
Timely and Efficient Facilitation of Coordination of Software Developers’ Activities
Kelly Blincoe

Advisor: Giuseppe Valetto
Computer Science Department

Drexel University
3141 Chestnut Street, Philadelphia, PA. 19104, USA

https://www.cs.drexel.edu/~kac358/
kelly.blincoe@drexel.edu

Abstract— Work dependencies often exist between the
developers of a software project. These dependencies
frequently result in a need for coordination between the
involved developers. However, developers are not always
aware of these Coordination Requirements. Current methods
which detect the need to coordinate rely on information which
is available only after development work has been completed.
This does not enable developers to act on their coordination
needs. Furthermore, even if developers were aware of all
Coordination Requirements, they likely would be overwhelmed
by the large number and would not be able to effectively follow
up directly with the developers involved in each dependent
task. I will investigate a more timely method to determine
Coordination Requirements in a software development team as
they emerge and how to focus the developers’ attention on the
most crucial ones. Further, I hope to prove that direct inter-
personal communication is not always necessary to fulfill these
requirements and gain insight on how we can develop tools
that encourage cheaper forms of coordination.

Keywords- Awareness, Proximity, Management,
Coordination Requirements, Socio-Technical, Task Context,
Tools.

I. TECHNICAL PROBLEM
In large software projects, multiple developers must work

together and concurrently. This requires a division of work
which often results in dependencies between tasks. Software
engineering pioneers, such as Parnas [18] and Brooks [3],
recognized the importance of efficiently managing work
dependencies to manage the coordination overhead arising
within a development team. Although recent work on search-
based optimization techniques has shown that optimization
of project scheduling can reduce coordination overheard
[23], work dependencies cannot be eliminated and those
dependencies often result in Coordination Requirements
(CRs) among team members. When developers either remain
unaware or do not obtain timely awareness of the work
dependencies that exist and the coordination that is required
to fulfill these dependencies, there is a potential for problems
that may affect the efficiency of the development process or
the quality of the software product.

Although CR detection techniques exist, they do not yet
detect CRs in a timely fashion or assess the relative
importance or criticality of CRs. Such a detection method is
required to effectively raise developers’ awareness [9] of
their coordination needs and empower them to act upon
those needs. We also need to investigate what coordination

strategies can be most efficient in fulfilling CRs once they
are recognized.

II. RELATED WORK
Cataldo et al. [6] introduced a framework to detect and

quantify CRs between pairs of software developers by
identifying the technical dependencies between software
artifacts modified during assigned tasks. Empirical evidence
suggests that when coordination activities focus on the
identified CRs productivity is likely to improve [5,6]. This
has led to the concept of Socio-Technical Congruence (STC)
[4,6] which states that when coordination is focused between
the team members with identified CRs we can obtain
benefits for the software project.

Taking advantage of those benefits requires the real-time
detection of CRs, but current CR detection methods are not
yet timely. CRs are usually identified by examining the
artifact commits made by developers in the project’s source
control repository. Commit data is typically available only
after the majority of development work for a task has been
completed. Also, commit data is typically incomplete for two
reasons. First, only a subset of developers may be granted
commit privileges, so the commit history may portray
inaccurate author information. Second, for each file
committed to a source code repository, a developer may have
consulted several other files. Knowledge of this source code
reference behavior is inaccessible from commit records.

Tools such as Ariadne [7], EEL [17], Tesseract [20], and
Codebook [1] employ abstractions similar to CRs to provide
awareness to developers. They all depend on establishing
technical dependencies among artifacts using commit data in
the source code repository. They then use these dependencies
to compute relationships between developers. Therefore,
these tools are also unable to provide timely notifications
that can raise the developers’ awareness of their coordination
needs. Other tools attempt to leverage live workspace
information. For example, Palantír uses notifications to keep
a developer abreast with what happens in her colleagues’
workspaces [19]. Like the other tools, Palantír makes use of
information from the configuration management system.
However, instead of looking at commit data, it looks at the
artifacts in each developer’s workspace and their state. It
then compares them to the state of the “master copy” for the
same artifacts maintained in the configuration management
repository. It notifies developers of changes occurring to the
artifacts they have in their own workspace. While these
notifications are timely, they only regard direct conflicts on
the same artifact which are a narrow subset of CRs. Another

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1109/ICSE.2012.6227042

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

tool, CollabVS, also notifies developers of artifact conflicts,
and it captures additional conflicts by considering a subset of
syntactical dependencies between artifacts [8]. However, it
does not measure the “strength” or importance of CRs.

