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Abstract—When software developers fail to coordinate, build failures, duplication of work, schedule slips and software defects 
can result. However, developers are often unaware when they need to coordinate, and existing methods and tools that help 
make developers aware of their coordination needs do not provide timely or efficient recommendations. We describe our 
techniques to identify timely and efficient coordination recommendations, which we developed and evaluated in a study of 
coordination needs in the Mylyn software project. We describe how data obtained from tools that capture developer actions 
within their Integrated Development Environment (IDE) as they occur can be used to timely identify coordination needs; we also 
describe how properties of tasks and machine learning can focus coordination recommendations to those that are more critical 
to the developers to reduce information overload and provide more efficient recommendations. We motivate our techniques 
through developer interviews and report on our quantitative analysis of coordination needs in the Mylyn project. Our results 
imply that by leveraging IDE logging facilities, properties of tasks and machine learning techniques awareness tools could make 
developers aware of critical coordination needs in a timely way. We conclude by discussing implications for software 
engineering research and tool design.  

Index Terms— Human Factors in Software Design, Management, Metrics/Measurement, Productivity, Programming Teams  
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1 INTRODUCTION
OFTWARE developers often work on tasks in parallel 
when working on large projects. Technical dependen-

cies between tasks can result in coordination needs be-
tween the developers. When those developers are una-
ware or do not obtain timely awareness [27] of the coor-
dination that is required to manage their work dependen-
cies (their coordination needs), there is potential for prob-
lems with respect to software productivity or quality [10], 
[60]. Studies have found that unfulfilled coordination 
needs can result in an increase in task resolution time, an 
increase in software faults, build failures, redundant 
work, and schedule slips [12], [19], [21], [24]. Therefore, 
awareness of coordination needs can be critical. 

To provide the most benefits, awareness must be both 
timely and efficient. Awareness is timely if coordination 
needs are made known as they emerge, while develop-
ment is still underway. Without timely awareness, devel-
opers may continue to work in isolation, without recog-
nizing and acting on their coordination needs. Awareness 
is efficient if the recommendations on coordination needs 
(1) minimize information overload and (2) are easily un-
derstood by the developers. Without efficient recommen-
dations, developers may incur additional and unneces-
sary coordination overhead. There are no existing meth-
ods or tools that provide both timely and efficient aware-
ness of coordination needs to developers.  

In this paper, we describe techniques to provide timely 
and efficient coordination recommendations. Our tech-
niques leverage logging facilities that capture developers’ 
actions in their Integrated Development Environments 
(IDE) as they occur to automatically detect developer co-
ordination needs. We developed our techniques in an 
extensive study of coordination needs of one software 
project, the Mylyn developmentproject. The Mylyn pro-
ject was a useful case to study because Mylyn is the most 
well known and widely used software development sup-
port tool that, to fulfill its own purposes, records all de-
veloper IDE interactions as they occur. The Mylyn devel-
opment team makes routine use of the Mylyn tool and, 
thus, its repository provides a large dataset of logged de-
veloper actions for analysis. Other examples of tools that 
capture developer actions as they occur within an IDE are 
Tasktop Dev and Cubeon.  

We used the data available from IDE logging for timely 
coordination recommendations in our Proximity method 
[8]. Statistical analysis proved that Proximity’s recom-
mendations were timely, but its recommendations are not 
efficient. Proximity identifies coordination needs between 
pairs of developers which can result in information over-
load on large teams [11], [20]. Further, its recommenda-
tions can be unclear for developers since developers often 
work on multiple tasks in parallel and the recommenda-
tions do not identify the tasks that need coordinaton.  

To understand how to produce efficient coordination 
recommendations, we interviewed developers. Following 
their advice, we (1) modified the original Proximity con-
cept to identify coordination needs between pairs of tasks 
instead of developers, and (2) sought to minimize coordi-
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nation recommendations to those that are more critical to 
developers. To identify ways to focus on the more critical 
coordination needs, we used content analysis and manual 
coding techniques in an in-depth repository analysis of 
task reports and developers' associated discussions.  

This analysis led us to leverage properties of tasks and 
the software artifacts edited for the tasks. We developed 
ProximityML [6], which uses machine learning tech-
niques on Proximity scores and these task properties to 
identify the more critical coordination needs between task 
pairs. We found ProximityML to be timely and efficient. 

Overall, the contributions of this work include: 
1. We report on a study of coordination and coordina-

tion needs in which we used developer interviews, 
repository data and statistical analysis to conceptual-
ize timely and efficient coordination needs. 

2. We show that logging of developer actions within 
their IDE can support timely, automatic and non-
intrusive coordination recommendations. 

3. We provide quantitative evidence that properties of 
tasks and their associated artifacts can be used to 
identify the more critical coordination needs. 

4. We describe machine learning techniques to identify 
timely and efficient coordination recommendations. 

Our previous conference publications reported on 
some elements of this work [6], [8]; however, this paper 
introduces numerous extensions to our work and pro-
vides a full overview of our techniques and their devel-
opment through the study of coordination needs of the 
Mylyn team. Specifically this paper extends our previous 
publications by describing: (1) the motivation for our 
techniques through developer interviews, (2) a method 
for evaluating and understanding developers’ critical co-
ordination needs through content analysis and manual 
coding, (3) improved machine learning techniques and 
consideration of different task properties in ProximityML 
that improved the precision of our results from 0.09 to 
0.77, and (4) further evaluation of our results by consider-
ing an additional research question focusing on the relia-
bility and timeliness of ProximityML. 

2 BACKGROUND 
2.1 Importance of Coordination in Software 

Engineering 
Large software projects have many work dependencies 
[65]. Dependencies between tasks can lead to coordina-
tion needs between the task assignees [12], [24], [40], and 
these work dependencies must be managed [13], [40], 
[67]. Initially, research focused on ways to streamline the 
technical dependencies between modules as a way to 
maximize task parallelism [2], [60], [70]. However, it is 
not possible to eliminate all dependencies. Therefore, re-
search began to focus on ways to satisfy, as opposed to 
reduce, work dependencies through coordination [40].  

It has been found that a decrease in communication, 
the main form of coordination in software teams [47], can 
cause team members to be unaware of work dependen-
cies resulting in coordination problems [23], [33], [39]. 
Missed coordination can result in build failures, duplica-

tion of work, schedule slips and software defects [12], 
[19], [21], [24]. On the other hand, it has been shown that 
aligning software teams based on the tasks they must 
complete can bring about productivity benefits [15], [49] 
and communication can reduce integration problems [38]. 
Coordination, therefore, has important effects on software 
quality and productivity. 

Even if developers are willing to coordinate, they may 
often be unaware of their coordination needs. Maintain-
ing awareness of coordination needs can be especially 
difficult when teams are geographically distributed [37]. 
Even in collocated teams, keeping aware of coordination 
needs is difficult since developers’ coordination needs are 
often fluid and change throughout development [22]. 

2.2 Providing Awareness of Coordination Needs 
There are two existing methods of providing awareness 
of coordination needs: configuration management conflict 
detection and Coordination Requirements detection. We 
first define and review the concepts of timeliness and effi-
ciency from existing literature before we discuss the time-
liness and efficiency of these methods. 

Timeliness. Timeliness is a key requirement for pre-
senting awareness information [30], [35], [42], [55], [63], 
[68]. Timeliness is important because awareness is only 
valuable if it is obtained when the information is useful. 
For example, becoming aware of a coordination need is 
only beneficial if the coordination need still exists. In the 
words of a senior developer that we interviewed, “If you 
find out next week that you should have talked to this guy last 
week, that’s not helpful.” We define timely as occurring 
while development is underway. With timely awareness 
of coordination needs, developers can act upon and re-
solve their coordination needs as they surface to reap the 
proven productivity and quality benefits.  

Efficiency. Gutwin and Greenburg [34] note that 
awareness can make coordination more efficient. Of 
course, the awareness must be accurate. Futher, to create 
efficiency, awareness must provide “the appropriate 
amount of information, relevant to the user’s sphere of 
activity [4].” We, therefore, consider three characteristics 
of the coordination needs in defining efficiency: the accu-
racy of the recommendations, the amount of information 
and the relevance to the user’s current activity. Methods 
that notify developers of a large number of coordination 
needs risk information overload [41], [69]. Many recom-
mendations force developers to take time away from de-
velopment to sift through large amounts of data, which is 
inefficient. Likewise, methods that do not provide details 
such as which tasks or files another developer is working 
on may not provide enough details to enable developers 
to relate the coordination need to their current task and 
efficiently act on their coordination needs. Developers are 
left to understand the source of the coordination need on 
their own. Therefore, efficient awareness must be accurate 
and reduce the number of recommendations while 
providing enough details on each coordination need for it 
to be easily understood. 
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2.2.1 Configuration Management Conflict Detection 
Configuration management conflict detection tools, like 
Palanti ́r [64] and CollabVS [25], were the first to attempt 
to provide awareness of coordination needs. They alert 
developers of possible conflicts by providing alerts when 
other developers are making changes to the files they are 
currently modifying in their local workspace. 

