
Do All Task Dependencies Require Coordination?
The Role of Task Properties in Identifying Critical

Coordination Needs in Software Projects

Kelly Blincoe
Computer Science Department

Drexel University
Philadelphia, PA, USA

kelly.blincoe@drexel.edu

Giuseppe Valetto
Computer Science Department

Drexel University
Philadelphia, PA, USA

valetto@cs.drexel.edu

Daniela Damian
Software Engineering Global

Interaction Lab
University of Victoria
Victoria, BC, Canada

danielad@cs.uvic.ca

ABSTRACT
Several methods exist to detect the coordination needs within
software teams. Evidence exists that developers’ awareness about
coordination needs improves work performance. Distinguishing
with certainty between critical and trivial coordination needs and
identifying and prioritizing which specific tasks a pair of
developers should coordinate about remains an open problem. We
investigate what work dependencies should be considered when
establishing coordination needs within a development team. We
use our conceptualization of work dependencies named Proximity
and leverage machine learning techniques to analyze what
additional task properties are indicative of coordination needs. In
a case study of the Mylyn project, we were able to identify from
all potential coordination requirements a subset of 17% that are
most critical. We define critical coordination requirements as
those that can cause the most disruption to task duration when left
unmanaged. These results imply that coordination awareness tools
could be enhanced to make developers aware of only the
coordination needs that can bring about the highest performance
benefit.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – productivity,
programming teams

General Terms
Management, Performance, Human Factors.

Keywords
Task Dependencies; Proximity; Coordination Requirements;
Awareness; Collaborative Software Development; Machine
Learning

1. INTRODUCTION
In large software projects, developers work on tasks in parallel or
on interdependent tasks. This often results in work dependencies
and, consequently, coordination needs. When developers remain

unaware or do not obtain timely awareness of the coordination
that is required to manage work dependencies, there is potential
for software productivity or quality problems [6, 22]. Existing
techniques to support coordination awareness assume all
dependencies may require coordination, and they simply
enumerate the universe of those potential coordination needs in a
project. This can lead to an overwhelming number of
recommendations and alert developers of even trivial coordination
needs. This is especially problematic in large projects or when
coordination requirement detection occurs at fine granularity, for
example, at the level of individual tasks.

The main premise of our work, instead, is that not all coordination
requirements are created equal. We explore what properties of
development tasks and corresponding software code may indicate
a critical coordination need. We define a critical coordination
requirement as one that can cause the most disruption and
inefficiency to the development process if not properly and timely
managed. An understanding of the characteristics of the critical
coordination needs can lead to better awareness tools and more
focused coordination efforts in software development teams.

In this paper, we report on an exploratory case study of the Mylyn
open source project with a large set of potential coordination
requirements. We first evaluated a quantitative conceptualization
of work dependencies called Proximity [4] and confirmed that
existing automated techniques for the identification of
coordination needs, like Proximity, find far too many
dependencies. We then examined other task properties that could
be used to supplement measures like Proximity to identify
coordination needs. Finally, we used machine learning with both
Proximity and the identified task properties to evaluate whether
such an approach is successful in identifying only the critical
coordination needs. The tasks involved in the reduced set of
coordination requirements presented very different performance
profiles from the rest of the tasks when examining task durations.
These differences may be attributed to the criticality of the
coordination needs among those tasks especially since many seem
to be unrecognized and unmanaged. Our results imply that not all
coordination requirements are created equal and current
techniques for detecting coordination requirements could be
supplemented by additional task properties beyond just work
dependencies to better predict only the critical coordination
requirements.

In the remainder of the paper, we first discuss related work
(Section 2) and review the Proximity algorithm (Section 3). We
then introduce our research questions and describe the setting of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia.
Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
https://doi.org/10.1145/2491411.2491440

our empirical study (Section 4). Next, we describe the method and
results of our research (Section 5). Finally, we discuss the
significance of our contributions (Section 6) and offer some
concluding remarks (Section 7).

2. BACKGROUND AND RELATED WORK
Several techniques have been proposed to detect the need to
coordinate between developers in large software development
projects [4,7,9]. Cataldo et al. [7,9] were the first to introduce a
framework for establishing coordination requirements between
developers (depicted in Figure 1). They found that when
coordination requirements are fulfilled, for example, by acts of
communication, productivity is likely to increase [7,8,9]. Their
framework establishes coordination requirements between
developers who are working on dependent tasks. To ascertain
work dependencies they look at the artifacts committed during
each task and the dependencies between those artifacts. Logical
coupling [15] is used to determine technical dependencies
between artifacts if they have been checked in together in the past.
Cataldo et al. [8] found that logical couplings are more likely than
syntactic couplings to provide a reliable representation of
technical dependencies for their coordination requirement
conceptualization. A limitation of this conceptualization is that it
requires mining the source control repository of the project for the
commit history of software artifacts. This type of data is typically
available only towards the end of the development work for a
task, and the coordination awareness garnered from this approach
may not be actionable by the developers at the time coordination
is needed to reap those performance benefits.

In Blincoe et al. [4], we proposed an alternative conceptualization
of work dependencies for detecting coordination needs. That
conceptualization uses the Proximity metric, which is described in
detail in Section 3. Proximity (as shown in Figure 2) evaluates the
intersection of the working sets of a pair of developers and the
actions developers take on the artifacts in those working sets to
determine and weigh coordination needs. We found that by
looking at both artifact consultation and editing actions, it is
possible to accurately discover coordination requirements without
the need to model and consider technical dependencies between
artifacts. Since artifact consultation and edit actions can be
captured in real-time through existing IDE monitoring facilities
[11,17,18,25] Proximity can provide timely detection of
coordination needs. This timely detection of coordination needs

provides awareness [14] to developers while their work is still
underway. Developers can then act upon and resolve their
coordination needs as they surface.

