
 1

MODELING DISTRIBUTED COLLABORATION ON GITHUB

In this paper we apply concepts from Distributed Leadership, a theory suggesting that
leadership is shared among members of an organization, to frame models of contribution that
we uncover in five relatively successful OSS projects hosted on GitHub. In this qualitative,
comparative case study, we show how these projects make use of GitHub features such as pull
requests. We find that projects in which member pull requests are more frequently merged
with the codebase experience more sustained participation. We also find that projects with
higher success rates among contributors and higher contributor retention tend to have more
distributed (non-centralized) practices for reviewing and processing pull requests. The
relationships between organizational form and GitHub practices are enabled and made visible
as a result of GitHub’s novel interface. Our results demonstrate specific dimensions along
which these projects differ and explicates a framework that warrants testing in future studies
of open source software, particularly GitHub.

Keywords: GitHub, Distributed Leadership, Open Source Software

=2 	!&$"�)�&�"!�
Medium to large-scale open source software (OSS) products rely on volunteer
contributions, and have long been a staple environment for investigation by researchers
interested in open collaboration and virtual organizations. A substantial literature exists,
for example, focused on the examination of SourceForge, an open source repository that
started in 1999. More recently implemented OSS repositories include social features that
bring a new transparency to the development process [4]. GitHub, for example, is a
collaborative, web-based code-hosting service built on top of the Git version control
system. GitHub is popular [25], with 3 million users and nearly 5 million hosted
repositories as of January 2013 [18]. Greater understanding of how distributed
collaboration on GitHub occurs will provide a foundation for modeling, understanding
and emulating successful patterns.

Distributed collaboration is a foundational characteristic of OSS software, but a
characteristic with many variations in practice. Prior studies, for example, frame OSS
projects as meritocracies that encourage multiple people to take on leadership roles over a
short- or long-term period [21]. Some OSS projects, like Linus Torvalds’ Linux, are
described as being led by a “benevolent dictator”. On such projects leadership is clear
and explicit. Comparisons across projects with different leadership styles, however, are
rare. Yet such comparisons are critical for project founders looking to discern successful
approaches from the experiences of others.

One critical gap in the OSS literature is that notions of flexible and informal
leadership, in which more than just one or two developers are responsible for leading,
remain unexplored. Another gap emerges around the examination of practices and
participation models associated with successful projects. The comparison of projects on
GitHub, therefore, fills an important gap in our understanding of distributed collaboration
in OSS.

Open source projects tend to attract a range of individuals and incentive models:
e.g. the pure (unpaid) volunteer, the resume builder, the industry-backed contributor or
the paid contributor. When contributors first join an OSS project, other members review
their code contributions before they are incorporated into the product. Over time, these

Electronic version of an article published as Advances in Complex Systems, 17(07n08), 2014, 1450024 https://doi.org/10.1142/S0219525914500246
© copyright World Scientific Publishing Company https://www.worldscientific.com/worldscinet/acs

 2

new contributors can take on increased responsibility and contribute directly to the
codebase.

GitHub’s “fork & pull” model allows developers to contribute to a project without
being granted permissions, thus removing a critical barrier required by prior OSS models.
In this model, users “fork” the repository to create their own personal copy of the source
code. Users then make changes to their copy and submit a pull request (PR) to alert the
project maintainer that they would like their changes to be pulled into the main branch of
code. PRs are often used to initiate a code review or discussion around commits. GitHub
also allows users to be granted push/pull access to a repository, giving them the status of
‘project collaborators’ who can commit their code changes directly to the main branch
and merge pull requests into the main branch.

The distributed nature of GitHub’s technical design, combined with the social
practices emerging around it, would seem to naturally support projects with less
centralized leadership models. In less centralized organizational models, leadership is
conceptualized as a shared attribute of the organization [9]. Instead of focusing on
leadership as a characteristic of individuals within a project, distributed leadership (DL)
models operationalize collaborative control through the participation of members. In this
paper, we focus on contribution growth and access to privileges within a GitHub
repository as key components for understanding how distributed leadership is enacted
through practices on GitHub. Specifically, how projects on GitHub manage the
acceptance of pull requests and the granting of merge access are key signals of distributed
leadership and collaboration. Distributed leadership is a model that recognizes notions of
spontaneous collaboration, intuitive working relations and new forms of institutionalized
practice [9] that have emerged as dimensions of GitHub’s pull request architecture [4].

Operationalizing leadership through DL theory provides a lens for understanding
distributed, online collaboration in new ways. In particular, the role that technology plays
[12] in the operationalization of more distributed forms of collaboration is an important
thread in this study. Here, we build on the approach of Luther, Fiesler and Bruckman [12]
in our application of DL to online collaboration. DL theory conceptualizes leadership as a
socially constructed dynamic, and acknowledges that changes to leadership (or different
styles or structures of leadership) may be taking place in a socio-technical environment
like GitHub.

In the next section, we elaborate on DL as a framework for understanding how
collaborator access and other project privileges are utilized on GitHub. We then present a
qualitative, comparative case study of five popular OSS projects on GitHub. Within each
case study we identify several leadership indicators by reflexively analyzing trace data
mined from GitHub using GitMiner (https://GitHub.com/pridkett/GitMiner) as well as
qualitative interview data. This paper contributes the identification 5 factors for
comparing distributed leadership in GitHub communities, as well as an elaboration of a
method that combines qualitative interviews with the analysis of trace data from GitHub.
We explicate each category and conclude with an exploration of the implications for DL
theory development in virtual organization contexts, as well as models of success in this
new type of OSS project environment.

 3

>2 ��&�$�&)$����*��+��
Prior research explores models for OSS development that consider OSS organizations a
“pyramid meritocracy” [6,10,20]. A pyramid meritocracy is hierarchical and centralized
but has no central authority. Instead, leadership may be shared among a group of core
developers who “act as peers at the top echelon of the pyramid” [20]. This pyramid
consists of “regulars” who form the lower level, emerging leaders, who form the middle,
and leaders, who constitute the topmost level. Another characteristic of pyramid
meritocracy is that it tends to favor gradual innovations over radical ones. While radical
system changes may be embraced by some members of the group, such changes often
result in the creation and maintenance of a separate branch of the software; a permanent,
dissonant software fork, which is distinct from GitHub’s implementation of forking as a
principle step in distributed collaboration [20] (On GitHub, the fork is considered
temporary). Others conceptualize projects with layers around multiple centers [5,20];
several empirical studies of these types of projects find that a small group is often
responsible for most of the work and a large group of peripheral participants are
responsible for the rest [8,13,16].

Low barriers to participation on GitHub, such as ease of forking and the ability to
submit pull requests, may cause a shift in this structured “pyramid” meritocracy towards
more distributed meritocracy. How, and to what extent the meritocracy conventionally
found in open source software is influenced or fundamentally changed through the use of
GitHub is not well understood.

