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ABSTRACT 
Several methods exist to detect the coordination needs within 
software teams. Evidence exists that developers’ awareness about 
coordination needs improves work performance. Distinguishing 
with certainty between critical and trivial coordination needs and 
identifying and prioritizing which specific tasks a pair of 
developers should coordinate about remains an open problem. We 
investigate what work dependencies should be considered when 
establishing coordination needs within a development team. We 
use our conceptualization of work dependencies named Proximity 
and leverage machine learning techniques to analyze what 
additional task properties are indicative of coordination needs. In 
a case study of the Mylyn project, we were able to identify from 
all potential coordination requirements a subset of 17% that are 
most critical. We define critical coordination requirements as 
those that can cause the most disruption to task duration when left 
unmanaged. These results imply that coordination awareness tools 
could be enhanced to make developers aware of only the 
coordination needs that can bring about the highest performance 
benefit. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – productivity, 
programming teams 

General Terms 
Management, Performance, Human Factors. 

Keywords 
Task Dependencies; Proximity; Coordination Requirements; 
Awareness; Collaborative Software Development; Machine 
Learning  

1. INTRODUCTION 
In large software projects, developers work on tasks in parallel or 
on interdependent tasks. This often results in work dependencies 
and, consequently, coordination needs. When developers remain 

unaware or do not obtain timely awareness of the coordination 
that is required to manage work dependencies, there is potential 
for software productivity or quality problems [6, 22]. Existing 
techniques to support coordination awareness assume all 
dependencies may require coordination, and they simply 
enumerate the universe of those potential coordination needs in a 
project. This can lead to an overwhelming number of 
recommendations and alert developers of even trivial coordination 
needs. This is especially problematic in large projects or when 
coordination requirement detection occurs at fine granularity, for 
example, at the level of individual tasks. 

The main premise of our work, instead, is that not all coordination 
requirements are created equal. We explore what properties of 
development tasks and corresponding software code may indicate 
a critical coordination need. We define a critical coordination 
requirement as one that can cause the most disruption and 
inefficiency to the development process if not properly and timely 
managed. An understanding of the characteristics of the critical 
coordination needs can lead to better awareness tools and more 
focused coordination efforts in software development teams. 

In this paper, we report on an exploratory case study of the Mylyn 
open source project with a large set of potential coordination 
requirements. We first evaluated a quantitative conceptualization 
of work dependencies called Proximity [4] and confirmed that 
existing automated techniques for the identification of 
coordination needs, like Proximity, find far too many 
dependencies. We then examined other task properties that could 
be used to supplement measures like Proximity to identify 
coordination needs. Finally, we used machine learning with both 
Proximity and the identified task properties to evaluate whether 
such an approach is successful in identifying only the critical 
coordination needs. The tasks involved in the reduced set of 
coordination requirements presented very different performance 
profiles from the rest of the tasks when examining task durations. 
These differences may be attributed to the criticality of the 
coordination needs among those tasks especially since many seem 
to be unrecognized and unmanaged. Our results imply that not all 
coordination requirements are created equal and current 
techniques for detecting coordination requirements could be 
supplemented by additional task properties beyond just work 
dependencies to better predict only the critical coordination 
requirements. 

In the remainder of the paper, we first discuss related work 
(Section 2) and review the Proximity algorithm (Section 3). We 
then  introduce  our  research questions and describe  the setting of  
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our empirical study (Section 4). Next, we describe the method and 
results of our research (Section 5). Finally, we discuss the 
significance of our contributions (Section 6) and offer some 
concluding remarks (Section 7). 

2. BACKGROUND AND RELATED WORK 
Several techniques have been proposed to detect the need to 
coordinate between developers in large software development 
projects [4,7,9]. Cataldo et al. [7,9] were the first to introduce a 
framework for establishing coordination requirements between 
developers (depicted in Figure 1). They found that when 
coordination requirements are fulfilled, for example, by acts of 
communication, productivity is likely to increase [7,8,9]. Their 
framework establishes coordination requirements between 
developers who are working on dependent tasks. To ascertain 
work dependencies they look at the artifacts committed during 
each task and the dependencies between those artifacts. Logical 
coupling [15] is used to determine technical dependencies 
between artifacts if they have been checked in together in the past. 
Cataldo et al. [8] found that logical couplings are more likely than 
syntactic couplings to provide a reliable representation of 
technical dependencies for their coordination requirement 
conceptualization. A limitation of this conceptualization is that it 
requires mining the source control repository of the project for the 
commit history of software artifacts. This type of data is typically 
available only towards the end of the development work for a 
task, and the coordination awareness garnered from this approach 
may not be actionable by the developers at the time coordination 
is needed to reap those performance benefits. 

In Blincoe et al. [4], we proposed an alternative conceptualization 
of work dependencies for detecting coordination needs. That 
conceptualization uses the Proximity metric, which is described in 
detail in Section 3. Proximity ( as shown in Figure 2) evaluates the 
intersection of the working sets of a pair of developers and the 
actions developers take on the artifacts in those working sets to 
determine and weigh coordination needs. We found that by 
looking at both artifact consultation and editing actions, it is 
possible to accurately discover coordination requirements without 
the need to model and consider technical dependencies between 
artifacts. Since artifact consultation and edit actions can be 
captured in real-time through existing IDE monitoring facilities 
[11,17,18,25] Proximity can provide timely detection of 
coordination  needs.  This timely  detection of  coordination needs 

 
provides awareness [14] to developers while their work is still 
underway. Developers can then act upon and resolve their 
coordination needs as they surface. 