Current coordination requirement detection methods, including
Proximity, abstract coordination requirements by detailing only
pairs of developers who may need to coordinate. Developers may
work on multiple tasks at the same time, so coordination
requirements at the developer level may encompass the work
dependencies of many tasks (see Figure 3). The many existing
awareness tools [3,12,13,16,21,23,24] that exist to support
developer awareness of coordination needs do not indicate which
tasks are involved in coordination requirements. This puts the
burden on the developers to identify what to coordinate about. If
awareness tools were able to provide finer-grained coordination
needs at the task level, that burden would be removed.

In this work, we extend the Proximity technique to identify
coordination requirements between pairs of tasks rather than pairs
of developers. However, without the abstraction that occurs when
rolling coordination requirements up to the developer level, the
work dependencies may signal a plethora of coordination
requirements including those that are trivial or insignificant. For
this reason, we augment the Proximity method by also including
other task properties to detect only the most critical coordination
requirements.

Figure 1. Conceptualization of coordination

requirements in Cataldo et al. approach [7,9].

Figure 2. Conceptualization of Coordination

Requirements through Proximity [4].

Figure 3. Coordination requirements between developers

are typically a result of their work on more than one
development task.

3. PROXIMITY
Proximity is a metric for measuring coordination needs in
software development teams. Unlike more traditional coordination
requirement detection techniques, it does not obtain information
from the source control repository system nor rely on technical
dependencies between artifacts. These differences make Proximity
timely and turn coordination requirements into an actionable
concept for managing coordination in software projects.

To determine coordination requirements, the Proximity algorithm
examines the similarity of artifact working sets as they are
constructed during developers’ tasks. To do this, it obtains
developer actions such as artifact consultation or edits as they
occur. It uses the Mylyn framework [17, 18] to obtain this
information. Mylyn is a tool that transforms a developer’s
Individual Developer Environment (IDE) to a task-centric view to
make context switching between tasks easier. To fulfill its own
purposes, Mylyn records all developer IDE interactions as they
occur. These events are stored as context data for the task in
focus. For convenience, ProxiScientia [5], the tool which
implements the Proximity measure, is built on top of Mylyn so it
can easily obtain these developer actions.

The Proximity measure looks at artifact consultation and
modification activities captured by Mylyn and weighs the overlap
that exists between the working sets associated to pairs of
developers. It considers all actions recorded for each artifact in
each working set in order to apply a numeric weight to that
artifact’s Proximity contribution. Weights are applied based on the
type of overlap where the most weight is given when an artifact is
edited in both working sets (weight = 1) and the least amount of
weight is given when an artifact is simply consulted in both
working sets (weight = 0.59). When an artifact is edited in one
working set and consulted in the other working set, we consider
this a mixed overlap (weight = 0.79). The weights are directly
based on the weights Mylyn itself uses for its degree-of-interest
model [17, 18]. Figure 4 illustrates an example of the Proximity
computation process [4]. The algorithm computes the ratio of
actual to potential overlap. Actual overlap considers the
intersection of the two working sets while potential overlap

considers the union of the two working sets. Potential overlap
represents the maximum possible Proximity score had there been
perfect overlap between the two sets of actions. Proximity scores
can then be scaled based on the number of overlapping events to
place greater weight on complex tasks that are likely to require
coordination. Proximity scores range from zero to infinity.
Through empirical analysis, we found that higher Proximity
scores are indicative of a stronger need to coordinate [4].

4. RESEARCH APPROACH
We build on the Proximity method since it is the only existing
real-time coordination requirement detection method.
Conceptually, Proximity can be easily applied to pairs of tasks
simply by aggregating the captured developer actions at the
individual task level rather than at the developer level. However,
even in moderately sized projects, a large number of potential
coordination needs could be created when calculating Proximity
between tasks. It is currently not possible to know whether all
work dependencies that are detected between task pairs require
actual coordination. Our working hypothesis is that current
coordination requirement detection algorithms cast too wide a net
in considering all work dependencies as candidates for
coordination. We explore this hypothesis by comparing the tasks
pairs with Proximity to the dependencies identified by the team:

RQ1: Is there a correspondence between tasks with identified
dependencies and development tasks with Proximity?

To answer this research question, we look for evidence of task
dependencies that have been identified by the project team and
recorded within a change request. Change request repositories,
like Bugzilla1, are commonly used to define, assign and manage
project tasks. In the remainder, we refer to the task dependencies
established by the project team and recorded in the change request
repository as the “identified dependencies”. We then compare
those identified dependencies to the Proximity scores computed
between tasks. We expect to find high levels of recall paired with
low levels of precision indicating that while Proximity is able to
successfully detect many identified dependencies, the identified
dependencies represent only a small subset of the task pairs with
Proximity. If this hypothesis is proven correct, research questions
RQ2 and RQ3 will begin to explore solutions for this problem.

RQ2: What properties of task pairs, other than work dependencies
ranked by Proximity, are also indicative of actual coordination
needs?

We examine various properties of task pairs to look for
differences between the identified dependencies and all other task
pairs. We inspect the statistical difference in proportion and
distribution of these properties using Chi-squared and Mann-
Whitney tests.
RQ3: Can we supplement Proximity with additional task pair
properties to identify the most critical coordination needs?
This research question builds on the findings of RQ2. If there are
properties beyond work dependencies ranked by Proximity that
greatly differ between tasks with identified dependencies and all
other tasks, we can use those properties with machine learning to
better infer coordination requirements and to supplement current
methods like Proximity. We conceptualize critical coordination
requirements as those coordination needs that have suffered the
most in terms of performance (task duration) and use this criterion
in analyzing the output of such a machine learning technique on

1 http://www.bugzilla.org

Figure 4. Proximity Algorithm Example [4].

our data set. Therefore, to answer RQ3, we evaluate the results of
the machine learning approach comparing the task performance of
the tasks involved in machine learning predicted coordination
requirements and all other tasks.

To answer our three research questions, we carried out an
empirical study on the Mylyn open source project itself. The
Mylyn project represents an ideal case study because its
developers make routine use of the Mylyn plugin in their IDE
allowing us to collect the context data needed for the Proximity
calculation. We mined the project repositories and collected all
Bugzilla change requests and developer activities (Mylyn context
data) from two releases of the Mylyn project, releases 3.1 and 3.2.
On the Mylyn project, developers are assigned change requests as
their unit of work and encouraged to deliver their work as code
patches that correspond to (and resolve) a single change request.
The bug tracking database is, therefore, the way the Mylyn team
defines and assigns developer tasks, and we refer to Bugzilla
change requests as tasks.

