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Abstract Knowing whether a software feature will be completed in its planned
iteration can help with release planning decisions. However, existing research
has focused on predictions of only low-level software tasks, like bug fixes. In
this paper, we describe a mixed-method empirical study on three large IBM
projects. We investigated the types of iteration changes that occur. We show
that up to 54% of high-level requirements do not make their planned iteration.
Requirements are most often pushed out to the next iteration, but high-level
requirements are also commonly moved to the next minor or major release
or returned to the product or release backlog. We developed and evaluated a
model that uses machine learning to predict if a high-level requirement will be
completed within its planned iteration. The model includes 29 features that
were engineered based on prior work, interviews with IBM developers, and do-
main knowledge. Predictions were made at four di↵erent stages of the require-
ment lifetime. Our model is able to achieve up to 100% precision. We ranked
the importance of our model features and found that some features are highly
dependent on project and prediction stage. However, some features (e.g., the
time remaining in the iteration and creator of the requirement) emerge as im-
portant across all projects and stages. We conclude with a discussion on future
research directions.
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1 Introduction

Planning when to release a software product and what new features or changes
should be included in each release involves complex decisions [20,52]. Deliver-
ing frequent and incremental releases is a common practice of teams adopting
agile practices [4]. Many agile teams deliver a new release after every software
development cycle (or iteration) [34]. Frequent releases deliver value to the
users quickly. In the highly competitive software environment, time-to-market
for software features is paramount [22]. An early release can di↵erentiate one
product from its competition, while a late release allows competitors to grasp
more of the market share [55]. Thus, late or incomplete releases can impact
product success [4].

Planning releases to deliver new features as quickly and early as possible
is, however, a challenging task. A recent mapping study indicates that im-
plementing planned requirements on time is challenging because of di�culties
in prioritizing requirements, estimating requirements’ implementation e↵ort,
and understanding requirements’ complexity [26]. Requirements can also be
delayed due to growing technical debt accumulated from an inadequate, short-
term planning horizon which is common on agile projects [26]. Since delivering
features early is crucial for product success, software teams want to dedicate
their time and resources to the requirements that will be completed in the
current iteration and, as such, ready for the next release. Therefore, it would
be useful, for release planning and resource allocation decisions, to know early
when certain requirements will not make it into an iteration.

While there is an extensive body of literature on predicting various aspects
of software releases and tasks, there are no studies that investigate the likeli-
hood of a high-level requirement being implemented in its planned iteration.
Much previous work has investigated ways to predict completion time [42,
21,1,36,15,30] and completion e↵ort [58,5,45,12] of software tasks. However,
this prior research focuses on low-level tasks such as bug fixes. In this paper,
we focus on high-level requirements, which are typically broken into smaller
software tasks. Predictions of high-level requirements can not be made simply
by combining the predictions of all of their children, because the child tasks
are often worked on in parallel and have dependencies that add additional
coordination overhead.

Prior studies have also proposed models to predict the overall readiness of
a software release [47,59,2,4]. This provides a very high-level view of when a
release can be delivered. The work described in this paper di↵ers from these
studies since we focus on the completion of individual high-level requirements.

Predicting the completion of high-level requirements is important because
often a high-level requirement is not released until all of its child tasks have
been completed. Thus, project management decisions on all of the child tasks
associated with a high-level requirement can depend on the likely completion
time of the overall high-level task.

Furthermore, unlike tasks, high-level requirements are unique from a busi-
ness and project management perspective. Delays in completing high-level
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requirements increase the need to manage customers’ functionality delivery
expectations. Any iteration changes to high-level requirements need to be ap-
propriately managed in the project plan and discussed with the customers if
necessary.

In this paper, we describe a mixed-method empirical study of requirements
from three large projects at IBM. We used a combination of qualitative and
quantitative methods. We worked closely with an IBM Analytics Architect (the
fourth author) and other IBM practitioners. This close connection allowed us
to obtain a concrete understanding of the IBM ecosystem and their workflow
[41].

We developed predictive models to predict whether or not a high-level soft-
ware requirement will be completed in its planned iteration. Our IBM partners
requested that we develop a model that can optimize precision (at the expense
of recall). The reason for this is that they do not want to make release plan-
ning or resource allocation decisions unless they can be certain the predictions
are correct. They would prefer a model that provides a smaller set of very
accurate predictions of requirements that should be replanned over a model
that provides a large set of less accurate predictions. We used cost sensitive
learning to satisfy this requirement of high precision. Thus, we developed two
models during our investigation: 1) a cost insensitive model which does not
aim to optimize precision and 2) a cost sensitive model which does aim to
optimize precision. We compare the overall accuracy of the two models.

The development of our predictive model was guided by the following re-
search questions:
RQ1: Can we predict whether or not a requirement will be completed within
the planned iteration?
RQ2: Can we optimize the predictive model to maximize precision of predic-
tions, while maintaining an acceptable recall?
RQ3: What is the relative importance of each model feature1?

We also aimed to better understand the types of changes that happen to
high-level requirements. This part of our study was guided by the following
research question:
RQ4: What happens to requirements that are not completed in their planned
iteration?

Our study has four main contributions:

1. We analyze how often iteration changes occur and identify the types of
iteration changes that commonly occur.

2. Through a process of feature engineering, we propose a predictive model
that is capable of making predictions at di↵erent stages of a requirement
lifetime and results in an F1-score between 0.55 and 0.80.

1 Note that the term feature refers to a model feature, not to be confused with a software
feature.
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3. We optimize the predictive model to maximize precision of predictions to
address IBM business interest. This model obtains precision values between
0.80 and 1.

4. We rank the engineered features according to their relative importance to
our optimized model. This helps other researchers know what features to
consider in their future studies. It also helps software organizations know
what kind of data they should record for future analysis.

Our previous conference publication reported on some elements of this work
[13]. However, this paper introduces numerous extensions to our work. Specif-
ically, this paper extends our previous publications by investigating what hap-
pens to requirements when they do not make their planned iterations (RQ4).
We identify eleven di↵erent types of iteration changes. Many high-level re-
quirements are just moved to the next iteration when they are not completed
in the current iteration, but they can also be moved to the next release, a later
release, a previous release or put back on to the release or product backlog. We
report on the frequency of each type of iteration change. We find that the type
of work item has an e↵ect on the type of iteration change that is made. We
also restructured the paper, added additional details of the study throughout,
and significantly expanded the related work and discussion sections, including
a large discussion on potential avenues for future work enabled by this study.

2 Research Methodology

To answer our research questions, we used a mixed-methods approach com-
prised of interviews with practitioners, repository analysis, and development
of predictive models. The study was led and designed by our research team
in collaboration with an IBM Analytics Architect. The idea and the initial
design of the study were based on a real business need at IBM and were ini-
tiated in a face-to-face meeting with an IBM program director and the IBM
analytics architect. In this section, we discuss our research setting, dataset,
and methodology.

2.1 Research Setting

We studied three large projects of an IBM product. The projects are code-
named as projects A, B and C due to confidentiality reasons. The product is
an enterprise platform (referred to as the IBM enterprise platform henceforth).
The platform is a software tool which provides a community where develop-
ers of the IBM ecosystem and customers of the product can collaborate and
communicate. Members of this community can create, modify, resolve or com-
ment on a work item. The platform is developed in Java. IBM adopts an agile
methodology for development of this product.
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Fig. 1: IBM enterprise platform: Work Item attributes

We describe the context of the product according to the guidelines in [44].

– Maturity: The development was started in 2005 and the first release of
the product was made in 2008. It has had six major releases and a large
number of minor releases.

– Quality: Today, the development teams continue to add enhancements to
the product and maintain the existing releases.

– Size: The product is large and provides many di↵erent components. Some
indication of size is given by the number of developers and tasks (work
items) in Table 1.

