introducing a large number of
false positives. On the other hand, Proximity has no false
negatives, but a high number of false positives. Overall,
ProximityML is much more accurate than Proximity.

A Receiver Operating Characteristic (ROC) curve plots
the true positive rate against the false positive rate for a
binary classifier. The ROC curve shown in Fig. 5 illus-
trates the good performance of our classifier with the Ar-
ea Under the Curve (AUC) equal to 0.8544. To prevent
over fitting, we performed a grid search on C and γ using
10-fold cross-validation and obtained an average cross-
validation (CV) rate of 92.0 with the best c=211 and γ=2-7.
Across the 10 folds, we saw little variance in our results
with the lowest accuracy at 85% and the highest accuracy
at 100% (standard deviation was 4.6). This high CV rate
across each fold indicates we have a stable model that is
able to accurately predict different samples; thus, we have
avoided over fitting our model.

3.3.4.1.2 Efficiency: Criticality
We examined the ProximityML coordination recommen-
dations using our two measures of criticality described in
Section 3.3.3.2: change size and task duration. We see a
strong, significant difference in both change size and task
duration between the ProximityML coordination recom-
mendations and all other tasks pairs (Table 8).

In addition, Mann-Whitney tests show both the change
size and task durations of the tasks involved in the coor-
dination recommendations are significantly different
when comparing the ProximityML and Proximity meth-
ods (Table 9). The ProximityML coordination recommen-
dation tasks’ durations are significantly longer and
change size is significantly bigger. This suggests that the
properties used to enhance the Proximity metric and our
machine learning techniques are identifying the more
critical coordination needs.

In answering RQ2: We conclude that, by using addi-
tional task properties, ProximityML, was able to identify
efficient coordination recommendations by identifying
coordination needs between pairs of tasks and narrowing
the set of identified coordination needs. Of course, we can
not conclude that we have identified all of or the most
critical coordination needs. However, we have shown
that ProximityML can identify a subset of the more criti-
cal coordination needs with a low number of false posi-
tives and false negatives.

3.4 Timely and Efficient Detection of Coordination
Needs

RQ3: Can this smaller set of more efficient coordination rec-

ommendations be identified in a timely way?
To answer this research question, we examined the (1)

reliability of ProximityML recommendations over time
and (2) timeliness of the recommendations to ensure that
the addition of machine learning and additional proper-
ties did not affect the timeliness provided by Proximity.

We ran our machine learning techniques on our time-
ordered data, which included each Mylyn context event
and Bugzilla update event (task creation and task modifi-
cations). We streamed the data, one event at a time, to
replicate the actual progression of development work and
live collection of the data. We ran the machine learning
algorithms to calculate coordination recommendations
after every event. We performed this exercise on Mylyn
release 3.2 data. The machine learner was pre-trained
with the training set. Since data was streamed one event
at a time, the machine learner initially had no knowledge
of any data beyond the training set. This allowed us to
evaluate the start-up behavior of ProximityML.

3.4.1 Reliability
To evaluate its reliability, we recomputed the Proximi-
tyML coordination recommendations after each event.
Reliability is important because a tool that continuously
changes its recommendations would not be trusted. Mur-
phy and Murphy-Hill [58] found that users’ trust imme-
diately drops when a tool produces an irrelevant recom-
mendation. A recommendation must only be made once
it is firmly established as a critical coordination need. We
would not expect one developer action to drastically alter
the predicted coordination recommendations.

After each event, we examined the identified Proximi-
tyML coordination needs. At each point in time, we
looked to see how many of the coordination recommen-
dations were not included in the final set of ProximityML
recommendations (those detected after all events have

Fig. 5. ROC Curve shows ProximityML is able to accurately identify
more critical coordination needs.

TABLE 9
COORDINATION RECOMMENDATIONS CRITICALITY

 Proximity ProximityML Mann-Whitney Test
Change Size

4.3 files 5.6 files
U = 8976; Z = 6.9;
p < 0.001; r = 0.56

Task Duration
9.1 days 12.16 days

U = 7829; Z = 4.4;
p < 0.001; r = 0.35

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

been streamed). We consider any coordination recom-
mendation that does not appear in the final set of Proxim-
ityML recommendations a false positive for the purposes
of this exercise. Fig. 6 shows the number of coordination
recommendations as well as false positives that have been
identified after each new event is introduced over the
duration of the entire dataset. We observe that there is a
small period of unreliability during the early stage of the
data streaming where our technique produces many rec-
ommendations due to the limited amount of data availa-
ble. After a brief initialization period, the results are relia-
ble with a minimal number of false positives.

