This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:

https://doi.org/10.1145/2597073.2597074

The Promises and Perils of Mining GitHub

Eirini Kalliamvakou
University of Victoria
ikaliam@uvic.ca

Leif Singer
University of Victoria
Isinger@uvic.ca

ABSTRACT

With over 10 million git repositories, GitHub is becoming
one of the most important source of software artifacts on
the Internet. Researchers are starting to mine the infor-
mation stored in GitHub’s event logs, trying to understand
how its users employ the site to collaborate on software.
However, so far there have been no studies describing the
quality and properties of the data available from GitHub.
We document the results of an empirical study aimed at un-
derstanding the characteristics of the repositories in GitHub
and how users take advantage of GitHub’s main features—
namely commits, pull requests, and issues. Our results indi-
cate that, while GitHub is a rich source of data on software
development, mining GitHub for research purposes should
take various potential perils into consideration. We show,
for example, that the majority of the projects are personal
and inactive; that GitHub is also being used for free storage
and as a Web hosting service; and that almost 40% of all pull
requests do not appear as merged, even though they were.
We provide a set of recommendations for software engineer-
ing researchers on how to approach the data in GitHub.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Management—=Software con-

figuration management

General Terms

Software Engineering

Keywords

Mining software repositories, git, GitHub, code reviews.

1. INTRODUCTION

GitHub is a collaborative code hosting site built on top
of the git version control system. GitHub introduced a

*Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR 14 Hyderabad, India

Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Georgios Gousios
Delft University of Technology

G.Gousios@tudelft.nl

Daniel M. German*
University of Victoria

dmg@uvic.ca

Kelly Blincoe
University of Victoria
kblincoe@acm.org

Daniela Damian
University of Victoria

danielad@cs.uvic.ca

“fork & pull” model in which developers create their own
copy of a repository and submit a pull request when they
want the project maintainer to pull their changes into the
main branch. In addition to code hosting, collaborative code
review, and integrated issue tracking, GitHub has integrated
social features. Users are able to subscribe to information by
“watching” projects and “following” users, resulting in a feed
of information on those projects and users of interest. Users
also have profiles that can be populated with identifying
information and contain their recent activity within the site.

With over 10.6 million repositories' hosted as of January
2014, GitHub is currently the largest code hosting site in the
world. Its popularity, the integrated social features, and the
availability of metadata through an accessible API have made
GitHub very attractive for software engineering researchers.
Existing research has been both qualitative [4, 7, 16, 17, 19]
and quantitative [10, 24, 25, 26]. Qualitative studies have fo-
cused on how developers use GitHub’s social features to form
impressions and draw conclusions on other developers’ and
projects’ activity to assess success, performance, and possi-
ble collaboration opportunities. Quantitative studies have
aimed to systematically archive GitHub’s publicly available
data and use that to investigate development practices and
network structure in the GitHub environment.

As part of our research on collaboration on GitHub [15],
we conducted an exploratory online survey in 2013 to as-
sess the reasons for developers using GitHub and how it
supports them in working with others. Through analyzing
the survey data we noticed that GitHub repositories were
also used for purposes other than strictly software devel-
opment. Many respondents were using repositories to host
personal projects, without any plans to collaborate on their
work. This signalled that there might be unseen, significant
perils in using GitHub data “as-is” for software engineering
research. The variety of repository contents and activity, as
well as developers’ intentions, can alter research conclusions
if care is not taken to first establish that the data fits the
research purpose.

The potential risks of misinterpretation in publicly mined
data has also been noted with regard to SourceForge mined
data [14]. Furthermore, Bird et al. [6] described the promises
associated with exploiting the information stored in a decen-
tralized version control system. We, therefore formulated
the following research question to address with this study:

RQ: What are the promises and perils of mining GitHub
for software engineering research?

"https://github.com/features

We highlight biases that can be found in the data and ar-
eas of the data that are easily misunderstood, side-by-side
with the promises that GitHub data offers. We use insight
gained from conducting a survey with 240 GitHub users to
identify potential perils to assess, and we provide evidence of
those perils through quantitative analysis on the GHTorrent
dataset as well as a manual inspection of 434 GitHub repos-
itories. We provide recommendations to researchers on how
to best use the data available from GitHub and outline some
analysis risks to avoid.

2. BACKGROUND & RELATED WORK

Many of the projects hosted on GitHub are public, thus
anyone with an Internet connection can view the activity
within those projects. The available activity includes ac-
tions around issues, pull requests, and commits including
comments and subscription information. The large amount
of public data on GitHub makes it possible for researchers to
easily mine the project data, and various tools and datasets
have been created to assist researchers in that goal.

2.1 Background

Web-based code hosting services such as GitHub have pre-
viously been of interest to software engineering researchers.
The abundance and public availability of data simplifies
some of the issues of data collection and processing. How-
ever, practical difficulties are still present and can poten-
tially alter the conclusions drawn from the data.

SourceForge is another code hosting site; it peaked in pop-
ularity prior to GitHub’s wide-spread adoption [8]. Howison
and Crowston [14] noted that projects hosted on Source-
Forge were often abandoned, and that their data was often
contaminated with data imported from previous systems.
They also found that information was often missing due
to project data hosted outside of SourceForge space. Simi-
larly, Weiss [28] concluded that not all SourceForge data is
to be considered perfect: names of categories often change
in SourceForge, and projects are constantly initiated and
go inactive. By comparing his data to that of FLOSS-
Mole?, Weiss highlighted that information about inactive
and inaccessible projects was missing altogether. In the
same vein, Rainer and Gale [21] conducted an in-depth anal-
ysis of SourceForge data quality. They noted that only 1%
of SourceForge projects were actually active as indicated by
their metrics. The authors suggested caution in using of
SourceForge data and advised that the research community
should perform an evaluation of the quality of data taken
from portals such as SourceForge. Accordingly, we present
findings highlighting potential risks for researchers to keep
in mind when drawing conclusions from GitHub data.

