
Actionable Identification of Emergent Teams in Software Development Virtual
Organizations

Giuseppe Valetto, Kelly Blincoe
Dept. of Computer Science

Drexel University
Philadelphia, Pa. USA

valetto@cs.drexel.edu , kelly.blincoe@drexel.edu

Sean P. Goggins
I-School

Drexel University
Philadelphia, Pa. USA
sgoggins@drexel.edu

Abstract— We present a method for identifying emergent
teams of developers who need to work together and coordinate,
within larger software development organizations. Our goal is
to identify these socio-technical constructs as they emerge, so
that we can provide timely awareness and actionable
recommendations to managers, technical leads and members of
the emergent team alike. Our technique is rooted in the
analysis of Social Networks, which are constructed from real-
time traces of the activity of each individual developer within
her development environment, contextualized with respect to
her assigned tasks and the corresponding artifact working set.

Keywords-Emergent teams; Social Network Analysis;
developers’ coordination; task contexts; IDE interactions.

I. INTRODUCTION
Large-scale or geographically dispersed software

development organizations, ranging from open source
communities, to global industrial software houses, to multi-
enterprise joint ventures that practice off-shoring and
outsourcing, operate as Virtual Organizations (VOs). In
VOs, co-located work and in-person communication and
coordination are the exception, and work and communication
occur mainly through the mediation of a set of technologies
and tools that make up the production infrastructure of the
organization, and the work environment for the project.

In software VOs, collaboration and teamwork
opportunities are not limited by the boundaries of
organizational units, and coordination needs that may arise
between participants must be followed opportunistically. In
these environments, developers are keenly interested in
information that helps coordinate with their colleagues [14],
but have increasing difficulty obtaining it, as the scale and
distribution of the software project increase [15].

We present a method that addresses a facet of this
problem, that is, enables the identification of emergent teams
within a larger software development VO, based on the
coordination needs exhibited by the developers through their
interactions with the work environment and the software
artifacts the manipulate during their assigned tasks. Our
method provides timely awareness of these emerging
relationships, and can lead to actionable recommendations
for project managers, technical leads and developers alike.

II. RELATED WORK

Several approaches and tools that facilitate the
recognition of emergent coordination relationships in
software development organizations have been proposed.
Some promote awareness of possible work conflicts [4][19],
while others use some conceptualization of work
dependencies to compute likely coordination needs [17][18].

One important observation is that all of these approaches,
even those that explicitly attempt to focus on “teams”, in fact
draw upon dyadic relationships, and hence can only highlight
and recommend pairs of developers that should, or are likely
to, work together [21]; or alternatively, a set of colleagues
from the point of view of an individual developer [20].

Our work, instead, aims at identifying one or more
cohesive groups within a software VO at large, by
understanding and analyzing the content and context of their
individual work, and how that may pull them together to
work as a team on a common coordination need or
collaboration opportunity. The fulcrum of our analytical
method is Social Network Analysis (SNA), which is
increasingly employed in empirical software engineering, to
tackle questions that are somewhat germane to the
identification of emergent teams; for instance, stakeholder
identification [23], and discovery of collaboration patterns
[22]. We apply SNA techniques on a particular kind of bi-
partite, socio-technical network that represents the
collaboration opportunity within the organization.

III. METHOD DESCRIPTION

A. Contextualized Analysis of Work Traces
Our method derives from a framework for the analysis of

group emergence in virtual organizations, on the basis of
contextualized traces of work, called the Group Informatics
Model, which we have developed from a number of
empirical studies in different domains [13].

In all cases, we start from traces that we mine from either
records of inter-personal exchanges, or records of work
within the online environment of the VO. We call these
contextualized interactions, since they must include metadata
that situate them with respect to the work being carried out in
that environment. For example, attributes that associate each
interaction to recognizable tasks undertaken by the VO; or,

978-1-4673-1759-7/12/$31.00 c� 2012 IEEE RSSE 2012, Zurich, Switzerland11

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1109/RSSE.2012.6233401

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

timestamps that situate the interactions in a specific epoch of
the VO collaborative endeavors.

Our method has then a number of steps, which transform,
weigh, distil and aggregate those mined contextualized
interactions, to finally produce social network
representations of emergent VO sub-groups (or teams).
These teams are identified – in a quantifiable way – as
currently operating in a tighter cooperative fashion than the
rest of the VO, or in need of such tight cooperation.

Our method also derives information about the team
context, from the merging of the contexts of the individual
members of an emergent team. This may include intentional
information about the reason (common interest or
requirement) for the team to emerge; or descriptive
information, about the kind and content of activities the
group as a whole carries out. This data enhances the
computed social network, and helps in shedding light upon
the nature of the underlying multi-party relation.

