This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:

https://doi.org/10.1109/MSR.2015.26

Ecosystems 1in GitHub and a Method for Ecosystem
Identification using Reference Coupling

Kelly Blincoe, Francis Harrison and Daniela Damian
Software Engineering Global InterAction Lab
University of Victoria
Victoria, BC, Canada
Email: kblincoe@acm.org, francish@uvic.ca, danielad@uvic.ca

Abstract—Software projects are not developed in isolation.
Recent research has shifted to studying software ecosystems,
communities of projects that depend on each other and are
developed together. However, identifying technical dependencies
at the ecosystem level can be challenging. In this paper, we
propose a new method, known as reference coupling, for detecting
technical dependencies between projects. The method establishes
dependencies through user-specified cross-references between
projects. We use our method to identify ecosystems in GitHub-
hosted projects, and we identify several characteristics of the
identified ecosystems. We find that most ecosystems are centered
around one project and are interconnected with other ecosystems.
The predominant type of ecosystems are those that develop
tools to support software development. We also found that the
project owners’ social behaviour aligns well with the technical
dependencies within the ecosystem, but project contributors’
social behaviour does not align with these dependencies. We
conclude with a discussion on future research that is enabled
by our reference coupling method.

I. INTRODUCTION

Software ecosystems, defined as “a collection of software
projects which are developed and which co-evolve together in
the same environment” [1], have become an area of interest
in recent research. Since software projects are not typically
developed in isolation, studying a software project without
examining its surrounding ecosystem is incomplete. Thus,
analysis of software ecosystems has emerged as a novel new
research area in recent years.

Projects in an ecosystem depend on one another [1]. The
technical dependencies that exist between projects define the
structure of the ecosystem [2]. Thus, identifying technical
dependencies between software projects is a useful way to
identify ecosystems. However, identifying technical depen-
dencies between projects on a large scale has proven to be
difficult [3]. Existing static dependency analysis approaches
do not identify dependencies across projects. Methods for
extracting dependencies from a project’s source code have
been proposed [2], [3], [4], but they require large amounts
of memory and computation time [5]. Thus, they cannot be
employed across a large set of projects. Other methods [1], [6],
[7], [8], [9] avoid analyzing source code by obtaining technical
dependency information from a project’s configuration files,
but this information is not always available or accurate.
Without a way to establish dependencies between projects,
researchers cannot fully understand a project’s ecosystem.

To identify technical dependencies, we turn to cross-
references on GitHub, a social code hosting service. GitHub
encourages collaboration between users both within and across
projects through its transparent interface and built-in social
features. With GitHub Flavored Markdown!, when a user
cross-references another repository in a pull request, issue or
commit comment a link to the other repository is automati-
cally created. This introduces a way for developers to bring
awareness across repositories. In this paper, we investigate
whether these cross-references indicate a technical dependency
between the two repositories by examining a set of these
cross-references. We found that the cross-references are a
good conceptualization of technical dependencies between
projects, and we highlight several common types of technical
dependencies seen in these cross-reference comments. We call
our method for identifying technical dependencies reference
coupling.

With an ability to identify technical dependencies between
a large number of projects, ecosystems of densely connected
projects can be identified. We use a popular community
detection algorithm [10] to identify ecosystems across all
GitHub-hosted projects. Ecosystem identification is important
to help developers understand how their tasks fit into the big
picture and who they need to coordinate their changes with
at the ecosystem level [1], [11]. For open source ecosystems,
it is also important for attracting new contributors [1] since
project’s within an ecosystem are more likely to attract at-
tention. In this paper, we analyze the ecosystems identified
using our methods on GitHub-hosted projects and identify a
set of properties that characterize the ecosystems. Conway
Law. To complement our focus on technical dependencies
within ecosystems, we also investigate the social behaviour
of project owners/contributors in relation to these ecosystems.
Our analysis was guided by the following research questions:

RQI: Do cross-references to other projects in issue, pull
request, and commit comments indicate the existence of a
technical dependency between the two projects?

RQ?2: What ecosystems exist across GitHub-hosted projects
and what is their structure?

RQ3: Do the project owners’ and contributors’ social
behaviours align with the technical dependencies?