Recent software engineering research has also highlighted
biases in bug-fix datasets. These biases can compromise the
validity and generalizability of studies using these datasets.
Researchers often rely on links between bugs and commits
made in commit logs, but linked bugs represent only a frac-
tion of the entire population of fixed bugs. Bird et al. [5]
found that this set of bugs is a biased sample of the en-
tire population. Bachmann et al. [3] found that the set of
bugs in a bug tracking system itself may be biased since
not all bugs are reported through those systems. Nguyen

2a collection of open source software data, formerly known
as OssMole

et al. [18] discovered that similar biases exist even in com-
mercial projects that employ strict guidelines and processes.
More recently, Rahman et al. [20] showed that a large sample
size can counter the effects of bias. In our work, we show
that bias exists across large GitHub datasets and provide
recommendations on how to avoid such biases.

2.2 Related work

Others have previously studied GitHub. The introduction
of social features in a code hosting site has drawn particular
attention from researchers. Several qualitative studies have
interviewed GitHub users to better understand how these
social features are being used [4, 7, 16]. Findings indicate
that GitHub users form impressions and draw conclusions
about other developers’ and projects’ activities and poten-
tial. Users then internalize those conclusions to decide whom
and what to keep track of, or where to contribute next. The
transparency brought about by these social features also ap-
pears to allow teams to maintain awareness of their mem-
bers’ activity and use this towards organizing their work.
Pham et al. [19] investigated whether the higher visibility of
developer actions enabled by GitHub’s social features has an
influence on developers’ testing behaviors. Through inter-
views and an online survey, they highlighted the challenges
of promoting a desirable testing culture among contributors
and suggested strategies for doing so.

Tsay et al. [26] performed a quantitative study on 5,000
projects to understand how GitHub’s social features im-
pact project success. McDonald and Goggins [17] inter-
viewed GitHub users to identify how they measured success
on their projects. Their study shows that project members
see GitHub’s social features as the driver behind increased
contribution.

Additional research has extended beyond GitHub’s social
features. Thung et al. [25] built social networks of develop-
ers involved with 100,000 GitHub projects to demonstrate
the social structure of the GitHub ecosystem. Takhteyev et
al. [24] looked at the geographic locations of GitHub devel-
opers by examining self-reported location information avail-
able within GitHub profiles. Gousios et al. [10] examined
how pull requests work on GitHub. They found that the
pull request model offers fast turnaround, increased oppor-
tunities for community engagement, and decreased time to
incorporate contributions. They showed that a relatively
small number of factors affect both the decision to merge a
pull request and the time to process it. They also qualita-
tively examined the reasons for pull request rejection and
found that technical ones are only a small minority.

Other research has focused on making the data avail-
able through the GitHub API more readily available. The
GHTorrent [11] project provides a mirror of the GitHub ApP1
data. It obtains its data by monitoring and recording GitHub
events as they occur and applying recursive dependency-
based retrieval of the related resources. The dataset pro-
vided by the GHTorrent project can be queried offline. It
provides a comprehensive dataset since its data collection
began in 2012, and it is currently working to retrieve all
available history for important projects. When run in stan-
dalone mode, GHTorrent can also retrieve the history of in-
dividual repositories. The GitHub archive [13] provides a
dataset of the history of events in GitHub. It also obtains
its data by monitoring the GitHub timeline. However, it
only contains events since its data collection began in 2011.

Moreover, one can use tools such as Gitminer [27] to ex-
tract the history of events for specific repositories. Gitminer
crawls the GitHub AP1 for any desired project and produces
a graph dataset.

The popularity of GitHub and the ease with which data
can be obtained is likely to see even more research targeting
GitHub projects and users. The recommendations provided
by our work can help researchers avoid common pitfalls as-
sociated with GitHub data.

3. STUDY DESIGN

The detailed analysis reported in this paper was moti-
vated by our own study of the GitHub environment with
the goal of examining how it is used for collaboration [15].
During this study we surveyed GitHub users and then con-
ducted interviews to further explore our study findings. Sur-
vey participants were selected from GitHub’s public event
stream in May 2013, choosing recently active users with pub-
lic email addresses. Our survey was exploratory, with open-
ended questions asking about reasons for using GitHub, how
GitHub supports collaboration, managing dependencies, and
tracking activity, as well as GitHub’s effect on development
process. We sent our survey to 1,000 GitHub users and re-
ceived 240 responses (24%response rate). We received sev-
eral responses out of the ordinary regarding the purpose of
using GitHub. For example, respondants noted they used
GitHub for purposes other than code hosting or collabora-
tive development. These cases motivated our further anal-
ysis of the GitHub repository contents and collaboration
within GitHub, as discussed in sections 4.2 and 4.3.

We then performed both quantitative and qualitative anal-
yses of GitHub data to identify and measure the extent and
frequency of the perils. Our process was divided in the fol-
lowing parts:

1. Quantitive analysis of project metadata. We used
the GHTorrent [11] dataset made available in Jan 20143,
As described in section 1, the GHTorrent dataset is a
comprehensive collection of GitHub repositories, their
users, and their events—including commits, issues, and
pull requests. In some cases, we cloned the repositories
to further study their logs and file contents.

2. Manual analysis of a 434 project sample. When
quantitative analysis of metadata was not sufficient,
we turned to in-depth manual analysis. We selected
a random sample of 434 projects from the list of 3
million projects that exist in the GHTorrent dataset
(cf. Peril I in section 4 for our definition of a project).
This sample size provides a confidence level of 95%
with a 5% confidence interval.

4. RESULTS

Through our mixed methods study, we identified nine per-
ils to be aware of when analyzing GitHub data. Table 1 sum-
marizes the perils. For each peril, we provide quantitative
evidence to support it and, where appropriate, qualitative
evidence as well. This section describes each peril in detail
and provides quantitative and/or qualitative evidence show-
ing their severity. We also provide recommendations on how
to avoid each peril.