While these methods are timely, their notifications are 
incomplete. They monitor the changes developers are 
making in their local workspaces and provide notifica-
tions while development is underway. However, they do 
not identify all indirect conflicts that can occur when 
changes in one file affect another file. Therefore, they do 
not provide a comprehensive view of coordination needs. 

These methods are also inefficient. They risk infor-
mation overload since they provide notification of every 
potential conflict at the source code level, and any con-
current modification will generate a notification regard-
less of complexity. This amount of information can be 
distracting for developers and is likely to contain a high 
number of trivial conflicts and false positives. This is inef-
ficient since developers must sift through a large number 
of notifications to determine which conflicts really matter. 

2.2.2 Coordination Requirement Detection 
Cataldo et al. [12] were the first to introduce a framework 
for establishing a comprehensive view of coordination 
needs between developers. Their method performs matrix 
multiplication on task assignments and task dependen-
cies to quantify the need to coordinate between develop-
ers working on dependent tasks in what they called Coor-
dination Requirements. Coordination Requirements are a 
computable approximation of the coordionation needs 
that occur in software development projects. Although 
many awareness tools [3], [24], [56], [62] have been creat-
ed based on this method, its computations rely on commit 
data. This commit data is typically available only towards 
the end of the development work for a task, so the aware-
ness this approach provides is not timely.  

This method is also inefficient since it establishes Co-
ordination Requirements between pairs of developers. 
Recent studies [11], [20] found that tools that recommend 
which developers should coordinate risk information 
overload on large teams. In addition, providing infor-
mation only on which developers should coordinate may 
not enable developers to efficiently act on their coordina-
tion needs. Since developers are often working on multi-
ple tasks in parallel, coordination needs at the developer 
level may encompass the work dependencies of many 
tasks. This puts the burden on the developers to identify 
what to coordinate about and introduces inefficiency.  

There are, therefore, no existing methods that compute 
coordination recommendations (as approximations of 
coordination needs) that are both timely and efficient. In 
addition, the method that is timely does not produce a 
comprehensive view of coordination needs. Our research 
intends to fill this gap and is guided by the following re-
search questions: 

RQ1: Can a comprehensive set of coordination recommenda-
tions be identified in a timely way? 

RQ2: Can a smaller set of more efficient coordination rec-
ommendations be identified? 

RQ3: Can this smaller set of more efficient coordination rec-
ommendations be identified in a timely way? 

3 DEVELOPING TECHNIQUES FOR TIMELY AND 
EFFICIENT COORDINATION NEED DETECTION  
3.1 Methodology 
To answer our research questions, we performed an ex-
tensive study of the coordination data and developers’ 
coordination needs in the Mylyn software project. We 
followed an iterative process of technique design, devel-
opment and evaluation. Our research methods included 
interviews with Mylyn developers, in-depth analysis of 
coordination needs from the project repository, and statis-
tical validation of our techniques. An overview of how 
our techniques were developed is depicted in Fig. 1. 

Mylyn is a tool that transforms a developer’s IDE to a 
task-centric view to make context switching between 
tasks easier. For this, Mylyn records all developer IDE 
interactions as they occur. These events are stored as con-
text data for the task in focus. The techniques we devel-
oped use data on developer actions, which we obtained 
from the Mylyn plugin [44]. The Mylyn developers make 
routine use of the Mylyn plugin and use the bug-tracking 
database, Bugzilla, to define and assign developer tasks. 
We refer to Bugzilla change requests as tasks. The team 
documents all task details on the Bugzilla task report and 
uses these reports as a form of coordination.  

We analyzed eight releases of the Mylyn project, re-
leases 2.0 to 3.3, which spanned nearly three years of de-
velopment. Each release lasted three to nine months. 
There were 51 contributors over all eight releases, with up 
to 32 contributors active during a release. Over the eight 
releases, there were 1,127 change requests that had both 
Mylyn context data and commit data. We determined the 

 
Fig. 1. Developing our Techniques through a study of coordination 
needs of Mylyn developers.  
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time of development for a change request by the artifact 
selection and edit activity obtained through the Mylyn 
context data attached to the Bugzilla record.  

RQ1: Can a comprehensive set of coordination recommenda-
tions be identified in a timely way? To address our first re-
search question, we developed Proximity [8], a technique 
that identifies coordination needs between pairs of devel-
opers by leveraging logging facilities that monitor and 
record fine-grained actions developers take within their 
IDEs. We evaluated the accuracy and timeliness of Prox-
imity scores relative to the Coordination Requirements of 
Cataldo et al.’s method [12]. This method was used for 
comparison since it is the most well known method for 
detecting coordination needs, and many awareness tools 
are based on this method. Proximity considers developer 
actions as they occur by utilizing IDE logging facilities, 
while the Cataldo et al. approach considers developer 
modification activity after development is mostly com-
plete by examining commit records. We refer to the 
Cataldo et al.’s computed Coordination Requirements as 
CCRs throughout the remainder for brevity.  

We found Proximity’s recommendations of coordina-
tion needs between pairs of developers to be accurate and 
timely. However, we also observed that the recommenda-
taions were not efficient since considering coordination 
needs between pairs of developers can result in infor-
mation overload [11], [20] and recommendations which 
only note which developers must coordinate can be 
vague when developers are working on multiple tasks in 
parallel. Proximity is described in Section 3.2. 

RQ2: Can a smaller set of more efficient coordination rec-
ommendations be identified? We conducted semi-structured 
interviews with six developers of the Mylyn project to 
gain a deep understanding on coordination needs (Sec-
tion 3.3.1). Our interviewees recommended identifying 

coordination needs between pairs of tasks (instead of de-
velopers) since tasks are their unit of work. Further, they 
said the number of recommendations must be minimized 
to those coordination needs that are more critical to the 
developers. We explored techniques to address each rec-
ommendation: to identify coordination needs between 
pairs of tasks, we modified Proximity (Section 3.3.2); to 
minimize the number of coordination recommendations, 
we performed a thorough analysis of coordination needs 
resulting in a deep understanding of how to focus on 
more critical coordination needs (Section 3.3.3). Our anal-
ysis involved the following: 
• Identify a set of the more critical coordination needs 

experienced by the team through content analysis and 
manual coding [48] of the task records; these coordina-
tion needs served as our ground truth for evaluation 
of our resulting technique, ProximityML. We devel-
oped a coding scheme, which details scoring criteria, 
for this analysis. The coding scheme was verified 
through interviews with Mylyn developers 

• Conceptualize measures of criticality of coordination 
needs using task duration and complexity. 

• Analyze properties of the critical coordination needs 
experienced by the team to find ways to automatically 
identify only the more critical coordination needs. 

This analysis resulted in a set of properties of the de-
velopment tasks and the software artifacts manipulated 
during the completion of those tasks that can be used to 
distinguish between critical and trivial coordination 
needs. To answer RQ2, we developed ProximityML, a 
technique that uses machine learning on Proximity scores 
in combination with these properties to efficiently identi-
fy coordination needs (Section 3.3.4). We evaluated the 
accuracy (Section 3.3.4.1.1) and criticality (Section 
3.3.4.1.2) of the resulting coordination recommendations 
using the ground truth established through content anal-
ysis and manual coding. 

TABLE 1 
SUMMARY OF RESEARCH METHODS AND VALIDATION STEPS. 

Research Question Step Validation 

RQ1 Develop Proximity 
Statistical analysis. (1) Accuracy: Compare Proximity to CCRs through correlations 
and precision/recall. (2) Timeliness: Compare time of detection of Proximity and 
CCRs with Probability Density functions. 

RQ2 

What is Efficency? Semi-structured interviews with six developers of the Mylyn project. 

In-depth Study of Mylyn 
Critical Coordination Needs 

Content analysis and manual coding of 350 task pairs to identify set of critical co-
ordination needs experienced by the team. 
Statistical analysis of task properties comparing properties of critical coordination 
needs to task pairs without critical coordination needs through Chi-Square and 
Mann-Whitney Tests. 

Develop ProximityML 

Statistical analysis. (1) Accuracy: Compare ProximityML to ground truth estab-
lished through content analysis and manual coding through precision/recall.  
Cross-validation of classifier. (2) Criticality: Analysis of change size and task dura-
tion of resulting recommendations. 