– System type: The product is available as a web application. In addition,
clients are available for multiple platforms and technologies.

– Customization: The product has role-based licensing options, allowing cus-
tomers to choose their desired components. The product itself provides
many customization options allowing it to suit a wide-range of use cases.

– Programming language: The product is developed in Java.

To understand the research setting, we define some terminology:

Work items represent work that needs to be done. The main attributes
of a work item are illustrated in Figure 1. Work items have an owner (the
assigned developer), are filed against specific components of the product, are
planned for iterations, and have a state. The state of a work item describes its
current status. A work item has a type attribute which defines the workflow
of the work item. Work item types are: Plan Item, Story, Enhancement, Task
and Defect. Work items vary in size from small chunks of work to very large.
Typically, Plan Items are the largest work items and tasks and defects are the
smallest.
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Fig. 2: Hierarchy of work items in IBM enterprise platform

Work items are also hierarchical, which means a work item could have one
or multiple children or grandchildren. The ideal hierarchy of work items in the
IBM enterprise platform is shown in Figure 2. Work items of type Defect could
be a child of any of these other work item types. The hierarchy in practice,
however, is sometimes inconsistent with this ideal structure. For instance, work
items might have children with the same work item type (e.g., a Story could
have a child of type Story), and, in some rare cases, this hierarchical order is
violated.

Plan items are top level work items that represent software requirements
and functionalities that should be included in next release(s). An example of
a Plan Item is adding support for Visual Studio to a product. These are very
large development e↵orts. These are most similar to Epics in agile methodolo-
gies. During the lifetime of a Plan Item, new children and grandchildren can
always be added. A Plan Item is not completed until all of its children are
completed. These are typically planned by high-level management across the
entire project.

Stories are also high level work items, but they are breakdowns of Plan
Items. A Plan Item typically is broken into multiple Stories. Team leads man-
age the completion of Stories. These are most similar to User Stories in agile
methodologies. Using the example of adding support for Visual Studio to a
product, this would be broken into multiple user stories for each feature that
must be supported in Visual Studio. Stories and Plan items have many com-
mon characteristics in this platform, but Stories tend to be somewhat smaller
than Plan Items.

Work item History: Every time a change happens to a direct attribute
of a work item (for instance if the status or owner of a work item changes) or
a new subscriber or comment is added to a work item, this change is recorded
as a work item history. However, the addition or removal of children is not
recorded as a work item history.

Iteration: A time-box during which development takes place. Iterations
are hierarchical where top-level iterations represent releases and child itera-
tions represent milestones within those releases. A milestone iteration is typ-
ically 1 to 4 weeks in length. The duration of release iterations vary from 1
month up to 1 year. Work items could be planned for a milestone or a release
iteration, and if they don’t get finished through an iteration, they could be
replanned for another one.
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Table 1: Summary of Projects

Attribute Project A Project B Project C
start date Jun 2006 Jan 2009 Jun 2006
end date Oct 10, 2016 Oct 11, 2016 Oct 24, 2016

# work items 75k 71k 177k
# histories 816k 835k 1.73m
# plan items 839 749 447
# PI histories 20k 20k 19k

# stories 1,286 3,640 4,471
# S histories 16k 61k 50k
# comments 374k 312k 312k
# developers 594 481 796

2.2 Project Selection

The three projects were chosen, in consultation with IBM practitioners, based
on their long duration, high-level of activity, and large number of Plan Items
and Stories in their development and project management repositories. Table
1 shows some statistics of these three projects in our observation period. Note
that as the type of a work item is subject to change, the number of Plan Items
and Stories displayed in Table 1 is based on any work item that has at least
one history of that type.

2.3 Repository Analysis

To investigate requirement iteration changes, we performed a repository anal-
ysis of the three IBM projects. We focused our analysis on Plan Items and
Stories for two reasons: 1) IBM managers stated they would like to have pre-
dictions for both of these work item types, and 2) there are many inherent
similarities between the two work item types in terms of measured attributes
as well as the enterprise internal processes. We refer to Plan Items and Stories
as requirements in the rest of this paper. However, as the two work item types
do have some di↵erences (stories are breakdowns of Plan Items), we perform
our analysis on Plan Items and Stories separately.

We studied the requirements that are already completed and were planned
for an iteration with an end date. These filters allowed us to validate our
predictions based on actual completion times. Thus, the results displayed in
Tables 4 and 5, show only the subset of requirements that have been completed.

2.4 Interviews

The study was done in close collaboration with IBM. As previously stated,
the original idea for the study was initiated by IBM. Throughout the study,
we held two face-to-face meetings with the IBM program director and the
analytics architect and 16 semi-structured 30-60 minute interviews with the
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analytics architect and three other IBM practitioners. These interviews were
used to drive the study design and validate our understanding of the repository
data. Features for the predictive model were brainstormed and discussed in
these interviews.

2.5 Model Development

Using feature engineering, we developed a model that predicts whether a high-
level requirement will be completed during its planned iteration. The model
features were derived from prior work, from suggestions made by IBM devel-
opers, and through domain knowledge. We used Random Forest (RF) as our
learning algorithm due to its ability to handle di↵erent feature types, noise,
missing values, and correlated features [60]. We used cost sensitive learning
to favor precision over recall as desired by the IBM practitioners [56]. The
development of the model is described in detail in Section 3.1.

We used a variety of tools and libraries for our analysis including Rapid-
Miner [31] and WEKA [24]. The final implementation was done in Java code
using WEKA libraries.

In the next section, we describe the data analysis and results in answering
our research questions.

3 Data analysis and Results

3.1 Predictive Model

RQ1: Can we predict whether or not a requirement will be completed
within the planned iteration?

In this section, we describe the development and evaluation of a model
that predicts whether a high-level requirement will be completed during its
planned iteration.

3.1.1 Feature Engineering

Feature engineering is the process of creating predictors for a machine learning
algorithm in order to build a predictive model. Feature engineering was the
most e↵ort-consuming task in this study and involved iterative brainstorming,
data visualization, digging into data, interviews with IBM software practition-
ers, and a review of existing literature. As a result, a set of 29 features were
engineered. Each of these model features come from one or a multiple of these
sources:

1. Prior work, chiefly in bug resolution time and e↵ort prediction.
2. Suggestions made by IBM developers.
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3. Domain knowledge achieved as a result of interviews with enterprise prac-
titioners and studying the data.

The motivation behind choosing these features and their descriptions are
stated in Section 3.1.2. Despite di↵erences in practices across teams and inher-
ent di↵erences in the characteristics of the two work item types, the common-
alities between them were high enough to enable us to use almost the same
feature set for each dataset, except for a few minor exceptions which will be
described in Section 3.1.2.

No Manual Feature Selection: We ran Pearson correlation analysis between
each pair of features, the highest correlation values were between 0.6 and 0.8
which can still be handled by the RF algorithm. The RF algorithm is designed
to be robust against correlated or non-informative features [60]. Thus, as one of
the objectives of this research was ranking features based on their importance
to the trained models, we did not exclude any of the engineered features.

No Automatic Feature Generation: Besides manual feature engineering,
there are automatic techniques such as automatically generating large numbers
of candidate features and selecting the best by their information gain, but
these techniques can cause over-fitting [14], especially when dealing with a
large number of attributes in raw data.

No Automatic Feature Subset Selection: Additionally, there are methods
that automatically select the ideal subset of features. We used correlation-
based features subset selection methods and wrapper for feature subset se-
lection methods in the WEKA [24] library. We used these methods to select
a subset out of the 29 manually engineered features for the RF classification
model. For each dataset, we built ten subsets by varying the method parame-
ters and kept features that appeared at least six times. We used these subset
in our models and compared the results across subsets and with the origi-
nal model. In all cases, the model with all 29 features outperformed those
with automatic feature subset selection. Thus, the reported results use all 29
features.