3http://ghtorrent.org/downloads.html

Peril I: A repository is not necessarily a project.

Pull requests as a distributed development model in gen-
eral, and as implemented by GitHub in particular, form a
new method for collaborating on distributed software devel-
opment. In the pull-based development model, the project’s
main repository is not writable by potential contributors.
Instead, these contributors fork (clone) the repository and
make their changes independent of each other. When a set
of changes is ready to be submitted to the main repository,
they create a pull request, which specifies a local branch to
be merged with a branch in the main repository. A member
of the project’s core team (a committer of the destination
repository) is then responsible to inspect the changes and
pull them to the project’s master branch. If changes are
considered unsatisfactory (e.g. as a result of a code review),
more changes may be requested; in that case, contributors
need to update their local branches with new commits.

As a consequence of this popular development model, we
can divide repositories into two types: base repositories (those
that are not forks) and forked repositories. The activity in
forked repositories is recorded independently from their as-
sociated base-repositories. When a commit is made and is
pulled into another repository via a GitHub pull-request,
this commit does not appear in the history of the recipient
repository; it only appears in the repository where the com-
mit orginated. Therefore, measuring the activity of a repos-
itory independently of its forked repositories will ignore the
activity of all of them as part of a single project.

For example, the Ruby on Rails project* has had 8,327
forks (8,275 forks were made directly from its base reposi-
tory, and the remaining are forks of forks). Of the 50k com-
mits in Rails git logs, GitHub reports only 34k commits
as having occurred in the Rails base repository (rails/rails),
and the remaining 16k as originating in its forks, plus an-
other 11k that are in its forks but have not been prop-
agated to the base repository. For example, the commit
fdicb1bd4dac. .. was found in the git repository of Rails.
However, according to GitHub it was created in arunagw/rails
and not in rails/rails. GitHub records that this commit was
merged into rails/rails via a pull-request with id 13502.

In the remaining of this paper, to properly account for all
the activity of a software development team, we aggregate
all the activity of the base repository and its forks. Thus we
use the term project to refer to a base repository and its
forks, and continue to use the term repository to denote a
GitHub repository (either a base repository or a fork).

Of the 6.8M public repositories in GitHub, 3.0M (44%) are
base repositories, and only .6M have been forked at least
once; thus these base repositories represent 3.0M different
projects. For the base repositories with at least one fork,
their number of forks is highly skewed: 80% have one fork
only and those with at most 3 forks account for 94%. How-
ever, there are some repositories that are heavily forked:
4,111 base repositories have been forked at least 100 times.
The most forked repo is octocat/Spoon-Knife, a GitHub ad-
ministered repository for users to test how forking works.

Peril Avoidance Strategy: To analyze a project hosted
on GitHub, one must consider the activity in both the base
repository and all associated forked repositories.

“http://rubyonrails.org with GitHub repo located at
https://github.com/rails/rails.

Peril Description

1 A repository is not necessarily a project.
I Most projects have very few commits.
IIT Most projects are inactive.

v A large portion of repositories are not for software development.
A\ Two thirds of projects (71.6% of repositories) are personal.
VI Only a fraction of projects use pull requests. And of those that use them, their use is very skewed.
VII If the commits in a pull-request are reworked (in response to comments) GitHub records only the
commits that are the result of the peer-review, not the original commits.
VIII Most pull requests appear as non-merged even if they are actually merged.
X Many active projects do not conduct all their software development in GitHub.

Table 1: Summary of the perils discovered in our study.

4.1 On the Activity of Projects

Activity in GitHub is mostly reflected in commits. Thus,
we can measure the activity of a project using two different
proxies: by its number of commits and by the period in
which its commits are made.

Peril II: Most projects have very few commits. |

1.00 4

0.50 -

0.25

Cummulative Proportion of Projects

0.00

40 80
Number of commits in Project

Figure 1: Cumulative ratio of projects with a given number
of commits. Most projects have very few commits. The
median number of commits per project is 6, and 90% of
projects have less than 50 commits.

Lorenz curve

0.8

0.4

Proportion of Commits

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Projects

Figure 2: Lorenz curve showing that very few projects ac-
count for most of the commits.

We measured the activity of commits per project (that is,
the union of all the commits in all the repositories of a given

project). Figure 1 shows the cumulative distribution, which
is very skewed, with a median number of commits of only 6
and a maximum of 427,650.

Although there is a large number of projects with little
activity, the most active projects account for the majority
of commits in GitHub. This is shown in the Lorenz curve in
Figure 2, that depicts the inequality of commits across the
population of projects. The most active 2.5% of projects
account for the same number of commits as the remaining
97.5% projects.

|Peril ITI: Most projects are inactive.

1.00 4

o °
@ N
3 o
T !

Cummulative Proportion or Projects
o c
X
1

0.00= U i i
0 20 40 60
Months since last commit

Figure 3: Cumulative ratio of active projects during the last
n months since Jan 9, 2014. The red line is the proportion of
projects created during the last n months. Approximately
46% of projects have been inactive in the last six months.
Only 13% of projects were active in the last month, and 1/3
of them were created during that period.

If most of the projects have few commits, it is likely that
they will also be inactive. Figure 3 shows the cumulative
ratio of projects that have had activity during the last n-
months. For instance, in the last 6 months (since July 9,
2013) only 54% of the projects were active. However, many
projects were created during this period (34% of all projects
in GitHub). Of the 1,958,769 projects that were created
before July 9, 2013, only 430,852 (22%) had at least one
commit in the last 6 months.