Dabbish, Stuart, Tsay and Herbsleb [4] demonstrate the value of transparency on
GitHub: Members make a “surprisingly rich set of social inferences from the networked
activity information” and “combine these inferences into effective strategies for
coordinating work, advancing technical skills and managing their reputation.” [4].
Marlow, Dabbish and Herbsleb [15] describe impression formation on GitHub, focusing
specifically on how social activity streams enhance member receptivity to contributions
through pull requests. It is possible that further removing frictions in coordination may
also mitigate the need for formal leadership in terms of organizing members towards a
common goal. Moreover, the fact that contributing to one repository is like contributing
to them all from a technical standpoint means that less social influence is required to
formulate and disseminate rules (bureaucracy).

Ducheneaut [5] offers a picture of OSS organizations founded on studies that
aggregate statistics about OSS projects based on message postings [17,24], commits and
downloads [7] and role structures [14,17]. Ducheneaut depicts the pattern of organization
as “a series of concentric circles” [5]. The center circle contains the core developers;
surrounding the core is a ring of “maintainers” responsible for one or more modules of a
project. Extending farther from the center are rings of “bug reporters”, “patchers” who fix
bugs, “documenters” and “users.” As Ducheneaut [5] points out, even users can be
“highly skilled”; thus, this periphery involves a “nebulous arrangement of participants.”
Whether or not this view of OSS project teams as role hierarchies remains a salient
theory for explaining OSS organizations, we know very little about how members of a
particular community exhibit leadership behaviors at various times.

Von Krogh, Spaeth and Lakhani’s [11] study of Freenet examines how “joiners”
become “newcomers”, which they define as members with access to directly change
code. OSS projects, then, are shown to exhibit a number of different structures in separate

 4

studies. A qualitative, comparative case study of multiple OSS projects in a single socio-
technical context, like GitHub will help to frame a reconsideration of OSS leadership.
There is no one model of OSS leadership on GitHub, any more than there was one model
in studies of SourceForge. The present study fills a gap in describing the range, and
styles of leadership found on GitHub, focusing especially on the nature of distributed
leadership and how it emerges in a more technologically distributed source control
system.

2.1. Distributed Leadership
Recent literature questions leadership theory that focuses on leadership as a concept in
which “knowledge and direction trickle down from a notional ‘top,’” and which portrays
leaders as charismatic individuals who proactively manage pyramids of people [22].
Distributed Leadership is one specific, more contemporary theory that argues that
leadership can be a “shared attribute” of an organization. Through this theoretical lens,
members of a community are seen as leaders through their actions and interactions within
the socio-technical context of OSS software development in general, and GitHub in
particular.

To explore leadership through the DL lens, Gronn argues for a shift in the unit of
analysis from an aggregation of individuals towards viewing leadership as distributed,
concertive action. “Rather than aggregated, individual acts” we should be examining
concertive action in three patterns: spontaneous collaboration, intuitive working relations
and institutionalized practices [9]. We elaborate on these conceptual cornerstones of
distributed leadership in the following sections.

2.1.1. Spontaneous Collaboration

Spontaneous collaboration can arise “in response to particular problems and
requirements” [23]. Gronn elaborates further:

“One way is when sets of two or three individuals with differing skills and
abilities, perhaps from across different organizational levels, pool their expertise
and regularize their conduct to solve a problem, after which they may disband.
These occasions provide opportunities for brief bursts of synergy which may be
the extent of the engagement or the trigger for ongoing collaboration.” [9]

Thus, spontaneous collaboration emerges in response to problems or requirements
allowing groups of individuals with disparate skills or responsibilities to solve a problem.
After a problem is solved members may disperse, but the experience of collaboration
creates an opportunity for future engagement and collaboration.

2.1.2. Intuitive working relations

Intuitive working relations emerge through practice between at least two people who
share interdependencies, which results in a “shared role space” [9]. Gronn elaborates on
this concept:

“In the second instance, intuitive understandings are known to emerge over time
when two or more organization members rely on each other and develop a close
working relationship. In this instance, leadership is manifest in the shared role

 5

space encompassed by their partnership. It is the working partnership as a focal
unit which is attributed with leadership by colleagues, and the partners are aware
of themselves as co-leaders.” [9]

2.1.3. Institutionalized practice

Institutionalized practice is “seen in the tendency to institutionalize formal structures”;
these practices are “formalized either by design or by adaptation” [9]. Gronn posits that
an example of this might be a “temporary task force” which may later be “incorporated
into an organization’s formal framework of governance” [9].

Scacchi’s concept of Software informalisms [19] connect Gronn’s notion of
institutionalized practice to the context of GitHub. Software informalisms “are the
information resources and artifacts that participants use to describe, proscribe, or
prescribe what’s happening in a OSS project. They are informal narrative resources that
are comparatively easy to use, and publicly accessible to those who want to join the
project, or just browse around” [21]. Common formats that informalism take are email
lists, discussion threads, group blogs, news postings, internet relay chat (IRC), use
scenarios on the projects web pages, how-to guides, project wikis, as well as system
documentation and publications [21]. Software informalisms can replace formal
“requirement specifications” and can capture the rationalizations and debates surrounding
the reasons that changes to a particular piece of code are made, as well as other
development activities and learning artifacts [21]. That is, institutionalized practices may
never be “formalized,” but are rather the by-products of coordination and socialization.
“Simply put, by doing things, we create the way to do things” [3].

?2 �#�$�&�"!���.�!����%&$��)&��������$%��#�"!���*����&�)��
�$"���&%���-���$ %�

Gronn’s three patterns of concertive action frame our analysis of DL in OSS on GitHub.
The application of distributed leadership to the study of OSS is novel, as our review of
the literature reviews only one prior study that applied the concept of DL to online
collaborations to “account for the roles of people and technology” [12]. In the next
section we discuss specifically how our study of GitHub is framed using DL. Ultimately,
we define three attributes that present possible measures for grouping communities in
terms of their use of the technology to distribute responsibility in the context of
collaborations.

Leadership is a complex concept. For the purposes of our research, we limit our
understanding of leadership to encompass those practices that lead to shared community
involvement and responsibility for technology – those characterized by our definitions of
the components of DL (i.e. spontaneous collaboration, intuitive working relationships,
and institutionalized practice).

Before we operationalize concepts of DL in OSS, it is necessary that we define
some key terms:

Commit – A change to a file or set of files.

 6

Collaborator – A GitHub user with push/pull access to a repository.

Fork –A personal copy of another user’s repository where a user may make
changes in isolation from the original project repository.

Pull Requests –Proposed changes to a repository that may be accepted or rejected
by a project collaborator.

Issues –Documented bugs, problems, feature requests or questions associated
with a repository.

Maintainers – GitHub users who have administrative privileges to a repository,
and thus the privilege to grant members access to commit.