3.1.2 Model Features

In this section, we introduce all the engineered features used in our analysis
and motivate them. There are 29 features, which we categorized into 9 logical
categories. Some features logically fit into more than one category. In those
cases, we put them in the most relevant category only. In the following sec-
tions, we describe each category and the motivation for including each feature.
We also cite prior work that has adopted similar features in other prediction
models. Note that a citation right after the feature name indicates that the
feature or a similar one was used in the referenced prior work, but it does not
necessarily mean that they had the same motivation as in this work since we
had di↵erent goals and settings in this study.
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General Features

There are three features that are available early on in a requirement lifetime.
We call these the general features.

– creator identifier [42,21,1,36,30,12,23,49]: the stakeholder who cre-
ated the requirement. Available at requirement creation.

– creation month [21,1,36,12]: the month the requirement was created.
Available at requirement creation. Depending on the project and timeline
of the corresponding team, it could capture factors such as workload of a
team that could have impact on completion time of a requirement.

– owner identifier [42,21,1,23,36]: the developer assigned to a require-
ment. Available when the requirement is assigned to a developer.

Complexity Indicating Features

The more complex a requirement is, the more time it is likely to take. Mis-
understood requirements often lead to technical debt and the need for rework
[26]. Thus, we include features which can indicate the complexity of a require-
ment.

– subscriber count [42,21,1,36,30]: the number of stakeholders subscribed
to receive updates on a certain work item. Whenever someone comments
on a work item, they are automatically subscribed to the work item. Stake-
holders could also manually subscribe to or unsubscribe from work items.
A high interest in receiving updates could indicate high complexity.

– filed against [42,21,1,36,12]: the software component against which the
requirement is filed. Some components are inherently more complicated
than others. For instance a database related component is likely to entail
more complexity than a UI related component.

– iteration change count: the number of times a requirement was re-
planned for a new iteration, as it suggests possible inadequate e↵ort es-
timation [26]. If the requirement gets carried over to the next iteration
multiple times, it could be an indication of high complexity.

Progress Implying Features

The current progress of a requirement will influence whether it will be com-
pleted in time or not. Thus, we have three features that enable the model to
gauge current progress:

– iteration days remained [21,1,2,4]: the number of days remaining to
the end of the planned iteration.

– days since creation [42,21,1]: the number of days since the work item
was created.

– status [21,1,23]: the current status of a work item, such as new, in explo-
ration phase, in progress, in testing phase, etc.



High-level Software Requirements and Iteration Changes: A Predictive Model 11

Priority Implying Features

Having a higher priority usually helps a requirement receive more attention
and activity and, thus, get completed earlier.

– priority: an explicit measure of importance from the developers perspec-
tive. Not available for all work items. In cases of missing values, priority
was assumed to be normal, which is the most common priority.

– severity: an explicit measure of importance from the customers perspec-
tive. Not available for all work items. In cases of missing values, severity
was assumed to be normal, which is the most common severity.

– days without owner: number of days the work item was not assigned
to a developer since creation; many unassigned days could indicate low
priority.

– days since last comment: the number of days since the last comment,
many days between comments could indicate low priority.

– owner change count [23,30,28]: the number of times a work item has
been reassigned. Reassignments could be an indication of high priority as
people reassign a task to find the optimal developer who can address the
problem quickly [23]. However, too many reassignments could mean that
no one is taking responsibility for handling the task [28], indicating low
priority.

– days since last owner: the number of days since the current work item
owner was assigned. This is meant to capture a similar e↵ect to the previous
feature by considering how recent the last reassignment is.

Problem Change Indicating Features

A change in the problem definition of a requirement can impact completion
time. Frequent changes could indicate additional changes in the future. This
is captured by:

– summary change count: the number of times the work item summary
has changed.

– description change count: the number of times the work item descrip-
tion has changed.

Also, if the problem definition has changed recently, e↵ort may still be under-
way to deal with the change. Thus, we consider:

– days since last summary: the number of days since the last summary
change.

– days since last description: the number of days since the last descrip-
tion change.

Previous studies attempted to capture changes in requirements by propos-
ing basic features such as the number of total changes to bug attributes [21,
1] (equivalent to number of histories in our datasets), but to the best of our
knowledge these particular four features are novel to this study.
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Process Change Indicating Features

In addition to a change in problem definition, a change in the software process
could also impact completion time. This is especially true if the process change
is recent. It’s not uncommon in the IBM enterprise platform for a Story to be
transformed to a Plan Item and vice a versa. It also sometimes happens that a
work item is created as a low-level requirement (Task) and then the developers
decide that it should be transformed to a high-level requirement (Plan Item
or Story). Such process changes could potentially delay implementation of a
requirement.

– days since last type s p: number of days since the last time the re-
quirement type was changed from Plan Item to Story or vice a versa.

– days since last type child: number of days since the last time the
work item type was changed from a low-level work item type to a re-
quirement.

Stakeholder Characteristics

Through the interviews with IBM practitioners, we learned that the types
of stakeholders involved in a work item can impact its completion time. To
account for this, we consider:

– days since last de comment: number of days since a distinguished en-
gineer (DE) commented on the work item. In IBM, DE is a title reserved
for very respected developers. If a DE participates in the discussion of a
work item, it will likely receive prompt attention.

– component resolver: the total number of work items that the work item
owner has resolved in the same component up until the modified date of
the corresponding history of each requirement. This indicates the expertise
of the owner in the domain of the problem.

– creator team relationship [23,36]: the relationship of the work item
creator to the assigned team. Prior work suggests that bugs reported by
people on the same team are likely to get fixed faster [23]. For this fea-
ture, the creator could be an IBM developer from the same team, an IBM
developer from another team, or a customer from outside the company.

Stakeholder Communication

Communication between stakeholders of a work item can impact completion
time. A large volume of communication may indicate high complexity and,
thus, result in longer completion time [23]. On the other hand, increased com-
munication can indicate a good information flow and a high level of awareness
and engagement and, thus, results in shorter completion time [23]. Commu-
nication in this enterprise platform usually happens via commenting on work
items, so we consider:

– comment count [42,21,1,36,30]: number of comments on the work item.
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– commenter count [30]: the number of unique stakeholders involved in
the discussion on a work item.

Child Features

As described in Section 2.1, work items are hierarchical in the IBM enter-
prise platform. Requirements normally have children and grandchildren. Our
model considers these hierarchical dependencies since the number of children
a requirement has can impact its completion time for a variety of reasons, e.g.:

1. child work items are a breakdown of the requirement,
2. the number of children impacts the e↵ort required for planning and break-

ing down the requirement as well as the e↵ort required to integrate and
test the children,

3. each child has its own idle time (such as time spent on triaging and assign-
ment).

The type of a child work item can play an important role in this e↵ect since
plan items and stories often involve a more significant amount of work. We
also want to consider the progress of the children, since a child work item
that has been completed or is near completion should not greatly impact the
completion time of the parent. Therefore, we consider:

– same type child count new: the number of first descendant child work
items of the same type as the requirement, with progress status New

– large size child count new : the number of first descendant child work
items of type Story (or Enhancement if requirement type is Story), with
progress status New

– medium size child count new: the number of first descendant child
work items of type Enhancement (or Task if requirement type is Story),
with progress status New

Table 2 summarizes the model features. As can be seen, while many fea-
tures are based on other prediction models, a large number of features are
new to this study. In addition, the table illustrates there are five features that
are specific to only high-level requirements, the focus of this study. All of the
features related to children (large type child count new,
medium type child count new, same type child count new) are ap-
plicable only to high-level requirements, since low-level requirements do not
have children. In addition, the process change indicating features
(days since last type s p and days since last type child) are specific
to high-level requirements as they relate to requirements changing to (or from)
a high-level requirement type.