We can also measure project activity by comparing the
date of creation of its first repository in GitHub with the
date of the project’s last commit. This is shown in Figure 4.
In this regard, the median number of days a project is active
is 9.9 days. 32% of projects have only been active for one
day, suggesting that they are being used either for testing or
for archival purposes. Only 38% have been active for more

1.00 4

0.75 4

0.50

0.25

Cummulative Proportion of Projects

0.00

5(‘)0 1000 15‘00
Days of Activity Since Creation
Figure 4: Cumulative ratio of projects that had activity the
last n days since their creation. The median number of days
is 9.9, with 25% of projects at 100 or more days; only 32%
have activity less than one day after they have been created.

than one month. However, active projects continue to be
active: 25% of projects have activity for at least 100 days.

Peril Avoidance Strategy: To identify active projects,
consider the number of recent commits and pull requests.

4.2 On the Contents of Projects

Peril IV: A large portion of repositories are not for soft-
ware development.

The answers to the survey indicated that GitHub is used

for a number of purposes besides software development. Thirty-

four of our 240 respondents (14%) said they use GitHub
repositories for experimentation, hosting their websites, and
for academic/class projects. About 10% of respondants use
GitHub specifically for storage.

The purpose of a repository cannot be reliably and auto-
matically identifed from the project metadata. We used the
434 randomly selected repositories to determine if GitHub
repositories are used for software development or other pur-
poses. We reviewed the description and files of each repos-
itory and assigned it an appropriate label to mark its con-
tents, e.g “software library” or “class project”. Next we ag-
gregated the labels to exclusive categories of use. We de-
fined the purpose of repositories as “Software development”
if their contents were files that are used to build tools of any
sort. This type of use included repositories of libraries, plu-
gins, gems, frameworks, add ons, etc. “Experimental” was
the class of repositories containing examples, demos, sam-
ples, test code and tutorial examples. Websites and blogs
were classified under “Web”, and class and research projects
under “Academic”. The “Storage” category includes reposi-
tories that contain configuration files (including “.”” files) or
other documents and files for personal use, such as presenta-
tion slides, resumes and such. Repositories that gave a 404
error were marked as “No longer accessible”. Repositories
containing only a license file, a gitignore file, a README
file, or no files at all were placed in the category “Empty”.
The categories and the distribution of the 434 repositories
are shown in Table 2.

In particular, Web has become an important use of GitHub.
GitHub allows it users to host websites on its servers for

free®. Repositories using this service typically include github.io

®See http://pages.github.com/ for details.

Number of repositories
275 (63.4%)

Category of use
Software development

Experimental 53 (12.2%)
Storage 36 (8.3%)
Academic 31 (7.1%)
Web 25 (5.8%)
No longer accessible 11 (2.5%)
Empty 3 (0.7%)

Table 2: Number of repositories per type of use for the man-
ual inspection. These categories are mutually exclusive.

or github.com in their name. There are 73,745 projects with
such names, indicating the popularity of this free service.
Peril Avoidance Strategy: When selecting projects to
analyze, one should not rely only on the types of files within
their repositories to identify software development projects.
Researchers should review the description and README
file to ensure the project fits their research needs.

4.3 On the Users Involved with Projects

Peril V: Two thirds of projects (71.6% of repositories)
are personal.

Our survey asked respondents if they used GitHub pri-
marily for collaboration with others or personal use. 90 out
of 240 respondents (38%) answered that they use GitHub
primarily for their own projects and not with the intention
of collaborating with others. This response was a motivat-
ing factor to look into how much collaboration and social
interaction is taking place in GitHub projects.

In git, a commit records both its author and its commit-
ter. The committer is the person who has right access to a
repository. In GitHub, only 2.9% of commits have an au-
thor who is not its committer. We can evaluate if a project
is personal by counting the number of different committers
in all the repositories of the project.

The number of committers per project is very skewed:
67% of projects have only one committer, 87% have two or
less, and 93% three or less. As expected, repositories have
less committers than projects: 72% have one committer,
91% have 2 or less, and 95% 3 or less. The proportions are
the same for numbers of authors. The number of commit-
ters in our manual sample is similar: 65% hand only one
committer, 83% two or less, and 90% three or less.

These results indicate that, even though GitHub is tar-
geted towards social coding, most of the projects it hosts
are used by one person only. It is very likely that a large
proportion of projects with only one committer are for ex-
perimental or storage purposes.

Peril Avoidance Strategy: To avoid personal projects,
the number of committers should be considered.

4.4 On Pull Requests

Promise I: GitHub provides a valuable source of data
for the study of code reviews in the form of pull requests
and the commits they reference.

GitHub made the “Fork & Pull” development model popu-
lar, but pull requests are not unique to GitHub; In fact, git
includes the git-request-pull utility, which provides the
same functionality at the command line. GitHub and other

code hosting sites improved this process significantly by inte-
grating code reviews, discussions and issues, thus effectively
lowering the entry barrier for casual contributions. Com-
bined, forking and pull requests create a new development
model, where changes are pushed to the project maintainers
and go through code review by the community before being
integrated.

Peril VI: Only a fraction of projects use pull requests.
And of those that use them, their use is very skewed.

Across GitHub, the use of pull requests is not very widespread.

Pull requests are only useful between developers, thus, non-
existent in personal projects (67% of projects, see Peril V).
Of the 2.6 million projects that represent actual collabora-
tive projects (at least 2 committers) only 268,853 (10%) used
the pull request model at least once to incorporate commits;
the remaining 2.4 M projects would have used GitHub in a
shared repository model exclusively (with no incoming pull
requests) where all developers are granted commit access.
Moreover, the distribution of pull requests among projects
is highly skewed, as can be seen in Figure 5. The median
number of pull requests per project is 2 (44.7% of projects
have only 1, and 95% have 25 or less).

Nonetheless, there exist projects, such as the Gaia phone
application framework and the Homebrew package manager
that received more than 5,000 pull requests in 2013 alone. In
fact, a significant number of projects (~1700) received more
than 100 pull requests in 2013, which make a sample big
enough to deliver statistically significant results for many
research questions.

