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Abstract— We present a method for identifying emergent 
teams of developers who need to work together and coordinate, 
within larger software development organizations. Our goal is 
to identify these socio-technical constructs as they emerge, so 
that we can provide timely awareness and actionable 
recommendations to managers, technical leads and members of 
the emergent team alike. Our technique is rooted in the 
analysis of Social Networks, which are constructed from real-
time traces of the activity of each individual developer within 
her development environment, contextualized with respect to 
her assigned tasks and the corresponding artifact working set. 

Keywords-Emergent teams; Social Network Analysis; 
developers’ coordination; task contexts; IDE interactions. 

I.  INTRODUCTION 
Large-scale or geographically dispersed software 

development organizations, ranging from open source 
communities, to global industrial software houses, to multi-
enterprise joint ventures that practice off-shoring and 
outsourcing, operate as Virtual Organizations (VOs). In 
VOs, co-located work and in-person communication and 
coordination are the exception, and work and communication 
occur mainly through the mediation of a set of technologies 
and tools that make up the production infrastructure of the 
organization, and the work environment for the project. 

In software VOs, collaboration and teamwork 
opportunities are not limited by the boundaries of 
organizational units, and coordination needs that may arise 
between participants must be followed opportunistically. In 
these environments, developers are keenly interested in  
information that helps coordinate with their colleagues [14], 
but have increasing difficulty obtaining it, as the scale and 
distribution of the software project increase [15]. 

We present a method that addresses a facet of this 
problem, that is, enables the identification of emergent teams 
within a larger software development VO, based on the 
coordination needs exhibited by the developers through their 
interactions with the work environment and the software 
artifacts the manipulate during their assigned tasks. Our 
method provides timely awareness of these emerging 
relationships, and can lead to actionable recommendations 
for project managers, technical leads and developers alike. 

II. RELATED WORK 
 

Several approaches and tools that facilitate the 
recognition of emergent coordination relationships in 
software development organizations have been proposed. 
Some promote awareness of possible work conflicts [4][19], 
while others use some conceptualization of work 
dependencies to compute likely coordination needs [17][18]. 

One important observation is that all of these approaches, 
even those that explicitly attempt to focus on “teams”, in fact 
draw upon dyadic relationships, and hence can only highlight 
and recommend pairs of developers that should, or are likely 
to, work together [21]; or alternatively, a set of colleagues 
from the point of view of an individual developer [20]. 

Our work, instead, aims at identifying one or more 
cohesive groups within a software VO at large, by 
understanding and analyzing the content and context of their 
individual work, and how that may pull them together to 
work as a team on a common coordination need or 
collaboration opportunity. The fulcrum of our analytical 
method is Social Network Analysis (SNA), which is 
increasingly employed in empirical software engineering, to 
tackle questions that are somewhat germane to the 
identification of emergent teams; for instance, stakeholder 
identification [23], and discovery of collaboration patterns 
[22]. We apply SNA techniques on a particular kind of bi-
partite, socio-technical network that represents the 
collaboration opportunity within the organization. 

III. METHOD DESCRIPTION 

A. Contextualized Analysis of Work Traces 
Our method derives from a framework for the analysis of 

group emergence in virtual organizations, on the basis of 
contextualized traces of work, called the Group Informatics 
Model, which we have developed from a number of 
empirical studies in different domains [13]. 

In all cases, we start from traces that we mine from either 
records of inter-personal exchanges, or records of work 
within the online environment of the VO. We call these 
contextualized interactions, since they must include metadata 
that situate them with respect to the work being carried out in 
that environment. For example, attributes that associate each 
interaction to recognizable tasks undertaken by the VO; or, 
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timestamps that situate the interactions in a specific epoch of 
the VO collaborative endeavors. 

Our method has then a number of steps, which transform, 
weigh, distil and aggregate those mined contextualized 
interactions, to finally produce social network 
representations of emergent VO sub-groups (or teams). 
These teams are identified – in a quantifiable way – as 
currently operating in a tighter cooperative fashion than the 
rest of the VO, or in need of such tight cooperation. 

Our method also derives information about the team 
context, from the merging of the contexts of the individual 
members of an emergent team. This may include intentional 
information about the reason (common interest or 
requirement) for the team to emerge; or descriptive 
information, about the kind and content of activities the 
group as a whole carries out. This data enhances the 
computed social network, and helps in shedding light upon 
the nature of the underlying multi-party relation.  