Current coordination requirement detection methods, including 
Proximity, abstract coordination requirements by detailing only 
pairs of developers who may need to coordinate. Developers may 
work on multiple tasks at the same time, so coordination 
requirements at the developer level may encompass the work 
dependencies of many tasks (see Figure 3). The many existing 
awareness tools [3,12,13,16,21,23,24] that exist to support 
developer awareness of coordination needs do not indicate which 
tasks are involved in coordination requirements. This puts the 
burden on the developers to identify what to coordinate about. If 
awareness tools were able to provide finer-grained coordination 
needs at the task level, that burden would be removed. 

In this work, we extend the Proximity technique to identify 
coordination requirements between pairs of tasks rather than pairs 
of developers. However, without the abstraction that occurs when 
rolling coordination requirements up to the developer level, the 
work dependencies may signal a plethora of coordination 
requirements including those that are trivial or insignificant. For 
this reason, we augment the Proximity method by also including 
other task properties to detect only the most critical coordination 
requirements.  

 

 
Figure 1. Conceptualization of coordination 

requirements in Cataldo et al. approach [7,9]. 

 
Figure 2. Conceptualization of Coordination 

Requirements through Proximity [4]. 

 
Figure 3. Coordination requirements between developers 

are typically a result of their work on more than one 
development task. 



3. PROXIMITY 
Proximity is a metric for measuring coordination needs in 
software development teams. Unlike more traditional coordination 
requirement detection techniques, it does not obtain information 
from the source control repository system nor rely on technical 
dependencies between artifacts. These differences make Proximity 
timely and turn coordination requirements into an actionable 
concept for managing coordination in software projects. 

To determine coordination requirements, the Proximity algorithm 
examines the similarity of artifact working sets as they are 
constructed during developers’ tasks. To do this, it obtains 
developer actions such as artifact consultation or edits as they 
occur. It uses the Mylyn framework [17, 18] to obtain this 
information. Mylyn is a tool that transforms a developer’s 
Individual Developer Environment (IDE) to a task-centric view to 
make context switching between tasks easier. To fulfill its own 
purposes, Mylyn records all developer IDE interactions as they 
occur. These events are stored as context data for the task in 
focus. For convenience, ProxiScientia [5], the tool which 
implements the Proximity measure, is built on top of Mylyn so it 
can easily obtain these developer actions. 

The Proximity measure looks at artifact consultation and 
modification activities captured by Mylyn and weighs the overlap 
that exists between the working sets associated to pairs of 
developers. It considers all actions recorded for each artifact in 
each working set in order to apply a numeric weight to that 
artifact’s Proximity contribution. Weights are applied based on the 
type of overlap where the most weight is given when an artifact is 
edited in both working sets (weight = 1) and the least amount of 
weight is given when an artifact is simply consulted in both 
working sets (weight = 0.59). When an artifact is edited in one 
working set and consulted in the other working set, we consider 
this a mixed overlap (weight = 0.79). The weights are directly 
based on the weights Mylyn itself uses for its degree-of-interest 
model [17, 18]. Figure 4 illustrates an example of the Proximity 
computation process [4]. The algorithm computes the ratio of 
actual to potential overlap. Actual overlap considers the 
intersection  of   the  two  working  sets  while   potential   overlap  

  

considers the union of the two working sets. Potential overlap 
represents the maximum possible Proximity score had there been 
perfect overlap between the two sets of actions. Proximity scores 
can then be scaled based on the number of overlapping events to 
place greater weight on complex tasks that are likely to require 
coordination. Proximity scores range from zero to infinity. 
Through empirical analysis, we found that higher Proximity 
scores are indicative of a stronger need to coordinate [4]. 

4. RESEARCH APPROACH 
We build on the Proximity method since it is the only existing 
real-time coordination requirement detection method. 
Conceptually, Proximity can be easily applied to pairs of tasks 
simply by aggregating the captured developer actions at the 
individual task level rather than at the developer level. However, 
even in moderately sized projects, a large number of potential 
coordination needs could be created when calculating Proximity 
between tasks. It is currently not possible to know whether all 
work dependencies that are detected between task pairs require 
actual coordination. Our working hypothesis is that current 
coordination requirement detection algorithms cast too wide a net 
in considering all work dependencies as candidates for 
coordination. We explore this hypothesis by comparing the tasks 
pairs with Proximity to the dependencies identified by the team: 

RQ1: Is there a correspondence between tasks with identified 
dependencies and development tasks with Proximity? 

To answer this research question, we look for evidence of task 
dependencies that have been identified by the project team and 
recorded within a change request. Change request repositories, 
like Bugzilla1, are commonly used to define, assign and manage 
project tasks. In the remainder, we refer to the task dependencies 
established by the project team and recorded in the change request 
repository as the “identified dependencies”. We then compare 
those identified dependencies to the Proximity scores computed 
between tasks. We expect to find high levels of recall paired with 
low levels of precision indicating that while Proximity is able to 
successfully detect many identified dependencies, the identified 
dependencies represent only a small subset of the task pairs with 
Proximity. If this hypothesis is proven correct, research questions 
RQ2 and RQ3 will begin to explore solutions for this problem. 

RQ2: What properties of task pairs, other than work dependencies 
ranked by Proximity, are also indicative of actual coordination 
needs? 

We examine various properties of task pairs to look for 
differences between the identified dependencies and all other task 
pairs. We inspect the statistical difference in proportion and 
distribution of these properties using Chi-squared and Mann-
Whitney tests. 
RQ3: Can we supplement Proximity with additional task pair 
properties to identify the most critical coordination needs? 
This research question builds on the findings of RQ2. If there are 
properties beyond work dependencies ranked by Proximity that 
greatly differ between tasks with identified dependencies and all 
other tasks, we can use those properties with machine learning to 
better infer coordination requirements and to supplement current 
methods like Proximity. We conceptualize critical coordination 
requirements as those coordination needs that have suffered the 
most in terms of performance (task duration) and use this criterion 
in analyzing the output of such a machine learning technique on 
                                                                    
1 http://www.bugzilla.org 

 
Figure 4. Proximity Algorithm Example [4]. 



our data set. Therefore, to answer RQ3, we evaluate the results of 
the machine learning approach comparing the task performance of 
the tasks involved in machine learning predicted coordination 
requirements and all other tasks. 

