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Abstract—There has been a significant interest in the estima-
tion of time and effort in fixing defects among both software
practitioners and researchers over the past two decades. However,
most of the focus has been on prediction of time and effort in
resolving bugs, without much regard to predicting time needed
to complete high-level requirements, a critical step in release
planning. In this paper, we describe a mixed-method empirical
study on three large IBM projects in which we developed and
evaluated a process of training a predictive model constituting
a set of 29 features in nine categories in order to predict if
a requirement will be completed within its planned iteration.
We conducted feature engineering through iterative interviews
with IBM practitioners as well as analysis of large development
repositories of these three projects. Using machine learning
techniques, we were able to make predictions on completion
time of requirements at four different stages of their lifetime.
Using our industrial partner’s interest in high precision over
recall, we then adopted a cost sensitive learning method and
maximized precision of predictions (ranging from 0.8 to 0.97)
while maintaining an acceptable recall. We also ranked the
features based on their relative importance to the optimized
predictive model. We show that although satisfying predictions
can be made at early stages, performance of predictions improves
over time by taking advantage of requirements’ progress data.
Furthermore, feature importance ranking results show that
although importance of features are highly dependent on project
and prediction stage, there are certain features (e.g. requirement
creator, time remained to the end of iteration, time since last
requirement summary change and number of times requirement
has been replanned for a new iteration) that emerge as important
across most projects and stages, implying future worthwhile
research directions for both researchers and practitioners.
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I. INTRODUCTION

With the wide adoption of agile practices in the increasingly
competitive software industry, many product managers strive
for fast, short and incremental releases [1]. Each release has a
set of requirements to implement new functionality, and a set
of bugs that need to be fixed. Frequent releasing allows new
functionality to be delivered quickly, ahead of the competition.
Thus, late or incomplete releases can impact product success
[1]. Enterprises adopting agile practices for their release plan-
ning normally plan requirements for iterations. Therefore, it

would be useful for product managers to know early when
certain requirements will not make it into an iteration.

While there is an extensive body of literature on predicting
various aspects of software releases (such as release readiness
[2], [1]) and of software tasks (such as completion time [3],
[4], [5], [6], [7], [8] and completion effort [9], [10], [11], [12]),
we are not aware of studies that investigate the likelihood of
a requirement being implemented in the planned iteration.

To fill this research gap, this paper describes an empirical,
design study of requirements from three large projects at IBM
to answer the following research questions:

RQ1: Can we predict whether or not a requirement
will be completed within the planned iteration?
RQ2: Can we optimize the predictive model to max-
imize precision of predictions, while maintaining an
acceptable recall?
RQ3: What are the features1 that can be used in this
prediction and how important are they relatively?

To answer these questions, we used a combination of qual-
itative and quantitative methods. Throughout the study, we
worked closely with an IBM Analytics Architect (the second
author) and other IBM practitioners. This close connection
allowed us to obtain a concrete understanding of the IBM
ecosystem and their workflow [13].

Our study has three main contributions:

1) Through a process of feature engineering we propose a
predictive model that is capable of making predictions
at different stages of a requirement lifetime and results
in an F1-score between 0.56 and 0.78.

2) We optimize the predictive model to maximize precision
of predictions (at the expense of recall) to address IBM
business interest as they find low precision predictions
of little utility in their practice. This model obtains
precision values between 0.80 and 0.97.

3) We rank the engineered features according to their
relative importance to our optimized model. This helps
other researchers know what features to consider in their

1Note that the term feature refers to a model feature, not to be confused
with a software feature.



future studies. It also helps software organizations know
what kind of data they should record for future analysis.

II. RELATED WORK

Although no other studies propose methods to predict
whether a high-level requirement will be completed in a
planned iteration, there are related areas of research. Below we
present related work covering prediction on various aspects of
software tasks and releases.

A. Software Task Predictions

Prior studies on low-level software tasks (i.e. bug fixes and
issue resolutions) have foused on predicting resolution time
[3], [4], [5], [6], [7], [8], effort involved [9], [10], [11], [12],
and probability of completion [14]. However, none of them
have investigated completion time of high-level requirements,
yet we draw on many of the techniques and features used.

These studies employ various machine learning techniques
to make their predictions. Unsupervised learning techniques
[15], [10], [11], kNN [9], linear [3], probabilistic [3], [5] and
decision tree [3], [4] classifiers as well as random forest [6],
[8] and other ensemble learning techniques [12] are among
the popular ones. In our study we adopt the random forest
ensemble learning technique for model training.

Various features are used to make predictions on software
tasks. A number of studies utilize task meta attributes, such as
task creator, owner, priority, severity, etc. to make predictions
[3], [4], [5], [14]. Some also apply text analysis techniques on
text attributes [9], [16], [10], [11], [12] and some adopt social
network analysis techniques [7]. Yet, not all of the studies have
come to the same conclusions in regards to which features are
best to include. Guo et al. found that bug reporter’s reputation
has a significant impact on bug resolution time [14]. However,
Bhattacharya and Neamtiu [17] found no such correlation and
stated that importance of features are highly project dependent.
Inspired by these past studies, we identify 29 features for our
models (described in detail in Section IV).

Marks et al. [6] and Kikas et al. [8] both classified their
engineered features into several groups based on the source of
features and measured relative importance of features to their
models. Likewise, we rank the importance of the engineered
features to our models, and also classify our features into nine
categories based on their potential impact on completion time.

Making early predictions can be useful, but predictions
likely become more accurate as more data become available.
Some of the studies made predictions at different stages. For
example, Giger et al. made predictions at six different stages
of a bug lifetime [4]. Kikas et al. made predictions at different
stages of an issue lifetime [8]. Similarly, we make predictions
at various stages of a requirement lifecycle.