New Contributors – GitHub users submitting a pull request to a project for the
first time.

3.1. Spontaneous collaboration – Receptivity to New Contributors
Gronn described spontaneous collaboration as people coming together in an emergent
fashion to solve a problem or respond to a new requirement. Collaborators may or may
not ever work together again. To operationalize this dimension of distributed leadership
on GitHub, we emphasize a) the problem solving focus of Gronn and b) the
impermanence of such collaborations. A key indicator of an accepted solution on GitHub
is the actual acceptance of a pull request. Though many pull requests result in fruitful
discourse that may lead to improvements in a project (or not), the accepted pull request is
an indicator that a problem was solved. Therefore, we operationalize “spontaneous
collaboration” as each time a new contributor submits a pull request that is accepted and
merged into the main branch of code.

Episodes of spontaneous collaboration are indicators of distributed leadership in
Gronn’s theory. Therefore, we regard communities that have higher merge rates as
having more distributed leadership. The extent to which projects are receptive to new
contributions (i.e. merging contributions from outsiders) is a measure of their acceptance
of spontaneous contribution. Communications around merged pull requests are
indications of a distributed group working together. The actors and the surrounding code
serve to indicate any acts of collaboration taking place before or as evidenced by their
communications in the pull request.

Our focus is on the utility of emergent collaborations and how and to what extent they
shape community practice. Moreover, how does the timing and success of these
collaborations affect outcomes? To answer these questions, we look at the rate of PR
acceptance of active contributors on five projects using GitHub. We define ‘active’ as
members with open pull requests at the time these data were collected.

3.2. Intuitive working collaborations – Gaining Access
Pull requests are often the first, most distant way that outsiders to a project initiate new
contributions on GitHub. Among contributors, some subset will become more central
collaborators on a GitHub project. The extent to which this is more common, a project is
operating in a distributed leadership model.

 7

We operationalize institutive working relations as emerging from more distant
collaboration, and ultimately as measurable through the incidence of individuals gaining
the ability to commit directly to the main branch; to become collaborators. In this
operationalization of the intuitive working relations dimension of distributed leadership,
repositories on GitHub with larger numbers of members with collaborator access have
greater distributed leadership.

Individual project teams decide who is granted collaborator access either informally
or through some formal voting structure [6]. Commit responsibility typically comes with
the responsibility of reviewing contributors’ PRs. We look to identify how extensively
communities rely on the distributed work of a group of members with access to merge
code that is submitted through PRs.

3.3. Institutionalized practice – Merge Behaviors and PR Review
For Gronn, the unit of analysis is “distributed practice” rather than individuals; that is, he
distinguishes leadership roles from leadership practice or behaviors and takes up the latter
as the unit of analysis. DL centers on the contextualized outcome of interactions among
“geographically dispersed couples, co-leaders and partners, triadic role constellations,
and rotating leader systems” [9] within a community or organization. DL “allows for the
possibility that all organization members may be leaders at some stage” [9]. Turning to
OSS, we might ask how leadership is distributed among “members” of the community
with access and “contributors” to the community, both of whom submit code and
comment on code. While there may be several ways that institutionalized practice is
manifest, we consider that communities where mergers (members with access) subject
their pull requests to community review are more distributed than those where members
with access bypass this process. We also consider that those communities where
responsibility for merging others’ code is more distributed exhibit greater distributed
leadership. Gronn defines institutionalized practice as the introduction of formal
structure and process. Critically, we look for indicators that distributed leadership
markers like spontaneous collaboration and intuitive working relations are
institutionalized.

GitHub projects use different approaches for managing commits, particularly
among those members with commit access. One group of projects compels even
members with commit access to use the pull request process, except in the case of minor
code changes. The institutionalizes transparent review of their code by other project
members in order to implement major code changes. Another group of projects in which
PR review is enforced among members with commit access are shaped differently than
those in which PR review is not required for members with commit access. In these
cases, the rules apply, except to the group of people who are in roles with some
leadership responsibility. A third group of projects us pull requests in all cases, including
the repository owner’s changes. This practice makes pull requests an engaging and
practical review process, as well as a symbolic gesture of open leadership enabled by
GitHub’s design. Such practices make major changes open to the community and suggest
that greater consensus is necessary even for changes made by the maintainer and core
members – which reflects a more open and democratic approach than is reported in
studies of OSS where traditional, centralized models of leadership are more salient.

These three configurations of concertive action are described by Gronn as
“conjoint agency”; where “agents synchronize their actions by having regard for their

 8

own plans, those of their peers, and their sense of unit membership” [9]. Conjoint agents
are not purposely acting upon common interests, though their interests may be advanced
through a coordinated effort, nor does their collaboration involve the relinquishing of
some rights in exchange for the benefits of authority [9]. Gronn suggests that conjoint
agency occurs more frequently due to networked computing.

The complexities associated with “fragmented and dispersed knowledge” have led to
“alternative modes of articulating the flow of work, in particular, the redefinition and
reintegration of tasks” [9]. In DL, contributors’ responsibilities will necessarily overlap
and may be complementary. Gronn refers to this as “interdependence” [9]. While the
latter component, complementarity, may mean that members leverage their individual
strengths in support of a common goal, it is seen as advantageous when members who
rely on others “enhance their lesser skills through frequent shared talk and observation of
each other” [9].

@2 ��%��$����"��%�
Based on the described framework, we aim to characterize communities on GitHub with
the goal of learning from the different forms of organization. To do that, we must develop
ways of describing project organization. In this paper, we provide three measures that we
believe can be useful in reliably distinguishing among project organizations, using
distributed leadership theory as the primary lens. We advance this argument by drawing
on interviews conducted with members of these communities and existing leadership
theory to drive the development of measures that utilize electronic, archival data. By
undertaking a qualitative, comparative case study of five projects, we seek to explicate an
approach for making systematic project comparisons on GitHub, and advancing
understanding of the organizational forms that exist in that context. Ultimately, these
measures should function to describe a larger set of projects on GitHub and inform future
research. This paper focuses on answering two core research questions:

RQ1 – How and to what extent are differences in distributed leadership described
by project contributors on GitHub manifest in the utilization of Pull Requests?

RQ2 – How and to what extent are the 3 specific components of distributed
leadership manifest across the five different GitHub projects examined?

A2 ��&���"����&�"!��!��
�&�"�%�
5.1. Project context

We investigated five popular projects on GitHub (Table 1). We operationalize project
popularity by the number of forks per project. Before GitHub, the term ‘forking’ had a
negative implication in software development, denoting developers who split from the
project community to take the code in a new direction. However, on GitHub, active
projects often have many forks, as this is the primary way contributors make changes to
the codebase that they hope to merge with the main project. The number of forks,
therefore, is an indicator of project popularity. We selected projects to study based on a
diversity of project popularity, as indicated by fork count, and project purpose, as

 9

indicated by a description of the project. All five projects seek to create various types of
software developer or software infrastructure tools.