Mylyn release 3.1 spanned from June 2008 to March 2009. At the
time we mined the repository, in July 2012, we obtained 512
Bugzilla tasks with context data for which development work
occurred during the development of release 3.1. This yielded
130,816 task pairs for that release. Similarly, Mylyn release 3.2
spanned from March 2009 to June 2009 and contained 251 tasks
(31,375 task pairs). Our analysis focused on release 3.2. Release
3.1 was used as a training data set for the machine learning
technique that we apply to address RQ3.

5. RESEARCH METHOD AND RESULTS
5.1 Applying Proximity to Tasks
RQ1: Is there a correspondence between tasks with identified
dependencies and development tasks with Proximity?

To answer RQ1, we mined the project’s change request database,
Bugzilla, to obtain evidence of work dependencies between
submitted change requests and the tasks associated with those
change requests that have been identified by the project team. A
recent study by Aranda and Venolia [1] found that repositories
like Bugzilla often provide incomplete information because of
omission, oversight, or simply because of project conventions. For
this reason, we sought dependencies beyond those explicitly
marked by the project team. By inspecting the change request
reports, we found three main types of dependency identification
evidence: explicitly marked dependencies, duplicates, and
discussion cross-references.

Explicitly marked: These dependencies appear in the ‘Depends
On’ and ‘Blocks’ fields in the Bugzilla database. The tasks listed
in the ‘Depends On’ field of a change request report must be
resolved before the task associated with that change request can
be resolved. Conversely, the task associated with the current
change request must be completed before the tasks listed in the
‘Blocks’ field can be resolved. In this dataset, this is always a
reciprocal relationship. If task one ‘Depends On’ task two, task
two will also ‘Block’ task one. These types of dependencies are
marked between 33 task pairs in release 3.2.

Duplicates: These dependencies exist when one task is marked as
a duplicate of another task. The project team realizes the tasks are
performing overlapping work and close one task, so the remaining
work can be completed jointly in the remaining task. There are
only two duplicate pairs in our dataset in release 3.2.

Discussion cross-references: Change requests are cross-
referenced in the discussion of another change request. For

example, a part of the implementation for change request #274790
is reverted when it is decided that a better solution would be
possible after the completion of change request #278708. This is
an example of a work dependency that is discussed in the Bugzilla
comments. A similar discussion occurs on change request
#235439 where it is mentioned that part of the implementation
must be completed after change request #211096. These task pairs
may also be marked explicitly as dependencies, but that is not
always the case. In fact, neither of the above examples is
explicitly marked as a dependency within their Bugzilla records.
There are 21 pairs with cross-references in release 3.2.

These three types of dependencies established by the project team
are the identified dependencies. We compared the identified
dependencies with measures of Proximity for those same pairs of
development tasks. In release 3.2, we have 1,468 task pairs with a
Proximity score >0 (4.7% of 31,375 pairs). The average Proximity
score for all task pairs with Proximity >0 is 1.2 with a maximum
score of 79.43. The average for the 39 task pairs with Proximity
and an identified dependency is higher with an average of 3.3. A
Mann-Whitney test shows that these task pairs with identified
dependencies have significantly higher Proximity scores than
other task pairs with Proximity (W = 40705.5, p-value = 4.165e-
07). This indicates that these dependencies are also ranked well by
the Proximity metric. In addition, a larger number of tasks with
identified dependencies also have Proximity scores >0 (as shown
in Table 1). However, while recall is high, the number of task
pairs with Proximity is much greater than the number of identified
dependencies resulting in low precision.

As we expected, not all task pairs with high Proximity were
marked as dependencies by the development team. One reason for
this could be that the Mylyn team found other dependencies
during development but they were not all reported within
Bugzilla. To shed light on this, we contacted a lead Mylyn
developer to attempt to gain insight on the type of dependencies
that are captured within their Bugzilla repository. He told us that
the Mylyn team uses “Bugzilla's ‘Depends on’ field to track
subtasks” of some coarser-grained umbrella task. The same
developer also mentioned that there is often a dependency
between subtasks of the same umbrella task stating that “often
subtasks need to be completed in a certain order”, but those
dependencies are usually not marked explicitly. The same
developer also mentioned that task pairs that are marked with the
same tag in Bugzilla “often share subtasks or are directly linked
as subtasks”.
The insight obtained from the lead developer provides two
additional dependency identification types that we had not
included in our analysis. In release 3.2, we found 183 pairs of
subtasks of the same umbrella task and 352 pairs that share the
same tag. Over 40% of these two types of dependency
relationships have Proximity > 0, but very few are marked as
being dependent in the Bugzilla change reports. However, since

Table 1. Precision/Recall: Identified Dependencies vs
Proximity

Dependency Precision Recall

Explicitly Marked 26 of 1468 (1.8%) 26 of 33 (78.8%)

Duplicates 2 of 1468 (0.14%) 2 of 2 (100%)
Discussion cross-

referenced 18 of 1468 (1.2%) 18 of 21 (85.7%)

Total 39 of 1468 (2.7%) 39 of 49 (79.6%)

we cannot assume with confidence that sharing the same umbrella
task or the same tag is a purposeful indication of a dependency
relationship by the Mylyn team, we did not include these types of
evidence as part of the identified dependencies set for our
analysis. We note them here simply to illustrate the
incompleteness of the Bugzilla database in terms of dependencies
marked between tasks.

While the incompleteness of the dependency information in the
Bugzilla database certainly contributes to the low precision scores,
it is also likely that Proximity, when applied at the task level as
opposed to the developer level, signals coordination needs
between too many task pairs. When considering only Proximity
scores for detection of coordination requirements, a large majority
of the tasks in Release 3.2 (234 out of 251) would be involved in
at least one coordination requirement with other tasks, which adds
to the suspicion that current methods may cast too wide a net.