3.1.3 Learning Algorithm

We used Random Forest (RF) as our learning algorithm. RF has shown high
performance on many types of datasets compared to many well-known algo-
rithms such as SVM and Naive Bayes [18]. It is robust to noise in data, is
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Table 2: Model Features.

Feature Based on
Applicable to

(requirement level)
Low High

creator identifier [42,21,1,36,30,12,23,49] X X
creation month [21,1,36,12] X X
owner identifier [42,21,1,23,36] X X
subscriber count [42,21,1,36,30] X X

filed against [42,21,1,36,12] X X
iteration change count — X X
iteration days remained [21,1,2,4] X X

days since creation [42,21,1] X X
status [21,1,23] X X

priority — X X
severity — X X

days without owner — X X
days since last comment — X X
owner change count [23,30,28] X X
days since last owner — X X
summary change count — X X

description change count — X X
days since last summary — X X

days since last description — X X
days since last type s p — X

days since last type child — X
days since last de comment — X X

component resolver — X X
creator team relationship [23,36] X X

comment count [42,21,1,36,30] X X
commenter count [30] X X

same type child count new — X
large size child count new — X
medium size child count new — X

applicable to datasets with a mixture of continuous, semi-continuous and cat-
egorical features, and is capable of handling missing values as well as correlated
features [60].

Model Parameters: In RF, there are three main parameters. The number
of trees, the maximum depth of each tree, and the the number of randomly
selected features at each split. For the sake of the model performance, we
tune those parameters by trying di↵erent combinations. All datasets obtain
the best result using 100 trees with a maximum depth of 50 depth and 5
randomly selected features.

3.1.4 Prediction Stages

We made predictions at four di↵erent stages for each project and work item
type: the first day of creation of a requirement and the end of the first, second
and third quarter of the planned iteration. This allows us to make predictions
at di↵erent stages of a requirement lifetime, something that is beneficial to
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enterprises. It also enables us to compare the significance of features at dif-
ferent points in time. The selected stages are meaningful and derived from
the actual needs of the enterprise. Another benefit to this approach is that
training and testing data points will be automatically selected based on the
same percentage of the progress of requirements. Therefore, these data points
are more meaningful and related to each other, assuming that requirements at
the same time slot of their corresponding iteration are approximately at the
same point of their progress. For simplicity, we will onwards refer to these four
prediction stages with 0th, 1st, 2nd and 3rd short form notations.

Considering that work items in this platform might have many histories
within the same quarter of an iteration, we defined the history selection criteria
as following:

– 0th: The first history of a work item.
– 1st, 2nd and 3rd: The last history of a work item within the corresponding

quarter of its planned iteration.

As a result of having three di↵erent projects (A, B and C), two di↵erent
requirement types (Plan Item, Story) and four di↵erent prediction stages (0th,
1st, 2nd, 3rd), we have 24 datasets in total. For simplicity from now on, we will
refer to a specific dataset by the Project-Type-Stage notation. For instance B-
plan-2nd will refer to the dataset of Plan Items of project B at the end of the
2nd quarter of their planned iteration.

3.1.5 Binary Classification Problem

In terms of the prediction outcome, we formulated our analysis as a binary
classification problem. We compared the completion date of a requirement to
the end date of the planned iteration. Equation (1) shows the derived predic-
tion outcome:

iteration met =

(
Y ES, if completion date  end date

NO, otherwise
(1)

As we assumed that requirements are supposed to be completed within
their planned iteration, a trend we confirmed from our examination of the
historical data of the projects, the NO class normally made up the minority of

Table 3: Ratio of requirements that are not completed in their planned itera-
tion

dataset 0th 1st 2nd 3rd
A - plan 0.53 0.44 0.49 0.49
B - plan 0.30 0.54 0.52 0.32
C - plan 0.35 0.38 0.39 0.39
A - story 0.50 0.38 0.40 0.40
B - story 0.44 0.20 0.19 0.18
C - story 0.50 0.37 0.36 0.36
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Table 4: Cost Insensitive Model results

Plan Items Stories
proj stage n NO% prec recall F1 WA n NO% prec recall F1 WA

A

0th 316 53% .81 .70 .75 .78 521 50% .72 .69 .71 .71
1st 393 44% .85 .74 .79 .82 769 38% .75 .60 .67 .71
2nd 462 49% .84 .74 .79 .81 842 40% .72 .62 .66 .69
3rd 468 49% .85 .75 .80 .82 873 40% .73 .61 .67 .70

B

0th 231 30% .65 .50 .57 .61 2020 44% .68 .67 .67 .67
1st 224 54% .68 .73 .70 .69 2472 20% .81 .53 .64 .74
2nd 287 52% .75 .71 .73 .74 2759 19% .86 .58 .69 .79
3rd 473 32% .73 .45 .56 .66 2925 18% .85 .59 .69 .78

C

0th 77 35% .73 .44 .55 .66 1644 50% .73 .73 .72 .72
1st 267 38% .73 .63 .68 .70 1999 37% .68 .53 .60 .64
2nd 280 39% .72 .65 .69 .71 2310 36% .70 .50 .58 .65
3rd 287 39% .70 .59 .64 .67 2422 36% .70 .51 .59 .65

requirements. Thus, NO was considered as the positive class for our learners
to predict. Table 3 displays the ratio of requirements that are not completed
in their planned iterations for all datasets.

3.1.6 Model Validation

We used K-fold cross validation to evaluate our model. K-fold cross validation
is a common technique for evaluating the performance of a predictive model.
Values such as 10 or 5 as number of folds (k) are typically known as good
choices according to the variance-bias trade-o↵ [19,17]. In our experiments,
we used 10-fold cross validation.

Table 4 shows the performance of our cost insensitive learning process in
each of the 24 datasets measured by precision and recall of the positive class.
We also report the F1-score, which is the harmonic mean of precision and
recall, as well as the Weighted Arithmetic mean (WA) as defined in section
3.2.2. From Table 4, it is evident by the NO% column, which shows the ratio
of the positive class to the dataset size, that there is some skewness in our
datasets. Despite this, our predictions result in precisions higher than 0.65 for
all projects, work item types and stages. In some cases, precision is as high as
0.86. F1-scores are also high with all datasets obtaining an F1-score of at least
0.55 and some datasets achieving scores as high as 0.80. The one dataset that
received a lower F1-score, C-plan-0th, is the smallest dataset.

Comparing the results between the two work item types, we observe fairly
similar prediction performances for both Plan Items and Stories.

One key factor to take into account when comparing results, however, is
the balance of the dataset denoted by the column NO%. We expect to have
better results when the dataset is more balanced since it allows for enough
positives in the training set. We see a trend of having a more balanced dataset
in the 0th prediction stage for most projects and work item types.
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Answer to RQ1: We developed models that were able to accurately pre-
dict whether a requirement was completed within the planned iteration.
We obtained precision scores of up to .86 and F1-scores up to .80 (see
Table 4).

3.2 Precision Optimization

RQ2: Can we optimize the predictive model to maximize precision of
predictions, while maintaining an acceptable recall?

IBM managers stated they are interested in having the highest possible
precision, even though it might result in lower recall values. They stated that
a precision of below 0.8 would be of little utility in practice and a precision
of 0.9 or above would be ideal for them. At the same time, they pointed
out that having a high precision, a recall value around 0.2 or 0.3 would be
good enough. The reason for this is that they would like to be alerted of
the most relevant requirements which are most likely to not be completed in
their planned iteration. They want to ensure they are not reallocating time or
resources away from a requirement that may actually be completed on time.