3.4.2 Timeliness
To examine the timeliness of the ProximityML coordina-
tion recommendations, we identified the timestamp when
ProximityML first identified each of the 394 ProximityML
coordination recommendations. Ideally, we could com-
pare when ProximityML identified each of these coordi-
nation recommendations with when the team first identi-
fied the corresponding coordination need. However, we
only have evidence of when 19 of these coordination
needs were recognized by the team through the depend-
ency data available in the Bugzilla reports. We identified
dependencies within Bugzilla reports in three ways (1)
the explicitly marked “depends on/blocks” relationship,
(2) the “duplicate” relationship between tasks, and (3) the
task cross-referencing relationship. We examined these 19
coordination needs that were both identified by Proximi-
tyML and in their Bugzilla reports.

Sixteen of these 19 recognized coordination needs were
known dependencies at the time of the second task crea-
tion. These tasks represent either task/subtask relation-
ships or offshoot tasks where some new task is created
based on something that was discovered during the de-
velopment of the first task. In these cases, we cannot ex-
pect ProximityML to perform better than the develop-
ment team. Still, in all but one case, ProximityML auto-
matically identifies these recognized coordination needs
promptly after the creation of the second task: as shown
in Fig. 7, most are identified on the same day or the day
after the second task is created. The team did not identify
the remaining three recognized coordination needs until
sometime later during the development of the second
task. ProximityML identifies two of these recognized co-
ordination needs on the same day as the team and one

more than a month before the team.
While this represents only a small set of recognized

coordination needs, it shows the promise of ProximityML
to automatically provide timely awareness to the devel-
opment team. Since it provides both accurate detection
and early recognition, ProximityML delivers recommen-
dations that are actionable. This is especially important
when those coordination needs are not immediately evi-
dent to the team members. Since we have no direct way
to compare the time of detection for the remaining 375
unrecognized coordination needs, we instead analyzed
the timeliness of the detection of CRs relative to the start
of overlapping work. The start of overlapping work was
calculated by considering the timestamp of overlapping
Mylyn context events for each coordination need. Proxim-
ityML coordination recommendations are identified on
average 3.6 days after the start of overlapping work with
the median detection on the same day as the start of over-
lapping work. This provides actionable recommendations
considering the average development duration for tasks
in this data set is nearly 25 days. Fig. 8 illustrates the time-
liness with probability density functions showing that
ProximityML typically produces coordination recom-
mendations when overlapping work starts or shortly af-
ter. In some cases, ProximityML even produced coordina-
tion recommendations just before the start of overlapping
work due to the inclusion of the other task properties
triggering the recommendation. We believe that this early
detection makes the ProximityML coordination recom-
mendations actionable.

In answering RQ3: ProximityML produces a smaller
set of coordination recommendations as the coordination
needs emerge making ProximityML timely and efficient.

4 DISCUSSION
In this paper, we described our exploration to provide
timely and efficient coordination recommendations in
software teams. Our work started from the premise that
IDE logging facilities provide a rich set of data that can
support automatic detection of coordination needs. Tools,
such as Mylyn, Tasktop Dev and Cubeon, log the actions
developers take as they interact in their IDE. Since IDE
monitoring captures developer actions as they occur it
can be used for timely identification of coordination
needs. We studied the development of the Mylyn project

Fig. 7. Coordination recommendation timeliness for set of 19 Proximi-
tyML coordination recommendations that are recognized by the team in
Bugzilla.

Fig. 6. Evolution of ProximityML coordination recommendations over
time.

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 13

itself, since their developers consistently utilize the Mylyn
plugin and, thus, the dataset of captured developer ac-
tions is large. We used this data to develop and validate
our techniques. Our first technique, Proximity, consid-
ered the overlap between the artifacts consulted and
modified by developers to identify timely coordination
needs. Proximity provided timely and accurate recogni-
tion of coordination needs between pairs of developers.
To provide more efficient recommendations, we also ex-
plored ways to detect coordination needs between pairs
of tasks, a level of analysis more granular than the devel-
oper level. To avoid information overload and a high
number of false positives, we leveraged a set of task
properties that distinguished the more critical coordina-
tion needs. We used machine learning on Proximity
scores and those task properties and to filter recommen-
dations to the more critical coordination needs, providing
a smaller number of critical coordination recommenda-
tions. The final outcome of this exploration is our tech-
nique, ProximityML, which uses task properties for time-
ly and efficient coordination needs recommendation.

4.1 Using ProximityML in Other Projects
ProximityML can be used in other projects, provided they
utilize IDE logging facilities, by considering each of its
components: (1) a ground truth of critical coordination
needs, (2) task properties that distinguish critical coordi-
nation needs, and (3) an SVM machine learning algo-
rithm.

Develop Ground Truth: First, a set of task pairs with
known critical coordination needs and a set of task pairs
that do not require coordination must be identified. These
can be established using the manual coding guidelines we
developed in Section 3.3.3.1 or through consultation with
the development team. The ground truth will be used to
analyze task properties and train the machine learner.