The Groups Informatics Model thus enables us to fill a
gap in the extensive literature of work that apply network
analysis to raw electronic trace data, that is, they do not
typically reveal groups that exist in the data [1], nor offer
information on intent and content of group work. As we
discuss in the remainder, our analytic framework also
enables us to obtain these insights in a way that is timely and
actionable for the purpose of recommendation.

B. Identifying Emergent Teams in Software VOs
Contextualized interactions in software development

VOs can be readily extracted from a number of minable
software repositories. Often, though, data in those
repositories are traces that regard work already completed in
the past, and thus are not actionable. We leverage instead
fine-grained records of the interactions each developer has
with software artifacts throughout the course of her work.
These “live” traces can be collected by several IDE
instrumentation tools, like Team Weaver [16], or Mylyn [2].
We have experience with Mylyn, one of the most widely
used plugins for the Eclipse IDE. It records the developer’s
interactions with the Eclipse GUI, and captures actions with
side effects on the work environment (such as invocation of
tools, or modification of artifacts), as well as other actions
that are not visible from post hoc traces kept in software
repositories, like artifact consultation and navigation.

The original purpose of Mylyn is to ease the cognitive
load of the individual developer when she needs to switch
among multiple concurrent tasks, by presenting in a
prominent way the most pertinent information for her current
task, that is, the task context. Accumulating and maintaining
context traces of the developer’s work has recently
commanded more and more attention in the domain of
software engineering support tools, for instance because it
can yield enhanced tool integration strategies [24].

Our work uses task context traces in a different way, that
is, to analyze coordination needs. We have recently shown
how that accurate and actionable evidence of the needs to
coordinate between pairs of developers can be computed
from those traces, as work progresses [3]. Here, we leverage

and extend those findings and extend them to the
identification of common needs and opportunities to
coordinate in developers’ groups.

 To apply the analytical framework of the Group
Informatics Model, we first consider the Mylyn context
traces associated to all tasks carried out within a time
window that is significant for the project, say, a release, and
produce a set of intersection records in the form:

Ix = (Taska, Taskb, Taskc, …) → (Art1, Art2, … , Artn); (1)

Those intersection records indicate the intersections
between the working sets of the various tasks in that release.

From there, we construct a valued bi-partite network: the
developers involved in the tasks listed in each intersection
represent a mode of the network, and the intersections
themselves are the other mode. The weight of the arc
between a developer Da and intersection Ix is the number of
artifacts manipulated by Da in each task she has worked on
that is included in Ix. Notice that, since developer Da may be
responsible for multiple tasks within the same intersection
Ix, the weight of the edge between Da and Ix can be a
multiple of the artifact cardinality of the intersection.

We call this a collaboration opportunities network. The
intersections represent the subject and the content of the
potential collaboration between the developers that have
operated on those artifacts in one or more of their assigned
tasks within a software development release. The weighted
incident arcs from a developer Da to an intersection Ix must
be intended as a representation of the interest - or need - of
Da to collaborate with other developers on the set of artifacts
included in Ix. Moving from a local to a global view of the
network, the set of incident arcs to various intersections
departing from the Da node show all the collaboration
opportunities for Da.

With the following step, we want to identify groups of
developers in the network who gravitate towards common
work (i.e. overlapping working sets) across several different
tasks, and who have significant amount of overlap in those
working sets. For this purpose, we look at the network
construct of bi-cliques [5]:
1. we dichotomize the collaboration opportunities network

at a level above the median of the weight of all edges;
2. we compute bi-cliques, which capture what subset of the

developers’ community tend to co-participate in the
same intersections;

3. we compute a structural correlation matrix, based on the
relationship between the set of developers and the set of
bi-cliques they are part of.

As a result, we obtain a new person-by-person network,
in which the weight of the arcs is a Pearson correlation
coefficient, which signifies how similar two developers are
in terms of the bi-cliques they are part of. We want to filter
out the weaker correlations, therefore, we use a cutoff point
of 0.4 for dichotomizing the arcs in the network. This new
network distils the relations between developers, and any
cohesive groups that appear within that network is a

12

candidate emergent team in the software development
organization.

Notice that, throughout the process described above it is
possible to “carry over” information that describes the
collective context of those teams, derived from the original
contextualized traces provided by Mylyn. The most
important source of information comes from the intersection
records, from which we can easily derive the artifact sets that
are involved in each bi-clique, and underlie the bilateral
developer-to-developer correlation arcs in the final network.
The union of those artifact sets provides a look at the
common “field of work” [6] of each emergent team.