In answering RQ1: The low precision indicates that Proximity
casts too wide a net. Therefore, we looked for additional task
properties that also indicate coordination requirements (RQ2) and
could be used to refine the recommendations of the Proximity
algorithm to detect only the critical coordination needs (RQ3).

5.2 Analysis of Task Pair Properties
RQ2: What properties of task pairs, other than work dependencies
ranked by Proximity, are also indicative of actual coordination
needs?

To answer this research question, we examined task pair
properties to look for differences between identified dependencies
and all other task pairs. The task properties we examined include
(1) architecture-related properties directly available from the
project’s change request database such as: the affected product,
component, platform and operating system of the task and (2)
modularity characteristics of the software artifacts involved in
each task.

We examined the architecture-related properties by checking, for
each task pair, if the tasks involved in that pair shared any of those
properties (i.e. if they affect the same product, component,
platform, or operating system). A Chi-squared test of difference in
proportion for each of these properties shows that there is a
significant difference between the identified dependencies and all
other task pairs for all but one of the tested properties: there is not
a statistically significant difference for the number of task pairs
marked for the same component (results shown in Table 2).
To characterize the software artifacts involved in each task, we
derived a Design Rule Hierarchy (DRH) [27] of the Mylyn code
base for the two releases of interest. DRHs are computed from
Design Structure Matrices (DSMs) [2]. A DRH assigns software
artifacts to modules based on technical dependencies within the
code. Consistent with Parnas’ definition of modularization [22],
these independent modules can be worked on in parallel without
incurring coordination overhead. Considering the number of
overlapping modules for each task pair allows us to quantify the
amount of dependencies between the two tasks.
A DRH also clusters modules into “layers” where each layer
depends only on the layers above. These layers can be used to
differentiate artifacts that represent influential design decisions
from low-level artifacts that depend on (changes to) those
decisions. Wong et al. [27] observed that developers working on
tasks that involve software modules in different layers of a DRH
tend to communicate (a dominant form of coordination in

software development [19]) significantly more than developers
working only on modules in the same layer. The number of
overlapping layers allows us to identify when task pairs are
operating on similar areas of the code hierarchy.

For illustration purposes, Figure 5 shows an example of a
hypothetical two-layer DRH. The large thick-bordered boxes
represent the two different layers while the boxes within the layers
represent modules. The figure shows three different tasks
operating on the artifacts. Tasks 1 and 2 have one overlapping
layer and one overlapping module. Tasks 2 and 3 have one
overlapping layer and no overlapping modules. Tasks 1 and 3
have no overlapping layers or modules.

The Mylyn Project DRH of release 3.1 consists of 11 layers and
671 modules. The release 3.2 DRH consists of 11 layers and 786
modules. We identified the associated DRH layer and module for
each artifact consultation and edit action associated with java
artifacts for each task. Using this information, we obtained the
number of overlapping layers and modules for each task pair.

Table 2. Task Property Comparison

Property Identified
Dependencies

Other
Task
Pairs

Chi-squared
Test

Task Pair Count 49 31,326 ─

with Proximity 39 1,428 χ2 = 617.96
p < 2.2e-16

in the same
product

40 21,104 χ2 = 4.5
p = 0.03

in the same
component

37 20,636 χ2 = 2.0
p = 0.15

in the same
platform

38 14,960 χ2 = 17.4
p = 3.001e-05

for the same
OS

37 11,939 χ2 = 29.0
p = 7.214e-08

 Mann-
Whitney Test

Mean
Overlapping

Layers
1.29 0.86 W = 971716

p = 0.0002

Mean
Overlapping

Modules
1.57 0.33 W = 1243704

 p < 2.2e-16

Figure 5. Design Rule Hierarchy Example [27].

We then analyzed each of these properties to identify any that
appear significantly different between the identified dependencies
and all other task pairs. A Mann-Whitney test of difference in
distribution shows that the difference is statistically significant for
both of these properties (results shown in Table 2).

In answering RQ2: We determined the following set of task pair
properties that differentiate task pairs with identified
dependencies from all other task pairs:

• Within same product
• Within same platform
• Within same operating system
• Number of overlapping DRH layers
• Number of overlapping DRH modules

5.3 Applying Machine Learning to Proximity
and Identified Task Properties
RQ3: Can we supplement Proximity with additional task pair
properties to identify the most critical coordination needs?

RQ2 provided confirmation that there are properties that
differ with statistical significance in task pairs with identified
dependencies and, therefore, are indicative of coordination
requirements. To answer RQ3, we explored supplementing the
Proximity algorithm with these properties to infer the most
critical coordination needs by applying the k-nearest neighbor
machine learning algorithm [10].
To analyze the results of the machine learning approach, we
computed precision and recall against the identified dependencies
as they are the best available approximation of ground truth
(section 5.3.2). We scrutinized the cases of false positives (section
5.3.3) and false negatives (section 5.3.4) of the machine learning
algorithm to determine if they are truly falsities of the machine
learning algorithm or rather a result of an incomplete picture of
ground truth for coordination requirements. An in-depth analysis
of the false positives and false negatives revealed that the machine
learning outcomes are a more reliable indication of coordination
requirements than the identified dependencies. Next, to determine
if the machine learning algorithm identified the critical
coordination requirements, we examined the task performance
between the tasks with coordination requirements and tasks
without coordination requirements as predicted by the
machine learning algorithm (section 5.3.5). We found strong
statistical results that the machine learning algorithm is able
to find the critical coordination requirements when compared
to the coordination requirements found using only Proximity.

In the remaining analysis, we use the following terms to
describe the different sets of task pairs:

• Identified Dependencies: task pairs that have been either
marked as dependent or duplicate or cross-referenced in
the discussion within their Bugzilla change request
reports.

• Coordination requirements: task pairs that have been
detected by the machine learning algorithm as needing
coordination.

• Recognized coordination requirements: coordination
requirements that are also identified dependencies.

• Unrecognized coordination requirements: coordination
requirements that are not identified dependencies.