Identify Relevant Task Properties: A list of properties
that, in addition to Proximity scores, can distinguish criti-
cal coordination needs must be identified for the project.
While it is likely that the properties described in our
analysis of the Mylyn project data will also apply to other
projects, they may not be universally applicable due to
specific project processes or conventions. A list of project-

specific task properties can be identified by comparing
the ground truth critical coordination needs with task
pairs that do not require coordination as described in Sec-
tion 3.3.3.3 for the Mylyn project. A statistical evaluation
can support this discovery processs, and help identify
properties that differ significantly for the known critical
coordination needs.

SVM machine learning algorithm: With the ground
truth and task properties, the technique described in Sec-
tion 3.3.4 can be applied. The input to the SVM machine
learner is the training set (ground truth) where each in-
stance of the training set is classified (critical coordination
need or not) and described by the selected properties.
After training the machine learner, unknown task pairs
can be classified by providing the values of the selected
properties. When task pairs that are classified as critical
coordination needs, coordination recommendations can
be made to the developers assigned to those tasks.

4.2 Implications for Research
Our study has several important implications for software
engineering research.

Implication #1: IDE logging data holds significant prom-
ise for software engineering researchers. We found that the
data that can be obtained by monitoring the actions de-
velopers take within their IDE can be useful for coordina-
tion awareness since the data is so timely and provides
rich information about the context of a developer’s activi-
ties. While there are some other examples of software
engineering studies that have leveraged this data [32],
[36], [43], [59], IDE logging facilities have so far received
limited attention in research. However, the data they pro-
vide has significant potential, and researchers can contin-
ue to study ways to exploit this valuable source of data.

Implication #2: Awareness of tasks leads to forms of implicit
coordination. An important finding emerging from our inter-
views was how the developers described they would attend
to coordination needs. Communication has been found to be
the main form of coordination in software teams [47]. How-
ever, all of the senior developers indicated that, upon receiv-
ing a recommendation of a coordination need between tasks,
they would simply review the related task to obtain details
of how that task impacts their own work as a first step
rather than communicating with the assignee of the other
task. This review would result in awareness of the related
task. They would avoid interrupting the developer as-
signed to the other task, even if it meant delaying their
own task. One developer stated “just by looking at the bug
report too, you can rule out your potential need to go interrupt
that person or figure out, alright I’ll just hold off my develop-
ment until they are done or whatever the case may be, instead of
actually going and interrupting that person. So you can glean a
lot of information from that report just by being aware of the
similar reports you should be looking at.” Reviewing the ap-
propriate related tasks could be seen as a form of
stigmergic coordination [9], [29] on the Mylyn project
since the team encourages documentation of all task de-
tails within the task report. We discuss how a tool based
on our technique can support implicit and stigmergic co-
ordination in Section 4.3.

Fig. 8. ProximityML Timeliness Probability Density.

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Days

P
ro

ba
bi

lit
y

D
en

si
ty

First Overlapping Event
Detection of Coordination Need

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Implication #3: Effects of implicit coordination in software
engineering need further study. Many existing empirical
studies on coordination examine explicit (and easily
traceable) means of communication such as email, chat or
meetings. We believe it is equally important to take into
account other means of coordination. For example, stud-
ies that use measures for Socio-Technical Congruence
(STC) [12], [52] could be improved by also considering
metrics for awareness about tasks as sufficient coordina-
tion to fulfill a coordination need. Future studies should
examine this possibility by considering either tasks that
developers are watching or have subscribed to or tasks
that have been reviewed by developers, which can be
obtained through IDE monitoring facilities when devel-
opers view the task report within the IDE. Further infor-
mation on developer awareness of tasks or of other de-
velopers can be garnered from “social” features that have
recently been introduced in software repositories and
development communities like GitHub [18].

4.3 Implications for Tool Design
Our work shows the potential of a support tool for devel-
opers that automatically recognizes coordination needs
between pairs of tasks as they emerge by leveraging IDE
logging. Such a tool could be used to automate task de-
pendency management, provide awareness both within
and across teams, and support coordination among de-
velopers. The envisioned tool could incrementally and
unobtrusively learn from coordination actions taken by
the team (discussions, cross-referencing of task pairs, etc.)
to continuously improve its accuracy. It should have a
large pool of potential parameters and perform parameter
selection based on incremental learning to ensure that the
parameters are best suited for the development processes
and practices of the team. Our work indicates some main
design guidelines for such a tool.

Guideline #1: The tool must be unobtrusive. The devel-
opers we interviewed suggested displaying coordination
recommendations either within the task reports them-
selves, which developers often consult throughout devel-
opment, or within an IDE plug-in. The recommendations
should include links to the other task reports and any
other relevant task information to allow the developer to
easily gather information about the task on their own,
without interrupting the developer assigned to the other
task. It could also include an easy way to display the are-
as of code that are overlapping or conflicting. There
should be in-tool coordination mechanisms including
email, Skype, Yammer or other communication software
used by the project. However, developers should have a
way to flag themselves as busy to avoid interruption
when necessary. A tool might also consider the priority of
a task when making recommendations or when display-
ing the available options on how to fulfill the coordina-
tion need. Perhaps low priority tasks would only suggest
implicit types of coordination.