3.2.1 Cost Sensitive Learning

To favor precision over recall, we used cost sensitive learning with a high
penalty for false positives to make our models more cautious when making
predictions on the positive class. There exist many techniques for cost sensi-
tive learning, most of which are described in a literature review by He and
Garcia [25]. These techniques can be classified into two general categories: 1)
cost sensitive learning which performs resampling or sample-weighting on the
minority class to make the data more balanced; and 2) approaches that min-
imize the expected cost of classification utilizing the confidence of the base
classifier in predictions. We use a sample-reweighting technique through the
CostSensitiveClassi�er class of the WEKA [24] library, which is an imple-
mentation of the approach introduced by Ting [56]. We determined the false
positive penalty by considering the original class balance to make it balanced.
In addition, we increased the false positive penalty in order to comply with
the goal of maximizing precision of predictions. As a result, a false positive
penalty between 3 to 5 was applied depending on the skewness of dataset.

3.2.2 Weighted Arithmetic Mean

Based on the specified ideal precision and recall values desired by IBM, we used
a weighted arithmetic mean to measure the performance of our cost sensitive
model, shown in Equation (2).

WA = (3⇥ precision(NO) + recall(NO))/4 (2)
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Table 5: Cost Sensitive Model results

Plan Items Stories
proj stage n NO% prec recall WA n NO% prec recall WA

A

0th 316 53% .95 .47 .83 521 50% .87 .36 .74
1st 393 44% .95 .47 .83 769 38% .87 .39 .75
2nd 462 49% .93 .56 .84 842 40% .83 .38 .72
3rd 468 49% .91 .66 .85 873 40% .89 .38 .73

B

0th 231 30% 1 .24 .81 2020 44% .86 .31 .72
1st 224 54% .88 .13 .69 2472 20% .94 .24 .76
2nd 287 52% .95 .24 .77 2759 19% .93 .34 .78
3rd 473 32% .94 .11 .73 2925 18% .95 .33 .80

C

0th 77 35% 1 .08 .77 1644 50% .85 .51 .76
1st 267 38% .86 .12 .67 1999 37% .80 .27 .67
2nd 280 39% .82 .13 .65 2310 36% .86 .15 .68
3rd 287 39% .86 .17 .69 2422 36% .88 .17 .70

We still report performance metrics such as precision and recall. We use WA as
defined above to compare performance of the models developed for RQ1 and
RQ2. We call the model which optimizes precision the cost sensitive model
and the original model the cost insensitive model.

3.2.3 Model Validation

Similar to RQ1, we used 10-fold cross validation to evaluate our model. Table
5 shows the precision, recall and weighted arithmetic mean (WA) of our cost
sensitive learning process for each dataset. We see similar skewness across the
datasets in regards to the NO% as seen in RQ1. We obtain precision vales of at
least 0.80 for all projects, work item types and stages. In some cases, precision
goes as high as 1. Of course, recall is lower than seen in RQ1, with a median
recall of 0.29 Though, in some cases, recall values are as high as 0.66.

When comparing the WA of the cost sensitive model (Table 5) and the cost
insensitive model (Table 4) results, we observe that without any exception,
WA of the cost sensitive predictions are always equal to or greater than cost
insensitive predictions. This shows that the cost sensitive models are overall
more accurate while providing the high precision values desired by IBM.

Answer to RQ2: We developed models that achieved higher precision
values, up to 1 (see Table 5), and obtained higher overall performance
compared to RQ1 as measured by the WA scores.
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Table 6: Feature Importance Ranking: Frequency each feature occurs in top
10 most important features across the 24 datasets.

Feature count
specific to high-

level requirements
iteration days remained 24
owner identifier 24
creator identifier 24
filed against 23
creation month 22
status 21
severity 14
priority 14
creator team relationship 13
days since creation 9
component resolver 9
days since last comment 7
days without owner 7
iteration change count 6
subscriber count 5
medium size child count new 4 X
days since last owner 3
comment count 3
summary change count 3
days since last summary 2
large size child count new 1 X
owner change count 1
creator team relationship 1
description change count 1
same type child count new 1 X
days since last type s p 1 X
days since last type child 1 X
days since last de comment 1
days since last description 1

3.3 Feature Importance (RQ3)

RQ3: What is the relative importance of each model feature?

To rank feature importance, for each dataset, we use Weka wrapper subset
attribute evaluator method with BestFirst as the search method and Random
Forest as the classifier. Other techniques, such as Cohen’s f 2 test [54] or Chi-
square measure [35], can be used to measure the e↵ect size on or relevance of
features to the class feature out of the box. However they do not indicate a
feature importance in the trained model and, thus, we did not employ these
measures.

Table 6 shows the number of times each feature occurs in the top ten most
important features across the 24 datasets. When interpreting these results,
one should consider that the importance of the features in each dataset can
be influenced by:
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– Other dominant features. These feature importance values are relative to
other features within the same dataset. A change in relative importance
does not indicate a change in the absolute importance of that feature.

– The availability rate and cardinality of a feature. Some features might
have a high number of missing values in some stages. It is also possible
that some features have similar values and a low cardinality and, thus,
provide lower information gain. While RF can handle these missing values,
it could impact the feature importance in that dataset.

– The randomness factor of the random forest algorithm in selecting subsets
of training samples as well as features when building individual trees [9].

As can be seen in Table 6, there are a subset of features which are stable
across all or nearly all datasets. iteration days remained, owner identifier
and creator identifier are important in all datasets, which is in alignment
with the findings of prior work [23]. We also found that filed against, cre-
ation month, and status have very high importance in most datasets. The
importance of the remaining features varies across projects and prediction
stages.

Using the results shown in Table 6, we divided the attributes into four
groups based on their frequency of occurrence:

1. The top 3 features: iteration days remained, owner identifier, and
creator identifier

2. The next three features: filed against, creation month, and status
3. The next three features: severity, priority, and creator team relationship
4. all remaining features.

We then reran our cost sensitive predictive model (from RQ2) four times.
We started by using only the most important features (group 1) and then,
on each subsequent run, added the next most significant group of features to
investigate if using only a smaller subset of our model features would produce
similar results as those obtained with all model features. The median WA for
each model is shown in Table 7. As can be seen, with the addition of each group
of features, the median WA increases. We used Wilcoxon Signed-rank test to
test if this increase was significant. The results, shown in Table 8 shows that
the addition of groups 2 and 4 is indeed significant with a medium and large
e↵ect size, respectively. Thus, using only the most important model features
does not result in as good of results as using the full set of features.

Table 9 shows detailed information on relative feature importance for the
model trained on each dataset.

Table 7: Results of Cost Sensitive Predictive Model using subsets of Features

Groups median WA
1 0.6835
1+2 0.7025
1+2+3 0.7065
1+2+3+4 0.7415
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Table 8: Significance of adding each group of features (using the Wilcoxon
Signed-rank test)

Group Z p r
2 2.93 <0.01 0.42
3 0.50 0.63 0.07
4 4.11 <0.001 0.59

Many of the most important features are also applicable to low-level re-
quirements and are not unique to high-level requirements. Many of these also
were inspired by previous work on low-level requirements, but we have demon-
strated their applicability on high-level requirements in this study. Though, as
can be seen in Table 6, there are features specific to high-level requirements,
like the medium size child count new, that are sometimes very important
for making predictions.

Answer to RQ3: Feature importance is project and prediction stage de-
pendent. However, some features, such as iteration days remained,
owner identifier and creator identifier, are consistently ranked
higher than others. Table 6 shows the relative importance of the 29 fea-
tures included in our models.
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(b) Plan Items (c) Stories

Fig. 3: Number of iteration changes for the requirements that do not make
their first planned iteration.

3.4 Iteration Change Analysis

RQ4: What happens to requirements that are not completed in their
planned iteration?