IV. EMPIRICAL RESULTS
We have experimented with the method described above

using the Mylyn open source community itself as our case
study, since its developers consistently abide to the
convention of including Mylyn context records together with
the other software artifacts, when they submit a patch or
commit for their assigned development tasks.

We examined eight releases of the Mylyn software (v2.0
through v3.3), from December 2006 until October 2009.
Each release lasted between three and four months, and saw
the contribution of 13 to 18 developers. We consider all the
tasks by developers in the same release as potentially
concurrent. From the Bugzilla repository of the project we
then extracted 1,970 software development tasks in that
period. Each of those tasks is associated to one or more
context records, for a total of 588,796 context events. We
filtered those contextualized interactions, and considered
only actions upon source code artifacts (450,747 events),
since other types of artifacts are by-products – as opposed to
subjects – of development work.

We also collected data from other project repositories; in
particular, we mined the communication archived in the
project mailing lists and discussion threads about the project
tasks in the same release periods. The population
contributing these comments is much larger than the set of
actual developers. Over the 3 years considered, more than
400 distinct user IDs posted comments in these forums. This
information represents triangulation data that we used to
validate the results of our method. Another source of
triangulation is the history of the Mylyn project during the
period chosen for this study, which is freely available, as is
the custom of open source projects by consulting the project
repositories and archives on the Web.

We collected data and applied our method to all of the
eight releases mentioned above. Given the limited space, we
offer hereby only a sample of the results, and a discussion of
their accuracy and significance, for release v.2.0, i.e., the
first we analyzed and the one with the smallest data set.
Figure 1 shows the network output by our analytical
framework, which includes 13 anonymized developers.

We limit our analysis to constructs more complex than a
triad. Two instances of a 2-clique are visible, composed by
{304, 143, 399, 463, 373} and {304, 35, 22, 312, 319),
which we consider as our “candidate” work groups, and refer
to as WG1 and WG2, respectively. WG1 and WG2 have

developer #304 in common; also, WG1 is densely connected,
while WG2, is a “vulnerable” 2-clique [7]. As discussed –
among others - by Erickson [8], a network construct that has
more redundant arcs is more likely to truly represent an
actual distinct group within the organization depicted by the
network; therefore, our primary candidate for an emergent
work group is WG1, while WG2 is a marginal candidate.

Figure 1: Mylyn v2.0 - cohesive groups based on task context

Triangulation with our knowledge of the project history
helps to interpret these results, We know that the central
figure of developer #304 is the most active in release 2.0,
working on many tasks, and participating in the most
intersection records. Moreover, from developers’ profiles
and communications records, we know the nature of the
work relationship made evident by the arc between
developers #304 and 35. The involvement of #35 in Mylyn
v.2.0 amounts to a volunteer sub-project (the Google summer
of code1), organized as an individual but intense task, in
which #35 worked on hundreds of code artifacts, and was
mentored by #304. The summer work of developer #35
concerned a component of the Mylyn product outside of the
critical project path: as such, it was kept well-separated from
the main stream of work and only intersected the activities of
a few other contributors. The history of Mylyn v.2.0 thus
corroborates the structure and groups visible in Figure 1.

We then compared our results with the communication
traces from the archived developers’ discussions. From those
traces we have constructed the “talk” social network for
Mylyn v.2.0, and compared it with the “work” network
distilled by our analysis of contextualized interactions.
Although the talk network and the communication records
do not represent ground truth, we maintain that a
triangulation between our method and network-analytic
procedures carried out on an independent set of inter-

1 http://code.google.com/soc/

13

developer relationships may be used to corroborate (or
disprove) our results.

The talk network includes many more actors and
relations (64 nodes and 131 arcs) than the work network.
Therefore, we focused on our candidate work groups, and
looked at whether they are also recognizable in the talk
network. As a first step, we looked at properties of network
connectivity, and seeked structurally cohesive subgroups [9],
by means of the cohesive.blocks() algorithm implemented
in the R package igraph. [10]. That procedure segments the
overall graph in a hierarchy of increasingly more cohesive
groups, each of which is a subset of the group that precedes
it. Figure 2 shows the results, by drawing and color-coding
the talk network according to the computed cohesive blocks
it identifies. The most cohesive “talk” group is the set of
seven red nodes TG1 = (304, 143, 399, 373, 159, 457, 391).

Figure 2. Mylyn v.2.0 – cohesive groups based on talk data.