RQ3 

Statistical analysis. (1) Reliability: Analysis of the fluctuations of ProximityML 
recommendations over time. (2) Timeliness:  Compare ProximityML’s time of de-
tection of a coordination need with the time the need was recognized by the team 
and the start of overlapping work. 
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RQ3: Can this smaller set of more efficient coordination 
recomendations be identified in a timely way? Finally, we 
evaluated ProximityML’s reliability (Section 3.4.1) and 
timeliness (Section 3.4.2) to ensure that the addition of 
machine learning and additional properties did not affect 
the timeliness provided by the Proximity algorithm. For 
this analysis, we streamed pre-collected data, one event at 
a time, to replicate the actual progression of development 
work and the live collection of the data. We identified 
when ProximityML identified each coordination recom-
mendation. We compared ProximityML’s detection of the 
coordination need with the time the need was recognized 
by the team and the start of overlapping work. 

Table 1 summarizes the validation steps for each of the 
three research questions.  

3.2 Timely Detection of Coordination Needs: 
Proximity 

RQ1: Can a comprehensive set of coordination recommenda-
tions be identified in a timely way? 

We developed Proximity [8], a method that computes 
timely coordination needs between software developers 
using IDE logging data. Proximity is timelier than the 
existing Coordination Requirement detection methods 
because, instead of obtaining data from commits, it moni-
tors the actions developers take in their IDE as they occur. 
When a developer looks at or edits an artifact in their IDE, 
the Mylyn framework captures that action. The actions 
are collected non-intrusively while the developers work 
and are stored as context data for the task in focus. 

Proximity looks at artifact consultation and modifica-
tion activities logged by Mylyn and weighs the overlap 
that exists between pairs of developers. It considers all 
actions recorded for each artifact in each developer’s 
working set in order to apply a numeric weight to that 
artifact’s Proximity contribution. Weights are applied 
based on the type of overlap where the most weight is 
given when an artifact is edited in both working sets 
(weight = 1) and the least is given when an artifact is 
simply consulted in both working sets (weight = 0.59). 
When an artifact is edited in one and consulted in the 
other working set, this is a mixed overlap (weight = 0.79). 
The weights are based on the weights Mylyn uses for its 
degree-of-interest model [44].  

Fig. 2 illustrates an example Proximity computation. 
The algorithm computes the ratio of actual to potential 
overlap. Actual overlap is calculated as the intersection of 
the two working sets. In fig. 2, b.java has an actual over-
lap score of 0.79 because it was edited in developer X’s 

working set and consulted in developer Y’s working set. 
Potential overlap represents the maximum possible Prox-
imity score had there been perfect overlap between the 
two sets of actions and is calculated as the union of the 
two working sets. In fig. 2, b.java has a potential overlap 
score of 1 since it was edited in one of the working sets.  

Proximity outputs a score for each pair of developers 
indicating the strength of their coordination need. A score 
> 0 indicates a coordination need, and higher scores de-
note stronger coordination needs. Scores are scaled by the 
number of overlapping events to place greater weight on 
complex tasks that likely require coordination.  

3.2.1 Evaluation of Proximity 

3.2.1.1 Efficiency: Accuracy 
To evaluate the accuracy of our Proximity scores, we cal-
culated Proximity scores and CCRs for each pair of de-
velopers in each release. We performed a point-biserial 
correlation with Proximity scores and a binary vector de-
noting the presence of a CCR. Higher values of proximity 
correlate with the likelihood of a CCR (rho=0.55, p<0.001). 
We performed a Spearman correlation between the count 
of CCRs for each developer pair and the proximity scores 
(rho=0.69, p<0.001). We used a Spearman correlation be-
cause the data was not normally distributed. Both tests 
were statistically significant and showed strong positive 
correlations (results in Table 2).  

We observed high levels of precision and recall when 
comparing against the CCRs (Table 3). Moreover, a thor-
ough examination of the supposed false positives and 
false negatives revealed that Proximity can be even more 
accurate than CCRs. For example, we saw many cases 
where CCRs were not detected simply because work by 
one or both of the developers was never committed to the 
code base. However, Mylyn context events prove that 
those developers were, for some time, engaged in devel-
opment on the very same artifacts - the epitome of a co-
ordination need. In open source projects, where commit 

 
Fig. 2. Proximity Algorithm Example.  

TABLE 2 
PROXIMITY VS CCRS CORRELATIONS 

Test p-value Rho 
Spearman 2.4e-11 0.69 

Point-biserial 4.9e-07 0.55 

TABLE 3 
PROXIMITY VS CCRS PRECISION/RECALL 

Precision Recall 
42/58 = 0.72 42/46 = 0.91 
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access is limited to only a select few developers, Proximi-
ty produces coordination recommendations between the 
actual code contributors rather than incorrectly detecting 
coordination needs simply because a user committed 
someone else’s code contribution. 

We also observed cases where CCRs were identified 
due to a technical dependency between two semantically 
unrelated tasks because they involved files that had been 
historically changed together by other developers often 
enough to cause a logical dependency to be established.  

Additionally, the context events used in Proximity 
provide more granular information than is available from 
commit data. The Mylyn context data identifies the file 
name, class name and even the name of the class element 
(method or attribute) being consulted or edited. This al-
lows Proximity to determine coordination needs more 
granularly, for example, to see whether two developers 
were working on the same area of code within a large file.  

3.2.1.2 Timeliness 
To evaluate Proximity’s timeliness, we compared the time 
Proximity scores appear with the time CCRs are estab-
lished. Proximity scores are calculated using events gar-
nered instantaneously; while, CCRs are established after 
changes are committed. We obtained the date when the 
first contribution to the Proximity score occurred by con-
sidering the timestamp for the first overlapping event for 
a developer pair recorded in the Mylyn context data. Sim-
ilarly, we considered the time the CCRs are first identified 
by considering the timestamp when the first technical 
dependency appears in the commits for a developer pair. 
Parallel work intervals last 102 days on average. The first 
evidence of Proximity is detected on average 14.2 days 
after parallel work begins. The first CCR detection hap-
pens 60.7 days on average after the beginning of concur-
rent work (a delay of 46.5 days). Fig. 3 shows the proba-
bility density functions illustrating the distribution of 
days before Proximity is detected, days before CCRs are 
detected, and, for reference, task duration in days over 
the entire dataset. It illustrates that a coordination need is 
likely to be detected via Proximity much earlier than via 
CCRs. 

In answering RQ1: Timely coordination recommenda-
tions are possible with Proximity, which obtains develop-
er actions as they occur through existing IDE monitoring 
facilities and analyzes the overlap of those actions to de-
tect a comprehensive set of coordination needs.  

3.2.2 Limitations of Proximity 
While Proximity was able to detect coordination needs 
between pairs of developers in a timely way, it was not 
efficient. Developers often work on many tasks in paral-
lel, so being aware of only which other developers they 
need to coordinate with does not provide enough context 
to allow for focused and efficient coordination. Develop-
ers are left to decide which of their tasks or code changes 
require coordination. The techniques we developed in 
answering RQ2 and RQ3 intend to address this limitation.  

3.3 Efficient Detection of Coordination Needs 
RQ2: Can a smaller set of more efficient coordination recom-

mendations be identified? 
We interviewed developers and performed an in-

depth analysis of coordination needs on the Mylyn pro-
ject to understand how we could make our recommenda-
tions more efficient. After this deep exploration, we de-
veloped a technique, ProximityML, which automatically 
detects coordination needs efficiently. 

3.3.1 Developer Interviews 
We conducted semi-structured interviews with six devel-
opers of the Mylyn project (one junior and five senior 
developers). The goal was to understand their perspec-
tives on coordination recommendations. The interviews 
lasted 45 minutes on average. We describe the two main 
recommendations that emerged from these interviews. 

3.3.1.1 Identify Coordination Needs for Pairs of Tasks 
We asked the interviewees: “Would a tool that recommended 
who to coordinate with be useful?” Many of the senior 
Mylyn developers stated that coordination recommenda-
tions would be most useful at the task level as tasks are 
their logical unit of work. One developer stated “if there 
was a lot more, than just talk to Joe, if it said like a new defect 
was filed or look at this related bug and Joe is the assignee, then 
I would consider it.” Receiving recommendations at the 
task level would allow for efficient coordination since 
there would be appropriate context around the recom-
mendation. The developers described many issues relat-
ing to a lack of awareness of how their development tasks 
affect other tasks, how other tasks affect their own tasks, 
and who is responsible for tasks. They stated that this 
lack of awareness often resulted in duplication of work or 
unmanaged tasks. Coordination recommendations at the 
task level could help to mitigate these issues. Ko et al. [45] 
also found that developers are more interested in aware-
ness about what information was relevant to their tasks. 