B. Software Release Predictions

In regards to the domain of release planning and release
readiness, prior studies have conducted predictive analysis
using various machine learning techniques. In an empirical
study on three open source projects, Alam et al. [2] formulated

software release readiness in each week as a binary classifica-
tion problem and used eight features such as release duration
and number of open requirements and defects while comparing
different classifiers. In another study [1] on the same data they
proposed an improved predictive model using incremental and
sliding window techniques and then empirically evaluated the
applicability of their model for varying project characteristics.

III. STUDY DESIGN

This section describes our research setting, research method,
and dataset.

A. Research Setting

We studied three large projects of an IBM product that
aim to provide IBM customers with an enterprise platform
(referred to as the IBM enterprise platform henceforth). This
platform provides a community in which developers of the
IBM ecosystem and customers of the product can collaborate
and communicate. Members of this community can create,
modify, resolve or comment on a work item. IBM adopts an
agile methodology for development of these projects. Their
adopted workflow is illustrated in Figure 1.

Fig. 1. IBM enterprise platform workflow

To understand this workflow, we define some terminology:
WORK ITEMS represent work that needs to be done. Work

items vary in size from small chunks of work to very large.
Work items are also hierarchical, which means a work item
could have one or multiple children or grandchildren. A
work item has a type attribute which defines the workflow
of the work item. Work item types are: Plan Item, Story,
Enhancement, Task and Defect. The ideal hierarchy of work
items in the IBM enterprise platform is shown in Figure 2.

Fig. 2. Hierarchy of work items in IBM enterprise platform



The hierarchy in practice, however, is sometimes inconsis-
tent with this ideal structure. For instance, work items might
have children with the same work item type (e.g. a Story
could have a child of type Story), and, in some rare cases,
this hierarchical order is violated. Work items of type Defect
could be a child of any of these other work item types.

PLAN ITEMS are top level work items that represent soft-
ware requirements and functionalities that should be included
in next release(s). During the lifetime of a Plan Item, new
children and grandchildren can always be added. A Plan Item
is not completed until all of its children are completed.

STORIES are also high level work items that are breakdowns
of Plan Items. Stories and Plan items have many common
characteristics in this platform.

WORK ITEM HISTORY: Every time a change happens to
a direct attribute of a work item (for instance if the status
or owner of a work item changes) or a new subscriber or
comment is added to a work item, this change is recorded
as a work item history. However, the addition or removal of
children is not recorded as a work item history.

ITERATION: A time-box during which development takes
place. Iterations are hierarchical where top-level iterations
represent releases and child iterations represent milestones
within those releases. A milestone iteration is typically of 1
to 4 weeks length. Release iterations vary in duration from
1 month up to 1 year. Work items could be planned for a
milestone or a release iteration, and if they don’t get finished
through an iteration, they could be planned for another one.

According to the interest of IBM managers in having
predictions for both Plan Items and Stories and considering
the many inherent similarities between the two in terms of
measured attributes as well as the enterprise internal processes,
we decided to analyze both of them in this study and we will
refer to them as requirements in the rest of this paper.

B. Research Method

This study was led and designed by our research team in
collaboration with an IBM Analytics Architect. The idea and
the initial design of the study were initiated in a face-to-face
meeting with a program director and the analytics architect
at IBM. The collaboration continued by another face-to-face
meeting and 16 semi-structured 30-60 min interviews with the
analytics architect and three other IBM practitioners.

Through interviews with the IBM practitioners, the first step
in our research method was to obtain a rich understanding
of the IBM enterprise platform and to define the appropriate
projects for our study. We eventually chose three of their
projects based on duration and activity and number of plan
items and stories in their development and project management
repositories. After the initial interviews and selecting three
projects, the process of feature engineering started. This was
an iterative long process and involved significant time in brain-
storming and discussing with the IBM engineers. Details on
the feature engineering process are provided in Section III-E
and Section IV. Another important step in this process was
the review of related work in task completion time and effort

prediction, defect prediction and bug triaging. In our study,
an important step was the achievement of an understanding
of the differences between low-level software tasks and high-
level abstractions of software tasks, in particular Stories and
Plan Items, so that adaptations to the proposed features in
literature could have been made.

For our learning algorithm, we used Random Forest (RF).
RF has shown high performance on many types of datasets
compared to many well-known algorithms such as SVM and
Naive Bayes [18]. It is robust to noise in data, is applicable
to datasets with a mixture of continuous, semi-continuous and
categorical features, and is capable of handling missing values
as well as correlated features [19].

In terms of the prediction outcome, we formulated our
analysis as a binary classification problem. Comparing the
completion date of a requirement to the end date of the planned
iteration, we derived the prediction outcome:

iteration met =

{
Y ES, if completion date ≤ end date

NO, otherwise
(1)

As we assumed that requirements are supposed to be
completed within their planned iteration, a trend we confirmed
from our examination of the historical data of the projects, the
NO class normally made up the minority of requirements, and
thus was considered as the positive class that our learners were
meant to predict.

Although there was an imbalance in class distribution of
most of our datasets, the skewness was not critical to demand
a cost sensitive learning process for RQ1 (we refer to the
models trained for RQ1 as cost insensitive models). However,
to address RQ2 and RQ3, since we favored high precision
over high recall, we used cost sensitive learning with a high
penalty for false positives to make our models more cautious
when making predictions on the positive class. There exist
many techniques for cost sensitive learning, most of which
mentioned in a literature review by He and Garcia [20],
which could be classified into two general categories: 1)
cost sensitive learning which perform resampling or sample-
weighting on the minority class to make the data more
balanced; and 2) approaches that minimize the expected cost
of classification utilizing the confidence of the base classifier
in predictions. We use a sample-reweighting technique through
the CostSensitiveClassiffier class of WEKA [21] library which
is an implementation of the approach introduced by Ting [22].
We determined the false positive penalty by considering the
original class balance to make it balanced. In addition, we
increased the false positive penalty in order to comply with
the goal of maximizing precision of predictions. As a result,
a false positive penalty between 3 to 5 was applied depending
on the skewness of dataset.