Guideline #2: The tool must balance the relevance and
timeliness of the coordination need to provide the most valuable
recommendations. A tool would likely introduce a form of
decay for the coordination recommendations as the in-

volved tasks aged. It would also need to identify a time
window of interest for tasks to incur a coordination need
(i.e. only currently overlapping tasks or tasks that were
worked no more than two weeks apart). This time win-
dow should be a tunable attribute since different devel-
opers may have different preferences. From our inter-
views, we learned that understanding very relevant tasks
that were completed much earlier in the project’s
timeframe could still be useful in some cases. For exam-
ple, when the new task is attempting to tackle the same
issue as a previous unsuccessful task. One developer said
“you may be doing something that someone tried 5 years ago,
and they have information about why it failed.” This illus-
trates another way developers may use such a tool, i.e. for
gaining awareness of tasks rather than for explicit coordi-
nation. Relevant coordination needs may be displayed
regardless of the completion status of the other task.

Guideline #3: The tool should consider the experience level
of the developer when making recommendations. The develop-
ers we interviewed believed more experienced developers
would benefit the most from awareness of coordination
needs since they have the knowledge to understand the
related tasks. While previous research [66] found that
developers consider the expertise of others before initiat-
ing coordination, our findings suggest that the expertise
of the developers themselves may impact what coordina-
tion they deem necessary. More junior developers may
want a smaller set of only extremely relevant recommen-
dations. Tools, therefore, may need to consider not only
the properties of tasks, but also the task assignee.

Guideline #4: The tool should support implicit coordina-
tion [9], [29]. Our interviewees would prefer to gather task
information themselves rather than interrupting a task
assignee. While the Mylyn team strives to record all in-
formation related to each task within the corresponding
Bugzilla report, tools for augmented support could be
devised. There has been some research in this area;
Rastkar and Murphy [61] summarize email threads relat-
ed to a specific bug report. However, there are many oth-
er forums (IRC, Skype chats, etc.) and information sources
(design documentation, requirement specifications, etc.)
that may hold information relevant to a task. The aware-
ness tool described above could be improved by provid-
ing a summary of the tasks involved in a coordination
need so the developer can quickly browse the infor-
mation. A tool could summarize the task report [53] and
all task information from these various sources and prior-
itize and highlight the most relevant information. The
developer could view additional details of tasks that re-
quire further investigation. Such a tool would enable
more efficient awareness of other tasks.

4.4 Threats to Validity
One threat to validity is that our findings derive from a
study of a single project with a moderate number of de-
velopers and tasks. Our results could be affected by speci-
ficities of the project. To mitigate this risk, we performed
a detailed analysis of Proximity using eight versions of
the Mylyn project. ProximityML was evaluated using a
release with large number (29,890) of task pairs. We inter-

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 15

viewed developers to understand the team’s coordination
practices and problems. Our detailed analysis of this pro-
ject allowed us to better understand when critical coordi-
nation needs and how to identify them.

Our interviewees were all Mylyn contributors and
were self-selected. While we reached saturation in our
results, they may not generalize to other projects. Howev-
er, many interviewees discussed their experiences on oth-
er software projects in addition to the Mylyn develop-
ment project.

The manual coding and content analysis also introduce
a possible risk of unreliable results since the coding is
subjective in nature. However, we had two independent
coders and achieved high intercoder reliability indicating
that this risk has been mitigated.

Another issue is that we were limited in the number of
task properties that we could investigate. There may be
additional, or even better, properties that could be used to
differentiate the overall set of potential coordination
needs and highlight the most important ones. The proper-
ties that are relevant in this study may not be as relevant
in others. In addition, all properties may not be portable
across different bug tracking systems.

Our measure of task duration, which we used to eval-
uate the criticality of coordination needs between tasks,
could be affected by other factors, such as the priority of
the tasks, workload of the team, physical location of the
developers, and experience level of the developers. How-
ever, Cataldo et al. [12] found that while these factors im-
pact development time, the impact of unmanaged coordi-
nation needs is also significant. In our Mylyn study, this
risk is further mitigated by the characteristics of the
Mylyn project itself and the general nature of open source
projects. The Mylyn team is comprised of well-
established, experienced developers. Open source projects
are accustomed to working in distributed environments
[57], [66], and developer overload is not a large concern,
since contributors choose which tasks to work on [57].

5 RELATED WORK
Several lines of research are dedicated to reducing con-
flicts and promoting coordination between developers
including schedule optimization techniques [26], [43],
configuration management conflict detection techniques
[5], [25], [64], and Coordination Requirement detection
methods [12], [28], [50], [51].