3.3.1.2 Minimize the Number of Recommendations 
To better understand the types of recommendations that 
would be most useful to developers we asked: How would 
you decide if you would act on coordination needs? What type 
of time window for recommending coordination needs do you 
think would be useful and why? The interviewees stated that 
the number of recommendations must be small. Too 
many recommendations would overwhelm the develop-

 
Fig. 3. Proximity Algorithm Timeliness relative to that of CCRs.  
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er. This could affect the efficiency of the developers and 
cause them to ignore all recommendations. This is in line 
with previous research on the risk of information over-
load in awareness tools [41], [69]. 

The developers noted that not all dependencies be-
tween tasks require coordination. For example, when 
looking at a potential coordination need, one developer 
stated, “[the two tasks] are both working on the same area 
of code, but I don’t see a direct need for coordination.” 
Another developer focused on the simplicity of some 
tasks regardless of their technical dependencies saying on 
simple tasks, “I wouldn’t consider coordinating anything 
with anyone, I would just go in fix it, close the bug and be 
done with it.” The coordination recommendations should 
be limited to those that matter to the developers. 

We used these two recommendations – identify coor-
dination needs between pairs of tasks and minimize the 
number of recommendations – to explore ways of provid-
ing more efficient coordination recommendations. We 
adjusted Proximity to identify coordination needs be-
tween pairs of tasks instead of developers to provide bet-
ter-scoped awareness (Section 3.3.2). We analyzed coor-
dination needs to identify ways to minimize the number 
of recommendations (Section 3.3.3). Section 3.4 decribes 
the resulting technique, ProximityML, and its evaluation. 

3.3.2 Modifying Proximity to Identify Coordination 
Needs between Pairs of Tasks 

To detect coordination needs between pairs of tasks, we 
applied Proximity at the individual task level rather than 
at the developer level. This was done by aggregating the 
captured developer actions at the individual task level. 
Since the events were aggregated at the task level, a Prox-
imity scores indicate the existence of and strength of a 
coordination need between pairs of tasks.  

We calculated Proximity scores between tasks in the 
Mylyn release 3.2 which had 245 tasks (29,890 task pairs). 
We found 2,209 task pairs with Proximity scores>0, and 
226 of the 245 tasks (>92%) were found to require coordi-

nation with at least one other task. This led us to believe 
that Proximity, when computed between pairs of tasks as 
opposed to pairs of developers, signaled too many coor-
dination reccomendations. We, therefore, considered 
ways to minimize the number of recommendations. 

3.3.3 In-depth Study of Mylyn Critical Coordination 
Needs to Minimize the Number of 
Recommendations 

We examined ways to focus our recommendations on 
those that the team would act on – the more critical coor-
dination needs. When considering any technical depend-
ency between a pair of tasks as a coordination need, we 
risk identifying even very trivial dependencies that do 
not need coordination. We, therefore, performed a thor-
ough analysis of task records to identify when more criti-
cal coordination needs occur using content analysis and 
manual coding (Section 3.3.3.1). We define our conceptu-
alization of a critical coordination need and evaluate the 
criticality of the coordination needs experienced by the 
team in Section 3.3.3.2. Finally, we performed a thorough 
analysis of these more critical coordination needs to iden-
tify additional properties that characterize those coordi-
nation needs (Section 3.3.3.3). We used these properties in 
the development of ProximityML, which automatically 
identifies these more critical coordination needs.  

3.3.3.1 Finding Critical Coordination Needs 
Experienced by Team 

A reliable way of capturing coordination needs between 
tasks is not recorded in existing software repositories. 
Bugzilla, for example, allows developers to indicate de-
pendencies between tasks, but this may not capture all 
coordination needs or may capture trivial dependencies 
that do not require coordination. In addition, a recent 
study by Aranda and Venolia [1] found repositories like 
Bugzilla often provide incomplete information because of 
omission, oversight, or project conventions.  

To better understand the more critical coordination 

TABLE 4 
MANUAL CODING GUIDELINES 

NO COORDINATION NEED      CRITICAL COORDINATION NEED 

Characteristic No Somewhat Very 
Task Discussion Similarity: 
Task discussions often include 
details of the task and any 
problems that have been en-
countered. We asked the cod-
ers to rate the similarity of the 
discussions occurring on each 
task.  

The discussions of 
the two tasks do 
not share any of 
the same concepts. 

The two task discussions refer to com-
mon aspects of the system from the per-
spective of EITHER the user (system 
features) or the system architecture (spe-
cific reference to code, modules, etc.)     
OR    The two task discussions indicate 
that the problems may be occurring in 
the same area of the code. 

The two task discussions refer to 
common aspects of the system from 
the perspective of BOTH the user 
(system features) and the system 
architecture (specific reference to 
code, modules, etc.)    OR    The two 
task discussions refer to the same or 
similar problems. 

Evidence of Task Conflict: 
Task conflict is the epitome of 
a coordination need and often 
indications of conflicts exist in 
the task discussions (explicitly 
or implicitly). We asked the 
coders to look for such evi-
dence. 

The discussion in 
the two tasks does 
not seem to indi-
cate that the two 
tasks were con-
flicting in any 
way. 

The discussion in one of the tasks does 
not explicitly mention a conflict between 
the two tasks. However, based on re-
viewing the timing of the tasks and their 
discussions, it seems there may have 
been a conflict between the two tasks that 
the team may not have been not aware of 
at the time. 

It is apparent based on the timing of 
the tasks and the discussion thread 
that there was a conflict between the 
pair of tasks. The conflict is clearly 
discussed and may or may not explic-
itly link the two tasks by ID. 
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needs experienced by the team, we turned to content 
analysis and manual coding techniques [7] that are well 
established in other research fields [48] and have also re-
cently been used in Software Engineering [54]. To per-
form the manual coding, we developed a coding scheme 
with detailed task pair scoring criteria. We used a data 
driven method and reviewed several task pairs in which 
the need for coordination is explicitly discussed within 
the task reports. By analyzing these task pairs, we estab-
lished four characteristics that appeared within the task 
reports indicating a coordination need. These were: (1) 
task summary similarity, (2) task discussion similarity, (3) 
evidence of task conflict, and (4) artifact overlap.  

We obtained practical validation of these four charac-
teristics through interviews with the Mylyn developers. 
Without indicating our identified characteristics, we 
asked three senior developers what they would look for 
within task reports that would indicate a need for coordi-
nation that they would act on All three developers stated 
they would review the discussion threads on the task re-
ports looking for references to similar features or prob-
lems, similar areas of the code, or conflicts occurring be-
tween the tasks. Two of the developers did not think the 
task summary would provide enough information since 
the summary is often incomplete or inaccurate. None of 
the developers suggested looking at overlapping artifacts 
between the two tasks. Artifact overlap suffers from the 
same problem that we are trying to solve, that is, it con-
siders coordination needs between too many task pairs. 

We, therefore, removed two task characteristics and es-
tablished the two characteristics – task discussion similar-
ity and evidence of task conflict – that allow for the iden-
tification of the more critical coordination needs between 
tasks. We put together a coding scheme that provided 
guidance on how each task pair should be rated for the 
two characteristics. The guidelines, which rate each char-
acteristic on a three-point scale, are shown in Table 4.  

To perform the content analysis, we used the relevant 
task information collected from the Bugzilla change re-
quests for releases 3.1 and 3.2, the two releases in our da-
taset with the largest number of tasks. Each task was 
summarized in an easily digestible format, which allowed 
for side-by-side comparison. 

To prepare the set of task pairs, we identified each task 
pair as either a potential critical coordination need or not. 
We considered a pair of tasks as a potential critical coor-
dination need if the pair met one or more of the following 
criteria: the tasks had a high Proximity score where high 
is greater than mean + (2 × stddev) of Proximity scores 
over all pairs; the tasks were marked as dependent or 
duplicate within their Bugzilla records; the tasks were 
cross-referenced in their discussions; the tasks were de-
pendent on the same task (the team often uses this rela-
tionship to track subtasks of a large task); or the tasks 
were marked with the same tag. Once each task pair was 
designated as either a potential coordination need or not, 
we used a random number generator to select pairs from 

each set. We selected 155 potential critical coordination 
needs and 195 that were likely not coordination needs for 
a total set of 350 pairs. The number of pairs was based on 
the time availability of the coders. 

We used two external people familiar with software 
development practices to perform the manual coding. To 
ensure higher confidence, the two coders performed the 
content analysis and coding independently. After each of 
the coders completed 12 task pairs, the two coders com-
pared their findings and discussed differences as a way to 
calibrate amongst each other. Another comparison and 
calibration round was carried out after 100 task pairs. We 
checked intercoder reliability with Krippendorff’s alpha 
measure [48]. We obtained a Krippendorff score of .91 for 
task discussion similarity and .87 for evidence of task con-
flict, which are indicative of high intercoder reliability. 