To answer this research question, we investigate how often requirements
are changed from their planned iterations and what iterations they are moved
to. We identify a set of iteration change types and examine the frequency of
each type. Finally, we investigate if there is a relationship between the type of
iteration change and various properties of the work item.

3.4.1 Amount of Iteration Changes

We examined the amount of iteration changes for each requirement. Table
3 shows the ratio of requirements that are not completed in their planned
iteration. Somewhere between 18% and 54% of requirements have at least one
iteration change in each dataset.

We then examined those requirements which did not make their planned
iteration to determine how many iteration changes they typically have. As
can be seen in Figure 3, the majority of high-level requirements that are not
completed in their first planned iteration have only one or two changes to
their planned iteration. Only 7% of Plan Items and 19% of Stories have their
planned iterations changed three or more times.

3.4.2 Types of Iteration Changes

To better understand the scheduling considerations of the high-level require-
ments that do not make their planned iterations, we analyzed the planned
iteration changes. Over the three projects and two work item types, there
were 6,530 iteration changes. As described in section 2.1, the iterations are
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Fig. 4: Types of Iteration Changes.

hierarchical, so milestone iterations will have a parent release. Also, the IBM
teams mostly used a standard naming convention for iterations (i.e. X.X.X
is a minor release and X.X is a major release). Due to this, we were able to
automatically identify the type of iteration changes that occur for 97% of the
changes. We created a script, which performed pattern matching on the iter-
ation name and considered the iteration hierarchy and start dates to identify
the type of changes. We also manually reviewed the categorized changes to en-
sure the script was accurate in its categorization. Once the iteration changes
were categorized, we examined the frequency of each type of change.

Some of the changes were part of the normal workflow for many require-
ments:

– Change from release to milestone within that release. This occurs when
a requirement is changed from a given release to a specific development
iteration within that release.

– Plan from backlog. This occurs when a requirement is taken from the main
product backlog and planned for a specific release or milestone.

As these are expected in the normal workflow, these types of changes were not
considered in our analysis. After excluding these types of iteration changes,
we are left with 5,038 iteration changes, which we included in our analysis.

As depicted in Figure 4, we found the following types of iteration changes
(their relative frequency is shown in Table 10):
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1. Next milestone. Overall, the most common type of iteration change is push-
ing a requirement out from a milestone to the subsequent milestone of the
release. For example, if a requirement was planned for release 5.0.1 sprint
1 and was not completed during that iteration, it would be rescheduled for
5.0.1 sprint 2.

2. Later milestone. Occasionally, requirements are pushed from a milestone
to a later milestone within the same release that is not the subsequent
milestone. For example, if a requirement changes from 5.0.1 Sprint 1 to
5.0.1 Sprint 3.

3. Previous milestone. Requirements can also be pulled forward to a sooner
milestone than originally planned. For example, if a requirement was planned
for release 5.0.1 sprint 2 and was changed to 5.0.1 sprint 1.

4. Next minor release. Another type of iteration change is pushing a require-
ment out from a release to the subsequent minor release. For example, if
a requirement was planned for release 5.0.1 and was not completed during
that release, it would be rescheduled for 5.0.2.

5. Later minor release. Requirements can be pushed from a release to a later
minor release that is not the subsequent minor release. For example, a
requirement could be replanned from 5.0.1 to 5.0.3.

6. Previous minor release. Requirements can also be moved from a minor
release to the previous minor release. For example, if a requirement was
scheduled for 5.0.3 and moved forward to 5.0.2.

7. Next major release. Another type of requirement iteration change is when
a requirement is pushed out to the next major release. We found that hap-
pens most frequently when a requirement is planned for but not completed
in the last minor release of the previous release. Occasionally, this also oc-
curs from one of the earlier minor releases or from a milestone of one of
the previous minor releases.

8. Later major release. Requirements can be pushed from a release to a later
major release that is not the subsequent major release. For example, a
requirement could be replanned from 4.0 to 6.0.

9. Previous major release. Requirements can also be moved from a major
release to the previous major release. For example, if a requirement was
scheduled for 5.0 and moved forward to 4.0.

10. Return to release backlog. If a requirement is not completed during its
planned milestone, it is put back on the backlog for the release.

11. Return to product backlog. If a requirement is not completed during its
planned milestone or release, it could also be put back on the overall prod-
uct backlog.

As seen in Table 10, the frequency of iteration change types varies across
the di↵erent work item types. Stories are most likely to be replanned for the
next milestone, with this type of iteration change accounting for 59% of the
changes. The types of changes for Plan items, which are the highest level of
requirements, are more evenly distributed with next milestone, next minor
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Table 10: Frequency of iteration change types.

Type Plan Items Stories Overall
1. Next milestone 16% 59% 55%
2. Later milestone 5% 7% 6%
3. Previous milestone 3% 9% 9%
4. Next minor release 14% 6% 6%
5. Later minor release 2% 1% 1%
6. Previous minor release 7% 1% 1%
7. Next major release 11% 2% 3%
8. Later major release 6% 1% 2%
9. Previous major release 3% 1% 1%
10. Return to release backlog 14% 8% 9%
11. Return to product backlog 19% 5% 7%

release, next major release, return to release backlog, and return to product
backlog occurring fairly evenly.

3.4.3 E↵ect of Work Item Properties on Type of Change

To understand why certain types of iteration changes are made, we used multi-
nomial logistic regression to model the relationship between the type of itera-
tion change identified and various work item properties.

The work item properties used in this analysis are a subset of the model
features which are described in Section 3.1.1. We excluded model features in
this analysis for the following reasons:

– Feature is too sparse. For example, days since last de comment is only
available for those work items which had a DE comment, making this
feature sparse. The sparse features were: days since last de comment,
days since last type story plan, and days since last type child.

– Feature is categorical with a large number of categories. If all of the
categorical features were cross-tabulated, it would result in a table too
sparse for meaningful logistic modeling. Further, the categorical features
with many categories would produce results that were very specific to the
projects being studied. For example, we are not interested in identifying
specific task assignees (owner identfier) that have a relationship with
certain types of iteration changes. The categorical features that were ex-
cluded were: owner identifier, creator identifier, filed against,
and creation month.

– Multicolliniarity. We check correlations between all pairs of features, and
removed one of the features in the pair if the correlation was 0.5 or higher.
This removed: component resolver, days past since creation, com-
menter count, and subscriber count.

We also included two additional features; project and work item type. These
were not included in the feature set described in 3.1.1 since the previous anal-
ysis (RQ1-3) was done separately for each work item type and each project.
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For this multinomial logistic regression, we computed each feature at the
time of the iteration change. For example, the iteration change count would
be the number of times the iteration changed prior to the change under inves-
tigation.

Table 11 shows the results of multinomial logistic regression where the
type of iteration change was the output variable. We used the change type of
Next milestone as the baseline. We chose this as the baseline since it is the
overall most common type of iteration change. Table 11 reports the regression
coe�cients and the p-values (computed using Wald tests). In the table, we
have bolded the regression coe�cients that show the largest log odds and also
have significant p-values.

We found work item type is one of the most significant predictors. Work
item type is a two-level categorical variable (Plan Item or Story). The results
in Table 11 show the regression coe�cients for when the work item type is
Plan Item (compared to Story). The log odds of being changed to the next
minor or major release, a later major release or being put back on the release
or product backlog (all bigger delays) compared to being changed to the next
milestone increases significantly for plan items (compared to stories). On the
other hand, the log odds of being changed to a previous milestone vs. being
changed to the next milestone decreases significantly for plan items compared
to stories. This confirms that the di↵erences in frequency of iteration change
types across work item types (see Table 10) is indeed significant.

Not surprisingly, we see an increase in priority is associated with a de-
crease in the log odds of the work item change of later major release. Priority
does not have any other significant e↵ects.