5.3.1 Machine Learning Approach
The k-nearest neighbor algorithm considers the distance from an
unknown pair to each of the pairs in the training set. It then
considers a majority vote from the k-nearest neighbors in the
training set to decide if the unknown pair is a coordination
requirement or not. For this study, we used nine as the k-value.
Euclidean distance was used to determine the distance between
the unknown pairs and the training set instances. We used the
properties determined to have statistical significance in RQ2 to
calculate the distance between instances.
As a training set, we used a subset of task pairs from release 3.1.
The task pairs with identified dependencies were the positive
examples of coordination requirements. On the other hand, we
selected a subset of 175 task pairs that were not identified
dependencies as the negative examples in the training set.

5.3.2 Evaluating Precision and Recall
After training the machine learning algorithm with the data from
release 3.1, we applied it to release 3.2, and we were able to
significantly reduce the number of predicted coordination
requirements. Proximity identified 1,468 coordination
requirements, whereas machine learning predicted only 244
coordination requirements, a reduction of about 83%. This caused
precision to increase almost four-fold. Conversely, recall
decreased due to missing an additional 17 identified dependencies.
The differences in precision and recall of the two approaches are
shown in Table 3. The identified dependencies, however, do not
represent a complete picture of ground truth regarding
coordination requirements since we have found them to be
incomplete and heavily weighted towards one particular type
of dependency (task decomposition).

5.3.3 Evaluating False Positives
Precision of 9% is still quite low. However, we hypothesized
that the low precision is a result of a lack of complete data in the
identified dependencies, and it is not indicative of the promise of
our approach. To verify this, we performed an in-depth
examination of the content of change request reports for some of
the 222 unrecognized coordination requirements. We looked for
evidence of other dependency relationships where awareness
would have helped the productivity of the team. One example is
the task pair of #233158 and #278494. Task #278494 is opened
two days after the patch for #233158 is committed, and it notes an
issue that originated from the committed code for #233158. A
team member who does not appear to be aware of task #233158
creates the change request and submits a patch to fix the issue.
Shortly after the patch is submitted, the assignee of the first task
becomes aware of the issue and, having more expertise on the
original task, suggests a different implementation.

The above is a clear example where early coordination could have
prevented additional work. It highlights how there are certainly
other types of dependencies that exist between tasks that are

Table 3. Precision/Recall: Identified Dependencies vs
Coordination Requirements

Method Precision Recall

Proximity
Only 39 of 1,468 (2.7%) 39 of 49

(79.6%)
Machine
Learning 22 of 244 (9.0%) 22 of 49

(44.9%)

Table 4. Properties for Recognized Coordination
Requirements, Unrecognized Coordination

Requirements, and No Coordination Requirements

 Recognized
Coordination
Requirements

Unrecognized
Coordination
Requirements

No
Coordination
Requirements

Number of
Task Pairs 22 222 31,131

Number with
Proximity 22 (100%) 212 (95.5%) 1234 (4%)

Number
within same

product
22 (100%) 209 (94.1%) 20,913 (67.2%)

Number
within same

platform
18 (81.8%) 140 (63.1%) 16,539 (53.1%)

Number for
same OS 17 (77.3%) 132 (59.5%) 15,154 (48.7%)

Average
Proximity 5.33 5.23 0.02

Mean # of
Overlapping
DRH Layers

1.73 1.99 0.85

Mean # of
Overlapping

DRH
Modules

2.45 2.48 0.31

missing from the Bugzilla records, but which our machine
learning technique successfully identified. This also suggests that
the precision/recall measures are not an accurate evaluation of the
ability of our method to recognize coordination requirements.

For this reason, we conducted a more in-depth and relevant
validation of the machine learning outcomes. First, we examined
the differences between the unrecognized coordination
requirements and the recognized coordination requirements. Table
4 shows the properties of interest for the unrecognized coordination
requirements and, for comparison, both the recognized
coordination requirements and the task pairs without coordination
requirements. We also performed Chi-squared and Mann-Whitney
tests comparing the properties of the unrecognized coordination
requirements to the two other groups. The tests found that there are
no statistical differences between any of the properties when
comparing the unrecognized and recognized coordination
requirements. In contrast, there is a large and significant difference
between the unrecognized coordination requirements to the task
pairs without coordination requirements (see Table 5). While this is
not surprising given that the goal of the k-nearest neighbor
algorithm is to pick out the best possible matches on these
properties, this shows that while we only have a small set of
identified dependencies, we have additional task pairs which look
remarkably similar to those identified dependencies. This suggests
that the machine learning approach successfully identifies
coordination requirements that were missed by the team or,
perhaps, were tracked in another way besides the use of the
dependency, duplicate and cross-reference relationships.

5.3.4 Evaluating False Negatives
In order to identify possible reasons for the exclusion of the
identified dependencies that were not established as coordination
requirements by the machine learning algorithm, we analyzed the
differences between the identified dependencies that were

Table 5. Chi-squared and Mann-Whitney Tests
Comparing Unrecognized Coordination

Requirements to other groups

Unrecognized
Coordination

Requirements Compared
to

Recognized
Coordination
Requirements

No
Coordination
Requirements

Number with Proximity χ2 = 0.52
p = 0.47

χ2 = 107.23
p < 2.2e-16

Number within same
product

χ2 = 0.26
p = 0.61

χ2 = 1349.47
p < 2.2e-16

Number within same
platform

χ2 = 1.04
p =0.31

χ2 = 4134.67
p < 2.2e-16

Number for same OS χ2 = 0.63
p =0.43

χ2 = 2051.28
p < 2.2e-16

Proximity score W = 1471
 p = 0.57

W = 318375
 p < 2.2e-16

Number of Overlapping
DRH Layers

W = 1486.5
 p = 0.56

W = 1945548
 p < 2.2e-16

Number of Overlapping
DRH Modules

W =1775
 p = 0.09

W =672795
 p < 2.2e-16

Table 6. Properties for Identified Dependencies

 Identified
Dependencies

with
Coordination
Requirements

Identified
Dependencies

without
Coordination
Requirements

Other No
Coordination
Requirements

Number of
Task Pairs 22 27 31,104

Number
with

Proximity
22 (100%) 17 (63%) 1217 (3.9%)

Number
within same

product
22 (100%) 18 (66.7%) 20,895 (67.2%)

Number
within same

platform
18 (81.8%) 17 (63%) 16,522 (53.1%)

Number for
same OS 17 (77.3%) 16 (59.3%) 15,138 (48.7%)

Average
Proximity 5.33 0.42 0.02

Average
Number of

Overlapping
DRH Layers

1.73 0.93 0.85

Average
Number of

Overlapping
DRH

Modules

2.45 0.85 0.31

detected as coordination requirements and the remaining
identified dependencies not detected as coordination requirements.