�$"���&� �$"���&��$��!�.�&�"!� ��&�%�"����&���"����&�"!�

�*���$�#&����$�$-�6
�7�

��"�!����0��������#������ �$�!��
 "����!���������+�����!�
��"���!����

6454+4=+46�,�6456+56+56�

���5�##����&�"!��$� �+"$��
6���7�

��"�!����0��������#������ �$�!��
 "����!���������+�����!�
��"���!����

6454+4=+49�,�6456+56+54�

���5�##����&�"!��$� �+"$��
6��$7�

��"�!����0��������#������ �$�!��
 ��� �� �����%���$����������!����
������%�

6454+4=+46�,�6456+56+45�

����$*�$�������"�&+�$���-%&� �
6��7�

��"�!����0��������#������ �$�!��
 ��� �� ����������� ��!$��������
 ��#��� �������%�

6454+4<+75�,�6456+55+74�

�$"!&5�!���$� �+"$��6��7�
�������%��������#������ � 6455+4<+5=�,�6456+56+4<�

Table 1. Classification, description and dates of collection of each of five GitHub projects

Each of the projects we investigated operates slightly differently. The JavaScript

library (JS) community is, perhaps, the most rigorously organized and invites a variety of
contributions (including html for its website). The Web-application framework (WFc) is
the smaller of the two Web-application frameworks. Their community depends primarily
on volunteers who have adopted an open, “democratic” (in their own words) approach to
leadership. The JavaScript Library JS makes a similar claim to being open. However, JS
does have somewhat more rigorous protocols in place that differentiates them from all
other communities; primarily, in their main software repository contributors are required
to first submit an issue before making a pull request addressing that issue. This is
somewhat of a bureaucratic measure.

The larger Web-application framework (WFr) has a reputation for being difficult
to contribute to, however, their numbers suggest otherwise. The Server Side Software
System (SS) says that the introduction of GitHub has lowered the coordination costs for
software development drastically (SS2). Finally, the Front-end framework (FF) is, at first
glance, seemingly the most hierarchical. As the FF project has grown, the number of
members besides the maintainers with access to commit (and thus, merge) has only
grown by one.

5.2. Qualitative Data Collection
We conducted semi-structured interviews with 16 maintainer and core members (Table 2)
from four of the five large GitHub projects studied as part of this research. Contributors
to each project were recruited via email and were given no incentives. Each project has
had over a hundred contributors. Two projects, the JavaScript Library and the Web-
application framework, have switched to GitHub from a different code hosting
infrastructure. Interviews lasted approximately 45 minutes and were conducted over
Google Hangouts and Skype (and one via email). In addition to asking about informants’
current and past project roles and how their responsibilities for work had changed, we

 10

focused on how new members gain commit access; pull request protocols; how the
project had evolved on the platform, how the respondent and their community use its
features and coordinate work and how they measure “success” of the project. Interviews
were recorded, transcribed and coded based on emergent themes. We draw on our
findings from these interviews throughout the paper.

Table 2. Interview Sample (*Project Maintainer)

5.3. Integrated, Reflexive Data Analysis
For each project, we collected data on pull requests, issues and commits including all
associated comments and details on GitHub users who interacted with these items. The
data was collected starting when each project first began using GitHub – which is 2010
for all repositories except FF (see Table 1 for exact dates of collection). Further, we
interviewed participants and leaders in four of the five projects to triangulate our mined
data with participant experiences and perceptions (one project declined to be
interviewed).

To collect the data, we used GitMiner (available on GitHub:
https://GitHub.com/pridkett/GitMiner), a Java-based tool for extracting data from GitHub
to a graph database. GitMiner downloads project data using the GitHub API and
interfaces directly with Git to obtain commit information. To run GitMiner, a
configuration file is used to specify which projects should be downloaded and what type
of information should be gathered for each project. Table 1 describes our selected
projects, their stated organization properties, and dates of data collection.

We analyzed the interaction data mined using GitMiner and the interview data
reflexively, following the systematic approach of Group Informatics [2]. Our
comparative analysis of interview transcripts guided our connection of Gronn’s theory of
DL with specific aggregations of GitMiner data: (1) spontaneous collaboration is
examined as receptivity to new contributors, (2) intuitive working relationships are
examined as gaining access, and (3) institutionalized practice is examined as PR review
and merge behaviors. Our findings build understanding about how to provide measures
which group projects in the spectrum of distributed leadership. (For summary, see Table
3.) We argue that future studies will be able to use this framework as a guide for building
theories of virtual organization that are salient to GitHub, and in other contexts where DL
is a central feature.

�!��!����������!�� (� �$"!!4%���%&$��)&��������$%��#�

�"!&$��)&�"!��)���%%1����&�#�$��!&�"���"!&$��)&�"!%��$��
�$���0� ����!����" ����������!��� �

	%�����%%�&"� �$�����%&$��)&��0� ��!"�!�#��$�����������!��� ��� �

�"�&��-���"#&���%&$��)&��������*��+�#$��&���%0� �� !�!"!������&�������!����

�"+���%&$��)&����%�$�%#"!%�����&-��"$� �$��!��"&��$�#�"#��4%��"��0� �� !�!"!������&�������!����

�$"���&� ��$&���#�!&%�
��� ��5'���6/'���7'���8'���9'���:�
���� ���5/'����6�
���� ���5'����6'����7'����8/�
���� ��5/'���6�
��� -�����������!��#��$.�

 11

Table 3. Operationalizing DL in OSS Communities on GitHub

B2 ��!��!�%�
Our operationalization of Gronn’s three concepts of DL discerns specific contrasts among
the five cases, leading us to suggest that three models of leadership are visible across the
cases we examine – Distributed Collaboration (WFr, WFc and JS), Distributed
Coordination (SS) and Highly Centralized (FF). The answers to our two research
questions characterize the differences in these five communities more fully.

6.1. How and to what extent are differences in distributed leadership described
by project contributors on GitHub manifest in the utilization of Pull
Requests?

In our interviews, informants consistently reference pull requests as the central feature of
GitHub around which project leadership takes place. Our informants consistently point
to the transparent, public nature of GitHub as elements that enable participation. GitHub
users experiment with and adopt the features of a decentralized source code management
system; most notably, pull requests are the dominant mechanism used to contribute code
and are one center of interaction.

Our informants are clear and specific in their comparisons of GitHub to platforms
they have used previously, and describe GitHub’s interface and tools as a significant
factor contributing to participation in their projects. Specifically, they note that the
process of submitting a patch is common knowledge, and this has lowered barriers to
contribution on GitHub (WFc1, JS2, WFc2, JS2, SS1, SS2). Informants also say that
more people seem to be contributing to OSS projects on GitHub through the mechanism
of pull requests (P1, P3, P6, P11, SS2). Developers note that user experience on GitHub
allows projects to operate in more “democratic” (WFc1, WFc2, JS6, SS2) and
“transparent” (WFc1) ways. This transparency leads to greater participation and to
opportunities for review and feedback from project members (JS2).