We used a variety of tools and libraries for our analysis,
however RapidMiner [23] and WEKA [21] were the major
ones. The final implementation was done in Java code using
WEKA libraries.



C. When to Predict?

We decided to make predictions at four different stages for
each project and work item type: The first day of creation of a
requirement and the end of the first, second and third quarter
of the planned iteration. This allows us to make predictions
at different stages of a requirement lifetime, something that
is beneficial to enterprises. It also enables us to compare the
significance of features at different points in time. The selected
stages are meaningful and derived from the actual needs of the
enterprise. Another benefit to this approach is that training and
testing data points will be automatically selected based on the
same percentage of the progress of requirements. Therefore,
these data points are more meaningful and related to each
other, assuming that requirements at the same time slot of
their corresponding iteration are approximately at the same
point of their progress. For simplicity, we will onwards refer
to these four prediction stages with 0th, 1st, 2nd and 3rd short
form notations.

Considering that work items in this platform might have
many histories within the same quarter of an iteration, we
defined the history selection criteria as following:

• 0th: The first history of a work item
• 1st, 2nd and 3rd: The last history of a work item within

the corresponding quarter of its planned iteration.

D. Datasets

We studied three projects of the IBM enterprise platform,
code-named as A, B and C due to confidentiality reasons.
Table I shows some statistics of the development repository
of these three projects in our observation period.

TABLE I
SUMMARY OF PROJECTS

Att / Project A B C
start date Jun 2006 Jan 2009 Jun 2006
end date Oct 10, 16 Oct 11, 16 Oct 24, 16

# work items 75k 71k 177k
# histories 816k 835k 1.73m

# plan items* 839 749 447
# PI histories 20k 20k 19k

# stories* 1,286 3,640 4,471
# S histories 16k 61k 50k
# comments 374k 312k 312k
# developers 594 481 796

*: As type of a work item is subject to change,
number of Plan Items and Stories is based on any
work item that has at least one history of that type.

As a result of having three different projects (A, B and C),
two different requirement types (Plan Item, Story) and four
different prediction stages (0th, 1st, 2nd, 3rd ), we have 24
datasets in total. For simplicity from now on, we will refer
to a specific dataset by the Project-Type-Stage notation. For
instance B-plan-2nd will refer to the dataset of Plan Items
of project B at the end of the 2nd quarter of their planned
iteration.

As could be observed from Table III, the sample size of each
of these 24 datasets is smaller than the number of requirements
mentioned in Table I, because of two major filters: First, we

only studied those requirements that are already completed.
Second, We only studied those selected requirement histories
that were planned for an iteration with an end date.

E. Feature Engineering

Feature engineering is the process of using domain knowl-
edge of the data and the processes behind the data to create
predictors for a machine learning algorithm in order to build
a predictive model. Feature engineering could be seen as the
most important factor in the success or failure of a machine
learning task. It is where intuition, creativity and black art are
as important as technical knowledge. It is the part that usually
takes the most effort as it is normally done manually. Besides
manual feature engineering, there are automatic techniques
such as automatically generating large numbers of candidate
features and selecting the best by their information gain, but
these techniques are usually very time-consuming and could
cause over-fitting [24].

Feature engineering was the most effort-consuming machine
learning task in this study and involved iterative brainstorming,
data visualization, digging into data, interviews with IBM
software practitioners as well as literature review. As a result,
a set of 29 features were engineered. Each of these model
features come from one or a multiple of these sources:

1) Prior work, chiefly in bug resolution time and effort
prediction.

2) Suggestions made by IBM developers.
3) Domain knowledge achieved as a result of interviews

with enterprise practitioners and studying the data.
The motivation behind choosing these features and their

descriptions are stated in Section IV. Despite differences
in practices across teams and inherent differences in the
characteristics of the two work item types, the commonalities
between them were high enough to enable us using almost
the same feature set for each dataset, except for a few minor
exceptions which will be described in Section IV-I.

F. Model Performance Metrics

When it comes to choosing a good performance metric, one
of the important factors to consider is the balance of data. In
Table II, we see the distribution of class values in all datasets.
NO% denotes the ratio of NO class to the whole dataset size.

TABLE II
SKEWNESS IN EACH DATASET

dataset NO%
0th 1st 2nd 3rd

A - plan 0.53 0.44 0.49 0.49
B - plan 0.30 0.54 0.52 0.32
C - plan 0.35 0.38 0.39 0.39
A - story 0.50 0.38 0.40 0.40
B - story 0.44 0.20 0.19 0.18
C - story 0.50 0.37 0.36 0.36

In average, we see a minor skewness in datasets of Plan
Items and a relatively major skewness in datasets of Stories.
To address that, we based our performance evaluations on



precision and recall of the positive class. As a result, to have
a single performance metric, we used F1-score which is the
harmonic mean of precision and recall. F1-score was used to
evaluate the models trained to address RQ1.

IBM managers stated they are interested in having the
highest possible precision, even though it might result in lower
recall values. They stated that a precision of below 0.8 would
be of little utility in practice and a precision of 0.9 or above
would be ideal for them. At the same time, they pointed out
that having a high precision, a recall value around 0.2 or 0.3
would be good enough. That is why we came up with this
weighted arithmetic mean for performance measure:

WA = (3 ∗ precision(NO) + recall(NO))/4 (2)

Although we will still report performance metrics such as
precision and recall, we will use WA as defined above to
compare performance of our models across different datasets
as well as to measure and compare feature importance. The
WA measure will be used for performance evaluation of
models trained to answer RQ2, as well as to measure feature
importance to address RQ3, so that we can rank feature
importance based on the business interest of our industrial
partner, which was the main motivation behind this study.