We considered any task pair that was rated positively 
(somewhat or very on our scale in Table 4) for either char-
acteristic as a more critical coordination need experienced 
by the team. We removed the task pairs for which the 
coders had a conflicting outcome leaving us with 313 task 
pairs. These task pairs serve as our ground truth, which 
we use for evaluation and analysis purposes in the rest of 
the paper. In this ground truth, 32 task pairs were identi-
fied as more critical coordination needs by the coders. 

3.3.3.2 Defining Measures of Criticality  
With a set of coordination needs that matter to the devel-
opers – the more critical coordination needs – we ex-
plored a way to measure criticality to use for the evalua-
tion of our techniques. While previous research has pro-
posed ways to rank the most important coordination 
needs at the developer level by considering the number of 
task dependencies involved in those coordination needs 
[28], [51], no prior research has examined the criticality of 
coordination needs at the task level. We considered two 
measures to evaluate the criticality of coordination needs 
at the task level: task duration and change size.  

First, fulfilling coordination needs has been shown to 
reduce task resolution time [12], therefore we examined 
the durations of the tasks involved in the coordination 
needs. We computed task duration using the Mylyn con-
text events. Since these events detail exactly when devel-
opers begin and complete their consultation and modifi-
cation of artifacts for each task, we can compute the actual 
time developers spent working on a task. Long-duration 
tasks with coordination needs are likely the ones that can 
benefit the most from the productivity benefits provided 
by increased awareness and focused coordination. 

Second, since the Mylyn team noted that they do not 
coordinate on simple or trivial tasks, we examined the 
complexity of the tasks involved in coordination needs. 
Cataldo et al. found that change size, measured as the 
number of code files modified for a task, is an accurate 
measure of task complexity [12]. We, therefore, adopted 
change size as our metric of task complexity.  
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Change size and task duration are moderately corre-
lated in our data set (Spearman rho = 0.58, p < 2.2e-16). 
Task complexity is one of many factors that may influence 
a task’s duration. Considering complexity with task dura-
tion helps us to avoid a bias towards tasks whose long 
duration may be due to some other factors that would not 
benefit as much from awareness and coordination, like 
low priority or inexperienced developers.  

To examine whether the 32 coordination needs identi-
fied by the coders are indeed critical using our measures, 
we analyzed their task duration and change size. The 
tasks have significant differences in both measures (re-
sults in Table 5). We therefore consider task duration and 
change size as our measures of criticality henceforth.  

3.3.3.3 Understanding What Distinguishes Critical 
Coordination Needs 

To identify techniques that could minimize recommenda-
tions and focus on the more critical coordination needs, 
we thoroughly examined the critical coordination needs 
experienced by the team identified through manual cod-
ing. We examined task pair properties of these critical 
coordination needs and compared them to the other 
manually coded task pairs to identify properties that can 
distinguish the more critical coordination needs. The task 
properties we examined include (1) architecture-related 
properties available from the project’s change request 
database such as: the affected product, component, plat-
form and operating system (OS) of the task and (2) modu-
larity characteristics of the software artifacts involved in 

each task.  
We examined the architecture-related properties by 

checking if the tasks involved in each task pair shared the 
same product, component, platform, or OS. We found 
that the more critical coordination needs are more likely 
to share the same component, platform and OS when 
compared to all other task pairs (results in Table 6).  

To consider the modularity characteristics of the soft-
ware artifacts involved in each task, we derived a Design 
Rule Hierarchy (DRH) [70] of the Mylyn code base for the 
two releases of interest. A DRH assigns software artifacts 
to modules based on technical dependencies within the 
code. It clusters modules into “layers” where each layer 
depends only on the layers above. The DRH modules and 
layers allow us to identify potential coordination needs 
by considering three categories of work: 
1. Same Layer Same Module (SLSM) pairs: Two tasks 

include edits to artifacts that have a dependency and 
are in the same module. These represent potential 
coordination needs. 

2. Across Layer (AL) pairs: Two tasks include edits to 
artifacts that have a dependency and are in different 
modules and different layers. These represent poten-
tial coordination needs. 

3. Same Layer Different Module (SLDM) pairs: Two 
tasks include edits to artifacts that are in different 
modules of the same layer. By definition, there are 
no dependencies between these artifacts, so these are 
not coordination needs. 

For illustration purposes, Fig. 4 shows a hypothetical 
DRH. The large thick-bordered boxes represent the layers 
while the boxes within the layers represent modules. The 
X’s show the dependencies between the modules. Tasks 1 
and 2 are an SLSM pair since they are operating on the 
same module. Tasks 2 and 3 are a SLDM pair since they 

TABLE 5 
CRITICALITY: MANUAL CODING RESULTS 

 Coordination 
Needs 

Other Task  
Pairs 

Mann-Whitney  
Test 

Num. Tasks 152 93 -- 
Change Size 8.2 files 5.3 files U=9398; Z = 4.5;  

p < 0.001; r = 0.25 
Task Duration 26.8 days 19.9 days U=8603; Z = 3.1; 

p=0.002; r = 0.18 

 
Fig. 4. Design Rule Hierarchy Example [70].  

TABLE 6 
TASK PROPERTY COMPARISON 

Property Coordination Needs Other Task Pairs Chi-Squared Test 
Task Pair Count 32 281 -- 

# with Proximity > 0 29 99 x2 = 34.2;  p < 0.001; ϕ = 0.34 
# with same Product 26 228 x2 = 0; p = 1; ϕ = 0.001 

# with same Component 23 65 x2 = 29.5; p < 0.001; ϕ = 0.32  
# with same Platform 27 146 x2 = 10.9;  p < 0.001; ϕ = 0.20 

# with Same OS 21 117 x2 = 5.8;  p = 0.02; ϕ = 0.15 
   Mann-Whitney Test 

Mean SLSM 5.7 0.80 U = 7100.5; Z = 6.9; p < 0.001; r = 0.39 
Mean SLDM 6.94 3.22 U = 1756.5;  Z = 0.54; p = 0.29; r = 0.03 

Mean AL 7.3 0.93 U = 7247.5;  Z = 6.5; p < 0.001; r = 0.37 
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are operating on the same layer but on different modules. 
Tasks 1 and 3 are an AL pair since they are operating on 
modules in different layers with a dependency.  

The Mylyn DRH consists of 11 layers and 671 modules 
in release 3.1 and 11 layers and 786 modules in release 3.2. 
We identified the associated DRH layer and module for 
each java artifact edited for each task and calculated the 
number of SLSMs, SLDMs and ALs for each task pair. 

A Mann-Whitney test of difference in distribution 
shows that there is a statistically significant higher num-
ber of SLSMs and ALs in the critical coordination needs, 
but there is not a significant difference for the number of 
SLDMs (results shown in Table 6). This is consistent with 
the results by Wong et al. [70] that found developers en-
gaged in SLSM and AL pairs coordinate significantly 
more than those engaged in SLDM pairs. 

In addition to Proximity scores, we determined the fol-
lowing set of task pair properties that differentiate critical 
coordination needs from all other task pairs: 

• Within same component 
• Within same platform 
• Within same operating system 
• Number of SLSMs 
• Number of ALs 

3.3.4 Automatically Detecting Critical Coordination 
Needs: ProximityML 

We developed ProximityML, which considers Proximity 
scores and these properties to automatically detect critical 
coordination needs. It identifies coordination needs be-
tween tasks and uses Support Vector Machine (SVM) 
classification techniques [16] to minimize the recommen-
dations to the more critical coordination needs. The name, 
ProximityML, means Proximity + machine learning. 

An SVM is a supervised machine learning classifica-
tion algorithm. Given a training set, it produces a model 
that can be used to predict the classification of unknown 
instances given a set of known parameters of those un-
known instances [16]. We used Proximity scores and the 
other properties that were found to distinguish critical 
coordination needs in Section 3.3.3.3 as the known pa-
rameters for each task pair. SVM was selected because of 
its accuracy in general and its tolerance to noise and irrel-
evant, redundant and interdependent attributes [46]. 

In our previous publication, we used the k-nearest 
neighbor algorithm [17] due to the simplicity of imple-
menting the algorithm and the exploratory nature of that 
study. We also previously examined the DRH properties 
differently, considering the number of overlapping layers 

and modules between task pairs. Here we report from an 
improved analysis that considers the number of SLSMs 
and ALs as a much better predictor of coordination needs 
since these types of overlaps are directly related to de-
pendencies in the code base. The results we achieved with 
SVM far surpass those achieved using the k-nearest 
neighbor algorithm in our previous publication where we 
achieved high recall but a precision score of 0.09 [6]. 