Interestingly, we see that an increase in owner change count is associ-
ated with a decrease in the log odds of the work item change type of previous
major release. We also see that an increase in same type child count new
is associated with both a decrease in the log odds of a change to the later
milestone release and an increase in the log odds of a change to the previous
major or previous minor release. This is surprising as it would be expected
that having additional child tasks or changes in task ownership would be more
likely to cause delays. Further investigation is needed to better understand the
reasons for these relationships.

Answer to RQ4: We identified eleven di↵erent types of iteration changes
including: next milestone, next release, later release, previous release and
return to backlog. The majority of requirements are simply planned for
the next milestone when they are not completed in an iteration. The work
item type is the most significant predictor on the type of iteration change
that is made.
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4 Related Work

Although no other studies propose methods to predict whether a high-level
requirement will be completed in a planned iteration, there are related areas
of research. Below, we present related work covering prediction on various
aspects of software tasks and releases.

4.1 Software Task Predictions

Prior studies on low-level software tasks (i.e. bug fixes and issue resolutions)
have focused on predicting resolution time [42,21,1,36,15,30], e↵ort involved
[58,5,45,12], and probability of completion [23]. However, none of them have
investigated completion time of high-level requirements. While high-level re-
quirements often have smaller child tasks, they cannot be estimated by simply
combining the estimates of their children due to parallel work, dependencies,
coordination overhead, etc. Our prediction model draws on many of the tech-
niques and features used in these previous approaches, tailored to work with
high-level requirements.

Past studies employ various machine learning techniques to make their
predictions. Unsupervised learning techniques [61,5,45], kNN [58], linear [42],
probabilistic [42,1] and decision tree [42,21] classifiers as well as random for-
est [36,30] and other ensemble learning techniques [12] are among the popular
ones. In our study, we employ random forest due to its ability to handle a mix-
ture of continuous, semi-continuous and categorical features and its robustness
against noise, missing values and correlated features [60].

Various features are used to make predictions on software tasks. A number
of studies utilize task meta attributes, such as task creator, owner, priority,
severity, etc. to make predictions [42,21,1,23]. Some also apply text analysis
techniques on text attributes [58,48,5,45,12] and some adopt social network
analysis techniques [15]. Yet, not all of the studies have come to the same
conclusions in regards to which features are best to include. Guo et al. found
that bug reporter’s reputation has a significant impact on bug resolution time
[23]. However, Bhattacharya and Neamtiu [8] found no such correlation and
stated that importance of features are highly project dependent. Inspired by
these past studies, we identify 29 features for our models (described in detail
in Section 3.1.2).

Marks et al. [36] and Kikas et al. [30] both classified their engineered fea-
tures into several groups based on the source of features and measured relative
importance of features to their models. Likewise, we rank the importance of
the engineered features to our models, and also classify our features into nine
categories based on their potential impact on completion time.

Making early predictions can be useful, but predictions likely become more
accurate as more data becomes available. Some of the studies made predic-
tions at di↵erent stages. For example, Giger et al. [21] made predictions at six
di↵erent stages of a bug lifetime. Kikas et al. [30] made predictions at di↵erent
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stages of an issue lifetime. Similarly, we make predictions at various stages of
a requirement lifecycle.

4.2 Software Release Readiness

Prior studies have also investigated the overall readiness of a software release. A
software release is a collection of new and/or changed features that form a new
product [52]. The decisions around when to release a new product and what
features should be included in each release are complex [20]. Previous research
has proposed various checklists that product managers can use to assess the
readiness of a release [37,6,50,39,51]. The checklists contain criteria such as
checking for open bugs, ensuring adequate test coverage, verifying personnel
are available on the day of the release, and ensuring updated documentation
is available for users [37]. These checklists can be helpful in assessing how
ready a software project is for release, but the criteria often involve subjective
decisions.

In addition to these checklists, a variety of quantitative measures have
been proposed to assist managers in release readiness decisions. For example,
metrics to predict the number of software defects remaining in a software
release have been proposed [10,43,38]. This can be estimated by considering
the current rate of defect discovery [10,43], comparing the defect density of
the current release to previous releases [38], or purposely inserting defects into
the code to see how many the testers find (called defect seeding) [38]. Using
such metrics, managers can estimate how many defects are still left in the
release, which can help managers know if the release is ready. Similarly, it has
been proposed to consider code maturity and stability to assist with release
readiness decisions by measuring the amount of code changes [43] or changes
in code complexity and coupling over time [57].

In a systematic literature review, Alam et al. [3] found that the majority
of these measures are related to product quality and testing metrics. However,
release readiness decisions are multi-dimensional. A survey of software practi-
tioners found that managers use four main measures in their decision to ship a
release: feature completion rate, bug fix rate, defect find rate and build success
[3]. Some multi-dimensional metrics have been proposed. Asthan and Olivieri
[6] proposed a set of metrics along five dimensions: software functionality,
operational quality, known remaining defects, testing scope and stability, and
reliability. Satapathy [53] proposed an aggregate measure, called ShipIt, which
measures release readiness by considering how much progress has been made
in all stages of the software lifecycle compared to the release plan. However,
both of these aggregate large amounts of information into single measures,
which can be di�cult to understand.

To assist practitioners, methods have been proposed that use predictive
analysis and various machine learning techniques to predict release readiness.
Early models focused on the single dimension of defects. Quah [47] developed
a model that predicts the number of software defects in a release along with
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the amount of time it will take to make code changes to fix those defects us-
ing neural networks. Wild and Brune [59] also developed a model to predict
the number of defects that will be found in testing, but they used linear re-
sponse theory. More recently, multi-dimensional predictive models have been
proposed which consider various features, such as release duration and num-
ber of open requirements and defects [2,4]. These models formulate software
release readiness as a binary classification problem, so it is easy to interpret
the result.

Our work di↵ers from these studies as we focus on the completion of in-
dividual high-level requirements and do not try to predict readiness of a full
release.

5 Discussion

In this study, we investigated requirement iteration changes. We identified
eleven types of iteration changes that occur. Requirements can be moved to
another milestone, minor release, major release or returned to the release or
product backlog. For milestone, minor release and major release changes, re-
quirements can be moved forward to a previous iteration or pushed out to
the subsequent or a later iteration. We found that Stories are most often just
moved to the next milestone. We also found that 19% of Stories have their
planned iterations changed three or more times. In contrast, Plan Items are
more or less equally likely to be moved to the next milestone, the next minor
release, the next major release, returned to the release backlog, or returned
to the product backlog. Only 7% of Plan Items have their planned iterations
changed three or more times. This indicates that the team is making more re-
alistic replanning decisions for Plan Items. Only very few Stories are moved to
later (not subsequent) milestones or releases. Having better support on when
a requirement will be completed would be useful for managers to make better
decisions on replanning Stories.

As a first step in providing such support, we developed and evaluated
a predictive model that predicts the likelihood of requirement implementa-
tion within the planned iteration for high-level requirements, filling a gap in
software release planning research. Existing research has proposed models for
bug fix e↵ort estimation and release readiness prediction. However, no exist-
ing research investigates completion of high-level requirements. Our predictive
model uses machine learning, includes a set of 29 features, and makes predic-
tions at four stages of a requirement lifetime. This model was validated on
three projects with satisfying results. IBM is investigating incorporating this
method into their task management software to enable their software teams to
make better decisions regarding task scheduling and resource allocation. The
analysis has also made them aware of how important it is to ensure all data
related to tasks is kept up-to-date and complete, since such data is not only
useful to the tasks themselves, but can be used for analysis such as the study
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described in this paper. Due to this, they are now considering what other task
meta-data can be captured and stored to enable future analysis.