G. Feature Importance Measure

There exists techniques such as Cohen’s F2 test [25] or Chi-
square measure [26] to measure the effect size on or relevance
of features to the class feature out of the box, but we want
a measure that can tell us how important each feature is to a
trained model and thus, how vital a certain feature could be
in order to achieve the actual predictive goal.

Random forests can be used to rank the importance of
features in a regression or classification problem in a natural
way by measuring the out-of-bag error for each data point
[27]. However, due to the goal of maximizing the precision
of positive class and ranking the importance of features for
that prediction, we decided to use another measure for feature
importance that can be applied to any learning algorithm. Our
approach was inspired by the study of Marks et al. [6].

To rank feature importance, for each dataset, a model was
trained for all 29 features and WA was calculated. Then in 29
iterations, each time a single feature was excluded and a model
was trained and tested using cross validation and the extent of
decrease (or increase) in WA measure was calculated. Finally,
features in each dataset were sorted and ranked based and the
extent of change in WA measure.

H. Model Validation

K-fold cross validation is a common technique for evalu-
ating the performance of a process of creating a predictive
model. Although choosing the appropriate value for k might
be problem-dependent, values such as 10 or 5 as number of
folds are known as convenient good choices according to the
variance-bias tradeoff [28], [29]. However Kocaguneli et al.
[30] showed that in effort estimation problems, Leave-One-Out
cross validation (LOOCV) - an extreme case of CV in which

k equals the number of instances - performs better than 10-
fold CV. Moreover, due to the relatively small sample size of
our datasets, the choice of LOOCV was preferable. However,
some of our datasets had relatively larger sample size (B-story-
Sth and C-story-Sth), thus, we chose to do 200-fold cross
validation for them to make it computationally possible. The
value of 200 was selected to maintain consistency of analysis
so that number of folds would be closer to the ones validated
using LOOCV.

I. Other Important Decisions

In this section, we describe some of the other important
decisions that we made in the study design which we did not
mention in previous sections.

No Manual Feature Selection: We ran Pearson correlation
analysis between each pair of features, the highest correlation
values were between 0.6 and 0.8 which can still be handled by
the RF algorithm. The RF algorithm is designed to be robust
against correlated or non-informative features. Thus, as one
of the objectives of this research was ranking features based
on their importance to the trained models, we did not exclude
any of the features.

No Automatic Feature Selection: Automatic feature se-
lection is generally time consuming and could cause over-
fitting [24], especially when dealing with small sample sizes
and a large number of attributes in raw data. Additionally,
in interacting with our industrial partner, we had access to
expert knowledge. Therefore, there was no need for automatic
procedures in feature engineering or selection.

No Parameter Tuning: Although there are studies in areas
such as effort estimation [31] and defect prediction [32]
that show parameter tuning could have positive effects on
performance of predictions, we did not attempt to optimize
learner hyper parameters because: 1) In RF there are two main
parameters; first, the number of trees, which should be large
enough to fit the computational power (we chose 100) and
second, the number of randomly selected features on each
split which the original number used by Breiman [33] usually
performs well. 2) To avoid biased results, one should do nested
CV for parameter tuning or feature selection and due to small
sample size of our datasets, we did not have enough data to
do so.

IV. MODEL FEATURES

In this section, we introduce all the engineered features
used in our analysis and motivate them. There are 29 features,
which we categorized into 9 logical categories. Some features
logically fit into more than one category. In those cases, we put
them in the most relevant category only. In following sections,
we describe each category and the motivation for including
each feature. We also cite prior work that has adopted similar
features in other prediction models. Note that a citation right
after the feature name indicates that feature or a similar
one was used in the referenced prior work, but it does not
necessarily mean that they had the same motivation as in this
work since we had different goals and settings in this study.



A. General Features

There are three features that are available early on in a
requirement lifetime. We call these the general features.

• CREATOR IDENTIFIER [3], [4], [5], [6], [8], [12], [14],
[34]: the stakeholder who created the requirement. Avail-
able at requirement creation.

• CREATION MONTH [4], [5], [6], [12]: the month the
requirement was created. Available at requirement cre-
ation. Depending on the project and timeline of the
corresponding team, it could capture factors such as
workload of a team that could have impact on completion
time of a requirement.

• OWNER IDENTIFIER [3], [4], [5], [14], [6]: the developer
assigned to a requirement. Available when the require-
ment is assigned to a developer.

B. Complexity Indicating Features

The more complex a problem is, the more time it is likely
to take. Thus, we include features which can indicate the
complexity of a requirement.

• SUBSCRIBER COUNT [3], [4], [5], [6], [8]: the number of
stakeholders subscribed to a certain work item to receive
updates. Whenever someone comments on a work item,
they are automatically subscribed to the work item. Stake-
holders could also manually subscribe to or unsubscribe
from work items. A high interest in receiving updates
could indicate high complexity.

• FILED AGAINST [3], [4], [5], [6], [12]: the software
component against which the requirement is filed. Some
components are inherently more complicated than others.
For instance a database related component is likely to
entail more complexity than a UI related component.

• ITERATION CHANGE COUNT: the number of times a
requirement was replanned for a new iteration. If the
requirement gets carried over to the next iteration multiple
times, it could be an indication of high complexity.