We used LIBSVM [14] as our implementation of the 
SVM algorithm. LIBSVM is a java software package that 
provides support vector classification. It performs data 
scaling, parameter selection and model creation automat-
ically. It ensures the data scaling is consistent across all 
data sets based on the range of each parameter in each 
set. For example, if a parameter in the training set had a 
range of [-10, +10] and the same parameter had a range of 
[-9, +12] in the test set, that parameter would be scaled to 
a range of [-1, +1] in the training set and to a range of [-
0.9, +1.2] in the test set. To perform parameter selection, 
the LIBSVM library uses the RBF (radial basis function) 
kernel. It estimates the accuracy of each combination of 
parameters through cross validation (CV). The parameter 
combination with the highest CV score is selected. 

3.3.4.1 Evaluation of ProximityML 
We examined the accuracy, criticality, reliability and 
timeliness of the ProximityML recommendations. We 
used the dataset that had been manually coded through 
content analysis as our ground truth (in Section 3.3.3.1) to 
train and evaluate the machine learning algorithm. This 
set includes 313 total task pairs with 32 coded as critical 
coordination needs. The task pairs from release 3.1 (200 
task pairs with 18 critical coordination needs) were used 
as a training set, while the task pairs from release 3.2 (113 
task pairs with 14 critical coordination needs) were used 
as the evaluation set. Each parameter in our training set 
was linearly scaled to the range [-1, +1]. The parameters 
in the unknown and evaluation sets were scaled accord-
ingly based on their range compared to the training set. 

3.3.4.1.1 Efficiency: Accuracy 
ProximityML significantly reduced the number of coor-
dination recommendations compared to Proximity alone. 
Proximity produced 2,209 coordination recommenda-
tions, whereas ProximityML only 394, a reduction of 82%.  

TABLE 8 
CRITICALITY: PROXIMITYML COORDINATION RECOMMENDATIONS  

 Coordination 
Recommendations 

Other 
Task Pairs 

Mann-Whitney  
Test 

Tasks (count) 152 93 -- 
Change Size 5.6 files 4.0 files U = 22709; Z = 4.8;  

p < 0.001; r = 0.31 
Task Duration 12.16 days 2.3 days U = 9666; Z = 7.7; 

p < 0.001; r = 0.49 

TABLE 7 
ACCURACY: GROUND TRUTH CRITICAL COORDINATION NEEDS VS 

COORDINATION RECOMMENDATIONS 

 Precision Recall F1-score 
Proximity 0.33 1 0.5 

ProximityML 0.77 0.71 0.74 
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We compared the Proximity and ProximityML coordi-
nation recommendations with the ground truth critical 
coordination needs established through content analysis 
and manual coding. The differences in precision, recall, 
and f1-score of Proximity and ProximityML are shown in 
Table 7 for the 113 task pairs in our evaluation set. Prox-
imityML had both high precision (low false positives) and 
recall (low false negatives) resulting in high overall accu-
racy, as shown by the f1-score. While a small number of 
coordination needs may be missed when employing Prox-
imityML, it does not risk introducing a large number of 
false positives. On the other hand, Proximity has no false 
negatives, but a high number of false positives. Overall, 
ProximityML is much more accurate than Proximity. 

A Receiver Operating Characteristic (ROC) curve plots 
the true positive rate against the false positive rate for a 
binary classifier. The ROC curve shown in Fig. 5 illus-
trates the good performance of our classifier with the Ar-
ea Under the Curve (AUC) equal to 0.8544. To prevent 
over fitting, we performed a grid search on C and γ using 
10-fold cross-validation and obtained an average cross-
validation (CV) rate of 92.0 with the best c=211 and γ=2-7. 
Across the 10 folds, we saw little variance in our results 
with the lowest accuracy at 85% and the highest accuracy 
at 100% (standard deviation was 4.6). This high CV rate 
across each fold indicates we have a stable model that is 
able to accurately predict different samples; thus, we have 
avoided over fitting our model.  

3.3.4.1.2 Efficiency: Criticality 
We examined the ProximityML coordination recommen-
dations using our two measures of criticality described in 
Section 3.3.3.2: change size and task duration. We see a 
strong, significant difference in both change size and task 
duration between the ProximityML coordination recom-
mendations and all other tasks pairs (Table 8).  

In addition, Mann-Whitney tests show both the change 
size and task durations of the tasks involved in the coor-
dination recommendations are significantly different 
when comparing the ProximityML and Proximity meth-
ods (Table 9). The ProximityML coordination recommen-
dation tasks’ durations are significantly longer and 
change size is significantly bigger. This suggests that the 
properties used to enhance the Proximity metric and our 
machine learning techniques are identifying the more 
critical coordination needs. 

In answering RQ2: We conclude that, by using addi-
tional task properties, ProximityML, was able to identify 
efficient coordination recommendations by identifying 
coordination needs between pairs of tasks and narrowing 
the set of identified coordination needs. Of course, we can 
not conclude that we have identified all of or the most 
critical coordination needs. However, we have shown 
that ProximityML can identify a subset of the more criti-
cal coordination needs with a low number of false posi-
tives and false negatives. 

3.4 Timely and Efficient Detection of Coordination 
Needs 

RQ3: Can this smaller set of more efficient coordination rec-

ommendations be identified in a timely way?  
To answer this research question, we examined the (1) 

reliability of ProximityML recommendations over time 
and (2) timeliness of the recommendations to ensure that 
the addition of machine learning and additional proper-
ties did not affect the timeliness provided by Proximity.  

We ran our machine learning techniques on our time-
ordered data, which included each Mylyn context event 
and Bugzilla update event (task creation and task modifi-
cations). We streamed the data, one event at a time, to 
replicate the actual progression of development work and 
live collection of the data. We ran the machine learning 
algorithms to calculate coordination recommendations 
after every event. We performed this exercise on Mylyn 
release 3.2 data. The machine learner was pre-trained 
with the training set. Since data was streamed one event 
at a time, the machine learner initially had no knowledge 
of any data beyond the training set. This allowed us to 
evaluate the start-up behavior of ProximityML.  

3.4.1 Reliability 
To evaluate its reliability, we recomputed the Proximi-
tyML coordination recommendations after each event. 
Reliability is important because a tool that continuously 
changes its recommendations would not be trusted. Mur-
phy and Murphy-Hill [58] found that users’ trust imme-
diately drops when a tool produces an irrelevant recom-
mendation. A recommendation must only be made once 
it is firmly established as a critical coordination need. We 
would not expect one developer action to drastically alter 
the predicted coordination recommendations. 

After each event, we examined the identified Proximi-
tyML coordination needs. At each point in time, we 
looked to see how many of the coordination recommen-
dations were not included in the final set of ProximityML 
recommendations (those detected after all events have 

 
Fig. 5. ROC Curve shows ProximityML is able to accurately identify 
more critical coordination needs. 

TABLE 9 
COORDINATION RECOMMENDATIONS CRITICALITY 

 Proximity  ProximityML Mann-Whitney Test 
Change Size 

4.3 files 5.6 files 
U = 8976; Z = 6.9; 
p < 0.001; r = 0.56 

Task Duration 
9.1 days 12.16 days 

U = 7829; Z = 4.4; 
p < 0.001; r = 0.35 
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been streamed). We consider any coordination recom-
mendation that does not appear in the final set of Proxim-
ityML recommendations a false positive for the purposes 
of this exercise. Fig. 6 shows the number of coordination 
recommendations as well as false positives that have been 
identified after each new event is introduced over the 
duration of the entire dataset. We observe that there is a 
small period of unreliability during the early stage of the 
data streaming where our technique produces many rec-
ommendations due to the limited amount of data availa-
ble. After a brief initialization period, the results are relia-
ble with a minimal number of false positives. 

3.4.2 Timeliness 
To examine the timeliness of the ProximityML coordina-
tion recommendations, we identified the timestamp when 
ProximityML first identified each of the 394 ProximityML 
coordination recommendations. Ideally, we could com-
pare when ProximityML identified each of these coordi-
nation recommendations with when the team first identi-
fied the corresponding coordination need. However, we 
only have evidence of when 19 of these coordination 
needs were recognized by the team through the depend-
ency data available in the Bugzilla reports. We identified 
dependencies within Bugzilla reports in three ways (1) 
the explicitly marked “depends on/blocks” relationship, 
(2) the “duplicate” relationship between tasks, and (3) the 
task cross-referencing relationship. We examined these 19 
coordination needs that were both identified by Proximi-
tyML and in their Bugzilla reports. 