We can immediately observe that - in line with [8] - our
marginal emergent team candidate WG2 does not find
confirmation in the topology of the talk network: among the
five members of WG2 only #304, who is in common with
WG1, is included in any of the most cohesive groups. We
can also see that four of the five WG1 members also appear
in TG1. The exception, developer #463 happens to be the
lone orange node in Figure 2. That means that WG1 is fully
represented in TG2 = (304, 143, 399, 373, 159, 457, 391,
463), which is the immediate superset of TG1 and the second
most cohesive group. Therefore, the role of WG1 as an
emergent distinct group in the Mylyn development
organization finds further corroboration, from a structural
standpoint.

Finally, we can carry out further quantitative analysis,
and evaluate whether candidate group WG1 can be seen as
“tighter” than other possible choices, e.g., highly cohesive
structures like TG1 or TG2, on the basis of the
communication data. Boch and Husain [11], as well as many

other SNA scholars, have maintained that a distinct subgroup
in a network should be characterized by more, or more
intense, ties between group members, in comparison to the
set of ties of the group members with the rest of the network
In the case of a weighted, directed graph like our talk
network, that contrast can be expressed with the formula in
(2), where: GS is the ratio that denotes the group strength, aij

is the weight of a tie between two nodes; is the vertex
cardinality of a candidate group G; and is the vertex
cardinality of the whole network.

(2)

With (2), we can compute the ratio between the average

strength of the group-internal arcs and arcs and the arcs
towards network nodes external to the group (also known as
centripetal vs. centrifugal strength [12]): the higher the ratio,
the tighter the group, especially relatively to the average
strength of arcs in the whole network.

We computed the group strength ratio for WG1 vs. TG1
and TG2, as displayed in Table 1. Although all groups are
significantly tight, WG1 maintains a slight edge. We
interpret this data to mean that WG1, which has been
identified through our analytical framework, is at least as
good a candidate for an emergent group as TG1 and TG2,
which are derived instead from the topology of the
communication network.

TABLE I. STRENGTH OF GROUPS IN COMMUNICATION NETWORK

v.2.0 – Avg. tie
strength =5.87

WG1

TG1

TG2

Centripetal ties
strength (Total) 408 507 531

Centrifugal ties
strength (Total) 295 245 222

Centripetal strength
(Avg.)

20.40 12.07 9.48

Centrifugal strength
(Avg.)

0.50 0.31 0.25

GS ratio 40.80 39.32 37.92

When taken all together, the various elements we have
derived from our triangulation confirm and strengthen results
from our analysis of contextualized work traces.

V. DISCUSSION AND CONCLUSIONS
The analytic process that we have described has several

important characteristics. First of all, it can be fully
automated, since its steps are algorithmic in nature, with only
a couple of parameters, whose values can be chosen either
automatically or a priori.

Also, the process aims at distilling a large amount of
project information (the bi-partite collaboration opportunities

!

G

!

N

!

GS =

K i, j*a i, j
j"G
#

i"G
#

G* G$1()
a i, j

j%G
+ a i, j

j"G
#

i%G
#

i"G
#

2*G* N$G()

K i, j = 0 if i = j K i, j = 1 if i & j

14

network) into a much simpler network – with low node and
edge cardinality – showing only significantly strong relations
that make the fabric of cohesive work groups. From such a
network, identifying emergent teams is often visually
straightforward. Even in case the network produced by our
method were larger and less sparse, patterns and structures
revealing cohesive subgroups, like cliques, etc. could be
easily extracted by running standard SNA algorithms.

Finally, and most importantly for the construction of
recommender systems on top of our analytical framework,
although the case study we have presented here is
retrospective, the nature of the contextual traces that
represent the starting point for our method is not. In fact,
they can be incrementally accreted as work progress, and as
shown in [3], leveraging IDE-recorded interactions such as
those produced by Mylyn leads to the timely recognition of
coordination needs between developer pairs. Although we
have not yet experimentally validated it in a “live” user
study, it stands to reason that the group detection procedure
we have described can occur in an equally timely fashion.
We envision its implementation within a tool that
continuously collects the contextualized traces from the
socio-technical systems and all of its participants, and
periodically executes our analysis in a centralized server.
Such a tool can follow in quasi-real time how teams in a VO
form and evolve, based on the coordination concerns, task
content and work context of its members. Major stakeholders
for such a tool will be project managers and technical leads,
for project governance, or the developers themselves, to
enhance their coordination and team awareness.

ACKNOWLEDGMENT
This work was partially supported by the NSF through

grant no. CCF-0916891.