To answer our three research questions, we carried out an 
empirical study on the Mylyn open source project itself. The 
Mylyn project represents an ideal case study because its 
developers make routine use of the Mylyn plugin in their IDE 
allowing us to collect the context data needed for the Proximity 
calculation. We mined the project repositories and collected all 
Bugzilla change requests and developer activities (Mylyn context 
data) from two releases of the Mylyn project, releases 3.1 and 3.2. 
On the Mylyn project, developers are assigned change requests as 
their unit of work and encouraged to deliver their work as code 
patches that correspond to (and resolve) a single change request. 
The bug tracking database is, therefore, the way the Mylyn team 
defines and assigns developer tasks, and we refer to Bugzilla 
change requests as tasks. 

Mylyn release 3.1 spanned from June 2008 to March 2009. At the 
time we mined the repository, in July 2012, we obtained 512 
Bugzilla tasks with context data for which development work 
occurred during the development of release 3.1. This yielded 
130,816 task pairs for that release. Similarly, Mylyn release 3.2 
spanned from March 2009 to June 2009 and contained 251 tasks 
(31,375 task pairs). Our analysis focused on release 3.2. Release 
3.1 was used as a training data set for the machine learning 
technique that we apply to address RQ3. 

5. RESEARCH METHOD AND RESULTS 
5.1 Applying Proximity to Tasks 
RQ1: Is there a correspondence between tasks with identified 
dependencies and development tasks with Proximity? 

To answer RQ1, we mined the project’s change request database, 
Bugzilla, to obtain evidence of work dependencies between 
submitted change requests and the tasks associated with those 
change requests that have been identified by the project team. A 
recent study by Aranda and Venolia [1] found that repositories 
like Bugzilla often provide incomplete information because of 
omission, oversight, or simply because of project conventions. For 
this reason, we sought dependencies beyond those explicitly 
marked by the project team. By inspecting the change request 
reports, we found three main types of dependency identification 
evidence: explicitly marked dependencies, duplicates, and 
discussion cross-references. 

Explicitly marked: These dependencies appear in the ‘Depends 
On’ and ‘Blocks’ fields in the Bugzilla database. The tasks listed 
in the ‘Depends On’ field of a change request report must be 
resolved before the task associated with that change request can 
be resolved. Conversely, the task associated with the current 
change request must be completed before the tasks listed in the 
‘Blocks’ field can be resolved. In this dataset, this is always a 
reciprocal relationship. If task one ‘Depends On’ task two, task 
two will also ‘Block’ task one. These types of dependencies are 
marked between 33 task pairs in release 3.2. 

Duplicates: These dependencies exist when one task is marked as 
a duplicate of another task. The project team realizes the tasks are 
performing overlapping work and close one task, so the remaining 
work can be completed jointly in the remaining task. There are 
only two duplicate pairs in our dataset in release 3.2. 

Discussion cross-references: Change requests are cross-
referenced in the discussion of another change request. For 

example, a part of the implementation for change request #274790 
is reverted when it is decided that a better solution would be 
possible after the completion of change request #278708. This is 
an example of a work dependency that is discussed in the Bugzilla 
comments. A similar discussion occurs on change request 
#235439 where it is mentioned that part of the implementation 
must be completed after change request #211096. These task pairs 
may also be marked explicitly as dependencies, but that is not 
always the case. In fact, neither of the above examples is 
explicitly marked as a dependency within their Bugzilla records. 
There are 21 pairs with cross-references in release 3.2.  

These three types of dependencies established by the project team 
are the identified dependencies. We compared the identified 
dependencies with measures of Proximity for those same pairs of 
development tasks. In release 3.2, we have 1,468 task pairs with a 
Proximity score >0 (4.7% of 31,375 pairs). The average Proximity 
score for all task pairs with Proximity >0 is 1.2 with a maximum 
score of 79.43. The average for the 39 task pairs with Proximity 
and an identified dependency is higher with an average of 3.3. A 
Mann-Whitney test shows that these task pairs with identified 
dependencies have significantly higher Proximity scores than 
other task pairs with Proximity (W = 40705.5, p-value = 4.165e-
07). This indicates that these dependencies are also ranked well by 
the Proximity metric. In addition, a larger number of tasks with 
identified dependencies also have Proximity scores >0 (as shown 
in Table 1). However, while recall is high, the number of task 
pairs with Proximity is much greater than the number of identified 
dependencies resulting in low precision. 

As we expected, not all task pairs with high Proximity were 
marked as dependencies by the development team. One reason for 
this could be that the Mylyn team found other dependencies 
during development but they were not all reported within 
Bugzilla. To shed light on this, we contacted a lead Mylyn 
developer to attempt to gain insight on the type of dependencies 
that are captured within their Bugzilla repository. He told us that 
the Mylyn team uses “Bugzilla's ‘Depends on’ field to track 
subtasks” of some coarser-grained umbrella task. The same 
developer also mentioned that there is often a dependency 
between subtasks of the same umbrella task stating that “often 
subtasks need to be completed in a certain order”, but those 
dependencies are usually not marked explicitly. The same 
developer also mentioned that task pairs that are marked with the 
same tag in Bugzilla “often share subtasks or are directly linked 
as subtasks”. 
The insight obtained from the lead developer provides two 
additional dependency identification types that we had not 
included in our analysis. In release 3.2, we found 183 pairs of 
subtasks of the same umbrella task and 352 pairs that share the 
same tag. Over 40% of these two types of dependency 
relationships have Proximity > 0, but very few are marked as 
being  dependent in  the  Bugzilla change reports.  However, since 