Sixteen of these 19 recognized coordination needs were 
known dependencies at the time of the second task crea-
tion. These tasks represent either task/subtask relation-
ships or offshoot tasks where some new task is created 
based on something that was discovered during the de-
velopment of the first task. In these cases, we cannot ex-
pect ProximityML to perform better than the develop-
ment team. Still, in all but one case, ProximityML auto-
matically identifies these recognized coordination needs 
promptly after the creation of the second task: as shown 
in Fig. 7, most are identified on the same day or the day 
after the second task is created. The team did not identify 
the remaining three recognized coordination needs until 
sometime later during the development of the second 
task. ProximityML identifies two of these recognized co-
ordination needs on the same day as the team and one 

more than a month before the team.  
While this represents only a small set of recognized 

coordination needs, it shows the promise of ProximityML 
to automatically provide timely awareness to the devel-
opment team. Since it provides both accurate detection 
and early recognition, ProximityML delivers recommen-
dations that are actionable. This is especially important 
when those coordination needs are not immediately evi-
dent to the team members. Since we have no direct way 
to compare the time of detection for the remaining 375 
unrecognized coordination needs, we instead analyzed 
the timeliness of the detection of CRs relative to the start 
of overlapping work. The start of overlapping work was 
calculated by considering the timestamp of overlapping 
Mylyn context events for each coordination need. Proxim-
ityML coordination recommendations are identified on 
average 3.6 days after the start of overlapping work with 
the median detection on the same day as the start of over-
lapping work. This provides actionable recommendations 
considering the average development duration for tasks 
in this data set is nearly 25 days. Fig. 8 illustrates the time-
liness with probability density functions showing that 
ProximityML typically produces coordination recom-
mendations when overlapping work starts or shortly af-
ter. In some cases, ProximityML even produced coordina-
tion recommendations just before the start of overlapping 
work due to the inclusion of the other task properties 
triggering the recommendation. We believe that this early 
detection makes the ProximityML coordination recom-
mendations actionable. 

In answering RQ3: ProximityML produces a smaller 
set of coordination recommendations as the coordination 
needs emerge making ProximityML timely and efficient. 

4 DISCUSSION 
In this paper, we described our exploration to provide 
timely and efficient coordination recommendations in 
software teams. Our work started from the premise that 
IDE logging facilities provide a rich set of data that can 
support automatic detection of coordination needs. Tools, 
such as Mylyn, Tasktop Dev and Cubeon, log the actions 
developers take as they interact in their IDE. Since IDE 
monitoring captures developer actions as they occur it 
can be used for timely identification of coordination 
needs. We studied the development of the Mylyn project 

 
Fig. 7. Coordination recommendation timeliness for set of 19 Proximi-
tyML coordination recommendations that are recognized by the team in 
Bugzilla. 

 
Fig. 6. Evolution of ProximityML coordination recommendations over 
time. 
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itself, since their developers consistently utilize the Mylyn 
plugin and, thus, the dataset of captured developer ac-
tions is large. We used this data to develop and validate 
our techniques. Our first technique, Proximity, consid-
ered the overlap between the artifacts consulted and 
modified by developers to identify timely coordination 
needs. Proximity provided timely and accurate recogni-
tion of coordination needs between pairs of developers. 
To provide more efficient recommendations, we also ex-
plored ways to detect coordination needs between pairs 
of tasks, a level of analysis more granular than the devel-
oper level. To avoid information overload and a high 
number of false positives, we leveraged a set of task 
properties that distinguished the more critical coordina-
tion needs. We used machine learning on Proximity 
scores and those task properties and to filter recommen-
dations to the more critical coordination needs, providing 
a smaller number of critical coordination recommenda-
tions. The final outcome of this exploration is our tech-
nique, ProximityML, which uses task properties for time-
ly and efficient coordination needs recommendation. 

4.1 Using ProximityML in Other Projects 
ProximityML can be used in other projects, provided they 
utilize IDE logging facilities, by considering each of its 
components: (1) a ground truth of critical coordination 
needs, (2) task properties that distinguish critical coordi-
nation needs, and (3) an SVM machine learning algo-
rithm.  

Develop Ground Truth: First, a set of task pairs with 
known critical coordination needs and a set of task pairs 
that do not require coordination must be identified. These 
can be established using the manual coding guidelines we 
developed in Section 3.3.3.1 or through consultation with 
the development team. The ground truth will be used to 
analyze task properties and train the machine learner.  

Identify Relevant Task Properties: A list of properties 
that, in addition to Proximity scores, can distinguish criti-
cal coordination needs must be identified for the project. 
While it is likely that the properties described in our 
analysis of the Mylyn project data will also apply to other 
projects, they may not be universally applicable due to 
specific project processes or conventions. A list of project-

specific task properties can be identified by comparing 
the ground truth critical coordination needs with task 
pairs that do not require coordination as described in Sec-
tion 3.3.3.3 for the Mylyn project. A statistical evaluation 
can support this discovery processs, and help identify 
properties that differ significantly for the known critical 
coordination needs.  

SVM machine learning algorithm: With the ground 
truth and task properties, the technique described in Sec-
tion 3.3.4 can be applied. The input to the SVM machine 
learner is the training set (ground truth) where each in-
stance of the training set is classified (critical coordination 
need or not) and described by the selected properties. 
After training the machine learner, unknown task pairs 
can be classified by providing the values of the selected 
properties. When task pairs that are classified as critical 
coordination needs, coordination recommendations can 
be made to the developers assigned to those tasks. 

4.2 Implications for Research 
Our study has several important implications for software 
engineering research. 

Implication #1: IDE logging data holds significant prom-
ise for software engineering researchers. We found that the 
data that can be obtained by monitoring the actions de-
velopers take within their IDE can be useful for coordina-
tion awareness since the data is so timely and provides 
rich information about the context of a developer’s activi-
ties. While there are some other examples of software 
engineering studies that have leveraged this data [32], 
[36], [43], [59], IDE logging facilities have so far received 
limited attention in research. However, the data they pro-
vide has significant potential, and researchers can contin-
ue to study ways to exploit this valuable source of data.  

Implication #2: Awareness of tasks leads to forms of implicit 
coordination. An important finding emerging from our inter-
views was how the developers described they would attend 
to coordination needs. Communication has been found to be 
the main form of coordination in software teams [47]. How-
ever, all of the senior developers indicated that, upon receiv-
ing a recommendation of a coordination need between tasks, 
they would simply review the related task to obtain details 
of how that task impacts their own work as a first step 
rather than communicating with the assignee of the other 
task. This review would result in awareness of the related 
task. They would avoid interrupting the developer as-
signed to the other task, even if it meant delaying their 
own task. One developer stated “just by looking at the bug 
report too, you can rule out your potential need to go interrupt 
that person or figure out, alright I’ll just hold off my develop-
ment until they are done or whatever the case may be, instead of 
actually going and interrupting that person. So you can glean a 
lot of information from that report just by being aware of the 
similar reports you should be looking at.” Reviewing the ap-
propriate related tasks could be seen as a form of 
stigmergic coordination [9], [29] on the Mylyn project 
since the team encourages documentation of all task de-
tails within the task report. We discuss how a tool based 
on our technique can support implicit and stigmergic co-
ordination in Section 4.3.  

 
Fig. 8. ProximityML Timeliness Probability Density.  
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Implication #3: Effects of implicit coordination in software 
engineering need further study. Many existing empirical 
studies on coordination examine explicit (and easily 
traceable) means of communication such as email, chat or 
meetings. We believe it is equally important to take into 
account other means of coordination. For example, stud-
ies that use measures for Socio-Technical Congruence 
(STC) [12], [52] could be improved by also considering 
metrics for awareness about tasks as sufficient coordina-
tion to fulfill a coordination need. Future studies should 
examine this possibility by considering either tasks that 
developers are watching or have subscribed to or tasks 
that have been reviewed by developers, which can be 
obtained through IDE monitoring facilities when devel-
opers view the task report within the IDE. Further infor-
mation on developer awareness of tasks or of other de-
velopers can be garnered from “social” features that have 
recently been introduced in software repositories and 
development communities like GitHub [18]. 

4.3 Implications for Tool Design 
Our work shows the potential of a support tool for devel-
opers that automatically recognizes coordination needs 
between pairs of tasks as they emerge by leveraging IDE 
logging. Such a tool could be used to automate task de-
pendency management, provide awareness both within 
and across teams, and support coordination among de-
velopers. The envisioned tool could incrementally and 
unobtrusively learn from coordination actions taken by 
the team (discussions, cross-referencing of task pairs, etc.) 
to continuously improve its accuracy. It should have a 
large pool of potential parameters and perform parameter 
selection based on incremental learning to ensure that the 
parameters are best suited for the development processes 
and practices of the team. Our work indicates some main 
design guidelines for such a tool.  