Peril Avoidance Strategy: When researching the code
review process on GitHub, the number of pull requests must
be considered when selecting appropriate projects.

4.4.1 Pull requests as a code review mechanism

A GitHub pull request contains a branch (local or in an-
other repository) from which a core team member should
pull commits. GitHub automatically discovers the commits
to be merged and presents them in the pull request. By de-
fault, pull requests are submitted to the base (“upstream” in
git parlance) repository for review. There are two types of
review comments:

e Discussion: Comments on the overall contents of the
pull request. Interested parties engage in technical dis-
cussion regarding the suitability of the pull request as
a whole.

e Code Review: Comments on specific sections of the
code. The reviewer makes notes on the commit diff,
usually of technical nature to pinpoint potential im-
provements.

Any GitHub user can participate in both types of review.
As a result of the inspection, pull requests can be updated
with new commits or the pull request can be rejected—either
as redundant, uninteresting or duplicate. The exact reason a
pull request is rejected is not recorded, but could be inferred
from the comments.

In case of an update, the contributor creates new commits
in the forked repository and, after the changes are pushed to
the branch to be merged, GitHub will automatically update
the commits in the pull request. The code review can then

be repeated on the refreshed commits. In our 434 project
dataset, 17% of the pull requests received an update after a
comment (discussion or code review). Care must be applied
when interpreting this result, as many comments, especially
in the discussion section, are merely expressions of gratitude
for the contributor’s work rather than proper code review.

The discussion around a pull request is usually brief; 80%
of the pull requests have less than 3 comments (both code re-
view and discussion). Moreover, the number of participants
in the code review ranges between 0 and 19, with 80% of the
pull requests having less that 2 participants. The number of
commits examined per peer review is less than 4 in 80% of
the pull requests. The numbers are comparable with other
work in code review [23, 22, 2], which suggests that the peer
review process may have more fundamental underpinnings
yet to be explored. The GitHub data may then be a very
good source of quantitative data for peer review, due to ho-
mogenization across various project repositories, provided
the following shortcomings are taken into consideration.

It is important to note that code reviews in pull requests
are in many cases implicit and therefore not observable. For
example, many pull requests (46% in our 434 project sam-
ple) receive no code comments and no discussion, while they
are still merged. It is usually safe to expect that the devel-
oper that did the merge did inspect the pull request before
merging it (unless it is project policy to accept any pull re-
quest without reviewing).

Peril VII: If the commits in a pull-request are reworked
(in response to comments) GitHub records only the com-
mits that are the result of the peer-review, not the origi-
nal commits.

Another shortcoming of using GitHub data for peer re-
view research is the fact that the set of commits that were
reviewed might not be readily observable—and might require
further processing to recover them. It is common in projects
to require a commit squash (merging all different commits
into a single one) before the set of commits is merged with
the main repository. While GitHub does record the inter-
mediate commits, it does not report them through its API as
part of the pull request. Moreover, the original commits are
deleted if the source repository is deleted. This means that
at the time of analysis, the researcher can only observe the
latest commit, which is the outcome of the review process.

Peril Avoidance Strategy: To perform analysis on the
full set of commits involved in a code review, researchers
must not rely on the commits reported by GitHub.

Peril VIII: Most pull requests appear as non-merged
even if they are actually merged.

When code review is finished and a pull request is deemed
satisfactory, the pull request can be merged. The versatility
of git and GitHub enables at least three merging strategies:

e Through GitHub facilities, using the merge button

e Using git, by merging the main repository branch and
the pull request branch. A variation of this merge
strategy is cherry-picking, where only hand selected
commits from the pull request branch are merged to
the main branch.

e By creating a textual patch between the pull request
and main repository branches and applying to the mas-
ter branch. This is also known as commit squashing.

Lorenz curve

0.8

0.4

Proportion of Pull Requests

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Projects

Number of projects

100
Number of pull requests (log)

Figure 5: Lorenz curve for the number of pull requests per project (left) and the corresponding histogram (right). The top
1.6% of projects use 50% of the total pull requests. These plots only include projects with at least one pull request.

The merge strategies presented above differ in the amount
of history (commit order) and authorship information pre-
served. Specifically, merging through either git or GitHub
preserves full historical information—except in the case of
cherry-picking where only authorship is preserved. A patch-
based merge does not maintain authorship or history.

Moreover, GitHub can only detect and report merges hap-
pening through its pull request merge facilities. Therefore,
if a project’s policy is to only merge using git, all pull re-
quests will be recorded as unmerged in GitHub. In practice
however, most projects use a combination of GitHub and
git merge strategies.

To streamline the closing of pull requests and issues, GitHub

provides a way to close them via the contents of the log of
a commit. For examples if a commit log contains the string
Fizes #8321 and 321 is a pull request or an issue, then this
pull request or issue is closed. Fizes is one of nine key-
words that can be used®. For example, the project home-
brew/homebrew has had 13,164 pull requests opened, 12,966
closed, but only 129 merged. However, its logs show that
6,947 pull requests (48% of total) and 2,013 issues (19%)
have been closed from its commit logs. This shows that, at
least in some projects, one cannot rely on GitHub’s Merged
attribute of a pull request.

To identify merged pull requests that are merged outside
GitHub, we have developed a set of heuristics, based on con-
ventions advocated by GitHub. The most important are pre-
sented below (for a full description and evaluation of these
heuristics see [10]).

H, At least one of the commits in the pull request appears
in the target project’s master branch.

Hy A commit closes the pull request using its log (e.g. if the
log of the commit includes one of the closing keywords,
see above) and that commit appears in the project’s
master branch. This means that the pull request com-
mits were squashed onto one commit and this commit
was merged.

SFor the entire list visit https://help.github.com/
articles/closing-issues-via-commit-messages.