Table 1. Precision/Recall: Identified Dependencies vs 
Proximity 

Dependency Precision Recall 

Explicitly Marked 26 of 1468 (1.8%) 26 of 33 (78.8%) 

Duplicates 2 of 1468 (0.14%) 2 of 2 (100%) 
Discussion cross-

referenced 18 of 1468 (1.2%) 18 of 21 (85.7%) 

Total 39 of 1468 (2.7%) 39 of 49 (79.6%) 
 



we cannot assume with confidence that sharing the same umbrella 
task or the same tag is a purposeful indication of a dependency 
relationship by the Mylyn team, we did not include these types of 
evidence as part of the identified dependencies set for our 
analysis. We note them here simply to illustrate the 
incompleteness of the Bugzilla database in terms of dependencies 
marked between tasks. 

While the incompleteness of the dependency information in the 
Bugzilla database certainly contributes to the low precision scores, 
it is also likely that Proximity, when applied at the task level as 
opposed to the developer level, signals coordination needs 
between too many task pairs. When considering only Proximity 
scores for detection of coordination requirements, a large majority 
of the tasks in Release 3.2 (234 out of 251) would be involved in 
at least one coordination requirement with other tasks, which adds 
to the suspicion that current methods may cast too wide a net.  

In answering RQ1: The low precision indicates that Proximity 
casts too wide a net. Therefore, we looked for additional task 
properties that also indicate coordination requirements (RQ2) and 
could be used to refine the recommendations of the Proximity 
algorithm to detect only the critical coordination needs (RQ3). 

5.2 Analysis of Task Pair Properties 
RQ2: What properties of task pairs, other than work dependencies 
ranked by Proximity, are also indicative of actual coordination 
needs?  

To answer this research question, we examined task pair 
properties to look for differences between identified dependencies 
and all other task pairs. The task properties we examined include 
(1) architecture-related properties directly available from the 
project’s change request database such as: the affected product, 
component, platform and operating system of the task and (2) 
modularity characteristics of the software artifacts involved in 
each task.  

We examined the architecture-related properties by checking, for 
each task pair, if the tasks involved in that pair shared any of those 
properties (i.e. if they affect the same product, component, 
platform, or operating system). A Chi-squared test of difference in 
proportion for each of these properties shows that there is a 
significant difference between the identified dependencies and all 
other task pairs for all but one of the tested properties: there is not 
a statistically significant difference for the number of task pairs 
marked for the same component (results shown in Table 2).  
To characterize the software artifacts involved in each task, we 
derived a Design Rule Hierarchy (DRH) [27] of the Mylyn code 
base for the two releases of interest. DRHs are computed from 
Design Structure Matrices (DSMs) [2]. A DRH assigns software 
artifacts to modules based on technical dependencies within the 
code. Consistent with Parnas’ definition of modularization [22], 
these independent modules can be worked on in parallel without 
incurring coordination overhead. Considering the number of 
overlapping modules for each task pair allows us to quantify the 
amount of dependencies between the two tasks.  
A DRH also clusters modules into “layers” where each layer 
depends only on the layers above. These layers can be used to 
differentiate artifacts that represent influential design decisions 
from low-level artifacts that depend on (changes to) those 
decisions. Wong et al. [27] observed that developers working on 
tasks that involve software modules in different layers of a DRH 
tend to communicate (a dominant form of coordination in 

 
software development [19]) significantly more than developers 
working only on modules in the same layer. The number of 
overlapping layers allows us to identify when task pairs are 
operating on similar areas of the code hierarchy. 

For illustration purposes, Figure 5 shows an example of a 
hypothetical two-layer DRH. The large thick-bordered boxes 
represent the two different layers while the boxes within the layers 
represent modules. The figure shows three different tasks 
operating on the artifacts. Tasks 1 and 2 have one overlapping 
layer and one overlapping module. Tasks 2 and 3 have one 
overlapping layer and no overlapping modules. Tasks 1 and 3 
have no overlapping layers or modules. 

The Mylyn Project DRH of release 3.1 consists of 11 layers and 
671 modules. The release 3.2 DRH consists of 11 layers and 786 
modules. We identified the associated DRH layer and module for 
each artifact consultation and edit action associated with java 
artifacts for each task. Using this information, we obtained the 
number of overlapping layers and modules for each task pair. 

Table 2. Task Property Comparison 

Property Identified 
Dependencies 

Other 
Task 
Pairs 

Chi-squared 
Test 

Task Pair Count 49 31,326 ─ 

# with Proximity 39 1,428 χ2 = 617.96 
p < 2.2e-16 

# in the same 
product 

40 21,104 χ2 = 4.5 
p = 0.03 

# in the same 
component 

37 20,636 χ2 = 2.0 
p = 0.15 

# in the same 
platform 

38 14,960 χ2 = 17.4 
p = 3.001e-05 

# for the same 
OS 

37 11,939 χ2 = 29.0 
p = 7.214e-08 

   Mann-
Whitney Test 

Mean 
Overlapping 

Layers 
1.29 0.86 W = 971716 

p = 0.0002 

Mean 
Overlapping 

Modules 
1.57 0.33 W = 1243704 

 p < 2.2e-16 

 
Figure 5. Design Rule Hierarchy Example [27]. 



We then analyzed each of these properties to identify any that 
appear significantly different between the identified dependencies 
and all other task pairs. A Mann-Whitney test of difference in 
distribution shows that the difference is statistically significant for 
both of these properties (results shown in Table 2). 