Until CRs can be detected and quantified in real-time,
they will not become an actionable concept for managing
coordination in software projects.

III. RESEARCH QUESTIONS

A. Is timely Coordination Requirement detection possible?
Current algorithms rely on identifying the technical

dependencies manifested by the software artifacts to detect
CRs. As mentioned, the drawback of this approach is that
this data is only available after all, or at least a substantial
amount of, the development work has been completed. Is
there a more timely way to accurately determine and
compute CRs? If so, can such a method make CRs actionable
by detecting them as they emerge during collaborative
software development activities?

B. Are all Coordination Requirements created equal?
Current methods for detecting Coordination

Requirements assume that all work dependencies may
require coordination, but is this necessarily true? It is
possible that certain types of work do not require
coordination even when technical dependencies between
tasks exist. If certain work dependencies do not require
coordination, we could ignore them when computing CRs in
order to avoid excessive coordination overhead.

Although some ways to rank CRs by importance [10,16]
have been presented, current CR detection algorithms do not
differentiate between less or more intense CRs and do not
predicate on different kinds of CRs. Understanding what
characteristics of interdependent software development tasks
or the artifacts involved in them, may influence the need for
coordination remains an open problem.

C. Are cheaper forms of coordination as effective?
Explicit coordination, through either synchronous or

asynchronous communication acts, such as email, chat, face-
to-face meetings, or phone calls, can be expensive. Another
important form of coordination is implicit coordination.
Implicit coordination happens by obtaining information
about a task by watching another developer as they complete
that task or by examining the effect of their work, such as
changes to artifacts [11]. In software development, implicit
coordination occurs via stigmergy when enough information
is contained within a software artifact or its associated meta-
data to enable a new developer to pick up that software
artifact and complete a task that is already underway or
accomplish a new dependent task without resorting to
explicit coordination [12].

Recent team-oriented development environments, such as
IBM Jazz [13], have introduced features like tags and
dashboards to help promote forms of implicit coordination. It
is currently unclear how effective these implicit coordination
facilities can be. Treude and Storey found that the use of tags
was quickly adopted by an industrial development team [21].

However, there has been limited research on the usefulness
of tags in software development. I plan to research whether
or not tagging software artifacts – as a stigmergic medium -
is helpful in aiding coordination. I will also look at how we
can integrate tagging and CR detection to provide awareness
of, and support to, coordination needs.

IV. PROPOSED METHODS AND EVALUATION

A. Is timely Coordination Requirement detection possible?
1) Method

I propose an alternative approach to the current reliance
on technical dependencies for CR detection. My approach
examines the similarity of artifact working sets as they are
incrementally constructed throughout the course of
developers’ work. Working sets can be obtained by
recording developers’ actions on artifacts as they occur. The
Mylyn framework (formerly Mylar) [14,15] is one existing
tool that performs this recording function. I have developed a
measure, called proximity, which looks at artifact
consultation and modification activities captured by the
Mylyn framework to weigh the overlap which exists between
pairs of working sets associated to developers or tasks.
Through an empirical study, I have found that proximity is
indicative of the need to coordinate [2].

The proximity algorithm considers all actions recorded
for each artifact in each working set in order to apply a
weight to that artifact’s proximity contribution. Weights are
applied based on the type of overlap where the most weight
is given when an artifact is edited in both working sets and
the least amount of weight is given when an artifact is simply
consulted in both working sets. Artifacts that do not appear
in both working sets will not receive any weight. The
weights, based on weights Mylyn itself uses for its degree-
of-interest model [18], are: 1 for edit overlap, .79 for mixed
overlap (edit in one working set and selection in the other),
and .59 for selection overlap.

The algorithm then computes the ratio of actual to
potential overlap. Actual overlap considers the intersection
of the two working sets while potential overlap considers the
union of the two working sets. Potential overlap represents
the maximum possible proximity score had there been
perfect overlap between the two sets of actions. The
proximity measure is the ratio between the actual overlap
and the potential overlap. An example of the proximity
calculation is shown in Figure 1 [2].

2) Evaluation
To evaluate the proximity measure, I performed an empirical
study that compared proximity to the CRs detected by the
Cataldo et al. [6] CR detection algorithm. I found that higher
values of proximity correlate with the likelihood of a CR. I
also found that proximity has high levels of precision and
recall when matched to the CRs (which for this evaluation I
assumed as ground truth). I also examined the cases when
the CRs and proximity scores do not align, and all cases
examined turned out to be false positives or negatives of the
traditional CR detection method. More importantly, several
of those cases highlight drawbacks of that method’s reliance

on post-mortem information and dependency
conceptualizations [2].