C. Progress Implying Features

The current progress of a requirement will influence whether
it will be completed in time or not. Thus, we have three
features that enable the model to gauge current progress:

• ITERATION DAYS REMAINED [4], [5], [2], [1]: the num-
ber of days remaining to the end of the planned iteration.

• DAYS SINCE CREATION [3], [4], [5]: the number of days
since the work item was created.

• STATUS [4], [5], [14]: the current status of a work item,
such as new, in exploration phase, in progress, in testing
phase, etc.

D. Priority Implying Features

Having a higher priority usually helps a requirement to
receive more attention and activity and thus to get completed
earlier.

• PRIORITY: an explicit measure of importance from the
developers perspective. Not available for many work
items.

• SEVERITY: an explicit measure of importance from the
customers perspective. Not available for many work
items.

• DAYS WITHOUT OWNER: number of days the work item
was not assigned to a developer since creation; many days
could indicate low priority.

• DAYS SINCE LAST COMMENT: the number of days
since the last comment, many days could indicate low
priority.

• OWNER CHANGE COUNT [14], [8], [35]: the number of
times a work item has been reassigned. Reassignments
could be an indication of high priority as people reassign
a task to find the optimal developer who can address the
problem quickly [14]. However, too many reassignments
could mean that no one is taking responsibility for
handling the task [35], indicating low priority.

• DAYS SINCE LAST OWNER: the number of days since
the current work item owner was assigned. This is meant
to capture a similar effect to the previous feature by
considering how recent the last reassignment is.

E. Problem Change Indicating Features

A change in the problem definition of a requirement can
impact completion time. Frequent changes could indicate
additional changes in the future. This is captured by:

• SUMMARY CHANGE COUNT: the number of times the
work item summary has changed.

• DESCRIPTION CHANGE COUNT: the number of times
the work item description has changed.

Also, if the problem definition has changed recently, effort may
still be underway to deal with the change. Thus, we consider:

• DAYS SINCE LAST SUMMARY: the number of days
since the last summary change.

• DAYS SINCE LAST DESCRIPTION: the number of days
since the last description change.

Previous studies attempted to capture changes in require-
ments by proposing basic features such as the number of total
changes to bug attributes [4], [5] (equivalent to number of
histories in our datasets), but to the best of our knowledge
these particular four features are novel to this study.

F. Process Change Indicating Features

In addition to a change in problem definition, a change
in the software process could also impact completion time.
This is especially true if the process change is recent. It’s
not uncommon in IBM enterprise platform for a Story to be
transformed to a Plan Item and vice a versa. It also sometimes
happens that a work item is created with type of Task and
then the developers decide that it should be transformed to
a requirement. Such process changes could potentially delay
implementation of a requirement.

• DAYS SINCE LAST TYPE S P: number of days since
last time the requirement type was changed from Plan
Item to Story or vice a versa.



• DAYS SINCE LAST TYPE CHILD: number of days since
last time the work item type was changed from a low-
level work item type to a requiremnt.

G. Stakeholder Characteristics

The types of stakeholders of a work item can impact its
completion time. For this, we consider:

• DAYS SINCE LAST DE COMMENT: number of days
since a distinguished engineer (DE) commented on the
work item. In IBM, DE is a title reserved for very re-
spected developers. If a DE participates in the discussion
of a work item, it will likely receive prompt attention.

• COMPONENT RESOLVER: the total number of work items
that the work item owner has resolved in the same com-
ponent up until the modified date of the corresponding
history of each requirement. This indicates the expertise
of the owner in the domain of the problem.

• CREATOR TEAM RELATIONSHIP [14], [6]: the relation-
ship of the work item creator to the assigned team. Prior
work suggests that bugs reported by people on the same
team are likely to get fixed faster [14]. For this feature, the
creator could be an IBM developer from the same team,
an IBM developer from another team, or a customer from
outside the company.

H. Stakeholder Communication

Communication between stakeholders of a work item can
impact completion time. A large volume of communication
may indicate high complexity and, thus, result in longer com-
pletion time [14]. On the other hand, increased communication
can indicate a good information flow and a high level of aware-
ness and engagement and, thus, results in shorter completion
time [14]. Communication in this enterprise platform usually
happens via commenting on work items, so we consider:

• COMMENT COUNT [3], [4], [5], [6], [8]: number of
comments on the work item.

• COMMENTER COUNT [8]: the number of unique stake-
holders involved in the discussion on a work item.

I. Child Features

As described in Section III-A, work items are hierarchi-
cal in the IBM enterprise platform. Requirements normally
have children and grandchildren. The number of children a
requirement has can impact its completion time for a variety
of reasons, e.g.:

1) child work items are a breakdown of the requirement,
2) the number of children impacts the effort required for

planning and breaking down of the requirement as well
as the effort required to integrate and test the children,

3) each child has its own idle time (such as time spent on
triaging and assignment).

The type of a child work item can play an important role in
this effect since plan items and stories often involve a more
significant amount of work. We also want to consider the
progress of the children, since a child work item that has been

completed or is near completion should not greatly impact the
completion time of the parent. Therefore, we consider:

• SAME TYPE CHILD COUNT NEW: the number of first
descendant child work items of the same type as the
requirement, with progress status New

• LARGE SIZE CHILD COUNT NEW : the number of first
descendant child work items of type Story (or Enhance-
ment if requirement type is Story), with progress status
New

• MEDIUM SIZE CHILD COUNT NEW: the number of first
descendant child work items of type Enhancement (or
Task if requirement type is Story), with progress status
New

V. RESULTS

In this section, we present the answers to our RQs.

A. Cost Insensitive Model Performance (RQ1)

RQ1: Can we predict whether or not a requirement
will be completed within the planned iteration?