In answering RQ2: We determined the following set of task pair 
properties that differentiate task pairs with identified 
dependencies from all other task pairs: 

• Within same product 
• Within same platform 
• Within same operating system 
• Number of overlapping DRH layers 
• Number of overlapping DRH modules 

5.3 Applying Machine Learning to Proximity 
and Identified Task Properties 
RQ3: Can we supplement Proximity with additional task pair 
properties to identify the most critical coordination needs? 

RQ2 provided confirmation that there are properties that 
differ with statistical significance in task pairs with identified 
dependencies and, therefore, are indicative of coordination 
requirements. To answer RQ3, we explored supplementing the 
Proximity algorithm with these properties to infer the most 
critical coordination needs by applying the k-nearest neighbor 
machine learning algorithm [10].  
To analyze the results of the machine learning approach, we 
computed precision and recall against the identified dependencies 
as they are the best available approximation of ground truth 
(section 5.3.2). We scrutinized the cases of false positives (section 
5.3.3) and false negatives (section 5.3.4) of the machine learning 
algorithm to determine if they are truly falsities of the machine 
learning algorithm or rather a result of an incomplete picture of 
ground truth for coordination requirements. An in-depth analysis 
of the false positives and false negatives revealed that the machine 
learning outcomes are a more reliable indication of coordination 
requirements than the identified dependencies. Next, to determine 
if the machine learning algorithm identified the critical 
coordination requirements, we examined the task performance 
between the tasks with coordination requirements and tasks 
without coordination requirements as predicted by the 
machine learning algorithm (section 5.3.5). We found strong 
statistical results that the machine learning algorithm is able 
to find the critical coordination requirements when compared 
to the coordination requirements found using only Proximity. 

In the remaining analysis, we use the following terms to 
describe the different sets of task pairs: 

• Identified Dependencies: task pairs that have been either 
marked as dependent or duplicate or cross-referenced in 
the discussion within their Bugzilla change request 
reports. 

• Coordination requirements: task pairs that have been 
detected by the machine learning algorithm as needing 
coordination. 

• Recognized coordination requirements: coordination 
requirements that are also identified dependencies. 

• Unrecognized coordination requirements: coordination 
requirements that are not identified dependencies. 

5.3.1 Machine Learning Approach 
The k-nearest neighbor algorithm considers the distance from an 
unknown pair to each of the pairs in the training set. It then 
considers a majority vote from the k-nearest neighbors in the 
training set to decide if the unknown pair is a coordination 
requirement or not. For this study, we used nine as the k-value. 
Euclidean distance was used to determine the distance between 
the unknown pairs and the training set instances. We used the 
properties determined to have statistical significance in RQ2 to 
calculate the distance between instances. 
As a training set, we used a subset of task pairs from release 3.1. 
The task pairs with identified dependencies were the positive 
examples of coordination requirements. On the other hand, we 
selected a subset of 175 task pairs that were not identified 
dependencies as the negative examples in the training set.  

5.3.2 Evaluating Precision and Recall 
After training the machine learning algorithm with the data from 
release 3.1, we applied it to release 3.2, and we were able to 
significantly reduce the number of predicted coordination 
requirements. Proximity identified 1,468 coordination 
requirements, whereas machine learning predicted only 244 
coordination requirements, a reduction of about 83%. This caused 
precision to increase almost four-fold. Conversely, recall 
decreased due to missing an additional 17 identified dependencies. 
The differences in precision and recall of the two approaches are 
shown in Table 3. The identified dependencies, however, do not 
represent a complete picture of ground truth regarding 
coordination requirements since we have found them to be 
incomplete and heavily weighted towards one particular type 
of dependency (task decomposition). 

5.3.3 Evaluating False Positives 
Precision of 9% is still quite low. However, we hypothesized 
that the low precision is a result of a lack of complete data in the 
identified dependencies, and it is not indicative of the promise of 
our approach. To verify this, we performed an in-depth 
examination of the content of change request reports for some of 
the 222 unrecognized coordination requirements. We looked for 
evidence of other dependency relationships where awareness 
would have helped the productivity of the team. One example is 
the task pair of #233158 and #278494. Task #278494 is opened 
two days after the patch for #233158 is committed, and it notes an 
issue that originated from the committed code for #233158. A 
team member who does not appear to be aware of task #233158 
creates the change request and submits a patch to fix the issue. 
Shortly after the patch is submitted, the assignee of the first task 
becomes aware of the issue and, having more expertise on the 
original task, suggests a different implementation.  

The above is a clear example where early coordination could have 
prevented additional work. It highlights how there are certainly 
other  types  of  dependencies  that  exist  between  tasks   that  are  

Table 3. Precision/Recall: Identified Dependencies vs 
Coordination Requirements 

Method Precision Recall 

Proximity 
Only 39 of 1,468 (2.7%) 39 of 49 

(79.6%) 
Machine 
Learning 22 of 244 (9.0%) 22 of 49 

(44.9%) 



Table 4. Properties for Recognized Coordination 
Requirements, Unrecognized Coordination 

Requirements, and No Coordination Requirements 

 Recognized 
Coordination 
Requirements 

Unrecognized 
Coordination 
Requirements 

No 
Coordination 
Requirements 

Number of 
Task Pairs 22 222 31,131 

Number with 
Proximity 22 (100%) 212 (95.5%) 1234 (4%) 

Number 
within same 

product 
22 (100%) 209 (94.1%) 20,913 (67.2%) 

Number 
within same 

platform 
18 (81.8%) 140 (63.1%) 16,539 (53.1%) 

Number for 
same OS 17 (77.3%) 132 (59.5%) 15,154 (48.7%) 

Average 
Proximity 5.33 5.23 0.02 

Mean # of 
Overlapping 
DRH Layers 

1.73 1.99 0.85 

Mean # of 
Overlapping 

DRH 
Modules 

2.45 2.48 0.31 

 

missing from the Bugzilla records, but which our machine 
learning technique successfully identified. This also suggests that 
the precision/recall measures are not an accurate evaluation of the 
ability of our method to recognize coordination requirements. 