As a baseline, we also compared the identified dependencies not
selected as coordination requirements to all other task pairs that
are not coordination requirements. Table 6 shows the properties of
these groups. Tables 7 and 8 report the Chi-squared and Mann-
Whitney tests for these groups showing that for many of the
properties the identified dependencies without coordination

Table 7. Chi-squared tests comparing Identified Dependencies

Identified
Dependencies without

Coordination
Requirements
Compared to:

Identified
Dependencies with

Coordination
Requirements

Other No
Coordination
Requirements

Number with Proximity χ2 = 10.24
p = 0.001

χ2 = 454.39
p < 2.2e-16

Number within same
product

χ2 = 8.98
p = 0.003

χ2 = 6967.997
p < 2.2e-16

Number within same
platform

χ2 = 2.11
p = 0.15

χ2 = 4369.94
p < 2.2e-16

Number for same OS χ2 = 1.79
p = 0.18

χ2 = 4239.04
p < 2.2e-16

requirements are significantly different from the other identified
dependencies. The task pairs in this group are less likely to have
Proximity, more likely to have lower Proximity scores, less likely
to be in the same product, and less likely to have overlapping
DRH modules and DRH layers. In addition, for the number of
overlapping layers property there is not a statistically significant
difference between these identified dependencies without
coordination requirements and all other task pairs without
coordination requirements. This could indicate that the identified
dependencies established by the team are not always true work
dependencies for this group of task pairs. Since many of the
identified dependencies capture a task/subtask relationship in our
dataset, we believe that some of the subtasks are not as closely
related to the parent task, and actual work dependencies do not
exist for some of the task/subtask relationships.

We, therefore, examined some of these 27 task pairs to determine
the nature of the dependencies that exist between them. One
example, change request #271019 is used simply to track the
preparation of a maintenance release. Dependencies are created
for each of the tasks that are to be included in the release. This is
purely a management task to ensure the release does not occur
until these necessary changes are completed. This accounts for
five of the 27 task pairs. Analysis of the remaining task pairs
showed that actual work dependencies exist between just two of
the 27 task pairs, while the remaining 25 were similar
management type relationships. This confirms that, although
recall decreases when compared to the identified dependencies,
our machine learning algorithm is successfully identifying the task
pairs that truly require coordination.
5.3.5 Evaluating Task Performance
Since we define critical coordination requirements as those that
suffer in terms of performance when unmanaged, we examined
the task performance of the coordination requirements. We focus
on task duration as our measure of task performance. We
hypothesize that because many of the coordination requirements
are unrecognized and therefore unmanaged, the task pairs with
coordination requirements tend to have longer task durations
[6,7,8,9,22]. We compare the outcome after machine learning to
the outcome of the Proximity algorithm alone to determine if
supplementing Proximity was able to identify the critical
coordination needs.

We compared the task durations for tasks with coordination
requirements to tasks without coordination requirements. Table 9
shows this comparison before the machine learning algorithm is

Table 8. Mann-Whitney tests comparing Identified
Dependencies

Identified
Dependencies without

Coordination
Requirements
Compared to:

Identified
Dependencies

with
Coordination
Requirements

Other No
Coordination
Requirements

Average Proximity W = 528
 p = 1.632e-06

W = 168784
 p < 2.2e-16

Average Number of
Overlapping DRH

Layers

W = 439
 p = 0.0008

W = 389642
 p = 0.24

Average Number of
Overlapping DRH

Modules

W = 486.5
 p = 1.763e-05

W = 239041.5
 p = 3.096e-07

applied when all task pairs with Proximity >0 are considered
coordination requirements. We, again, observe that Proximity
casts too wide a net. When computing coordination requirements
in this way, there are very few tasks (7%) with no coordination
needs. So while the 17 tasks without any coordination needs have
shorter duration on average, no significance is found. The Chi-
squared test results show there is no statistically significant
difference between task durations. This shows that Proximity
alone is not enough to identify the critical coordination needs.

When we apply the machine learning algorithm the number of
predicted coordination requirements is greatly reduced. In
addition, the number of tasks that are involved in at least one
coordination requirement is significantly lowered compared to the
outcome of the Proximity algorithm. With this approach, 45% of
tasks require no coordination. Table 10 shows performance
measures after machine learning is applied. We now see a strong,
significant difference in task duration. In addition, a Mann-
Whitney test shows the task durations of the tasks involved in the
coordination requirements detected when using our machine
learning approach (Table 10) are significantly different than the
task durations when considering Proximity alone (Table 9) where

Table 9. Performance: Proximity Only

 Coordination
Requirements

No
Coordination
Requirements

Mann-
Whitney

Test

Number of
Tasks 234 17 ─

Average Task
Duration 42.4 days 5.2 days W = 2327

p = 0.12

Table 10. Performance: After Machine Learning

 Coordination
Requirements

No
Coordination
Requirements

Mann-
Whitney

Test

Number of
Tasks 139 112 ─

Average Task
Duration 52.38 days 24.4 days W = 9742

p = 0.0003

W = 8238.5 and the p-value = 0.0006. The average task duration
is now 52.38 days, almost 10 days longer than the average task
duration when considering only Proximity. This shows that
supplementing the Proximity algorithm using the machine
learning techniques described in this paper allows for the
detection of critical coordination needs when criticality is
conceptualized as most likely to increase task duration.