To evaluate the timeliness of the proximity measure, I
obtained the time when the first contribution to the proximity
score would have occurred by examining the timestamps for
the overlapping events recorded in the working set pairs. I
then compared the first proximity event with both the first
day of concurrent work by that pair and the day in which the
first CR is identified for the same pairs. I found that
proximity significantly improves the timeliness of CR
detection. For example, in one data set, concurrent work
intervals last 31.4 days on average. Proximity is detected on
average 6.2 days after parallel work begins while the CR
detection method would not detect the CR until 25.2 days on
average after the start of concurrent work [2].

A prototype of a tool which implements the proximity
algorithm is currently being developed [24]. Future work
includes analysis of how the tool and proximity measure
supports timely and accurate CR detection.

B. Are all Coordination Requirements created equal?
1) Method

As the next step in the proposed research agenda, I plan
to perform an empirical analysis to determine if certain
classes of tasks or artifact manipulations are less likely to
induce coordination requirements than others even when
technical dependencies or working set overlaps exist
between tasks. I will gather data on task characteristics, such
as the type of task and the types of artifacts involved. The
task type (new feature, feature modification, or feature
removal) will be determined by looking at the number of
lines of code added/changed/deleted and the labels put on the
task itself. I am also interested in the types of artifacts
involved in the tasks such as high-level interface consultation
or low-level class modification.

2) Evaluation
I aim to observe if the characteristics of tasks/artifact sets

and their communication levels correlate to the amount of 1)
reverted changes, 2) reopened tasks, and 3) low task
productivity. Such characteristics could indicate that more
coordination was necessary showing that certain types of
CRs are candidates for increased/prioritized coordination. On
the other hand, characteristics of task pairs which indicate a
CR yet show no reverted changes and high productivity
could indicate these types of CRs do not actually require
coordination.

C. Are cheaper forms of coordination as effective?
1) Method

I intend to focus on whether or not tags placed on
software artifacts are helpful in aiding coordination since
tagging is a prevalent form of implicit coordination
embedded within existing collaborative development
environments. I will look for task pairs which have
coordination needs based on the actionable socio-technical
model developed through research questions A and B. I will
then perform an empirical study on those task pairs looking
at the use of tags, communication levels, and productivity
measures.

2) Evaluation
An empirical study will be performed which looks to see

if the amount of communication found in task pairs
correlates to the amount of artifact tagging involved in the
tasks. I hypothesize that large amounts of tagging will
correlate to lower levels of communication indicating that
tagging serves as a form of implicit coordination. To
determine the effectiveness of tagging, I will then look to see
if task pairs with no traces of coordination other than the use
of tags have similar productivity levels as those task pairs
which do have traces of explicit coordination proving the
effectiveness of tagging as form of coordination as compared
to explicit forms of coordination.

Since tagging is a simple tool whose usage can greatly
vary, I also plan to observe how tags are employed. I will
look at what tagging styles are most conducive to
productivity benefits and how to leverage them for
coordination and CR awareness.

V. EXPECTED CONTRIBUTIONS
A socio-technical model constructed using developers’

actions on artifacts as they occur will provide an actionable
and “live” view of CRs as they are established. This will
allow for prioritization of project governance actions aimed
at the resolution of CRs that improve productivity the most
[10]. As an alternative, changes could be made to the design
or the team structure to eliminate CRs [22] lowering the
coordination overhead of the project. Further, a
determination of task characteristics which do not require
coordination even when technical dependencies between
tasks exist will allow developers to focus their attention on
tasks where coordination is truly needed. Tools, such as a
coordination recommendation engine, can then be developed

Figure 1. Proximity Algorithm [2].

to make developers aware of their coordination requirements
in real time while avoiding a large number of false positives.

Even more helpful than a recommendation engine which
always encourages explicit coordination is one which would
foster implicit coordination mechanisms. More knowledge
about the effectiveness of tags, a simple type of implicit
coordination, can help make progress in this direction. Such
a recommendation engine could point developers to review
tags on artifacts of interest or even automatically disseminate
those tags rather than encouraging developers to seek a
discussion with other team mates.

VI. CURRENT PROGRESS
I have begun my research in determining if timely

Coordination Requirement detection is possible. I have put
forward the proximity measure which calculates CRs based
on the overlap between two working sets. My initial work
validates the proximity idea by means of an empirical study
on an open source project. I found that proximity provides an
early indication of CRs and overcomes known drawbacks in
current CR detection methods. I am now about to begin my
research work on the remaining research questions put forth
in this research abstract.