For this reason, we conducted a more in-depth and relevant 
validation of the machine learning outcomes. First, we examined 
the differences between the unrecognized coordination 
requirements and the recognized coordination requirements. Table 
4 shows the properties of interest for the unrecognized coordination 
requirements and, for comparison, both the recognized 
coordination requirements and the task pairs without coordination 
requirements. We also performed Chi-squared and Mann-Whitney 
tests comparing the properties of the unrecognized coordination 
requirements to the two other groups. The tests found that there are 
no statistical differences between any of the properties when 
comparing the unrecognized and recognized coordination 
requirements. In contrast, there is a large and significant difference 
between the unrecognized coordination requirements to the task 
pairs without coordination requirements (see Table 5). While this is 
not surprising given that the goal of the k-nearest neighbor 
algorithm is to pick out the best possible matches on these 
properties, this shows that while we only have a small set of 
identified dependencies, we have additional task pairs which look 
remarkably similar to those identified dependencies. This suggests 
that the machine learning approach successfully identifies 
coordination requirements that were missed by the team or, 
perhaps, were tracked in another way besides the use of the 
dependency, duplicate and cross-reference relationships. 

5.3.4 Evaluating False Negatives 
In order to identify possible reasons for the exclusion of the 
identified dependencies that were not established as coordination 
requirements by the machine learning algorithm, we analyzed the 
differences   between    the   identified    dependencies   that   were 

Table 5. Chi-squared and Mann-Whitney Tests 
Comparing Unrecognized Coordination 

Requirements to other groups 

Unrecognized 
Coordination 

Requirements Compared 
to 

Recognized 
Coordination 
Requirements 

No 
Coordination 
Requirements 

Number with Proximity χ2 = 0.52 
p = 0.47 

χ2 = 107.23 
p < 2.2e-16 

Number within same 
product 

χ2 = 0.26 
p = 0.61 

χ2 = 1349.47 
p < 2.2e-16 

Number within same 
platform 

χ2 = 1.04 
p =0.31 

χ2 = 4134.67  
p < 2.2e-16 

Number for same OS χ2 = 0.63 
p =0.43 

χ2 = 2051.28 
p < 2.2e-16 

Proximity score W = 1471 
 p = 0.57 

W = 318375 
 p < 2.2e-16 

Number of Overlapping 
DRH Layers 

W = 1486.5 
 p = 0.56 

W = 1945548 
 p < 2.2e-16 

Number of Overlapping 
DRH Modules 

W =1775 
 p = 0.09 

W =672795 
 p < 2.2e-16 

 

Table 6. Properties for Identified Dependencies 

 Identified 
Dependencies 

with 
Coordination 
Requirements 

Identified 
Dependencies 

without 
Coordination 
Requirements 

Other No 
Coordination 
Requirements 

Number of 
Task Pairs 22 27 31,104 

Number 
with 

Proximity 
22 (100%) 17 (63%) 1217 (3.9%) 

Number 
within same 

product 
22 (100%) 18 (66.7%) 20,895 (67.2%) 

Number 
within same 

platform 
18 (81.8%) 17 (63%) 16,522 (53.1%) 

Number for 
same OS 17 (77.3%) 16 (59.3%) 15,138 (48.7%) 

Average 
Proximity 5.33 0.42 0.02 

Average 
Number of 

Overlapping 
DRH Layers 

1.73 0.93 0.85 

Average 
Number of 

Overlapping 
DRH 

Modules 

2.45 0.85 0.31 

 

detected as coordination requirements and the remaining 
identified dependencies not detected as coordination requirements. 

As a baseline, we also compared the identified dependencies not 
selected as coordination requirements to all other task pairs that 
are not coordination requirements. Table 6 shows the properties of 
these groups. Tables 7 and 8 report the Chi-squared and Mann- 
Whitney tests for these groups showing that for many of the 
properties    the   identified   dependencies   without   coordination 



Table 7. Chi-squared tests comparing Identified Dependencies 

Identified 
Dependencies without 

Coordination 
Requirements 
Compared to: 

Identified 
Dependencies with 

Coordination 
Requirements 

Other No 
Coordination 
Requirements 

Number with Proximity χ2 = 10.24  
p = 0.001 

χ2 = 454.39 
p < 2.2e-16 

Number within same 
product 

χ2 = 8.98  
p = 0.003 

χ2 = 6967.997 
p < 2.2e-16 

Number within same 
platform 

χ2 = 2.11 
p = 0.15 

χ2 = 4369.94 
p < 2.2e-16 

Number for same OS χ2 = 1.79 
p = 0.18 

χ2 = 4239.04 
p < 2.2e-16 

 
requirements are significantly different from the other identified 
dependencies. The task pairs in this group are less likely to have 
Proximity, more likely to have lower Proximity scores, less likely 
to be in the same product, and less likely to have overlapping 
DRH modules and DRH layers. In addition, for the number of 
overlapping layers property there is not a statistically significant 
difference between these identified dependencies without 
coordination requirements and all other task pairs without 
coordination requirements. This could indicate that the identified 
dependencies established by the team are not always true work 
dependencies for this group of task pairs. Since many of the 
identified dependencies capture a task/subtask relationship in our 
dataset, we believe that some of the subtasks are not as closely 
related to the parent task, and actual work dependencies do not 
exist for some of the task/subtask relationships.  