The barriers to entry experienced by new contributors to GitHub projects are low
compared to those of other OSS tools that our informants have used (WFc1, WFc2, JS2,
WFr1, WFr2, WFr3, WFr4, SS1, SS2), increasing the number of GitHub projects our
informants participate in. One respondent (P6) notes that other platforms require a great
amount of effort to publish software, whereas changes on GitHub can be published and
small projects initiated with little effort. For these reasons, GitHub is “accessible to a
class of people that it wasn’t before” (P6).

Gathering an understanding of how a project works and where a project team is
currently focused is one specific barrier our informants report in prior OSS code-hosting
experiences (mostly SourceForge) (WFc2, WFr2). GitHub provides easy access to
revision and comment history (WFc2, WFr2), overcoming the opaqueness of OSS
projects hosted elsewhere (JS1). In addition, the ability to quickly create a replica of any
project (“forking”) and begin working with its code is another specific advantage of
GitHub (WFc1), as compared to other tools. In practice, “forking” prevents users from
needing to reconstruct changes they make over weeks or months due to changes in the

 12

main code repository. On GitHub, the user synchronizes their fork with the main project,
then submits their changes as a pull request.

GitHub projects are perceived by our informants as more consistently managed;
and therefore, they find it easier to apply the practices used on one project to make
contributions to another (JS1, WFc1, SS2). “There's no mystery on how to support a
patch" (WFc1), for example. Consistency across projects means that users do not have to
"learn how it works" because they all "kind of work the same" (WFc1). This “common
language of contribution” infers that new participants and new projects on GitHub do not
need to dedicate as much time to finding the best way to contribute. This contrasts
sharply with our respondent experiences on other OSS platforms, where “every [project]
had [its] own way of doing things” (SS2).

There is a strong sense among our informants that the level of participation on
GitHub is much higher than on other OSS projects that they have previously contributed
to outside of GitHub (WFc1, WFc2, SS2, WFr1). One project that moved from an older
OSS repository to GitHub noted that the level of participation has “doubled” since
moving to GitHub (WFc1, WFc2):

“[Moving to GitHub] was probably one of the best moves we ever did for the project.
The number of contributions has gone up from – it was in the low twenties; it’s over
150 now people who have contributed, so it’s much better.” (WFc1)

 It is evident from our interviews with informants, and analysis of the traces of pull
requests (covered further in RQ2) that discerning categories of projects on GitHub
centers on the specific utilization of pull requests by particular projects. While there are
other technical dimensions of GitHub that facilitate interaction, our informants are
consistent in referencing pull requests as the central feature for understanding the
implementation of leadership, and the distributed nature of leadership, on particular
projects.

6.2. How and to what extent are the 3 specific components of distributed
leadership manifest across the five different GitHub projects examined?

6.2.1. Spontaneous Collaboration and Contributor Merge Success

We operationalize Gronn’s DL pattern of spontaneous collaboration as contributor merge
success rate. Our interviews verify that pull requests are being used to monitor redundant
contributions, and facilitate collaboration where multiple contributors have identified the
same, specific desired change..�In Figure 1 we show the total number of contributors with
at least one merged pull request. Table 4 shows the success rate for any given number of
PRs contributor. For example, in community SS, 14 members have submitted single pull
requests with an overall success rate of 78%. JS has the highest receptivity to
contributions, with 64% of all members contributing code that was successfully merged,
followed by WFr (58%) and WFc (46%). However, projects with high receptivity to
contributions are not always those with the highest contributor volume. Our two lowest
volume communities (WFc and JS) and our highest (WFr) have percentage of PRs that
are merged at or above 50%, whereas our two moderate to large contributor volume
communities have dramatically lower merge rates (SS at 3% and FF at 14%). We also
find that communities with higher merge rates among contributors are also those with
members who continue to contribute. That is, projects with more spontaneous

 13

collaboration (higher rate of merges) have greater contributor retention – i.e. more
members who have made 4 or more contributions.

Table 4 shows that communities with low merge rates (see Table 4, Figure 1)
have dramatically low numbers of repeat contributors compared to communities with
high merge rates. In communities SS and FF, which have only a small percent of
contributors with successfully merged pull requests, only one in five people have more
than one merged pull request. In WFc and WFr, where around half of contributors have
had a PR merged, around two in five have had more than one pull request merged. In JS,
which has the highest merge rate for contributors (64%), the percent of people
contributing successfully more than once is around 30%.

Fig.1. the percentage of contributors with at least one merged change per project

�
��� ��� ���� ��$�
��

����)���%%���&��� @� 1� @� 1� @� 1� @� 1� @� 1�
�"!&$��)&"$%�
+�"���*��
�"!&$��)&���3�
=����

;<@� 58� <6@� 586� 99@� :4� 9=@� 889� ;5@� 66=�

>���%� 9)9@� 5� <@� 58� 59@� 5:� 5;@� 56:� 59@� 8;�

?���%� 4@� 4� 9@� <� :@� ;� ;@� 99� 8@� 57�

@�&"�=<���%� 55@� 6� 9@� =� 5:@� 5<� 56@� <<� :@� 5=�

I�=<�&"�><���%� 9)9@� 5� 4@� 4� 8@� 8� 6@� 5<� 6@� 9�
I� ><� 6=@D� �,7�
��%� 4@� 4� 4@� 4� 8@� 9� 7@� 65� 7@� 54�

� 544@� 5<� 544@� 5;7� 544@� 554� 544@� ;97� 544@� 767�

Table 4. Contribution retention: percent/number of active contributors who have submitted at least one PR
that was merged by contributor volume

Our interviews confirm that retaining contributors is clearly of concern among
communities with high merge rates. Specifically, JS is clear about the need to be “kind”
when addressing new participants, particularly because many have had the experience

7@�

5;@�

8:@�

9<@�
:8@�

4@�
54@�
64@�
74@�
84@�
94@�
:4@�
;4@�
<4@�
=4@�

544@�

��� ��� ���� ���� ���

H��"!&$��)&"$%�+�&���&����%&�"!�
�$�������#�$��$"���&��

 14

where their first submission doesn’t ‘land.’ That is, they perceive that people walk away
when they are not successful on their first try or that they are offended when they don’t
receive acknowledgement for their effort. JS has adopted “boilerplate” responses that
include “pleases” and “thank you’s” with instructions about what to do so as not to
discourage new participants and also guide them through what they must do in order to
make their submissions acceptable. Practicing diplomacy, they say, can be as simple as
saying “thank you for your contribution.” There is a designated role in JS for those who
identify new talent and make sure that they feel welcome. This role used to be referred to
as “evangelist” (JS6).