REFERENCES

[1] J. Howison, A. Wiggins, and K. Crowston, K. “ Validity Issues in the
Use of Social Network Analysis with Digital Trace Data”. Journal of
the Association of Information Systems, 12(2) , 2012.

[2] M. Kersten, and G.C. Murphy. “Using task context to improve
programmer productivity”. Proc. of SIGSOFT FSE 2006.

[3] K. Blincoe, G. Valetto, and S.P. Goggins. “Proximity: a Measure to
Quantify the Need for Developers’ Coordination”. Proc. of CSCW
2012, February 2012.

[4] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley. “Identification
of Coordination Requirements: Implications for the Design of
Collaboration and Awareness Tools”. Proc. of CSCW'06, 2006.

[5] S.P. Borgatti, and M.G. Everett. “Network Analysis of Two Mode
Data”. Social Networks, 19(3), 243-269, 1997.

[6] K. Schmidt, and C. Simone. “Coordination mechanisms: Towards a
conceptual foundation of CSCW systems design”. Computer
Supported Cooperative Work, 5(2-3):155–200, 1996

[7] S.B. Seidman, and B.L. Foster. “A graph-theoretic generalization of
the clique concept”. Journal of Mathematical sociology, 6(1), 139-
154, 1978.

[8] B.H. Erickson. “The relational basis of attitudes.” Social structures: A
network approach, 99, 121, 1988.

[9] J. Moody, and D.R. White. “Structural cohesion and embeddedness:
A hierarchical concept of social groups”. American Sociological
Review, 103-127, 2003.

[10] G. Csardi, and T. Nepusz. “The igraph software package for complex
network research”. InterJournal Complex Systems, 1695, 2006.

[11] Bock, and Husain. “An Adaptation of Holzinger's B-Coefficients for
the Analysis of Sociometric Data”. Sociometry, 13, 146-153, 1950.

[12] R.D. Alba. “A graph-theoretic definition of a sociometric clique”.
Journal of Mathematical Sociology, 3(1), 113-126, 1973.

[13] S.P. Goggins, C. Mascaro, and G. Valetto. “Group Informatics: A
Methodological Approach and Ontology for Understanding Socio-
Technical Groups”. JASIS&T, 2012 (Under Review).

[14] T. Fritz, and G.C. Murphy. “Using information fragments to answer
the questions developers ask”. Proc. of ICSE 2010.

[15] J.D. Herbsleb, and A. Mockus. :An Empirical Study of Speed and
Communication in Globally Distributed Software Development”.
IEEE Transactions on Software Engineering, 29(3):1-14, 2003.

[16] W. Maalej and H. Happel. A lightweight approach for knowledge
sharing in distributed software teams. Proc. of the 7th International
Conference on Practical Aspects of Knowledge Management.
Springer, Jan 2008

[17] A. Sarma, A., Z. Noroozi, and A. van der Hoek. ”Palantír: raising
awareness among configuration management workspaces”. Proc.
ICSE 2003

[18] C.R. de Souza, , S. Quirk, E. Trainer, and D.F. Redmiles. “Supporting
collaborative software development through the visualization of
socio-technical dependencies”. Proc. of the International ACM
Conference on Supporting group work. 2007.

[19] J.T. Biehl, M. Czerwinski, G. Smith, G.G. Robertson, and B.
Bailey.”FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams”. Proc. of CHI, 2007, 1313-1322

[20] S. Minto, S. and G.C. Murphy, “ Recommending Emergent Teams”.
Proc. of the International Workshop on Mining Software
Repositories, 2007.

[21] F. Xiang, A. T. T. Ying, P. Cheng, Y. B. Dang, K. Ehrlich, M. E.
Helander, P. M. Matchen, A. Empere, P. L. Tarr, C. Williams, and S.
X. Yang. “Ensemble: a recommendation tool for promoting
communication in software teams” Proc. of RSSE 2008.

[22] D. Damian, S. Marczak, and I. Kwan. “Collaboration patterns and the
impact of distance on awareness in requirements-centered social
networks”. Proc.. of the 15th Int. Req. Eng. Conf., pages 59–68, 2007.

[23] S.L. Lim, D. Quercia, and A. Finkelstein. “StakeNet: using social
networks to analyse the stakeholders of large-scale software
projects”. Proc. of the 32nd International Conference on Software
Engineering (ICSE 2010), May 2010.

[24] W. Maalej. “Task-First or Context-First? Tool Integration Revisited”.
Proc.of the 2009 IEEE/ACM International Conference on Automated
Software Engineering (ASE '09).
.

15