We, therefore, examined some of these 27 task pairs to determine 
the nature of the dependencies that exist between them. One 
example, change request #271019 is used simply to track the 
preparation of a maintenance release. Dependencies are created 
for each of the tasks that are to be included in the release. This is 
purely a management task to ensure the release does not occur 
until these necessary changes are completed. This accounts for 
five of the 27 task pairs. Analysis of the remaining task pairs 
showed that actual work dependencies exist between just two of 
the 27 task pairs, while the remaining 25 were similar 
management type relationships. This confirms that, although 
recall decreases when compared to the identified dependencies, 
our machine learning algorithm is successfully identifying the task 
pairs that truly require coordination. 
5.3.5 Evaluating Task Performance 
Since we define critical coordination requirements as those that 
suffer in terms of performance when unmanaged, we examined 
the task performance of the coordination requirements. We focus 
on task duration as our measure of task performance. We 
hypothesize that because many of the coordination requirements 
are unrecognized and therefore unmanaged, the task pairs with 
coordination requirements tend to have longer task durations 
[6,7,8,9,22]. We compare the outcome after machine learning to 
the outcome of the Proximity algorithm alone to determine if 
supplementing Proximity was able to identify the critical 
coordination needs.  

We compared the task durations for tasks with coordination 
requirements to tasks without coordination requirements. Table 9 
shows  this  comparison  before the machine learning  algorithm is 

Table 8. Mann-Whitney tests comparing Identified 
Dependencies 

Identified 
Dependencies without 

Coordination 
Requirements 
Compared to: 

Identified 
Dependencies 

with 
Coordination 
Requirements 

Other No 
Coordination 
Requirements 

Average Proximity W = 528 
 p = 1.632e-06 

W = 168784 
 p < 2.2e-16 

Average Number of 
Overlapping DRH 

Layers 

W = 439 
 p = 0.0008 

W = 389642 
 p = 0.24 

Average Number of 
Overlapping DRH 

Modules 

W = 486.5 
 p = 1.763e-05 

W = 239041.5 
 p = 3.096e-07 

 
applied when all task pairs with Proximity >0 are considered 
coordination requirements. We, again, observe that Proximity 
casts too wide a net. When computing coordination requirements 
in this way, there are very few tasks (7%) with no coordination 
needs. So while the 17 tasks without any coordination needs have 
shorter duration on average, no significance is found. The Chi- 
squared test results show there is no statistically significant 
difference between task durations. This shows that Proximity 
alone is not enough to identify the critical coordination needs.  

When we apply the machine learning algorithm the number of 
predicted coordination requirements is greatly reduced. In 
addition, the number of tasks that are involved in at least one 
coordination requirement is significantly lowered compared to the 
outcome of the Proximity algorithm. With this approach, 45% of 
tasks require no coordination. Table 10 shows performance 
measures after machine learning is applied. We now see a strong, 
significant difference in task duration. In addition, a Mann- 
Whitney test shows the task durations of the tasks involved in the 
coordination requirements detected when using our machine 
learning approach (Table 10) are significantly different than the 
task  durations when considering Proximity alone (Table 9) where 

Table 9. Performance: Proximity Only 

 Coordination 
Requirements 

No 
Coordination 
Requirements 

Mann-
Whitney 

Test 

Number of 
Tasks 234 17 ─ 

Average Task 
Duration 42.4 days 5.2 days W = 2327 

p = 0.12 

 
Table 10. Performance: After Machine Learning 

 Coordination 
Requirements 

No 
Coordination 
Requirements 

Mann-
Whitney 

Test 

Number of 
Tasks 139 112 ─ 

Average Task 
Duration 52.38 days 24.4 days W = 9742 

p = 0.0003 
 



W = 8238.5 and the p-value = 0.0006. The average task duration 
is now 52.38 days, almost 10 days longer than the average task 
duration when considering only Proximity. This shows that 
supplementing the Proximity algorithm using the machine 
learning techniques described in this paper allows for the 
detection of critical coordination needs when criticality is 
conceptualized as most likely to increase task duration. 

In answering RQ3: We conclude that we can use machine 
learning to supplement Proximity with additional properties of 
task pairs to identify the most critical coordination needs. Our 
machine learning techniques reduced the set of potential 
coordination requirements identified by Proximity by 83%. The 
remaining 17% were found to be most critical when coordination 
criticality was conceptualized as most likely to cause disruption to 
task duration.  

6. DISCUSSION 
We described our exploratory investigation of techniques to 
identify critical coordination needs in a software project. Since 
developers often work on multiple tasks simultaneously, 
computing coordination needs between tasks provides developers 
better (more accurately scoped) awareness of where coordination 
is needed. Our research approach, therefore, computed 
coordination requirements between tasks rather than between 
developers, but we found that existing techniques for detecting 
coordination needs cast too wide a net when applied to pairs of 
tasks. We identified other task properties that can be used to 
supplement Proximity – our conceptualization of work 
dependencies – and used machine learning on those properties to 
identify the critical coordination needs. Our machine learning 
technique greatly reduced the number of detected coordination 
requirements and indicated the most critical when considering 
task duration. These results have several implications to both 
research and practice. 

This is the first attempt to explore the possibility that differences 
exist within the universe of potential coordination requirements. 
We identified a set of properties of tasks that, when coupled with 
Proximity, can find the critical coordination needs. The properties 
we considered (or similar properties) are commonly available in 
most change request databases, which are frequently used tools 
for software projects. Therefore, these properties can be applied to 
the analysis of coordination needs in a wide variety of projects. 
We have shown how code modularization properties that can be 
derived from the system DRH are also useful indicators of 
coordination needs. These findings build upon and reinforce 
previous empirical results that found that DRHs are adept at 
highlighting the intertwined relationships between issues of 
coordination and issues of modularity [27]. 

6.1 Implications for Tools 
Existing awareness tools that detect coordination needs identify 
only the involved developers and do not provide scoped 
awareness by detailing the task dependencies involved in those 
coordination needs. This puts the burden on the developers to 
identify what to coordinate about. We envision a tool that could 
remove that burden by performing (semi-)automated 
recommendation and management of task dependencies. The tool 
could be based on a coordination requirement conceptualization 
like Proximity, which enables timely recognition of coordination 
needs as they form, and could be supplemented with machine 
learning techniques as described in this paper. 