Guideline #1: The tool must be unobtrusive. The devel-
opers we interviewed suggested displaying coordination 
recommendations either within the task reports them-
selves, which developers often consult throughout devel-
opment, or within an IDE plug-in. The recommendations 
should include links to the other task reports and any 
other relevant task information to allow the developer to 
easily gather information about the task on their own, 
without interrupting the developer assigned to the other 
task. It could also include an easy way to display the are-
as of code that are overlapping or conflicting. There 
should be in-tool coordination mechanisms including 
email, Skype, Yammer or other communication software 
used by the project. However, developers should have a 
way to flag themselves as busy to avoid interruption 
when necessary. A tool might also consider the priority of 
a task when making recommendations or when display-
ing the available options on how to fulfill the coordina-
tion need. Perhaps low priority tasks would only suggest 
implicit types of coordination.  

Guideline #2: The tool must balance the relevance and 
timeliness of the coordination need to provide the most valuable 
recommendations. A tool would likely introduce a form of 
decay for the coordination recommendations as the in-

volved tasks aged. It would also need to identify a time 
window of interest for tasks to incur a coordination need 
(i.e. only currently overlapping tasks or tasks that were 
worked no more than two weeks apart). This time win-
dow should be a tunable attribute since different devel-
opers may have different preferences. From our inter-
views, we learned that understanding very relevant tasks 
that were completed much earlier in the project’s 
timeframe could still be useful in some cases. For exam-
ple, when the new task is attempting to tackle the same 
issue as a previous unsuccessful task. One developer said 
“you may be doing something that someone tried 5 years ago, 
and they have information about why it failed.” This illus-
trates another way developers may use such a tool, i.e. for 
gaining awareness of tasks rather than for explicit coordi-
nation. Relevant coordination needs may be displayed 
regardless of the completion status of the other task. 

Guideline #3: The tool should consider the experience level 
of the developer when making recommendations. The develop-
ers we interviewed believed more experienced developers 
would benefit the most from awareness of coordination 
needs since they have the knowledge to understand the 
related tasks. While previous research [66] found that 
developers consider the expertise of others before initiat-
ing coordination, our findings suggest that the expertise 
of the developers themselves may impact what coordina-
tion they deem necessary. More junior developers may 
want a smaller set of only extremely relevant recommen-
dations. Tools, therefore, may need to consider not only 
the properties of tasks, but also the task assignee.  

Guideline #4: The tool should support implicit coordina-
tion [9], [29]. Our interviewees would prefer to gather task 
information themselves rather than interrupting a task 
assignee. While the Mylyn team strives to record all in-
formation related to each task within the corresponding 
Bugzilla report, tools for augmented support could be 
devised. There has been some research in this area; 
Rastkar and Murphy [61] summarize email threads relat-
ed to a specific bug report. However, there are many oth-
er forums (IRC, Skype chats, etc.) and information sources 
(design documentation, requirement specifications, etc.) 
that may hold information relevant to a task. The aware-
ness tool described above could be improved by provid-
ing a summary of the tasks involved in a coordination 
need so the developer can quickly browse the infor-
mation. A tool could summarize the task report [53] and 
all task information from these various sources and prior-
itize and highlight the most relevant information. The 
developer could view additional details of tasks that re-
quire further investigation. Such a tool would enable 
more efficient awareness of other tasks.  

4.4 Threats to Validity 
One threat to validity is that our findings derive from a 
study of a single project with a moderate number of de-
velopers and tasks. Our results could be affected by speci-
ficities of the project. To mitigate this risk, we performed 
a detailed analysis of Proximity using eight versions of 
the Mylyn project. ProximityML was evaluated using a 
release with large number (29,890) of task pairs. We inter-
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viewed developers to understand the team’s coordination 
practices and problems. Our detailed analysis of this pro-
ject allowed us to better understand when critical coordi-
nation needs and how to identify them.  

Our interviewees were all Mylyn contributors and 
were self-selected. While we reached saturation in our 
results, they may not generalize to other projects. Howev-
er, many interviewees discussed their experiences on oth-
er software projects in addition to the Mylyn develop-
ment project.  

The manual coding and content analysis also introduce 
a possible risk of unreliable results since the coding is 
subjective in nature. However, we had two independent 
coders and achieved high intercoder reliability indicating 
that this risk has been mitigated.  

Another issue is that we were limited in the number of 
task properties that we could investigate. There may be 
additional, or even better, properties that could be used to 
differentiate the overall set of potential coordination 
needs and highlight the most important ones. The proper-
ties that are relevant in this study may not be as relevant 
in others. In addition, all properties may not be portable 
across different bug tracking systems. 

Our measure of task duration, which we used to eval-
uate the criticality of coordination needs between tasks, 
could be affected by other factors, such as the priority of 
the tasks, workload of the team, physical location of the 
developers, and experience level of the developers. How-
ever, Cataldo et al. [12] found that while these factors im-
pact development time, the impact of unmanaged coordi-
nation needs is also significant. In our Mylyn study, this 
risk is further mitigated by the characteristics of the 
Mylyn project itself and the general nature of open source 
projects. The Mylyn team is comprised of well-
established, experienced developers. Open source projects 
are accustomed to working in distributed environments 
[57], [66], and developer overload is not a large concern, 
since contributors choose which tasks to work on [57]. 

5 RELATED WORK 
Several lines of research are dedicated to reducing con-
flicts and promoting coordination between developers 
including schedule optimization techniques [26], [43], 
configuration management conflict detection techniques 
[5], [25], [64], and Coordination Requirement detection 
methods [12], [28], [50], [51].  

Schedule optimization is one way to reduce conflicts 
between tasks. di Penta et al. [26] found that optimization 
of project scheduling can reduce coordination overhead 
through evaluation of their search-based optimization 
techniques [26]. A more recent tool, Cassandra [43], iden-
tifies potential conflicts between tasks based on the files 
in their workspaces and suggests optimal scheduling to 
avoid those conflicts. While these schedule optimization 
techniques can certainly reduce coordination needs of a 
development team, they will not be able to fully eliminate 
the need for coordination. This is particularly true when 
the schedule is tight and large amounts of work need to 
be done in parallel despite the conflicts that may arise.  

Another approach is to detect conflicts early to allow 
for coordination. Tools, like Palanti ́r [64], were built on 
top of configuration management systems. Palanti ́r helps 
alert developers of possible conflicts by letting them 
know which other developers are making changes to the 
files they are currently modifying. It also considers one 
type of indirect conflicts by considering changes made to 
the signature of a method that affect other artifacts that 
call that method. However, Palantír provides only a list of 
notifications regarding each potential conflict and does 
not provide a cumulative view of coordination needs. It 
also risks information overload since it provides notifica-
tions for every potential conflict at the source code level. 
FastDash [5] and CollabVS [25] are other examples of con-
flict detection tools that suffer from the same limitations 
as Palanti ́r. Compared to ProximityML, these approaches 
are not efficient due to their risk of information overload 
and their lack of complete view of coordination needs. 

Cataldo et al. [12] were the first to introduce a frame-
work for establishing a cumulative view of coordination 
needs between developers. Their method establishes Co-
ordination Requirements between developers who are 
working on dependent tasks. Task dependencies are ap-
proximated by logical dependencies [31] between artifacts 
involved in those tasks. Data about logical dependencies 
is obtained by mining the source control repository of the 
project for commits. Although some ways to rank Coor-
dination Requirements by importance [28], [51] have been 
presented, current methods do not differentiate between 
less or more intense Coordination Requirements or dis-
tinguish between different kinds of coordination needs. 
There are several awareness tools [3], [24], [56], [62] that 
detect Coordination Requirements between pairs of de-
velopers. Compared to ProximityML, the existing Coor-
dination Requirement detection methods and tools are 
not timely due to their reliance on commit data. They are 
also less efficient, since they provide recommendations 
only between pairs of developers and leave the develop-
ers to determine what to coordinate about. 

6 CONCLUSION 
Our techniques leverage IDE logging facilities that cap-
ture developer actions as they occur allowing for timely 
detection of coordination needs. They also leverage a set 
of task properties to focus our recommendations on the 
more critical coordination needs. The techniques de-
scribed in this paper can be used to create a support tool 
for developers that automatically and non-intrusively 
recognizes coordination needs between pairs of tasks as 
they emerge and focuses on the more critical recommen-
dations to minimize information overload. Such a tool 
could be used to automate task dependency management, 
provide awareness both within and across teams, and 
support coordination among developers. Avenues for 
future work include developing such a support tool and 
continuing our investigation to identify additional prop-
erties that characterize critical coordination needs.  
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