
Guest Editors Introduction: Context for Software
Developers

Kelly Blincoea,⇤, Daniela Damianb, Giuseppe Valettoc

aDepartment of Electrical and Computer Engineering, University of Auckland, Auckland,
New Zealand, k.blincoe@auckland.ac.nz

bDepartment of Computer Science, University of Victoria, Victoria, BC, Canada,
danielad@uvic.ca

cFondazione Bruno Kessler, Trento, Italy, valetto@fbk.eu

1. Introduction

Software Developers routinely work on complex development tasks that re-

quire a wealth of detailed support information, such as the change history of

the source code, the software architecture, the task assignments of other team

members, and so on. All of this information provides the context for the de-5

velopment task. Today, the context that software developers work with comes

from many sources; as such, it is multi-faceted and increasingly large in scale.

Having many sources of context causes a considerable amount of context switch-

ing during the developers’ work activity and increases the cognitive load of the

developers. Thus, recent research has begun to investigate ways to provide this10

contextual information to developers when it is needed in order to minimize the

amount of time developers must spend looking for this information on their own

(e.g. [1, 2, 3, 4]).

The context of a task can provide rich information that can also be used to

gain insights on other aspects of software development. Another line of research15

on this topic is how to mine and leverage this contextual information as it is

created to gain insights to support software developers. For example, recent

research mined developers’ activities within their IDEs to facilitate developer

⇤
Corresponding author

Preprint submitted to Journal of Software and Systems February 27, 2017

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/

This is a post-acceptance, pre-copyedit version of an article published in Journal of Systems and Software. The final 
authenticated version is available online at: https://doi.org/10.1016/j.jss.2017.02.073



coordination and collaboration [5].

This special issue is the culmination of two Context for Software Developers20

(CSD) workshops held at the International Conference of Software Engineering

(ICSE) in 2015 [6] and the Foundations of Software Engineering (FSE) Confer-

ence in 2014 [7]. The previous research in this area has been mostly limited in

considering only project artifacts, like the source code and development tasks,

and developer interactions with these artifacts in the context of a task. How-25

ever, the participants at these workshops defined a broader understanding of

context for software developers as “information needed to implement a task”

and “anything that might cause a developer to do something di↵erently.”

In fact, the context of a development task can expand significantly beyond

the technical artifacts. The participants of the CSD workshops considered con-30

text to be technical-, people-, and process- related. The context of a task is

constantly evolving and, in turn, it can cause the task itself to evolve. This

high-level model of context for software developers is illustrated in Figure 1.

Context can also be di↵erent for everyone depending on his or her awareness

and perspective.35

One take-away from the CSD workshops is that this is definitely an area rich

of possible avenues of investigations. More research is needed to fully understand

exactly what constitutes the context of a software development task and how

contextual information can be leveraged to better support software developers.

2. In This Issue40

This issue is a step towards that direction. A detailed context model, a first

step towards understanding the types of contextual factors that are important

for developers, is presented by Marko Gasparic, Gail Murphy, and Francesco

Ricci in “A Context Model For IDE-Based Recommendation Systems.” They

describe 13 contextual factors that impact how a developer works with their45

IDE, like the day of the week and the current activity. We believe their model

will serve as a foundation for further research in this area. Understanding the

2



Figure 1: High-level model of context for software developers.

contextual factors that impact a developer in their IDE can, for example, enable

improvements in the user interface of IDEs and help to improve the accuracy

and timing of recommendation systems for software engineering (RSSEs).50

The four other articles presented here leverage context in interesting ways,

demonstrating that contextual information can be extremely useful to support

the work of both individual developers and teams. In “Using Contextual Infor-

mation to Predict co-changes”, Igor Scaliante Wiese, Reginaldo Re, Igor Stein-

macher, Rodrigo Kuroda, Gustavo Oliva, Christoph Treude, and Marco Aurelio55

Gerosa present a new technique to predict which artifacts will change together,

called co-change prediction. Co-change predictions can be used to give devel-

opers useful advice when performing changes in source code. Their approach is

di↵erent from existing approaches because they rely on detailed contextual in-

formation of software changes collected from issues, developers’ communication,60

and commit metadata to make more accurate predictions.