VII. LIST OF PUBLICATIONS
Blincoe, K., Valetto, G. and Goggins, S. 2012. Proximity: a
Measure to Quantify the Need for Developers’
Coordination. In Proceedings of the International
Conference on Computer Supported Cooperative Work
(CSCW 2012).
Blincoe, K. and Valetto, G. 2010. Implicit Coordination in
Software Development. In Proceedings of the International
Conference on Global Software Engineering (ICGSE 2010).

REFERENCES
[1] Begel, A., Phang, K.Y., and Zimmerman, T. 2010 Codebook:

Discovering and Exploiting Relationships in Software Repositories.
Proc. ICSE 2010.

[2] Blincoe, K., Valetto, G. and Goggins, S. 2012. Proximity: a Measure
to Quantify the Need for Developers’ Coordination. Proc CSCW
2012.

[3] Brooks, F.P. 1995. The Mythical Man-Month: Essays on Software
Engineering. Addison Wesley. Reading, MA.

[4] Cataldo, M, Herbsleb, J., Carley, K. 2008. Socio-Technical
Congruence: A Framework for Assessing the Impact of Technical and
Work Dependencies on Software Development Productivity. Proc.
ESEM 2008.

[5] Cataldo, M., Mockus, A., Roberts, J.A and Herbsleb, J.D. 2009.
Software Dependencies, Work Dependencies and Their Impact on

Failures. IEEE Transactions on Software Engineering, Vol. 35, No.
6, pp. 864-878

[6] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley, K.M. 2006.
Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools. Proc. CSCW 2006.

[7] de Souza, C.R., Quirk, S., Trainer, E., and Redmiles, D.F. 2007.
Supporting collaborative software development through the
visualization of socio-technical dependencies. Proc. of the 2007
international ACM conference on Supporting group work. 147-156.

[8] Dewan, P. and R. Hegde. 2007. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software Development.
Proc. E-CSCW 2007. p. 159-178.

[9] Dourish, P., and Bellotti, V. Awareness and Coordination in Shared
Workspaces. Proc. CSCW 1992: p. 107-114.

[10] Ehrlich, K., Helander, M., Valetto, G., Davies, S., and Williams, C.
2008. An analysis of congruence gaps and their effect on distributed
software development. Proc. STC 2008.

[11] Gutwin, C. Penner, R. and Schneider, K., Group Awareness in
Distributed Software Development, ACM conference on Computer
Supported Cooperative Work, Chicago, Illinois, USA, 2004, pp. 72-
81.

[12] Heylighen, - Why is open access development so successful?
Stigmergic organization and the economics of information. Open
Source Jahrbuch 2007.

[13] IBM Rational Jazz.
http://www-01.ibm.com/software/rational/jazz/features/

[14] Kersten, M. and Murphy, G.C. 2005. Mylar: a degree-of-interest
model for IDEs. Proc. AOSE 2005, 159-168.

[15] Kersten, M. and Murphy, G.C. 2006. Using task context to improve
programmer productivity. Proc. FSE 2006.

[16] Kwan, I. and Damian, D. Extending Socio-technical Congruence with
Awareness Relationships. Proc SSE 2011.

[17] Minto, S. and Murphy, G.C. 2007. Recommending emergent teams.
Proc. MSR 2007.

[18] Parnas, D.L. 1972. On the criteria to be used in decomposing systems
into modules. Communications of the ACM. 15, 12, 1058.

[19] Sarma, A., Noroozi, Z., and van der Hoek, A. Palantír: raising
awareness among configuration management workspaces. Proc. ICSE
2003.

[20] Sarma, A., Maccherone,L., Wagstrom, P., and Herbsleb, J. 2009.
Tesseract: Interactive visual exploration of socio-technical
relationships in software development. Proc ICSE 2009, 23-33.

[21] Treude and Storey. How tagging helps bridge the gap between social
and technical aspects in software development. In Proc. ICSE 2009.

[22] Valetto, G., Chulani, S., and Williams, C. 2008. Balancing the value
and risk of socio-technical congruence. Proc. STC 2008.

[23] Di Penta, M., Harman, M., Antoniol, G., and Qureshi, F. 2007. The
Effect of Communication Overhead on Software Maintenance Project
Staffing: a Search-Based Approach. In Proc. ICSM 2007.

[24] Borici, A., Schröter, A., Damian, D., Blincoe, K., and Valetto, G.
ProxiScientia: Toward Real-Time Visualization of Task and
Developer Dependencies in Collaborating Software Development
Teams. Under Review, 2012.