Table III shows the performance estimation of our cost
insensitive learning process in each of the 24 datasets. It
is evident that there is some skewness in our datasets as
evidenced by the NO% column which shows the ratio of
positive class to the dataset size. Despite this, our predictions
result in precisions higher than 0.60 for all projects, work
item types and stages. In some cases, precision is as high as
0.85. F1-scores are also high with all but one dataset obtaining
an F1-score of higher than 0.56 and some datasets achieving
scores as high as 0.78. The one dataset that received a lower
F1-score, C-plan-0th, is a very small dataset.

Comparing the results between the two work item types,
we observe fairly similar prediction performances for both
Plan Items and Stories. As expected, prediction performance
tends to increase as the prediction stage increases, due to the
availability of additional data at these later stages.

One key factor to take into account when comparing results,
however, is the balance of dataset denoted by the column
NO%. We expect to have better results when the dataset is
more balanced since it allows for enough positives in the
training set. We see a trend of having a more balanced dataset
in the 0th prediction stage for most projects and work item
types.

Answer to RQ1: We developed models that were able
to accurately predict whether a requirement completed
within the planned iteration. We obtained precision scores
of up to 0.85 and F1-scores up to 0.78 (see Table III).

B. Cost Sensitive Model Performance (RQ2)

RQ2: Can we optimize the predictive model to max-
imize precision of predictions, while maintaining an
acceptable recall?

Table IV shows the precision, recall and weighted average
(WA) of our cost sensitive learning process for each dataset.



TABLE III
COST INSENSITIVE MODEL RESULTS

stage count NO% precision recall F1 WA count NO% precision recall F1 WA count NO% precision recall F1 WA
Project A - Plan Items Project B - Plan Items Project C - Plan Items

0th 316 .53 .76 .69 .72 .74 231 .30 .69 .47 .56 .63 77 .35 .67 .24 .35 .56
1st 393 .44 .82 .70 .76 .79 224 .54 .63 .67 .65 .64 267 .38 .60 .58 .59 .60
2nd 462 .49 .84 .73 .78 .81 287 .52 .68 .70 .69 .68 280 .39 .67 .56 .61 .64
3rd 468 .49 .84 .73 .78 .81 473 .32 .70 .46 .56 .64 287 .39 .63 .51 .57 .60

Project A - Stories Project B - Stories Project C - Stories
0th 521 .50 .73 .71 .72 .72 2020 .44 .69 .65 .67 .68 1644 .50 .71 .71 .71 .71
1st 769 .38 .74 .58 .65 .70 2472 .20 .81 .51 .63 .74 1999 .37 .66 .52 .58 .62
2nd 842 .40 .73 .59 .65 .69 2759 .19 .85 .54 .66 .77 2310 .36 .68 .49 .57 .63
3rd 873 .40 .74 .62 .67 .71 2925 .18 .84 .55 .66 .76 2422 .36 .69 .50 .58 .64

TABLE IV
COST SENSITIVE MODEL RESULTS

stage count NO% precision recall WA count NO% precision recall WA count NO% precision recall WA
Project A - Plan Items Project B - Plan Items Project C - Plan Items

0th 316 .53 .92 .56 .83 231 .30 .94 .24 .77 77 .35 1.0 .04 .76
1st 393 .44 .90 .50 .80 224 .54 .85 .28 .70 267 .38 .76 .28 .64
2nd 462 .49 .93 .56 .83 287 .52 .86 .28 .71 280 .39 .80 .15 .64
3rd 468 .49 .91 .56 .82 473 .32 .94 .11 .73 287 .39 .83 .18 .67

Project A - Stories Project B - Stories Project C - Stories
0th 521 .50 .88 .34 .74 2020 .44 .85 .30 .71 1644 .50 .85 .34 .72
1st 769 .38 .88 .29 .73 2472 .20 .97 .23 .79 1999 .37 .84 .16 .67
2nd 842 .40 .87 .31 .73 2759 .19 .94 .30 .78 2310 .36 .84 .16 .67
3rd 873 .40 .86 .29 .71 2925 .18 .95 .30 .79 2422 .36 .88 .17 .70

We see similar skewness across the datasets in regards to the
NO% as seen in RQ1. We obtain precision vales higher than
0.80 for almost all projects, work item types and stages. In
some cases, precision goes as high as 0.97. Of course, recall
is lower than seen in RQ1, usually between 0.15 and 0.35.
Though, in some cases, recall values are as high as 0.56.

When comparing the weighted average of the cost sensitive
(Table IV) and the cost insensitive learning (Table III) process
results, we observe that without any exception, WA of the
cost sensitive predictions are always equal to or greater than
cost insensitive predictions. This shows that the cost sensitive
models are overall more accurate while providing the high
precision values desired by IBM.

Answer to RQ2: We developed models that achieved
higher precision values, up to 0.97 (see Table IV), and
obtained higher overall performance compared to RQ1 as
measured by the weighted average scores.

C. Feature Importance (RQ3)

RQ3: What are the features that can be used in this
prediction and how important are they relatively?

Table V shows detailed information on relative feature
importance for the model trained on each dataset and Table VI
shows three aggregated rankings over all datasets using three
different criteria. When interpreting these results, one should
consider that the importance of the features in each dataset
can be influenced by:

• The availability rate and cardinality of a feature. Some
features might have a high number of missing values in

some stages. It is also possible that some features have
similar values and a low cardinality and, thus, provide
lower information gain.

• Other dominant features. These feature importance values
are relative to other features within the same dataset. A
change in relative importance does not indicate a change
in the absolute importance of that feature.

• The randomness factor of the random forest algorithm in
selecting subsets of training samples as well as features
when building individual trees [33].