In addition, the tool could have a continuous learning component 
that would suggest candidate coordination requirements to project 

personnel. Project experts could confirm those candidates as either 
true positives or true negatives. This would allow the component 
to incrementally learn how to tease out the salient characteristics 
that indicate work dependencies for which coordination awareness 
is critical. Such a learning component would also be able to pick 
up and adapt to some of those characteristics that may be project-
dependent in nature. The envisioned tool could also be adjusted to 
learn unobtrusively from coordination actions taken by the team 
within the tool itself (discussions, cross-referencing of task pairs, 
etc.). That is likely to improve the machine learning accuracy.  

Such a tool could be used to automate task dependency 
management, provide coordination awareness both within and 
across teams, and support coordination among developers. To 
achieve this, the tool could provide a list of the most critical task 
dependencies tailored for each developer along with in-tool 
coordination mechanisms. The tool could allow developers to 
select a dependency to view details on the dependent task or 
highlight areas of code where overlap exists. 

A management view of the tool could provide a view of the most 
critical coordination needs across the team. It could also suggest 
task assignments based on the premise of trying to minimize 
coordination needs and the related overhead. In addition, an 
architect view of the tool could highlight the areas of the code 
where the most overlap occurs indicating a possible need for 
refactoring.  

After development of such a tool, user studies could be performed 
to validate our findings. We envision a study that would compare 
the task performance of a team prior to/after the introduction of 
the tool to examine whether the awareness provided by the tool 
improves task performance. In addition, the in-tool coordination 
mechanisms could be monitored to identify how often the 
developers follow-up on the coordination recommendations made 
by the tool. 

6.2 Threats to Validity 
The most significant threat to this study was the partial 
information in the Bugzilla repository available to represent 
ground truth about task dependencies. That issue impacts the 
training set that was used for machine learning and possibly its 
efficacy. Even more importantly, it complicates the evaluation of 
results since standard metrics such as precision and recall are not 
very meaningful in such an uncertain context. To overcome this 
limitation, we supplemented those metrics by conducting a 
qualitative analysis of many of the task pairs. 

Another threat to validity is that our findings derive from a single 
case study with a relatively moderate number of developers and 
number of tasks. Our results could be affected by specificities of 
the case. For that reason, our findings should be corroborated by 
different case studies to ensure that our approach works across a 
spectrum of software projects of diverse scales. 

Another issue is that we were limited in the number of task and 
code properties that we could investigate. There may be 
additional, or even better, properties that could be used to 
differentiate the overall set of potential coordination requirements 
and highlight the most important ones. In addition, all of the 
selected properties may not be portable across different bug 
tracking systems. This study should be repeated using projects 
hosted on different bug tracking systems to evaluate other 
available properties that characterize the architecture of a task like 
Trac’s2 component, Redmine’s3 category, and Jira’s4 components 
                                                                    
2 http://trac.edgewall.org 



and labels. For the artifacts involved in the tasks, we focused on 
DRH properties. Among the slew of possible metrics and 
properties describing a project code base, we choose the DRH 
since it was conceived directly to analyze and segment a code 
base in modules that can be independently assigned to developers 
for parallel work. 
Finally, we cannot exclude that our results could be caused by 
some other factors that underlie the properties we selected which 
we did not take into account. This threat is mitigated by the 
relatively large size and diversity of our data set. 

6.3 Future Work 
To continue this exploration, we plan to examine the potential of 
additional task properties beyond those identified in this paper, 
work to develop a better source of ground truth to use for 
evaluation purposes, and analyze the feasibility of the proposed 
approach to detect the critical coordination needs in real time.  

We will examine additional task properties to search for further 
properties that may also be useful in supplementing Proximity to 
compute the critical coordination needs. We also plan to compare 
the identified properties to one another to understand which have 
the most predictive power. 

To develop a better sense of the ground truth of coordination 
requirements in the project, we plan to perform content analysis of 
a random sampling of task pairs, and manually code their 
likeliness of having or not having coordination requirements. 

To evaluate the feasibility of using the proposed methods on 
development tasks incrementally while development is under way, 
we also plan to develop a prototype of a tool that incorporates the 
algorithms described in this paper. We will run that prototype on 
pre-collected data from the Mylyn 3.2 release. The prototype will 
take all Mylyn context events and all Bugzilla data as input. The 
pre-collected data will be time-ordered and played back to mimic 
the real-time progression of development work and the live 
collection of the corresponding data. The prototype will receive 
each context event and Bugzilla update in a time-ordered series as 
they occurred. This will allow us to determine exactly when 
coordination needs can be established using our prototype and 
how actionable our method is.  

7. CONCLUSION 
The investigation of what work dependencies result in critical 
coordination requirements is a new line of research. We took a 
first step in distinguishing between work dependencies when 
detecting coordination needs to promote awareness. In this paper, 
we contribute and discuss a list of properties that help to 
characterize task pairs that require coordination, and we 
demonstrate how enhancing the Proximity algorithm with 
machine learning techniques helps in the selection of the most 
critical coordination needs. This initial exploration shows the 
promise in this line of research for detecting the most critical 
coordination needs. Such a method has implications for both 
change request management and triage support tools. Tools that 
incorporate and implement the techniques we described can 
increase coordination awareness among development teams and 
support more focused coordination efforts. More work is needed 
in this area to better understand the detailed nature of coordination 

                                                                                                                 
3 http://www.redmine.org 
4 http://www.atlassian.com/software/jira 

requirements and the characteristics of task pairs that indicate 
when coordination is necessary and critical. 
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