“We need to be sure that we had better boilerplate [responses] when people
contributed bedbugs on the bug tracker or when someone comes along with their
first contribution making sure that whoever is looking at it know[s] it’s their first
contribution and that they should cut them a little bit of slack, instead of just you
know – that typical sort of open source you should have known it already attitude
… you take someone across the precipice, I guess. (JS6)

“The very first thing to do is be kind … For example I triage bugs and when
someone will make a test case and they’ll spend their time writing it and you close
it [and say], “Sorry, won’t fix,” … if you just say that … it offends them…. You
just – in simplest writing –[say,] “thanks for contributing.”(JS4)

6.2.2. Intuitive Working Relationships: Distribution of Collaborator Access

We operationalize Gronn’s intuitive working relationships pattern as distribution of
access to merge privileges. We learn that commit access, or the ability to commit directly
to the codebase without submitting a pull request, is typically granted to new contributors
only after they have made substantial submissions (WFc2, SS1, WFc13). While
movement from the periphery to active participation can sometimes occur very quickly
(WFc2, WFc13) we are told that during one project most contributors are not invited to
the core until they have been contributing for 1 to 2 years (WFr4). We learn through our
qualitative interview with a contributor that on one project a “loose voting” process is in
place, whereby core team members will elect certain contributors via email for
collaborator access (WFr1).

People who make a sizeable contribution generally will get access to merge
directly to the main branch if they’re “interested” (WFc1). Notably, virtually all those
with access who are now either members of the core or maintainers that we spoke with
were contributors who had at one point submitted bug fixes, documentation features etc.

“But yeah, if you do enough submissions that are of – that everyone is current on
the team and thinks is good, then we just give you access.” (WFc1)

SS suggests that receiving access is about knowing some portion of the code and
demonstrating some enthusiasm and ability for reviewing others code and working with
people in the community:

“I would say it’s a combination of showing that they really understand at least
some relevant portion of [SS], the project, and also that they have a good enough

 15

– they kind of have demonstrated a good personality and ability to kind of work
with people and get patches to the point where they’re ready.” (SS1)

FF declined to participate in interviews, and we therefore do not know the motivations of
their restrictive access practices. Our quantitative findings show that distribution of
responsibility for merging is low, as only two members of FF are merging virtually all
pull requests and one other person has merged a single pull request since the beginning of
the project. Other members are making commits directly to the main branch, however.
The inclusion of FF as a project is important for understanding the diversity of GitHub
projects overall. FF, in its current state, has not merged any pull requests from non-
leaders, which puts it in a category of projects with highly centralized, non-distributed
leadership. The socio-technical infrastructure of GitHub enables the study of project
practices, which gives us useful information even if we do not have access to their
reflections about that practice.

6.2.3. Institutionalized Practice: PR Review

Our reflexive analysis of interviews and GitHub trace data focused our operationalization
of Gronn’s third pattern of DL, institutionalized practice, toward building understanding
of the nuance in how pull requests are reviewed across projects. Responsibility for
merging is most distributed among communities with high merge rates. While many
people have responsibility for merging in community SS (which has low merge rates),
these represent an extremely modest number of PRs (averaging 2.25) almost all of which
are their own (see Figure 1). Essentially only two people are currently responsible for
merging PRs on FF (which also has low merge rates) but all of these are contributed from
outside, non-merging contributors; FF members with merge access do not submit PRs.
We find that with the exception of FF, virtually all mergers have made or currently make
PRs (see Figure 1). The average number of PRs merged by members varies substantially
across communities.

Our two low merge rate communities (FF and SS) have two different merge
profiles, while our three high merge rate communities are fairly similar. Among low
mergers, SS mergers do submit PRs but mostly merge their own PRs. In FF, there are
only two primary mergers who do not submit PRs and thus are exclusively merging other
people’s contributions.

Among high merge rate communities, mergers submit PRs and merge mostly
other people’s PRs. That is, while they review and merge others code, responsibility for
committing their own code can and often does go to someone else. Table 6.1 – 6.5 (which
can be found in the Appendix) summarizes these main differences.

We also validated our understanding that virtually everyone (besides the FF
community), regardless of whether members have access, will submit PRs for major
changes, features and other, less straightforward reasons (WFc1, P2, WFc2, SS1, JS3,
JS4, JS5). This allows those who are unsure of the merits of their pull request to seek
feedback from the community by submitting new code for review, resulting in code that
‘evolves’ with the discussion. This is also a way for core members to ensure that the
process of integrating new features and major code changes is more “democratic” (WFc1,
WFc2, SS2, WFc10). WFc1 says this transparency is vital to keeping their project
“functional” (WFc2).

 16

Fig. 2. Number of PR mergers; number of mergers that are also submitting PRs; average number of PRs pre
merger

6.2.4. Institutionalized Practice: Distribution of Merge Responsibility

We find differences among communities with low or high merge rates in terms of
merging behavior. Those among the communities with low merge rates we study are at
either end of the extreme: they are either merging mostly their own pull requests or
exclusively those of others. Those in communities with high merge rates are consistently
divided; they merge some small percent of their own pull requests, as well as those made
by other members who also have merge privileges and outside contributors who submit
PRs.

Low Merge Communities

Responsibility for merging in SS is distributed among members who largely merge their
own contributions. FF’s community of mergers is dominated by two members
responsible for merging other members’ PRs but do not make PRs of their own; one
member has made one PR which he merged (See Table 6.2). That is, FF does take
contributions from outside contributors, but unlike all other communities, those with
access are not submitting their PRs for community review. We are not aware of any other
process for community review in place for those with access on FF. We were unable to
interview this community and thus have no insights as to why they deviate from the other
communities who employ PR for community review.

High Merge Communities

We find a more distributed model in communities with high merge rates, where a good
number of mergers focus primarily on PRs that are not their own. Only maintainers and
top mergers merge their own PRs, and even then, they do not merge all of them.

5:�
7�

57�

84�

=�59�
5�

55�

79�

<�6)69�

<5)7�

7<)5�

598�

56)5�

��� ��� ���� ���� ���

�$��$��"!&$��)&"$��&�'%'�%�

1���������� � 1�
�����!���"!�� �!��!����������� �

�#������1�
� ��������*��������

 17

On WFc, we see that those who merge fewer pull requests are more likely to have their
own pull requests merged by others. For instance, WFc4 has merged 11 PRs, 6 of which
were other people’s PRs, and 5 of which were their own. WFc4 only merges 1 in 3 of
their own PRs. WFr is even more stringent (or experienced) it would seem; many of those
who are merging have made a number of PRs, none of which were merged by them.

Like WFc and WFr, JS mergers do not merge all of their own PRs, but it is
notable that the maintainer of the project has submitted 34 pull requests, only 4 of which
he himself merged. JS has clearly embraced this model of community review.