Hs One of the last 3 (in order of appearance) discussion
comments contain a commit unique identifier, this com-
mit appears in the project’s master branch and the cor-
responding comment can be matched by the following
regular expression:

(?7:merglappl|pull |push|integrat) (?:ingl|i%ed)

H, The latest comment prior to closing the pull request

matches the regular expression above.

Across GitHub, 1,145,099 of 2,552,868 or 44% of the pull
requests are reported as merged. On the 434 project sample,
only 37% of the pull requests were merged using GitHub fa-
cilities. By applying the heuristics presented above, an extra
42% (Hy: 32%, Ha: 1%, Hs: 5%, Ha: 4%) of pull requests
are identified as merged, while 19% cannot be classified. In
other work [10], where we used a carefully selected sample of
297 projects that heavily relied on pull requests, 65% of the
pull requests where merged with GitHub facilities, while the
heuristics identified another 19% (H1: 7%, H2: 1%, Hs: 3%,
Hy: 7%) as merged. In yet another dataset [12], where we
include almost 1000 projects that use pull requests, 58% of
the pull requests are merged using GitHub’s facilities while
18% are identified as unmerged. The remaining 24% are
identified as merged using the heuristics (H1: 11%, Ha: 3%,
Hs: 3%, Ha: %) .

The heuristics proposed above are not complete, i.e. they
may not identify all merged pull requests, nor sound, i.e.
they might lead to false positives (especially Hy). In other
work [10], we manually inspected 350 pull requests that
where not identified as merged and found that 65 of them
where actually merged. This means the actual percentage
of merged pull requests may be even higher. The fact re-
mains, however, that only a fraction of merges are reported
through GitHub, while heuristics can improve merge detec-
tion, in some cases dramatically.

Peril Avoidance Strategy: Do not rely on GitHub’s merge
status, rather consider using heuristics like the ones de-
scribed above to improve merge detection when analyzing
merged pull requests.

4.4.2 Pull requests as an issue resolution mechanism

Promise II: The interlinking of developers, pull re-
quests, issues and commits provides a comprehensive
view of software development activities.

Issues and pull requests are dual on GitHub; for each
opened pull request, an issue is opened automatically. Com-
mits can also be attached to issues to convert them to pull
requests (albeit with external tools). The issue part of the
pull request is used to keep track of the discussion com-
ments. Developers are encouraged to reference issues or pull
requests in commit messages or in issue comments, while
GitHub automatically extracts such references and presents
them as part of the discussion flow. Moreover, both issues
and pull requests can be linked to repository-specific mile-
stones, which helps projects to track progress.

The fact that issues and pull requests are so tightly in-
tegrated opens a window of opportunity for very detailed
studies of developer activity. For example, a researcher can
track the resolution of an issue from the reporting phase,
through the modifications of the source code, the code re-
view and the final integration of the fix. As user actions
always affect issues and pull requests, one could also inves-
tigate the formation of user clusters across specific types of
activities, which would reveal emergent user organizations
(teams or hierarchies). In addition, the interlinking of is-
sues, pull requests and commits creates an intricate web of
actions that could be analyzed using social network tech-
niques to discover interesting collaboration patterns.

Despite the wealth of interlinked data, there are two short-
comings. First, repository mining for issue tracking repos-
itories is greatly enhanced, if records are consistent across
projects. GitHub’s issue tracker only requires a textual de-
scription to open an issue. Issue property annotations (e.g.
affected versions, severity levels) are delegated to reposi-
tory specific labels. This means that characteristics of is-
sues cannot be examined uniformly across projects. Second,
across GitHub, only a small fraction (12%) of repositories
that where active in 2013 use both pull requests and issues.
Many interesting repositories, especially those that migrated
to GitHub, have an external issue database.

4.5 On the Use of Non-GitHub Infrastructure

Peril IX: Many active projects do not conduct all their
software development in GitHub.

A difficult question to answer is if the data in GitHub rep-
resents most (if not all) the visible activity of a development
project. In other words, do projects in GitHub use other
forms of collaboration in their process?

There were indications in the survey responses pointing
towards project activity talking place outside GitHub. As
one of the respondents put it:

“Any serious project would have to have some
separate infrastructure - mailing lists, forums, irc
channels and their archives, build farms, etc. [...]
Thus while GitHub and all other project hosts are
used for collaboration, they are not and can not
be a complete solution.”

This motivated us to look into whether repositories host
project code and other content on GitHub, but perform de-
velopment and collaboration activities elsewhere.

There are several ways we could evaluate this. One of
them is to determine if all the committers and authors are
users in GitHub. If a commit is made by someone who is
not a GitHub user, then GitHub records an email address as
its committer rather than a GitHub user. In GitHub, 23%
of committers or authors of a commit are not GitHub users.
The likely reason for this result is that some git operations
from non-users have been merged outside GitHub, and it
is exacerbated by mirrors set up to track activity in other
repositories outside GitHub.

Mirrors are replicas of the code hosted in another reposi-
tory. In some cases, a mirror project clearly indicates that
GitHub is not to be used for submission of code. For ex-
ample, the project postgres-zc/postgres-zc states in its de-
scription “Mirror of the official Postgres-XC GIT repository.
Note that this is just a *mirror* - we don’t accept pull re-
quests on github...”. Nonetheless, it is composed of 15 dif-
ferent repositories.

‘We identified many repositories which are mirrors. GitHub
itself has setup mirrors of many popular projects”, and these
account for 91 GitHub repositories. Usually the descrip-
tion of a repository states if it is a mirror. For exam-
ple, the description of repository abishekk92/voipmonitor
reads “A mirror of the SVN repo at https://voipmonitor.
svn.sourceforge.net/...”. Descriptions can also indicate
that the mirror is automatic and note its frequency of up-
date (e.g. “Mirror of official clang git repository located
at http://llvm.org/git/clang. Updated hourly.”). The case-
insensitive regular expression mirror of . *repo|git mirror of
finds 1,851 projects (12,709 repositories) as mirrors of other
repositories outside GitHub. We examined 100 of these
repositories and found that all of them were external mir-
rors. We identified many mirrors from SourceForge reposi-
tories and Bitbucket (a competing git hosting repository).
We have summarized these results in Table 3.