The Groups Informatics Model thus enables us to fill a 
gap in the extensive literature of work that apply network 
analysis to raw electronic trace data, that is, they do not 
typically reveal groups that exist in the data [1], nor offer 
information on intent and content of group work. As we 
discuss in the remainder, our analytic framework also 
enables us to obtain these insights in a way that is timely and 
actionable for the purpose of recommendation. 

B. Identifying Emergent Teams in Software VOs 
Contextualized interactions in software development 

VOs can be readily extracted from a number of minable 
software repositories. Often, though, data in those 
repositories are traces that regard work already completed in 
the past, and thus are not actionable. We leverage instead 
fine-grained records of the interactions each developer has 
with software artifacts throughout the course of her work. 
These “live” traces can be collected by several IDE 
instrumentation tools, like Team Weaver [16], or Mylyn [2]. 
We have experience with Mylyn, one of the most widely 
used plugins for the Eclipse IDE. It records the developer’s 
interactions with the Eclipse GUI, and captures actions with 
side effects on the work environment (such as invocation of 
tools, or modification of artifacts), as well as other actions 
that are not visible from post hoc traces kept in software 
repositories, like artifact consultation and navigation. 

The original purpose of Mylyn is to ease the cognitive 
load of the individual developer when she needs to switch 
among multiple concurrent tasks, by presenting in a 
prominent way the most pertinent information for her current 
task, that is, the task context. Accumulating and maintaining 
context traces of the developer’s work has recently 
commanded more and more attention in the domain of 
software engineering support tools, for instance because it 
can yield enhanced tool integration strategies [24]. 

Our work uses task context traces in a different way, that 
is, to analyze coordination needs. We have recently shown 
how that accurate and actionable evidence of the needs to 
coordinate between pairs of developers can be computed 
from those traces, as work progresses [3]. Here, we leverage 

and extend those findings and extend them to the 
identification of common needs and opportunities to 
coordinate in developers’ groups. 

 To apply the analytical framework of the Group 
Informatics Model, we first consider the Mylyn context 
traces associated to all tasks carried out within a time 
window that is significant for the project, say, a release, and 
produce a set of intersection records in the form: 

Ix = (Taska, Taskb, Taskc, …) → (Art1, Art2, … , Artn);    (1) 

Those intersection records indicate the intersections 
between the working sets of the various tasks in that release. 

From there, we construct a valued bi-partite network: the 
developers involved in the tasks listed in each intersection 
represent a mode of the network, and the intersections 
themselves are the other mode. The weight of the arc 
between a developer Da and intersection Ix is the number of 
artifacts manipulated by Da in each task she has worked on 
that is included in Ix. Notice that, since developer Da may be 
responsible for multiple tasks within the same intersection 
Ix, the weight of the edge between Da and Ix can be a 
multiple of the artifact cardinality of the intersection. 

We call this a collaboration opportunities network. The 
intersections represent the subject and the content of the 
potential collaboration between the developers that have 
operated on those artifacts in one or more of their assigned 
tasks within a software development release. The weighted 
incident arcs from a developer Da to an intersection Ix must 
be intended as a representation of the interest - or need - of 
Da to collaborate with other developers on the set of artifacts 
included in Ix. Moving from a local to a global view of the 
network, the set of incident arcs to various intersections 
departing from the Da node show all the collaboration 
opportunities for Da. 

With the following step, we want to identify groups of 
developers in the network who gravitate towards common 
work (i.e. overlapping working sets) across several different 
tasks, and who have significant amount of overlap in those 
working sets. For this purpose, we look at the network 
construct of bi-cliques [5]: 
1. we dichotomize the collaboration opportunities network 

at a level above the median of the weight of all edges; 
2. we compute bi-cliques, which capture what subset of the 

developers’ community tend to co-participate in the 
same intersections; 

3. we compute a structural correlation matrix, based on the 
relationship between the set of developers and the set of 
bi-cliques they are part of. 

As a result, we obtain a new person-by-person network, 
in which the weight of the arcs is a Pearson correlation 
coefficient, which signifies how similar two developers are 
in terms of the bi-cliques they are part of. We want to filter 
out the weaker correlations, therefore, we use a cutoff point 
of 0.4 for dichotomizing the arcs in the network. This new 
network distils the relations between developers, and any 
cohesive groups that appear within that network is a 
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candidate emergent team in the software development 
organization. 

Notice that, throughout the process described above it is 
possible to “carry over” information that describes the 
collective context of those teams, derived from the original 
contextualized traces provided by Mylyn. The most 
important source of information comes from the intersection 
records, from which we can easily derive the artifact sets that 
are involved in each bi-clique, and underlie the bilateral 
developer-to-developer correlation arcs in the final network. 
The union of those artifact sets provides a look at the 
common “field of work” [6] of each emergent team. 