As can be seen in Table VI , feature importance is
highly project and prediction stage dependent. The only fea-
ture that is globally almost always highly important across
all projects is ITERATION DAYS REMAINED. This is not
surprising as regardless of project, the learner wants to
know how much time is left to the end of iteration. CRE-
ATOR IDENTIFIER also tends to be important in most datasets,
which is in alignment with the findings of prior work [14].
We also found that DAYS SINCE LAST SUMMARY, ITERA-
TION CHANGE COUNT, and DAYS WITHOUT OWNER have
high importance overall. LARGE SIZE CHILD COUNT NEW
is also important in all projects as it is a good indications of
how much work needs to be done.

Answer to RQ3: For the most part, feature importance
is highly project and prediction stage dependent. Though,
there are some features that are almost consistently ranked
higher than others. Tables V and VI show the relative
importance of the 29 features included in our models.



TABLE V
RELATIVE VARIABLE IMPORTANCE RANKING PER DATASET

attribute plan story
A B C A B C

0th 1st 2nd 3rd 0th 1st 2nd 3rd 0th 1st 2nd 3rd 0th 1st 2nd 3rd 0th 1st 2nd 3rd 0th 1st 2nd 3rd
creator identifier 1 13 4 3 14 2 5 27 25 28 26 26 2 3 4 1 2 26 1 1 6 17 2 6
creation month 11 4 27 4 1 18 7 15 28 12 11 8 28 10 19 13 3 18 4 6 23 8 5 26
owner identifier 6 28 28 2 28 25 28 28 27 7 25 21 29 1 2 20 29 27 15 15 29 26 7 1
subscriber count 14 3 8 28 18 26 11 23 15 2 9 9 27 24 10 11 5 3 12 25 7 13 13 8

filed against 2 18 9 18 4 10 25 25 1 8 19 25 21 26 3 29 4 7 29 19 4 15 27 10
iteration change cnt 17 5 5 21 6 7 15 11 6 10 21 15 3 15 5 2 19 24 5 20 24 20 19 4

iteration days remained 9 1 2 1 25 9 4 3 2 1 1 1 1 19 22 6 1 6 17 23 1 7 18 29
days since creation 28 15 18 27 24 21 1 2 12 22 23 20 17 23 29 27 17 17 28 14 5 23 3 16

status 4 26 16 19 27 24 2 9 24 19 5 13 13 11 24 14 11 8 3 13 2 21 29 13
priority 26 21 23 11 26 28 8 14 16 23 13 17 18 21 12 25 23 2 24 10 3 22 12 21
severity 15 8 21 16 3 15 24 24 13 15 16 3 12 5 23 8 28 22 23 29 11 27 8 7

days without owner 21 11 6 23 10 5 6 19 10 27 6 14 7 27 27 10 18 1 2 3 28 4 14 22
days since last comment 3 27 24 20 2 27 19 22 18 20 17 5 25 6 9 3 24 13 26 26 15 12 21 27

owner change cnt 18 2 1 5 7 8 9 13 7 26 28 19 4 28 26 17 20 14 20 11 25 19 23 11
days since last owner 22 24 7 26 11 13 23 26 3 11 8 4 8 12 21 12 13 4 6 12 18 29 11 20
summary change cnt 20 23 13 25 9 16 10 21 9 24 24 24 6 25 7 7 22 19 9 8 27 3 4 19

description change cnt 19 17 17 13 8 12 12 1 8 16 15 22 5 7 20 26 21 15 16 16 26 1 16 12
days since last summary 23 19 3 17 12 19 26 5 4 3 3 2 9 22 15 23 14 16 14 4 19 10 1 23

days since last description 24 12 20 24 13 3 16 6 5 14 2 18 10 16 17 24 15 5 21 7 20 14 15 17
days since last type s p 7 20 22 12 15 17 14 7 19 17 14 10 14 8 8 18 7 20 19 22 12 9 10 24

days since last type child 8 25 25 14 16 14 20 8 20 21 20 7 15 14 11 21 8 21 25 27 13 16 20 25
days since last de comment 5 16 11 7 5 6 18 10 26 18 22 23 23 20 16 16 27 25 27 24 16 18 6 15

component resolver 10 14 12 8 21 4 17 20 14 13 27 12 24 4 1 9 6 9 7 18 21 11 22 14
creator team relationship 16 22 15 15 17 1 3 18 17 25 4 16 22 2 6 28 26 28 11 17 9 6 9 18

comment count 12 10 10 6 19 11 13 4 21 9 12 27 20 13 14 4 10 29 18 21 17 2 26 9
commenter count 13 9 19 9 20 23 22 12 22 6 10 28 11 18 28 15 9 23 13 28 14 5 24 5

same type child count new 18 14 21 22 29 13 9 8 22 19 17 29 19 17 25 22 25 10 8 5 22 24 17 28
large size child count new 25 7 9 10 22 20 21 16 23 4 18 11 16 9 13 5 16 11 10 2 10 25 28 3

medium size child count new 27 6 14 22 23 22 29 17 11 5 7 6 26 29 18 19 12 12 22 9 8 28 25 2

TABLE VI
AGGREGATED RELATIVE VARIABLE IMPORTANCE RANKING

Rank by frequency of being among top 10 cnt
iteration days remained 17
creator identifier 15
days without owner 12
iteration change count 11
filed against 11
creation month 11
large size child count new 10
days since last summary 10
summary change count 10
subscriber count 10
component resolver 9
comment count 9
owner change count 8
days since last type s p 8
creator team relationship 8
medium size child count new 7
commenter count 7
owner identifier 7
status 7
days since last owner 7
days since last description 7
severity 7
days since last comment 6
days since last de comment 6
description change count 6
same type child count new 5
days since last type child 4
priority 4
days since creation 4