The implications of these results is that at least part of
the development of a project happens in GitHub, but not
necessarily all.

The development within a mirror in GitHub of an external
repository implies that some members of a project are using
GitHub for one of two purposes: (1) to develop their work
and later submit it to the external repository; for example,
the project Linuz-Samsung located at kgene/linuz-samsung
(which, according to GitHub has no forks and is not a fork
itself) contributes commits regularly to the linux kernel (we
have observed 123 commits in Linus Torvald’s repository
that originated here®). (2) to develop customizations of the
original project for a different purposes, independent of the
original development team; in this category we find multi-
ple repositories to develop variants of the kernel, such as
2.6.35 Kernel for Samsung Galazxy S series Phones, or Ker-
nel 2.6.35.7 modified for Dropad A8T and similar.

Interestingly, some mirrors are from repositories that use
other version control systems, such as Mercurial, Subver-
sion or cvs. This implies that, in some cases, contribu-
tors prefer git over these other version control systems to
do their daily work, but this needs further research to be

"https://github.com/mirrors
8We currently track all sources of commits in the Linux Ker-
nel: hydraladder.turingmachine.org

Set Used regular expresion No. Projets No. Repos
Mirror Of marror of . *repo|git mirror of 1,851 12,709
Subsets

Located at Sourceforge sourceforge|sf\.net 117 511
Located at Bitbucket bitbucket 91 249
From subversion repos \ W(svn|subversion)\ W 622 4966
From mercurial repos \ W(mercuriallhg)\ W 113 590
From CVS repos \ Wews\ W 55 212

Table 3: Repositories hosted on GitHub labelled as mirrors. GitHub hosts mirrors from many sources, including SourceForge
and Bitbucket. The bottom section shows subsets of the top section. Regular expressions are case-insensitive.

confirmed. Similarly, many projects use their own defect
tracking systems to handle issues. For example, Mozilla’s
Gala (mozilla-b2g/gaia), one of the most active projects
in GitHub has disabled issues in GitHub, and expects users
to file issues at bugzilla.mozilla.org.

We conducted a small survey in which we asked respon-
dents to tell us whether they used GitHub’s or external tools
for a set of tasks, such as opening and merging pull requests,
tracking issues, or for communication. We sent an online
questionnaire to 100 GitHub users via email. Of those, 27
responded (27% response rate). Even though 52% said they
use GitHub to open pull requests and 60% said they use the
site to accept and merge code changes, only 24% said they
use GitHub for code reviews. 32% said they use an exter-
nal tool for reviews. This further validates that all software
development activities do not occur within GitHub itself for
many projects.

Peril Avoidance Strategy: Avoid projects that have a
high number of committers who are not registered GitHub
users and projects which explicitly state that they are mir-
rors in their description.

S. THREATS TO VALIDITY

Our study has several threats to validity. The exploratory
survey had a relatively low number of participants from a
biased and self-selected population. While it motivated us
to investigate the perils in more detail, we can draw no fur-
ther conclusions from it. Our manual exploration of 434
projects illustrates the variety of uses of GitHub, but we do
not generalize our results to other projects.

The reliability of this study depends on the reliability of
the GHTorrent dataset. GHTorrent is a best-effort approach
to collect data from the GitHubAp1. Previous work [9] has
analyzed the reasons why GHTorrent cannot be a full replica
of GitHub. The accuracy of the heuristics to detect pull
requests merged outside GitHub is detailed in [12].

To ameliorate these threats, we provide a replication pack-
age for our study. The GHTorrent data is publicly available®.
The results of our manual analysis as well as other data and
scripts used in this work are available separately in the repli-
cation package.

The replication package of this paper is available at http:
//turingmachine.org/gitMiningPerils2014.

“http://ghtorrent.org/downloads.html

6. DISCUSSION & CONCLUSIONS

The story told by mined data is not always the whole
story. This has been a finding in studies that assess the qual-
ity and completeness of data mined from project archives,
but also in rare cases where the mined data is compared to
qualitative evidence [1]. In this empirical study, we set out
to critically look at the publicly available data coming from
GitHub and assess whether it is suitable as a data source
for software engineering studies. The data can be readily
used to report on several project properties. If a researcher
seeks to see trends of programming language use, type of
tools built, number and size of contributions and so on, the
publicly available data can give solid information about the
descriptive characteristics of the GitHub environment.

Using GitHub to synthesize information to draw conclu-
sions about more abstract constructs though needs some
consideration. We presented evidence of how assumptions
about repository activity and contents as well as develop-
ment and collaboration practices can be challenged. We
recommend that researchers interested in performing stud-
ies using GitHub data first assess its fit and then target the
data that can really provide information towards answering
their research questions.

Perhaps the biggest threat to validity to any study that
uses GitHub data indiscriminately is the bias towards per-
sonal use. While many repositories are being actively devel-
oped on GitHub, most of them are simply personal, inactive
repositories. Therefore, one of the most important ques-
tions to consider when using GitHub data is what type of
repository one’s study needs and to then sample suitable
repositories accordingly.

While we believe there to be a need for research on the
identification and automatic classification of GitHub projects
according to their purpose, we suggest a rule of thumb. In
our own experience, the best way to identify active software
development projects is to consider projects that, during a
recent time period, had a good balance of number of com-
mits and pull requests, and have a number of committers
and authors larger than 2. The number of issues can also be
used as an indicator, but not all active projects use GitHub’s
issue tracker, such as several Mozilla projects'®. Outliers,
especially those with a very large number of commits per
committer, point towards automatic bots.