Schedule optimization is one way to reduce conflicts
between tasks. di Penta et al. [26] found that optimization
of project scheduling can reduce coordination overhead
through evaluation of their search-based optimization
techniques [26]. A more recent tool, Cassandra [43], iden-
tifies potential conflicts between tasks based on the files
in their workspaces and suggests optimal scheduling to
avoid those conflicts. While these schedule optimization
techniques can certainly reduce coordination needs of a
development team, they will not be able to fully eliminate
the need for coordination. This is particularly true when
the schedule is tight and large amounts of work need to
be done in parallel despite the conflicts that may arise.

Another approach is to detect conflicts early to allow
for coordination. Tools, like Palanti ́r [64], were built on
top of configuration management systems. Palanti ́r helps
alert developers of possible conflicts by letting them
know which other developers are making changes to the
files they are currently modifying. It also considers one
type of indirect conflicts by considering changes made to
the signature of a method that affect other artifacts that
call that method. However, Palantír provides only a list of
notifications regarding each potential conflict and does
not provide a cumulative view of coordination needs. It
also risks information overload since it provides notifica-
tions for every potential conflict at the source code level.
FastDash [5] and CollabVS [25] are other examples of con-
flict detection tools that suffer from the same limitations
as Palanti ́r. Compared to ProximityML, these approaches
are not efficient due to their risk of information overload
and their lack of complete view of coordination needs.

Cataldo et al. [12] were the first to introduce a frame-
work for establishing a cumulative view of coordination
needs between developers. Their method establishes Co-
ordination Requirements between developers who are
working on dependent tasks. Task dependencies are ap-
proximated by logical dependencies [31] between artifacts
involved in those tasks. Data about logical dependencies
is obtained by mining the source control repository of the
project for commits. Although some ways to rank Coor-
dination Requirements by importance [28], [51] have been
presented, current methods do not differentiate between
less or more intense Coordination Requirements or dis-
tinguish between different kinds of coordination needs.
There are several awareness tools [3], [24], [56], [62] that
detect Coordination Requirements between pairs of de-
velopers. Compared to ProximityML, the existing Coor-
dination Requirement detection methods and tools are
not timely due to their reliance on commit data. They are
also less efficient, since they provide recommendations
only between pairs of developers and leave the develop-
ers to determine what to coordinate about.

6 CONCLUSION
Our techniques leverage IDE logging facilities that cap-
ture developer actions as they occur allowing for timely
detection of coordination needs. They also leverage a set
of task properties to focus our recommendations on the
more critical coordination needs. The techniques de-
scribed in this paper can be used to create a support tool
for developers that automatically and non-intrusively
recognizes coordination needs between pairs of tasks as
they emerge and focuses on the more critical recommen-
dations to minimize information overload. Such a tool
could be used to automate task dependency management,
provide awareness both within and across teams, and
support coordination among developers. Avenues for
future work include developing such a support tool and
continuing our investigation to identify additional prop-
erties that characterize critical coordination needs.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

ACKNOWLEDGMENT
We thank Sean Goggins and Nora McDonald for their
manual coding efforts and the developers who dedicated
time for interviews. This work was supported in part by
NSF grant VOSS OCI-1221254 and NECSIS Grant.

REFERENCES
[1] J. Aranda and G. Venolia, “The secret life of bugs: Going past the

errors and omissions in software repositories,” Proc. 31st Int’l Conf.
Software Eng., 2009, pp. 298-308.

[2] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. 1: The Power of
Modularity, MIT Press, 2000.

[3] A. Begel, Y.P. Khoo, and T. Zimmermann, “Codebook: discovering
and exploiting relationships in software repositories,” Proc. 32nd Int’l
Software Eng., 2010, pp. 125-134.

[4] V. Bharadwaj, "Supporting awareness in heterogeneous collaboration
environments," PhD Thesis, West Virginia Univ., 2005.

[5] J.T. Biehl et al., “FASTDash: a visual dashboard for fostering aware-
ness in software teams,” Proc. Int’l. Conf. Human Factors in Compu-
ting Systems, 2007, pp. 1313-1322.

[6] K. Blincoe, G. Valetto, and D. Damian, “Do all task dependencies
require coordination? The role of task properties in identifying critical
coordination needs in software projects,” Proc. 9th Joint Meeting
Foundations Software Eng., 2013, pp. 213-223.

[7] K. Blincoe, G. Valetto, and D. Damian, “Uncovering critical coordi-
nation requirements through content analysis,” Proc. Int’l WS Social
Software Eng., 2013, pp. 1-4.

[8] K. Blincoe, G. Valetto, and S. Goggins, “Proximity: a measure to
quantify the need for developers' coordination,” Proc. Conf. Computer
Supported Cooperative Work, 2012, pp.1351-1360.