In “On the use of Developers’ Context for Automatic Refactoring of Soft-

3



ware Anti-patterns”, Rodrigo Morales, Zephyrin Soh, Foutse Khomh, Giuliano

Antoniol, and Francisco Chicano use developer context in an innovative way to

recommend refactoring strategies to remove anti-patterns, poorly designed code,65

from the source code. Their recommendations present refactoring solutions that

a↵ect only entities in the developer’s current working set. This approach can re-

move more anti-patterns using less resources than the other existing approaches

by minimizing the context switches a developer must make.

In “Eye Gaze and Interaction Context for Change Tasks - Observations and70

Potential”, Katja Kevic, Braden M Walters, Timothy R Sha↵er, Bonita Sharif,

David C Shepherd, and Thomas Fritz examine developer code navigation by

examining IDE interaction context data together with fine-grained eye-tracking

technology, which o↵ers richer data about developer navigations. The results

reveal a number of interesting insights, such that developers don’t always read75

method signatures and that often only small parts of methods receive focus.

Additionally, they use this data to predict future navigations and task di�culty.

In “Using Contexts Similarity to Predict Relationships between Tasks”,

Walid Maalej, Mathias Ellmann, and Romain Robbes present a new approach

that assesses the similarity of tasks based on the similarity of the task contexts80

(artifacts) associated with the tasks. The models they developed can be used

to recommend similar tasks to developers. This could make task switches more

e�cient and limit context switches, improving developer productivity.

While demonstrating the usefulness of leveraging the right context data, the

articles in this special issue also uncover many open research questions. Much85

more work remains to be done to understand what constitutes the context of a

development task, how that contextual information can be captured, and how

it can be leveraged to support better and more e�cient software engineering

work. This special issue is an e↵ort in that direction. We hope that the readers

of the Journal of Systems and Software will find this special issue useful and90

inspiring in moving forward the research on context for software developers.

4



Acknowledgement

We thank the authors of the papers in this special issue for their contri-

butions. We are also grateful to the reviewers for the time they dedicated to

ensuring a high quality issue. We would also like to thank the participants of95

the CSD workshops for contributing their insights on this topic. Finally, we

thank JSS for including this special issue and the editor-in-chief for his support.

References

[1] M. Kersten, G. C. Murphy, Using task context to improve programmer pro-

ductivity, in: Proceedings of the 14th ACM SIGSOFT international sympo-100

sium on Foundations of software engineering, ACM, 2006, pp. 1–11.

[2] D. Čubranić, G. C. Murphy, Hipikat: Recommending pertinent software

development artifacts, in: Proceedings of the 25th international Conference

on Software Engineering, IEEE Computer Society, 2003, pp. 408–418.

[3] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, M. Lanza, Prompter,105

Empirical Software Engineering 21 (5) (2016) 2190–2231.

[4] O. Baysal, R. Holmes, M. W. Godfrey, Situational awareness: personalizing

issue tracking systems, in: Proceedings of the 2013 International Conference

on Software Engineering, IEEE Press, 2013, pp. 1185–1188.

[5] K. Blincoe, G. Valetto, D. Damian, Facilitating coordination between soft-110

ware developers: A study and techniques for timely and e�cient recommen-

dations, IEEE Transactions on Software Engineering 41 (10) (2015) 969–985.

[6] K. Blincoe, D. Damian, G. Valetto, J. D. Herbsleb, 2nd international work-

shop on context for software development (csd 2015), in: Proceedings of

the 37th International Conference on Software Engineering-Volume 2, IEEE115

Press, 2015, pp. 973–974.

5



[7] K. Blincoe, D. Damian, G. Valetto, G. Murphy, 1st international workshop

on context in software development (csd 2014), https://fse22.gatech.

edu/workshops.

6