When looking at any specific project, researchers need
to keep in mind that other repositories might exist in the
project—some of them working towards a common goal and
some possibly being independent versions that will never

Ohttps://github.com/mozilla

contribute back. Based on our work, we believe a simple
way to determine whether a repository actively works with
another might be to identify if commits have flown from one
to the other in both directions, but this strategy requires
further validation.

GitHub is a remarkable resource. It continues to grow
at an accelerated rate and its users are finding innovative
ways to exploit it. Nevertheless software development is
flourishing in the open within GitHub’s infrastructure and
will continue to be an attractive source to mine for research
in software engineering.

7. REFERENCES

[1] J. Aranda and G. Venolia. The secret life of bugs:
Going past the errors and omissions in software
repositories. In Proc. of the 31st Int. Conf. on
Software Engineering, pages 298-308, 2009.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. Int. Conf.
on Soft. Eng.p, ICSE ’13, pages 712-721, 2013.

[3] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein. The missing links: bugs and bug-fix
commits. In Proc. of the 18th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 97-106, 2010.

[4] A. Begel, J. Bosch, and M.-A. Storey. Social
networking meets software development: Perspectives
from github, msdn, stack exchange, and topcoder.
Software, IEEE, 30(1):52-66, 2013.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy,

A. Bernstein, and et al. Fair and balanced?: bias in
bug-fix datasets. In Proc. of the the Tth European
Software Engineering Conference and the ACM
SIGSOFT Symposium On The Foundations Of
Software Engineering, pages 121-130, 2009.

[6] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton,

D. M. German, and P. Devanbu. The promises and
perils of mining git. In Mining Software Repositories,
2009. MSR’09. 6th IEEE International Working
Conference on, pages 1-10. IEEE, 2009.

[7] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in github: transparency and collaboration in an
open software repository. In Proc. of the ACM 2012
conference on Computer Supported Cooperative Work,
pages 1277-1286, 2012.

[8] K. Finley. Github has surpassed sourceforge and
google code in popularity. http://readwrite.com/
2011/06/02/github-has-passed-sourceforge, 2011.

[9] G. Gousios. The GHTorrent dataset and tool suite. In
Proceedings of the 10th Conference on Mining
Software Repositories, MSR 13, pages 233-236, 2013.

[10] G. Gousios, M. Pinzger, and A. van Deursen. An
exploration of the pull-based software development
model. In ICSE ’14: Proc. of the 36th Int. Conf. on
Software Engineering, June 2014. To appear.

[11] G. Gousios and D. Spinellis. GHTorrent: GitHub’s
data from a firehose. In MSR ’12: Proc. of the 9th
Working Conf. on Mining Software Repositories,
pages 12-21, jun 2012.

[12] G. Gousios and A. Zaidman. A dataset for pull request
research. In Submitted to MSR ’14 — data track.

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

24]

[25]

[26]

[27]

[28]

1. Grigorik. The github archive.
http://wuw.githubarchive.org/, 2012.

J. Howison and K. Crowston. The perils and pitfalls of
mining sourceforge. In Proc. of the Int. Workshop on
Mining Software Repositories (MSR 2004), pages
7-11, 2004.

E. Kalliamvakou, D. Damian, L. Singer, and D. M.
German. The code-centric collaboration perspective:
Evidence from github. Technical Report DCS-352-1IR,
University of Victoria, February 2014.

J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: activity traces
and personal profiles in github. In Proc. Computer
Supported Cooperative Work, pages 117-128, 2013.

N. McDonald and S. Goggins. Performance and
participation in open source software on github. In
CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pages 139-144. ACM, 2013.

T. H. Nguyen, B. Adams, and A. E. Hassan. A case
study of bias in bug-fix datasets. In Reverse
Engineering (WCRE), 2010 17th Working Conference
on, pages 259-268. IEEE, 2010.

R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of
testing culture on a social coding site. In Proc. Int.
Conf. on Soft. Eng., ICSE 13, pages 112-121, 2013.
F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu.
Sample size vs. bias in defect prediction. In Proc. of
the 2018 9th Joint Meeting on Foundations of
Software Engineering, pages 147-157, 2013.

A. Rainer and S. Gale. Evaluating the quality and
quantity of data on open source software projects. In
Proceedings of the First International Conference on
Open Source Systems (OSS 2005), pages 29-36, 2005.
P. C. Rigby and C. Bird. Convergent contemporary
software peer review practices. In Proc. of the 2013
9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 202-212, 2013.
P. C. Rigby, D. M. German, and M.-A. Storey. Open
source software peer review practices: a case study of
the Apache server. In Proce. of the 30th Int. Conf. on
Software engineering, ICSE 08, pages 541-550, 2008.
Y. Takhteyev and A. Hilts. Investigating the
geography of open source software through github.
http://takhteyev.org/papers/
Takhteyev-Hilts-2010.pdf, 2010.

F. Thung, T. Bissyande, D. Lo, and L. Jiang. Network
structure of social coding in github. In 17th European
Conference on Software Maintenance and
Reengineering (CSMR), pages 323-326, 2013.

J. T. Tsay, L. Dabbish, and J. Herbsleb. Social media
and success in open source projects. In Proceedings of
the ACM 2012 conference on Computer Supported
Cooperative Work Companion, pages 223-226, 2012.
P. Wagstrom, C. Jergensen, and A. Sarma. A network
of rails: a graph dataset of ruby on rails and associated
projects. In Proc. of the 10th Int. Work. Conf. on
Mining Software Repositories, pages 229-232, 2013.
D. Weiss. Quantitative analysis of open source
projects on sourceforge. In Proc. of the First Int.
Conf. on Open Source Systems (OSS 2005), pages
140-147, 2005.