[9] F. Bolici, J. Howison, and K. Crowston, “Coordination without dis-
cussion? Socio-technical congruence and Stigmergy in Free and Open
Source Software projects,” Proc. 2nd Int’l WS Socio-Technical Con-
gruence, 2009.

[10] F.P. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing, Addison Wesley, 1995.

[11] M. Cataldo and K. Ehrlich, ”The Impact of Communication Structure
on New Product Development Outcomes,” Proc. Int’l Conf. Human
Factors in Comp. Syst., 2012, pp. 3081-3090.

[12] M. Cataldo and J.D. Herbsleb, “Coordination Breakdowns and Their
Impact on Development Productivity and Software Failures,” IEEE
Trans. Softw. Eng., vol.39, no.3, 2013, pp. 343-360.

[13] M. Cataldo et al., “Software Dependencies, Work Dependencies, and
Their Impact on Failures,” IEEE Trans. Softw. Eng., vol.35, no.6,
Nov.-Dec. 2009, pp.864-878.

[14] C.C. Chang and C.J. Lin, “LIBSVM: a library for support vector
machines,” ACM Trans. Intell. Sys. & Tech., vol.2, no.3, 2001, pp. 27.

[15] M.E. Conway, “How do committees invent?,” Datamation, vol.14,
no.4, 1968, pp. 28-31.

[16] C. Cortes and V. Vapnik, "Support vector machine," Machine learn-
ing, vol. 20, no. 3, 1995, pp. 273-297.

[17] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol.13, no.1, January 1967, pp.21-27.

[18] L. Dabbish et al., “Social coding in GitHub: transparency and collabo-
ration in an open software repository,” Proc. Conf. Computer Sup-
ported Cooperative Work, 2012, pp. 1277–1286.

[19] D. Damian et al., “Awareness in the wild: Why communication
breakdowns occur,” Proc. 2nd Int’l Conf. Global Software Eng.,
2007, pp. 81-90.

[20] C.R. de Souza, J.M. Costa and M. Cataldo, “Analyzing the Scalability
of Coordination Requirements of a Distributed Software Project,” J.
Brazilian CS, vol. 18, no. 3, 2012, pp. 201-211.

[21] C.R. de Souza and D.F. Redmiles, “An Empirical Study of Software
Developers’ Management of Dependencies and Changes,” Proc. 30th
Int’l Conf. Software Eng., 2008, pp. 241-250.

[22] C.R. de Souza and D.F. Redmiles, “The Awareness Network, To
Whom Should I Display My Actions? And, Whose Actions Should I
Monitor?,” IEEE Trans. Softw. Eng., vol.37, no.3, 2011, pp. 325-340.

[23] C.R. de Souza et al., “How a good software practice thwarts collabo-
ration: the multiple roles of APIs in software development,” ACM
SIGSOFT Softw. Eng. Notes, vol.29, no.6, Oct. 2004, pp. 221-230.

[24] CR. de Souza et al., “Supporting collaborative software development
through the visualization of socio-technical dependencies,” Proc. Int’l
Conf. Supporting Group Work, 2007, pp. 147-156.

[25] P. Dewan and R. Hegde, “Semi-Synchronous Conflict Detection and
Resolution in Asynchronous Software Development,” Proc. 10th Eu-
ropean Conf. Computer Supported Cooperative Work, Springer Lon-
don, 2007, pp. 159-178.

[26] M. Di Penta et al., “The Effect of Communication Overhead on Soft-
ware Maintenance Project Staffing: a Search-Based Approach,” Proc.
Int’l Conf. Softw. Maintainence, 2007, pp. 315-324.

[27] P. Dourish and V. Bellotti, “Awareness and Coordination in Shared
Workspaces,” Proc. Conf. Comp.-Supported Cooperative Work, 1992,
pp. 107-114.

[28] K. Ehrlich et al., “An analysis of congruence gaps and their effect on
distributed software development,” Proc. 1st Int’l WS Socio-Technical
Congruence, 2008.

[29] M.A. Elliott, “Stigmergic Collaboration: The Evolution of Group
Work,” M/C Journal, vol.9, no.2, May 2006.

[30] G. Fitzpatrick, P. Marshall, and A. Phillips, "CVS integration with
notification and chat: lightweight software team collaboration," Proc.
Conf. Computer Supported Cooperative Work, 2006, pp. 49-58.

[31] H. Gall, K. Hajek, and M. Jazayeri, “Detection of Logical Coupling
Based on Product Release History,” Proc. Int’l Conf. Software Main-
tainence, 1998, pp. 190-198.

[32] S.P. Goggins, G. Valetto, C. Mascaro & K. Blincoe, “Creating a mod-
el of the dynamics of socio-technical groups,” User Modeling and Us-
er-Adapted Interaction, vol. 23, no. 4, 2013, pp. 345-379.