In answering RQ3: We conclude that we can use machine
learning to supplement Proximity with additional properties of
task pairs to identify the most critical coordination needs. Our
machine learning techniques reduced the set of potential
coordination requirements identified by Proximity by 83%. The
remaining 17% were found to be most critical when coordination
criticality was conceptualized as most likely to cause disruption to
task duration.

6. DISCUSSION
We described our exploratory investigation of techniques to
identify critical coordination needs in a software project. Since
developers often work on multiple tasks simultaneously,
computing coordination needs between tasks provides developers
better (more accurately scoped) awareness of where coordination
is needed. Our research approach, therefore, computed
coordination requirements between tasks rather than between
developers, but we found that existing techniques for detecting
coordination needs cast too wide a net when applied to pairs of
tasks. We identified other task properties that can be used to
supplement Proximity – our conceptualization of work
dependencies – and used machine learning on those properties to
identify the critical coordination needs. Our machine learning
technique greatly reduced the number of detected coordination
requirements and indicated the most critical when considering
task duration. These results have several implications to both
research and practice.

This is the first attempt to explore the possibility that differences
exist within the universe of potential coordination requirements.
We identified a set of properties of tasks that, when coupled with
Proximity, can find the critical coordination needs. The properties
we considered (or similar properties) are commonly available in
most change request databases, which are frequently used tools
for software projects. Therefore, these properties can be applied to
the analysis of coordination needs in a wide variety of projects.
We have shown how code modularization properties that can be
derived from the system DRH are also useful indicators of
coordination needs. These findings build upon and reinforce
previous empirical results that found that DRHs are adept at
highlighting the intertwined relationships between issues of
coordination and issues of modularity [27].

6.1 Implications for Tools
Existing awareness tools that detect coordination needs identify
only the involved developers and do not provide scoped
awareness by detailing the task dependencies involved in those
coordination needs. This puts the burden on the developers to
identify what to coordinate about. We envision a tool that could
remove that burden by performing (semi-)automated
recommendation and management of task dependencies. The tool
could be based on a coordination requirement conceptualization
like Proximity, which enables timely recognition of coordination
needs as they form, and could be supplemented with machine
learning techniques as described in this paper.

In addition, the tool could have a continuous learning component
that would suggest candidate coordination requirements to project

personnel. Project experts could confirm those candidates as either
true positives or true negatives. This would allow the component
to incrementally learn how to tease out the salient characteristics
that indicate work dependencies for which coordination awareness
is critical. Such a learning component would also be able to pick
up and adapt to some of those characteristics that may be project-
dependent in nature. The envisioned tool could also be adjusted to
learn unobtrusively from coordination actions taken by the team
within the tool itself (discussions, cross-referencing of task pairs,
etc.). That is likely to improve the machine learning accuracy.

Such a tool could be used to automate task dependency
management, provide coordination awareness both within and
across teams, and support coordination among developers. To
achieve this, the tool could provide a list of the most critical task
dependencies tailored for each developer along with in-tool
coordination mechanisms. The tool could allow developers to
select a dependency to view details on the dependent task or
highlight areas of code where overlap exists.

A management view of the tool could provide a view of the most
critical coordination needs across the team. It could also suggest
task assignments based on the premise of trying to minimize
coordination needs and the related overhead. In addition, an
architect view of the tool could highlight the areas of the code
where the most overlap occurs indicating a possible need for
refactoring.

After development of such a tool, user studies could be performed
to validate our findings. We envision a study that would compare
the task performance of a team prior to/after the introduction of
the tool to examine whether the awareness provided by the tool
improves task performance. In addition, the in-tool coordination
mechanisms could be monitored to identify how often the
developers follow-up on the coordination recommendations made
by the tool.

6.2 Threats to Validity
The most significant threat to this study was the partial
information in the Bugzilla repository available to represent
ground truth about task dependencies. That issue impacts the
training set that was used for machine learning and possibly its
efficacy. Even more importantly, it complicates the evaluation of
results since standard metrics such as precision and recall are not
very meaningful in such an uncertain context. To overcome this
limitation, we supplemented those metrics by conducting a
qualitative analysis of many of the task pairs.

Another threat to validity is that our findings derive from a single
case study with a relatively moderate number of developers and
number of tasks. Our results could be affected by specificities of
the case. For that reason, our findings should be corroborated by
different case studies to ensure that our approach works across a
spectrum of software projects of diverse scales.

Another issue is that we were limited in the number of task and
code properties that we could investigate. There may be
additional, or even better, properties that could be used to
differentiate the overall set of potential coordination requirements
and highlight the most important ones. In addition, all of the
selected properties may not be portable across different bug
tracking systems. This study should be repeated using projects
hosted on different bug tracking systems to evaluate other
available properties that characterize the architecture of a task like
Trac’s2 component, Redmine’s3 category, and Jira’s4 components

2 http://trac.edgewall.org

and labels. For the artifacts involved in the tasks, we focused on
DRH properties. Among the slew of possible metrics and
properties describing a project code base, we choose the DRH
since it was conceived directly to analyze and segment a code
base in modules that can be independently assigned to developers
for parallel work.
Finally, we cannot exclude that our results could be caused by
some other factors that underlie the properties we selected which
we did not take into account. This threat is mitigated by the
relatively large size and diversity of our data set.

6.3 Future Work
To continue this exploration, we plan to examine the potential of
additional task properties beyond those identified in this paper,
work to develop a better source of ground truth to use for
evaluation purposes, and analyze the feasibility of the proposed
approach to detect the critical coordination needs in real time.

We will examine additional task properties to search for further
properties that may also be useful in supplementing Proximity to
compute the critical coordination needs. We also plan to compare
the identified properties to one another to understand which have
the most predictive power.

To develop a better sense of the ground truth of coordination
requirements in the project, we plan to perform content analysis of
a random sampling of task pairs, and manually code their
likeliness of having or not having coordination requirements.