We have also ranked the features according to their relative importance to
the trained model. Although we observed that the importance of some features
is dependent on prediction stage and project even within the same company,
we showed that there are some features that are always consistently ranked
higher than others across the di↵erent projects and stages of development. The
implication of these results are a set of candidate features to receive further
attention by researchers and practitioners. Many of the features were inspired
by previous work, but we have shown their utility in predictions for high-level
requirements. We also proposed many new features, some of which are specific
to high-level requirements, like the three child features described in Section
3.1.2.

Another implication of this study is related to the precision-recall trade-o↵.
In general, we would like to have predictive models with both high precision
and recall, and there is a general belief that models with low precision or
recall are practically useless [62]. However, as Menzies et al. [40] argue, there
are certain practical use cases for models with low precision and high recall,
such as in the defect prediction domain. In our study, however, our claim for
the usefulness of models with high precision and relatively low recall is based
on our industrial partner’s interest for high precision at the expense of recall.
We also showed that machine learning techniques, in particular cost sensitive
learning, could be adopted to satisfy such requirements.

5.1 Threats to Validity

Like any empirical study, our paper is prone to some threats to validity [16]. We
describe them below, together with our mitigation strategies. The first threat,
to external validity, is the potential lack of generalizability of our findings
due to the close connection with the data and respondents from only one
software organization. We mitigated this threat by studying three di↵erent
projects and by adopting techniques and features that have been empirically
validated in previous work. Although all studied projects are within the same
company, we believe many of the proposed features are general enough to be
applicable to projects from other companies. Besides the features themselves,
we grouped the 29 features in nine categories which, due to a higher abstraction
level, represent a starting point for other organizations to engineer their own
features. This study should be replicated in other organizations to validate
generalizability.

The second threat, to construct validity, concerns our potential misinter-
pretation of the workflows within the IBM ecosystem. This was mitigated by
prolonged close connection with IBM practitioners and through iterative and
feedback-driven design of our model and machine learning techniques.

The third threat, to internal validity, relates to whether the results re-
ally do follow from the data in our study. Specifically, whether the iteration
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change types are valid, whether the features are meaningful to our prediction
outcome, and whether the performance estimations are realistic. The eleven
iteration change types were identified by only one person familiar with soft-
ware development practices. However, the types are all logical and align with
standard software development practices. To count the frequency of occurrence
for each iteration change type, we were able to use pattern matching and val-
idated the results through manual analysis by someone familiar with software
development practices. For the model development, we performed manual fea-
ture engineering through iterative cycles of conducting interviews and using
the domain knowledge of the data and avoided automatic means in feature
selection to avoid bias. Moreover, we performed LOOCV as recommended in
e↵ort estimation literature [32] to reduce bias and variance of our performance
estimations.

The fourth threat to validity concerns the reliability and reproducibility
of our findings. We have done our best to provide a clear methodology and
specify design decisions, so that as long as other researchers study the same
data following the same study settings, the same results should be achieved.

5.2 Future Work

There are several avenues for future research directions. We summarize some
potential research direction heres.

Additional features. Firstly, the proposed model could be further im-
proved by including new features. Some possible new feature ideas include:

– Length of text attributes. Longer descriptions and summaries may indicate
a deeper understanding of the problem. Conversely, long comments may
indicate misunderstanding or di↵erences of opinions.

– Severity of changes in summary and description. We considered only the
number of times the summary or description were changed. However, some
of these changes could be trivial. More severe changes could indicate more
problematic requirements.

– Additional child features.While we considered the count of same type, large
and medium size children, it may be beneficial to include additional child
features. For example, the number of all children for each requirement type
may be useful.

– Additional communication and coordination related features. For example,
geographical distribution of project stakeholders was found useful in [23].

– Sentiment analysis on comments. Extremely negative comments could in-
dicate problematic requirements.

Future work can include these proposed features to validate these assumptions
and ascertain if better accuracy is obtained with their inclusion.

Ensemble techniques. Secondly, using ensemble techniques could allow
even more additional features to be included. Previous work on bug e↵ort esti-
mation had success using text similarity techniques to make predictions based
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on similar bugs [58,45]. Such techniques could be tested to identify if they can
also be applied on high-level requirements. Although most previous models
using text analysis solely relied on text attributes, there has been prior work
that integrated them with other methods successfully using ensemble tech-
niques [12] or by transforming text attributes into numeric features [64,30].
Ensemble learning techniques have also been used successfully in e↵ort esti-
mation literature [33,7,27]. Utilizing such methods, would allow the inclusion
of di↵erent sources of data. Combining the estimates from various sources is
likely to produce better estimates compared to each individual source [29].

Feature importance. In this study, we considered feature importance
of individual features only. However, future work could consider relationships
between features and rank pairs or groups of features.

E↵ort estimation. Finally, another research direction would be to predict
completion time of high-level requirements. As mentioned previously, there is
a large amount of research that has done such e↵ort estimation for low-level
tasks such as bug fixes. Models have been developed to predict both completion
time [42,21,1,36,15,30] and completion e↵ort [58,5,45,12] of software tasks.
High-level requirements typically have a collection of child tasks as the work
is broken into smaller, more manageable tasks. Combining the predictions of
all child tasks would not produce accurate results since child tasks are often
worked on in parallel and have dependencies, adding additional coordination
overhead and delays.

Thus, since this is the first study to investigate completion of high-level
requirements, we focused on the binary classification problem of whether a
high-level requirement can be completed within its planned iteration. Future
research should build on these models to predict completion time of high-level
requirements.

Cross-project predictions. While we found that the important features
varied quite a bit between projects, there were some features that were uni-
versally important across all projects. Future work could investigate if it is
feasible to make predictions across project teams. If a small set of univer-
sally important features were identified, being able to make predictions across
projects would allow predictions to be made on newer projects without the
need to large amounts of historical data. Future work can investigate methods
to produce accurate cross-project predictions.

Multi-objective optimization. In our case, IBM had specific require-
ments for the weight of precision compared to recall, allowing us to utilize
a weighted arithmetic mean to ensure the model performed according to
the needs to IBM. However, these weights may not be applicable to other
projects outside of this study. Future work could investigate ways to incor-
porate multi-objective optimization, such as Di↵erential evolution (DE) [46],
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [11], or the Multiob-
jective Evolutionary Algorithm based on Decomposition (MOEA/D) [63], to
ensure the balance between precision and recall is optimized.
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6 Conclusion

In this work, we studied three large IBM projects using a combination of
qualitative and quantitative methods. We investigated iteration changes of
high-level software requirements. We found that 7% to 19% of requirements
have their planned iterations changed three or more times. We identified eleven
di↵erent types of iteration changes. The most common change types are mov-
ing to the next milestone, next minor release, next major release or returning
to the release or product backlog. Better support for predicting when a high-
level requirement will be completed can help project managers make better
planning decisions.

We also proposed a predictive model to predict whether a high-level re-
quirement will be completed in its planned iteration or not. Our model made
machine learning based predictions at four meaningful stages of a requirement
lifetime. We engineered a set of 29 features and put them in nine logical cat-
egories. Our model obtained precision scores of up to 0.86 and F1-scores of
up to 0.80. We then modified the learning process to maximize precision of
predictions according to the business interest of our industrial partner, IBM,
and achieved precision values between 0.82 and 1 while retaining a recall value
between 0.08 and 0.66 depending on the project and prediction stage. We
ranked features based on their relative importance to the trained model and
observed that although importance of features is highly project and prediction
stage dependent, there are certain features, such as time remained to the end
of iteration, creator of the requirement, and owner of the requirement that
have high importance in all projects and prediction stages.

Acknowledgements Special thanks to Fabio Calefato from University of Bari, Alan Yeung
from Persistent Systems and the IBM team.
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