IV. EMPIRICAL RESULTS 
We have experimented with the method described above 

using the Mylyn open source community itself as our case 
study, since its developers consistently abide to the 
convention of including Mylyn context records together with 
the other software artifacts, when they submit a patch or 
commit for their assigned development tasks.  

We examined eight releases of the Mylyn software (v2.0 
through v3.3), from December 2006 until October 2009. 
Each release lasted between three and four months, and saw 
the contribution of 13 to 18 developers. We consider all the 
tasks by developers in the same release as potentially 
concurrent. From the Bugzilla repository of the project we 
then extracted 1,970 software development tasks in that 
period. Each of those tasks is associated to one or more 
context records, for a total of 588,796 context events. We 
filtered those contextualized interactions, and considered 
only actions upon source code artifacts (450,747 events), 
since other types of artifacts are by-products – as opposed to 
subjects – of development work. 

We also collected data from other project repositories; in 
particular, we mined the communication archived in the 
project mailing lists and discussion threads about the project 
tasks in the same release periods. The population 
contributing these comments is much larger than the set of 
actual developers. Over the 3 years considered, more than 
400 distinct user IDs posted comments in these forums. This 
information represents triangulation data that we used to 
validate the results of our method. Another source of 
triangulation is the history of the Mylyn project during the 
period chosen for this study, which is freely available, as is 
the custom of open source projects by consulting the project 
repositories and archives on the Web.  

We collected data and applied our method to all of the 
eight releases mentioned above. Given the limited space, we 
offer hereby only a sample of the results, and a discussion of 
their accuracy and significance, for release v.2.0, i.e., the 
first we analyzed and the one with the smallest data set. 
Figure 1 shows the network output by our analytical 
framework, which includes 13 anonymized developers.  

We limit our analysis to constructs more complex than a 
triad. Two instances of a 2-clique are visible, composed by 
{304, 143, 399, 463, 373} and {304, 35, 22, 312, 319), 
which we consider as our “candidate” work groups, and refer 
to as WG1 and WG2, respectively. WG1 and WG2 have 

developer #304 in common; also, WG1 is densely connected, 
while WG2, is a “vulnerable” 2-clique [7]. As discussed – 
among others - by Erickson [8], a network construct that has 
more redundant arcs is more likely to truly represent an 
actual distinct group within the organization depicted by the 
network; therefore, our primary candidate for an emergent 
work group is WG1, while WG2 is a marginal candidate. 

 
Figure 1: Mylyn v2.0 - cohesive groups based on task context 

Triangulation with our knowledge of the project history 
helps to interpret these results, We know that the central 
figure of developer #304 is the most active in release 2.0, 
working on many tasks, and participating in the most 
intersection records. Moreover, from developers’ profiles 
and communications records, we know the nature of the 
work relationship made evident by the arc between 
developers #304 and 35. The involvement of #35 in Mylyn 
v.2.0 amounts to a volunteer sub-project (the Google summer 
of code1), organized as an individual but intense task, in 
which #35 worked on hundreds of code artifacts, and was 
mentored by #304. The summer work of developer #35 
concerned a component of the Mylyn product outside of the 
critical project path: as such, it was kept well-separated from 
the main stream of work and only intersected the activities of 
a few other contributors. The history of Mylyn v.2.0 thus 
corroborates the structure and groups visible in Figure 1. 

We then compared our results with the communication 
traces from the archived developers’ discussions. From those 
traces we have constructed the “talk” social network for 
Mylyn v.2.0, and compared it with the “work” network 
distilled by our analysis of contextualized interactions. 
Although the talk network and the communication records 
do not represent ground truth, we maintain that a 
triangulation between our method and network-analytic 
procedures carried out on an independent set of inter-

                                                           
1 http://code.google.com/soc/  
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developer relationships may be used to corroborate (or 
disprove) our results. 

The talk network includes many more actors and 
relations (64 nodes and 131 arcs) than the work network. 
Therefore, we focused on our candidate work groups, and 
looked at whether they are also recognizable in the talk 
network. As a first step, we looked at properties of network 
connectivity, and seeked structurally cohesive subgroups [9], 
by means of the cohesive.blocks() algorithm implemented 
in the R package igraph. [10]. That procedure segments the 
overall graph in a hierarchy of increasingly more cohesive 
groups, each of which is a subset of the group that precedes 
it. Figure 2 shows the results, by drawing and color-coding 
the talk network according to the computed cohesive blocks 
it identifies. The most cohesive “talk” group is the set of 
seven red nodes TG1 = (304, 143, 399, 373, 159, 457, 391). 