To evaluate the feasibility of using the proposed methods on
development tasks incrementally while development is under way,
we also plan to develop a prototype of a tool that incorporates the
algorithms described in this paper. We will run that prototype on
pre-collected data from the Mylyn 3.2 release. The prototype will
take all Mylyn context events and all Bugzilla data as input. The
pre-collected data will be time-ordered and played back to mimic
the real-time progression of development work and the live
collection of the corresponding data. The prototype will receive
each context event and Bugzilla update in a time-ordered series as
they occurred. This will allow us to determine exactly when
coordination needs can be established using our prototype and
how actionable our method is.

7. CONCLUSION
The investigation of what work dependencies result in critical
coordination requirements is a new line of research. We took a
first step in distinguishing between work dependencies when
detecting coordination needs to promote awareness. In this paper,
we contribute and discuss a list of properties that help to
characterize task pairs that require coordination, and we
demonstrate how enhancing the Proximity algorithm with
machine learning techniques helps in the selection of the most
critical coordination needs. This initial exploration shows the
promise in this line of research for detecting the most critical
coordination needs. Such a method has implications for both
change request management and triage support tools. Tools that
incorporate and implement the techniques we described can
increase coordination awareness among development teams and
support more focused coordination efforts. More work is needed
in this area to better understand the detailed nature of coordination

3 http://www.redmine.org
4 http://www.atlassian.com/software/jira

requirements and the characteristics of task pairs that indicate
when coordination is necessary and critical.

8. ACKNOWLEDGMENTS
This work was partially supported by the NSF through grants no.
CCF-0916891 and VOSS OCI-1221254.

9. REFERENCES
[1] Aranda, J. and Venolia, G. 2009. The secret life of bugs:

Going past the errors and omissions in software repositories.
In Proc. ICSE 2009.

[2] Baldwin, C. Y. and Clark, K. B. 2000. Design Rules, Vol. 1:
The Power of Modularity. MIT Press.

[3] Begel, A., Phang, K.Y., and Zimmermann, T. 2010.
Codebook: discovering and exploiting relationships in
software repositories. In Proc. ICSE 2010.

[4] Blincoe, K., Valetto, G. and Goggins, S. 2012. Proximity: a
measure to quantify the need for developers' coordination. In
Proc. CSCW 2012.

[5] Borici, A., Blincoe, K., Schröter, A., Valetto, G., and
Damian, D. 2012. ProxiScientia: Toward Real-Time
Visualization of Task and Developer Dependencies in
Collaborating Software Development Teams. In Proc.
CHASE 2012.

[6] Brooks, F.P. 1995. The Mythical Man-Month: Essays on
Software Engineering. Addison Wesley. Reading, MA.

[7] Cataldo, M., Herbsleb, J. D. and Carley, K. M. 2008. Socio-
technical congruence: a framework for assessing the impact
of technical and work dependencies on software development
productivity. In Proc. ESEM 2008.

[8] Cataldo, M., Mockus, A., Roberts, J.A. and Herbsleb J.D.
2009. Software Dependencies, Work Dependencies, and
Their Impact on Failures. IEEE Transactions on Software
Engineering, vol.35, no.6, pp.864-878, Nov.-Dec. 2009.

[9] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley,
K.M. 2006. Identification of Coordination Requirements:
Implications for the Design of Collaboration and Awareness
Tools. In Proc. CSCW 2006

[10] Cover, T. and Hart, P. 1967. Nearest neighbor pattern
classification. IEEE Transactions of Information Theory,
January 1967.

[11] Cubeon, http://code.google.com/p/cubeon/

[12] de Souza, C.R., Quirk, S., Trainer, E., and Redmiles, D.F.
2007. Supporting collaborative software development
through the visualization of socio-technical dependencies. In
Proc. of the 2007 international ACM conference on
Supporting group work..

[13] Dewan, P. and Hegde, R. 2007. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development. In Proc. E-CSCW 2007.

[14] Dourish, P., and Bellotti, V. 1992. Awareness and
Coordination in Shared Workspaces. In Proc. CSCW 1992

[15] Gall, H., Hajek, K. and Jazayeri, M. 1998. Detection of
Logical Coupling Based on Product Release History. In Proc
ICSM 1998.

[16] Guzzi, A. and Begel, A. 2012. Facilitating communication
between engineers with CARES. In Proc. ICSE 2012.

[17] Kersten, M. and Murphy, G.C. 2005. Mylar: a degree-of-
interest model for IDEs. In Proc. AOSD 2005.

[18] Kersten, M. and Murphy, G.C. 2006. Using task context to
improve programmer productivity. In Proc. SIGSOFT
'06/FSE-14.

[19] Kraut, R. and Streeter, L. 1995. Coordination in software
development. Communications of the ACM. 38, 3, 69-81.

[20] Kwan, I.; Schroter, A.; Damian, D. 2011. Does Socio-
Technical Congruence Have an Effect on Software Build
Success? A Study of Coordination in a Software Project.
IEEE Transactions on Software Engineering, , vol.37, no.3,
pp.307-324, May-June 2011.

[21] Minto, S. and Murphy, G.C. 2007. Recommending emergent
teams. In Proc. MSR 2007.

[22] Parnas, D.L. 1972. On the criteria to be used in decomposing
systems into modules. Communications of the ACM. 15, 12,
1058.

[23] Sarma, A., Noroozi, Z., and van der Hoek, A. 2003. Palantír:
raising awareness among configuration management
workspaces. In Proc. ICSE 2003.

[24] Sarma, A., Maccherone,L., Wagstrom, P., and Herbsleb, J.
2009. Tesseract: Interactive visual exploration of socio-
technical relationships in software development. In Proc
ICSE 2009.

[25] Tasktop Dev, http://tasktop.com/products/visual-studio.php

[26] Valetto, G., Chulani, S., and Williams, C. 2008. Balancing
the value and risk of socio-technical congruence. In Proc.
STC 2008.

[27] Wong, S., Cai, Y., Valetto, G., Simeonov, G., and Sethi, K.
2009. Design rule hierarchies and parallelism in software
development tasks. In Proc. ASE 2009.