[33] R.E. Grinter, J.D. Herbsleb and D.E. Perry, “The geography of coor-
dination: dealing with distance in R&D work,” Proc. Int’l Conf. Sup-
porting Group Work, 1999, pp. 306-315.

[34] C. Gutwin and S. Greenberg, "A descriptive framework of workspace
awareness for real-time groupware," Computer Supported Coopera-
tive Work, vol. 11, no. 3-4, 2002, pp. 411-446.

[35] C. Gutwin and S. Greenberg, "Workspace awareness for groupware,"
Conf. Companion on Human Factors in Computing Systems, 1996,
pp. 208-209.

[36] A. Guzzi, M. Pinzger, and A. van Deursen, “Combining Micro-
Blogging and IDE Interactions to Support Developers in their
Quests,” Proc. Int’l Conf. Softw. Maint., 2010, pp. 1–5.

[37] J.D. Herbsleb, "Global Software Engineering: The Future of Socio-
Technical Coordination," Proc. Future of Softw. Eng., 2007, pp. 188-
198.

[38] J.D. Herbsleb and R.E. Grinter, “Architectures, Coordination, and
Distance: Conway’s Law and Beyond,” IEEE Software, vol. 16, no. 5,
Sept./Oct. 1999, pp. 63-70.

[39] J.D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,” IEEE
Trans. Softw. Eng., vol.29, no.6, 2003, pp. 481-494.

BLINCOE ET AL.: FACILITATING COORDINATION BETWEEN SOFTWARE DEVELOPERS: A STUDY AND TECHNIQUES FOR TIMELY AND EFFICIENT
RECOMMENDATIONS 17

[40] J.D. Herbsleb, A. Mockus, and J.A. Roberts, “Collaboration in soft-
ware engineering projects: A theory of coordination,” Proc. 27th Int’l
Conf. Information Systems, 2006, pp. 38.

[41] S. R. Hiltz and M. Turoff, “Structuring computer-mediated communi-
cation systems to avoid information overload,” Communications of
the ACM, vol. 28, no. 7, pp. 680–689, 1985.

[42] B. Jiang, B. Jiajun, and C. Chen, "Providing Awareness of Coopera-
tive Efficiency in Collaborative Graphics Design Systems through
Reaction Mining," J. Computers, vol. 3, no. 10 2008.

[43] B.K. Kasi and A. Sarma, “Cassandra: proactive conflict minimization
through optimized task scheduling,” Proc. 35th Int’l Conf. Software
Eng., 2013, pp. 732-741.

[44] M. Kersten and G.C. Murphy, “Using task context to improve pro-
grammer productivity,” Proc. 14th Int’l Symp. Foundation of Soft-
ware Eng., 2006, pp. 1-11.

[45] A. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” Proc. 29th Int’l Conf. Software Eng.,
2007, pp. 344–353.

[46] S.B. Kotsiantis, “Supervised machine learning: a review of classifica-
tion techniques,” Informatica, vol. 31, 2007, pp. 249-268.

[47] R. Kraut and L. Streeter, “Coordination in software development,”
Commun. ACM, vol. 38, no. 3, 1995, pp. 69-81.

[48] K. Krippendorff, “Content analysis: An introduction to its methodolo-
gy,” SAGE Publications, 2012.

[49] I. Kwan, M. Cataldo, and D. Damian, “Conway's Law Revisited: The
Evidence for a Task-Based Perspective,” IEEE Software, vol. 29, no.
1, 2012, pp. 90-93.

[50] I. Kwan and D. Damian, “Extending Socio-technical Congruence with
Awareness Relationships,” Proc. Int’l WS Social Software Eng., 2011,
pp. 2-11.

[51] I. Kwan, A. Schröter, and D. Damian, “A weighted congruence meas-
ure,” Proc. WS Socio-Technical Congruence, 2009, pp. 1-10.

[52] I. Kwan, A. Schröter, and D. Damian, “Does socio-technical congru-
ence have an effect on software build success? A study of coordina-
tion in a software project,” IEEE Trans. Softw. Eng., vol. 37, no. 3,
2011, pp. 307-324.

[53] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘Hurried’ Bug
Report Reading Process to Summarize Bug Reports,” Proc. 28th Int’l
Conf. Software Maintenance, 2012, pp. 430-439.

[54] W. Maalej and M. Robillard, “Patterns of Knowledge in API Refer-
ence Documentation,” IEEE Trans. Softw. Eng., vol. 99, no. 1, 2013.

[55] P. Markopoulos, B. de Ruyter, and W.E. Mackay, "Awareness sys-
tems: known results, theory, concepts and future challenges," In
CHI'05 Extended Abstracts on Human Factors in Computing Systems,
2005, pp. 2128-2129.