 
Figure 2. Mylyn v.2.0 – cohesive groups based on talk data. 

We can immediately observe that  - in line with [8] - our 
marginal emergent team candidate WG2 does not find 
confirmation in the topology of the talk network: among the 
five members of WG2 only #304, who is in common with 
WG1, is included in any of the most cohesive groups. We 
can also see that four of the five WG1 members also appear 
in TG1. The exception, developer #463 happens to be the 
lone orange node in Figure 2. That means that WG1 is fully 
represented in TG2 = (304, 143, 399, 373, 159, 457, 391, 
463), which is the immediate superset of TG1 and the second 
most cohesive group. Therefore, the role of WG1 as an 
emergent distinct group in the Mylyn development 
organization finds further corroboration, from a structural 
standpoint. 

Finally, we can carry out further quantitative analysis, 
and evaluate whether candidate group WG1 can be seen as 
“tighter” than other possible choices, e.g., highly cohesive 
structures like TG1 or TG2, on the basis of the 
communication data. Boch and Husain [11], as well as many 

other SNA scholars, have maintained that a distinct subgroup 
in a network should be characterized by more, or more 
intense, ties between group members, in comparison to the 
set of ties of the group members with the rest of the network  
In the case of a weighted, directed graph like our talk 
network, that contrast can be expressed with the formula in 
(2), where: GS is the ratio that denotes the group strength, aij 

is the weight of a tie between two nodes;   is the vertex 
cardinality of a candidate group G; and  is the vertex 
cardinality of the whole network. 

 

(2) 
 
With (2), we can compute the ratio between the average 

strength of the group-internal arcs and arcs and the arcs 
towards network nodes external to the group (also known as 
centripetal vs. centrifugal strength [12]): the higher the ratio, 
the tighter the group, especially relatively to the average 
strength of arcs in the whole network. 

We computed the group strength ratio for WG1 vs. TG1 
and TG2, as displayed in Table 1. Although all groups are 
significantly tight, WG1 maintains a slight edge. We 
interpret this data to mean that WG1, which has been 
identified through our analytical framework, is at least as 
good a candidate for an emergent group as TG1 and TG2, 
which are derived instead from the topology of the 
communication network. 

TABLE  I.  STRENGTH OF GROUPS  IN COMMUNICATION NETWORK 

v.2.0 – Avg. tie 
strength =5.87 

WG1 
 

TG1 
 

TG2 
 

Centripetal ties 
strength (Total) 408 507 531 

Centrifugal ties 
strength (Total)  295 245 222 

Centripetal strength 
(Avg.) 

20.40 12.07 9.48 

Centrifugal strength 
(Avg.) 

0.50 0.31 0.25 

GS ratio 40.80 39.32 37.92 
 

When taken all together, the various elements we have 
derived from our triangulation confirm and strengthen results 
from our analysis of contextualized work traces. 

V. DISCUSSION AND CONCLUSIONS 
The analytic process that we have described has several 

important characteristics. First of all, it can be fully 
automated, since its steps are algorithmic in nature, with only 
a couple of parameters, whose values can be chosen either 
automatically or a priori.  

Also, the process aims at distilling a large amount of 
project information (the bi-partite collaboration opportunities 
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network) into a much simpler network – with low node and 
edge cardinality – showing only significantly strong relations 
that make the fabric of cohesive work groups. From such a 
network, identifying emergent teams is often visually 
straightforward. Even in case the network produced by our 
method were larger and less sparse, patterns and structures 
revealing cohesive subgroups, like cliques, etc. could be 
easily extracted by running standard SNA algorithms. 

Finally, and most importantly for the construction of 
recommender systems on top of our analytical framework, 
although the case study we have presented here is 
retrospective, the nature of the contextual traces that 
represent the starting point for our method is not. In fact, 
they can be incrementally accreted as work progress, and as 
shown in [3], leveraging IDE-recorded interactions such as 
those produced by Mylyn leads to the timely recognition of 
coordination needs between developer pairs. Although we 
have not yet experimentally validated it in a “live” user 
study, it stands to reason that the group detection procedure 
we have described can occur in an equally timely fashion. 
We envision its implementation within a tool that 
continuously collects the contextualized traces from the 
socio-technical systems and all of its participants, and 
periodically executes our analysis in a centralized server.  
Such a tool can follow in quasi-real time how teams in a VO 
form and evolve, based on the coordination concerns, task 
content and work context of its members. Major stakeholders 
for such a tool will be project managers and technical leads, 
for project governance, or the developers themselves, to 
enhance their coordination and team awareness. 
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