Rank by frequency of being among top 5 cnt
creator identifier 13
iteration days remained 12
days since last summary 8
iteration change count 7
filed against 6
creation month 6
days without owner 5
status 5
large size child count new 4
days since last description 4
days since creation 4
days since last comment 4
subscriber count 4
owner change count 4
owner identifier 4
creator team relationship 4
component resolver 3
comment count 3
description change count 3
days since last owner 3
severity 3
medium size child count new 2
days since last de comment 2
priority 2
commenter count 2
summary change count 2
same type child count new 1
days since last type s p 0
days since last type child 0

Rank by average rank avg
iteration days remained 8.7
creator identifier 10.2
iteration change count 12.5
days since last summary 12.8
creation month 12.9
component resolver 13.3
days without owner 13.4
subscriber count 13.5
large size child count new 13.9
comment count 14
days since last description 14.1
description change count 14.2
days since last owner 14.3
days since last type s p 14.4
status 14.6
creator team relationship 14.6
filed against 14.9
owner change count 15
summary change count 15.6
severity 15.7
commenter count 16.1
medium size child count new 16.6
days since last de comment 16.7
days since last comment 17.1
days since last type child 17.3
priority 17.5
same type child count new 18.4
days since creation 18
owner identifier 18.9



VI. DISCUSSION

In this study, we developed and evaluated a machine
learning process, filling a gap in software release planning
research. Existing research performs bug fix effort estimation
and release readiness prediction. We proposed a predictive
modeling process including a set of 29 features and machine
learning techniques that predicts likelihood of requirement
implementation within the planned iteration. This modeling
process was validated on three projects with satisfying results.
Although all studied projects are within the same company,
many of the proposed features are general enough to be appli-
cable to projects from other companies. Besides the features
themselves, we grouped the 29 features in nine categories
which, due to a higher abstraction level, represent a starting
point for other organizations to engineer their own features.

We have also ranked the features according to their relative
importance to the trained model. Although we observed that
the importance of features is dependent on prediction stage
and project even within the same company, we showed that
there are certain features that are almost consistently ranked
higher than others across the different projects and stages of
development. The implication of these results are a set of
candidate features to receive further attention by researchers
and practitioners.

Another implication of this study is related to the precision-
recall trade-off. In general, we would like to have predictive
models with both high precision and recall, and there is a
general belief that models with low precision or recall are
practically useless [36]. However, as Menzies et al. [37] argue,
there are certain practical use cases for models with low
precision and high recall, such as in the defect prediction
domain. In our study, however, our claim for the usefulness
of models with high precision and relatively low recall is
based on our industrial partner’s interest for high precision at
the expense of recall. We also showed that machine learning
techniques, in particular cost sensitive learning, could be
adopted to satisfy such requirements.

VII. THREATS TO VALIDITY

Like any empirical study, our paper is prone to some threats
to validity [38]. We describe them below, together with our
mitigation strategies. The first threat, to external validity, is
the potential lack of generalizability of our findings due to the
close connection with the data and respondents from only one
software organization. We addressed this threat by studying
three different projects, adopting techniques and many of
the features as inspired from prior work. The model feature
categories in our model are also intended to be broad enough
to be applicable to other organizations and their project data.

The second threat, to construct validity, concerns our po-
tential misinterpretation of the workflows within the IBM
ecosystem. This was mitigated by prolonged close connection
with IBM practitioners and through iterative and feedback-
driven design of our model and machine learning techniques.

The third threat, to internal validity, relates to whether the
results really do follow from the data in our study. Specifically,

whether the features are meaningful to our prediction outcome
and whether the performance estimations are realistic. In
our study, we performed manual feature engineering through
iterative cycles of conducting interviews and using the domain
knowledge of the data and avoided automatic means in feature
selection to avoid bias. Moreover, we performed LOOCV as
recommended in effort estimation literature [30] to reduce bias
and variance of our performance estimations.

The fourth threat to validity concerns the reliability and
reproducibility of our findings. We have done our best to
provide a clear methodology and specify design decisions, so
that as long as other researchers study the same data following
the same study settings, same results should be achieved.

VIII. CONCLUSION AND FUTURE WORK

In this work, we studied the problem of predicting re-
quirement implementation within the planned iteration using
a combination of qualitative and quantitative methods on
three large IBM projects to make machine learning based
predictions at four meaningful stages of a requirement lifetime.
We engineered a set of 29 features and put them in nine logical
categories and trained various models and achieved acceptable
results. Then, we modified the learning process to maximize
precision of predictions according to the business interest of
our industrial partner and achieved precision values between
0.8 and 0.97 depending on the project and prediction stage
while retaining a recall value between 0.15 and 0.6 depending
on the project. We then ranked features based on their relative
importance to the trained model and observed that although
importance of features is highly project and prediction stage
dependent, there are certain features, such as creator of the
requirement, time remained to the end of iteration, time past
since last requirement summary change and number of times
requirement has been replanned for a new iteration, that are
overall of high importance to most projects and prediction
stages.

Future work of this study includes studying new features
and analyzing results when new features are included. One
of the techniques that is not incorporated in this study is
text analysis on attributes such as summary, description and
comments of a work item that has shown successful results
in previous work [9], [11]. Although most previous models
using text analysis have been solely relied on text attributes,
there has been prior work that integrated them with other
methods successfully using ensemble techniques [12] or by
transforming text attributes into numeric features [39], [8].
This opens an avenue for future work as relying on different
sources of data and combining their estimates is likely to
produce better estimates compared to each individual one
[40]. Other ensemble learning techniques have also been used
successfully in effort estimation literature [41], [42], [43]
which could be applied on our research settings to improve
the results. Finally, analyzing potential influences of the geo-
graphical distribution of project stakeholders [14], as well as
other factors related to their communication and coordination
are worthwhile directions for future work.
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