[56] S. Minto and G.C. Murphy, “Recommending emergent teams,” Proc.
4th Int’l WS Mining Software Repositories, 2007, pp. 5-5.

[57] A. Mockus, R.T. Fielding, and J. Herbsleb, “A case study of open
source software development: the Apache server,” Proc. Int’l Conf.
Software Eng., 2000, pp. 263-272.

[58] G.C. Murphy and E. Murphy-Hill, “What is trust in a recommender
for software development?,” Proc. 2nd Int’l WS Recommendation Sys-
tems for Software Eng., 2010, pp. 57-58.

[59] I. Omoronyia et al., "Using developer activity data to enhance aware-
ness during collaborative software development." Computer Support-
ed Cooperative Work 18, no. 5-6 (2009): 509-558.

[60] D.L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, Dec. 1972,
pp. 1053-1058.

[61] S. Rastkar and G. Murphy, “Summarizing software artifacts: a case
study of bug reports,” Proc. 32nd Int’l Conf. Software Eng., 2010, pp.

505-514.
[62] A. Sarma et al., “Tesseract: Interactive visual exploration of socio-

technical relationships in software development,” Proc. 31st Int’l
Conf. Software Eng., 2009, pp. 23-33.

[63] A. Sarma, D. Redmiles, and A. van der Hoek, "Empirical evidence of
the benefits of workspace awareness in software configuration man-
agement," Proc. 16th Int’l Symp. Foundations of Software Eng., 2008,
pp. 113-123.

[64] A. Sarma, D.F. Redmiles, and A. van der Hoek, “Palantir: Early de-
tection of development conflicts arising from parallel code changes,”
IEEE Trans. Softw. Eng., vol. 38, no. 4, 2012, pp. 889-908.

[65] S. Sawyer, “Software Development Teams,” Communications of the
ACM, vol. 47, no. 12, 2004, pp. 95-99.

[66] W. Scacchi, “Free/open source software development: Recent re-
search results and methods,” Advances in Computers, vol. 69, 2007,
pp. 243-295.

[67] M.E. Sosa, S.D. Eppinger, and C.M. Rowles, “The misalignment of
product architecture and organizational structure in complex product
development,” Management Science, vol.50, no.12, 2004, pp. 1674-
1689.

[68] M.A. Storey, D. Davor Čubranić, and D.M. German, "On the use of
visualization to support awareness of human activities in software de-
velopment: a survey and a framework," Proc. Symp. Software Visuali-
zation, 2005, pp. 193-202.

[69] P. Sullivan, “Information overload: keeping current without being
overwhelmed,” Science & Technology Libraries, vol. 25, no. 1-2,
2004, pp. 109-125.

[70] S. Wong et al., “Design rule hierarchies and parallelism in software
development tasks,” Proc. Int’l Conf. Automated Software Eng., 2009,
pp. 197-208.

Kelly Blincoe received a BE in Computer Engineering from Villano-
va University in 2004, an MS in Information Science from Pennsyl-
vania State University in 2008, and an MS and Ph.D in Computer
Science from Drexel University in 2011 and 2014 respectively. She is
currently a Postdoctoral Fellow at University of Victoria. She previ-
ously worked at Lockheed Martin as a Proposal Manager and Soft-
ware Engineer. Her research interests lie in collaborative software
engineering and computer-supported cooperative work. She is a
member of IEEE.
Giuseppe Valetto received a Laurea degree in Electronic Engineer-
ing from Politecnico di Torino, Italy in 1992, an MS in Computer Sci-
ence from Columbia University, USA in 1994, and a Ph.D. in Com-
puter Science, again from Columbia University, in 2004. He has
mostly worked on collaborative software engineering and distributed
and self-adaptive systems. He has held positions as Xerox Re-
search, CEFRIEL- Politecnico di Milano, Telecom Italia Lab, IBM T.J.
Watson Research Center, and Drexel University. He is currently a
researcher in the Service Oriented Applications unit at Fondazione
Bruno Kessler, Italy. He is a member of IEEE.
Daniela Damian received her BSc in Computer Science from the
Babes Bolyai, Romania in 1995, and MSc and PhD degrees from the
University of Calgary, Canada, in 1997 and 2001 respectively. She is
currently a Professor in University of Victoria’s Department of Com-
puter Science, where she leads the Software Engineering Global
interAction Laboratory (SEGAL, thesegalgroup.org). Her research
interests include Software Engineering, Requirements Engineering,
Computer-Supported Cooperative Work and Empirical Software
Engineering. Daniela has served on the program committee boards
of several software engineering conferences and was the program
co-chair for the First International Conference on Global Software
Engineering (ICGSE06). She is currently serving on the editorial
boards of the Journals of Transactions on Software Engineering,
Requirements Engineering, Empirical Software Engineering, and
Software and Systems. She is a member of IEEE.