C2 ��%�)%%�"!�
We found first that, counter to intuition, the size of a project has no impact on merge
rates for the communities we studied. Second, the projects in which more pull requests
are merged have more sustained members over time. Third, we find that communities
with higher merge rates among contributors and higher contributor retention tend to have
more distributed (non-centralized) practices for reviewing and processing pull requests.
Specifically, in these communities (WFc, WFr, JS) members with collaborator access still
process their work through PRs and encourage discussion around these PRs, which are
usually not merged by the owner, but rather by some other member. This is in contrast to
the two low merge rate communities; where members with the ability to merge code do
not submit PRs or generally merge their own PRs.

We show that four of the five cases (WFc, WFr, JS, and to some extent SS) that
we examine embody DL practices in various ways and to different degrees through a
systematic operationalization of Gronn’s three practices of distributed leadership. We
also present clear contrasts among the five OSS projects on GitHub. We used DL as a
lens through which to consider how communities may be more or less distributed in their
practice.

The one remaining project, FF, does not present a visible distributed leadership
model, and this is reinforced through the project’s polite declinations to discuss their
inner workings with researchers. The four remaining projects that do embody DL provide
two contrasting models of leadership. A pattern of “distributed coordination” is
exemplified by SS (Table 5.1). We see these differences most clearly through an
examination of their practices around PRs, finding that they operate using GitHub for
coordination work. WFc, WFr and JS, in contrast, use PRs more for collaboration.

�
��� ��� ���� ��$�
��

�")!�&-�
���%%�����&�"!�

��%&$��)&���
�""$��!�&�"!�

�����
��!&$���.�&�"!� ��%&$��)&����"����"$�&�"!�

Table 5.1. Community Classification

Coordination on SS is central because informants from this project described their

motivation for moving to GitHub as an attempt to reduce coordination costs to essentially
“zero”; which is in fact what they claim to have accomplished (SS2). SS systematically
takes advantage of the built-in transparency of the PR model to make the work of others
visible but they do not adopt any apparent collaborative decision making model or

 18

consistently engage in consensus-building debate around specific PRs. Content analysis
of comments on SS might provide more insight into their practice.

The WFc, WFr and JS projects, in contrast, use PRs for consensus building
activities, dissemination of project knowledge, and generation of insight. Responsibility
for committing code is detached in most cases from the member who submits a pull
request, even if that member technically has permissions to commit the code on their
own. From a DL perspective, our informants describe this as a more “democratic”
process. In the world of virtual OSS organizations, we find that the five GitHub cases we
examine are clearly and richly differentiated from each other. Advancing DL as a
mechanism for making sense of distributed OSS’s requires operationalization of the
factors described in our findings so that others might repeat and extend the findings we
present.

�
��� ��� ���� ��$�
��

H��"!&$��)&"$%�
�$����� ��$�����������"��!%� ���������������"��!%�

��#��&��"!&$��)&"$%� ��$� �����

����%%���%&$��)&�"!� ����� ��$� �����

�����*��+�� �� �� 	�� �� �
��%&$��)&�"!�"��$�%#"!%�����&-��"$�
 �$��!��"&��$�#�"#��%��"��� ��$� ��$� �����

Table 5.2. Five Indicators Relevant to Distributed Leadership in OSS

We identified 5 factors that our data suggest are relevant in judging distributed
leadership. These are listed in Table 5.2 as: Outside Contributors Merge Rate, Repeat
Contributors, Access Distribution, PR Review and Distribution of responsibility for
merging the PRs of others. We have no cutoff point, but one may be developed with a
larger and more representative data set. While use of PRs by merging members with
access to commit directly to the main branch as a form of “democratic” leadership is
clearly important, we do not know how relevant this is as a metric of DL. A more
extensive study is needed to conduct systematic evaluation of the emerging patterns.

Distributed Collaboration is the most similar to DL, though Distributed
Coordination is, at the very least, an insular form of Distributed Collaboration – in the
case of SS translates to a model that does not readily take in new members. It is not clear
whether this pattern may hamper future research, but based on discussions with SS, they
do not predict that their project will require much heavy maintenance in years to come.
Part of this has to do with leadership vision, and, at some fundamental level, one’s view
of OSS. In contrast to distributed coordination, distributed collaboration is more
consistent with notions of open source collaboration as a democratic endeavor, one in
which the growth and maintenance of member contributors is critical to the success of a
project.

D2 �"!��)%�"!%�
Prior research on OSS development focuses on patterns of organization that are
centralized and predictable across projects within a socio-technical context. The large-
scale introduction of distributed software configuration management platforms like

 19

GitHub, are hypothesized to foster more distributed forms of organization. Git logically
suggests a greater distribution of patterns of leadership. Through the lens of DL, our
study presents a number of specific organization types that suggest how such types could
be rapidly identified, and which patterns of DL could potentially lead to greater
engagement from newcomers. It is this newcomer engagement that we think is especially
unique to GitHub, and worthy of continued study.

Future studies will extend to a large sample of projects on GitHub. We expect to
measure the correlation between merge rates, retention and distribution of merge
practices – for instance, what is the ratio of PRs made to those merged by the owner? In a
more distributed community we expect to see mergers creating many more PRs than the
number of PRs they merge by themselves. That is, in more distributed collaborations,
other people should be responsible for merging PRs, regardless of whether they have
access to commit (or “merge”) capabilities. In these scenarios it makes sense that
contributors with access are more poised to invite newcomers. It also makes sense that
contributors who have early success stay on, and in some cases progress to becoming
contributors with permission to commit.

Without comparison to projects hosted on other platforms, we cannot say that the
features and interface of GitHub afford more distributed collaboration, but our data and
analysis suggest that they may. Future comparisons will be valuable in determining the
extent to which GitHub supports more distributed models. Our prior studies suggest this
to be the case [1], and the findings presented here go further in explaining the practices
and indicators of DL emerging on GitHub, and available through its API for designers,
engineers and researchers.

8.1.1. Limitations

Our selection of only those projects that are currently popular on GitHub (based
on the number of forks) represents a sampling bias. At the same time, we imagine that if
these projects are visibly popular and thus successful (by definition) then other
communities will be influenced by them. For instance, GitHub developers make very
public their decision not to use git-flow. Other communities we studied are distinguished
for their decision to only acknowledge PRs that are first published as issues, or for
retroactively assigning a PR to a contributor. This is an exciting and evolving space that
will be defined by trendsetters.

E2 ����$�!��%�
1. Author and Author. Pull Requests & Participation in Github. ((under review)).
2. Author. Group Informatics: A Methodological Approach and Ontology for

Understanding Socio-Technical Groups. JASIS&T Accepted, (2012).
3. Crowston, K. A structurational perspective on leadership in Free/Libre Open Source

Software teams. 2005.
4. Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social coding in GitHub:

transparency and collaboration in an open software repository. Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, ACM (2012),
1277–1286.

 20

5. Ducheneaut, N. Socialization in an Open Source Software Community: A Socio-
Technical Analysis. Comput. Supported Coop. Work 14, 4 (2005), 323–368.

6. Fielding, R.T. Shared leadership in the Apache project. Commun. ACM 42, 4 (1999),
42–43.

7. German, D. and Mockus, A. Automating the measurement of open source projects. In
Proceedings of the 3rd Workshop on Open Source Software Engineering, (2003), 63–
67.

8. Ghosh, R. and Prakash, V. The Orbiten Free Software Survey. First Monday 5, 7
(2000).

9. Gronn, P. Distributed leadership as a unit of analysis. The Leadership Quarterly 13, 4
(2002), 423–451.

10. Kim, A.J. Community Building on the Web�: Secret Strategies for Successful Online
Communities. Peachpit Press, 2000.

11. Krogh, G. von, Spaeth, S., and Lakhani, K.R. Community, Joining, and
Specialization in Open Source Software Innovation: A Case Study. 2003.

12. Luther, K., Fiesler, C., and Bruckman, A. Redistributing leadership in online creative
collaboration. Proceedings of the 2013 conference on Computer supported
cooperative work, ACM (2013), 1007–1022.

13. Maass, W. Inside an Open Source Software Community: Empirical Analysis on
Individual and Group Level. University of St.Gallen, (2004), 64–67.

14. Maass, W. Inside an Open Source Software Community: Empirical Analysis on
Individual and Group Level. University of St.Gallen, .

15. Marlow, J., Dabbish, L., and Herbsleb, J. Impression formation in online peer
production: activity traces and personal profiles in github. Proceedings of the 2013
conference on Computer supported cooperative work, ACM (2013), 117–128.

16. Mockus, A., Fielding, R.T., and Herbsleb, J.D. Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 3
(2002), 309–346.

17. Moon, J.Y. and Sproull, L. Essence of distributed work. 2000.
http://www.firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/8
01/710.

18. Sanheim, R. Three Million Users. The Github Blog, 2013.
19. Scacchi, W. Understanding the requirements for developing open source software

systems. Software, IEE Proceedings - 149, 1 (2002), 24 –39.
20. Scacchi, W. Free/Open Source Software Development Practices in the Computer

Game Community. IEEE Software 21, (2004), 59–67.
21. Scacchi, W. Free/open source software development: recent research results and

emerging opportunities. The 6th Joint Meeting on European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software
engineering: companion papers, ACM (2007), 459–468.

22. Thorpe, R., Gold, J., and Lawler, J. Locating Distributed Leadership. International
Journal of Management Reviews 13, 3 (2011), 239–250.

23. Thorpe, R., Gold, J., and Lawler, J. Locating Distributed Leadership. International
Journal of Management Reviews 13, 3 (2011), 239–250.

24. Zhang, W. and Storck, J. Peripheral Members in Online Communities. (2001), 7.

 21

25. Github Has Surpassed Sourceforge and Google Code in Popularity. ReadWrite.
http://readwrite.com/2011/06/02/github-has-passed-sourceforge.

Appendix

��� 9�
�$��%�"����%�
9�
�$��%� "�� �����4��
��%�6!"&�&���$%7�

9��%�
����8�
�$�����
6 �$�����-�&�� 7���

����!������-��5/.� 56� 5� 55�-55.�
5� 8� 4� 9�-8.�
6� 8� 4� 8�-8.�
7� 7� 7� 4�-4.�
8� 6� 4� 6�-6.�
9� 5� 4� 5�-5.�
:� 5� 4� 5�-5.�
;� 5� 4� 5�-5.�
<� 5� 4� 5�-5.�
=� 5� 4� 5�-5.�
54� 5� 5� 4�-4.�
55� 5� 4� 5�-5.�
56� 5� 5� 4�-4.�
57� 5� 4� 5�-5.�
58� 5� 4� 5�-5.�
59� 5� 4� 5�-5.�

Table 6.1. Merge Behaviors for SS

��� 9�
�$��%�"����%�
9�
�$��%� "�� �����4��
��%�6!"&�&���$%7�

9��%�
����8�
�$�����
6 �$�����-�&�� 7������������������������������������

����!������ 597� 597� 4�
����!������ =4� =4� 4�
5� 5� 4� 5�-5.�

Table 6.2. Merge Behaviors for FF

����� 9�
�$��%�"����%�
9�
�$��%� "�� �����4��
��%�6!"&�&���$%7�

9��%�
����8�
�$����
6 �$�����-�&�� 7�������������������

����!������
�

6;6� 6:8� =�-<.�
5� 568� 568� 5�-4.�
6� 8;� 85� <�-:.�
7� 68� 68� 4�-4.�
8� 55� :� 59�-9.�
9� 8� 6� 7�-6.�
:� 7� 7� 4�-4.�
;� 7� 6� 5�-5.�
<� 7� 4� 54�-7.�
=� 5� 5� 5;�-4.�
54� 5� 4� 9�-5.�
55� 5� 4� 7�-5.�
56� 5� 4� 8�-5.�

Table 6.3. Merge Behaviors for WFc

��$� 9�
�$��%�"����%�
9�
�$��%� "�� �����4��
��%�6!"&�&���$%7�

9��%�
����8�
�$����
6 �$�����-�&�� 7�������������������

5� 5468� 5466� �8�-6.�
6� 854� 854� 4�-4.�
7� 7=8� 7=7� 5�-5.�

 22

8� 7<:� 7<:� <=�-4.�
9� 5:<� 5:<� �5�-4.�
:� 596� 595� <=�-5.�
;� 587� 587� �6�-4.�
<� 578� 578� �89�-4.�
=� 549� 549� 4�-4.�
54� <<� <<� 64�-4.�
55� 66� 66� �4�-4.�
56� 5<� 5<� 4�-4.�
57� 55� 54� 5�-5.�
58� <� <� 7�-4.�
59� :� :� 56�-4.�
5:� 7� 4� 75�-7.�
5;� 7� 7� 4�-4.�
5<� 6� 4� 8�-6.�
5=� 6� 4� 7�-6.�
��A�65� 5�������� ��� ++� ++�

Table 6.4. Merge Behaviors for WFr

�� 9�
�$��%�"����%� 9�
�$��%� "�� �����4��
��%�6!"&�&���$%7�

9��%�
����8�
�$����
6 �$�����-�&�� 7�������������������

����!������
-��6/.� 8;� 87� 78�-8.�

5� 84� 84� 4�-4.�
6� 55� =� 7�-6.�
7� 8� 8� 78�-4.�
8� 7� 6� 58:�-5.�
9� 5� 4� 5�-5.�
:� 5� 4� 86�-5.�
;� 5� 4� 8�-5.�
<� 5� 4� :6�-5.�

Table 6.5. Merge Behaviors for JS