Uhttps://help.github.com/articles/github-flavored-markdown/

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The rest of the paper is structured as follows: Our research
methods and results are presented in Section II for RQI,
Section III for RQ2, and Section IV for RQ3. In Section V, we
summarize our findings and discuss open questions for future
research. Section VI provides an overview of related work in
software ecosystems and dependency conceptualizations. We
provide a brief conclusion in Section VII.

II. REFERENCE COUPLING

RQI: Do cross-references to other projects in issue, pull
request, and commit comments indicate the existence of a
technical dependency between the two projects?

A. Research Method

We studied the cross-references made to other repositories in
comments on issues, pull requests and commits. We obtained
data from the GHTorrent [12] project, which provides a mirror
of the GitHub API data. GHTorrent obtains its data by mon-
itoring and recording GitHub events as they occur. We used
the MySQL 2014-04-02 dataset to obtain information on the
projects. This dataset contains data on 2,399,526 repositories,
3,426,046 users, and their events - including commits, issues,
pull requests and comments. Since the MySQL database con-
tains only the first 256 characters of comments, we obtained all
comments from GHTorrent’s main MongoDB server in May
2014. The MongoDB contains the full text of all comments.

Cross-references follow the pattern User/Project#Num (e.g.
rails/rails#123) or User/Project@SHA. We performed pattern
matching on all comments in the GHTorrent database to iden-
tify these cross-references. We define a project as a repository
and all of its forks as recommended by [13]. Since we are
interested only in relationships between projects, we filtered
the cross-references to ignore those where one project is a
fork of the other project. We identified 89,784 comments with
a cross-reference to another project.

To answer RQI1 and verify that these cross-references are
a valid conceptualization of dependencies, we examined 198
random comments which cross-referenced another project. We
classified a comment as a technical dependency if the comment
described a work dependency, either direct or indirect, between
the two projects.

We examined the comments classified as technical depen-
dencies to identify the types of dependencies that exist through
these cross-reference relationships. We used a grounded theory
approach to identify types of dependencies [14]. We conducted
open coding on the cross references, grouping conceptu-
ally similar comments into categories. We stopped when we
achieved saturation after 49 comments. One person, familiar
with software development practices, performed the qualitative
coding.

B. Results

Most of the cross-reference comments (90%) were classified
as technical dependencies. The remaining 10% of comments
did not contain enough details for proper classification. Many

of these comments simply referenced another repository using
the pattern as described above with no additional text provided.

We identified two main types of dependencies:

Dependency between the two projects. The most common
type of dependency found was a direct technical dependency
between the two projects. An example of a direct technical
dependency is when an issue created in one project depends
on a fix/update in another project. Another example is when a
project needs to be updated based on changes made in another
project.

Below we provide three examples of cross-reference com-
ments that are indicative of direct technical dependencies
between the two projects. Project names follow the pattern
user/repository where user is the owner’s GitHub login and
repository is the name of the project repository.

Issue #449 on the sensu/sensu project describes an issue
that is the result of the interaction between the sensu/sensu
code and the ruby-amqp/amg-client library. The comment
references a commit on the ruby-amqgp/amg-client that fixes
the issue.

“I verified that the problem is still the one referenced
in ruby-amgp/amq-client#14. This fix is not merged
with amg-client’s ‘0.9.x-stable’ branch. This is why
I am still hitting it. The commit ruby-amgp/amgq-
client@60f1c59 is the fix but it resides only in the
master branch.”

Issue #8 on the tsujigiri/axiom project notes that changes
must be made to the code base to allow an upgrade to the
latest release of the ninenines/cowboy project.

“Upgrade Cowboy: After Cowboy 0.6.1 Cowboy'’s
http_req record was made opaque and can not be
used directly anymore. I didn’t really have the time
yet to look into it, but it looks like we just need
to remove all references to the record from the
documentation and add directions on how to access
cowboy_req:req() via the cowboy_req functions. See
ninenines/cowboy#266 and ninenines/cowboy#267.”

Commit 81bbbec21c04b6392f6892f7735243387d295337
on the joyent/node project closes isaacs/node-graceful-fs issue
#6, which describes a problem in the isaacs/node-graceful-fs
code stemming from the use of joyent/node. GitHub allows
automatic closure of issues through commit comments, even
when the commit is in a different repository?.

“This fixes isaacs/node-graceful-fs#6.”

Both projects depend on a third project. We also identified
some cases where the comments describe a dependency on
a third project that is not cross-referenced. For example,
everzet/capifony’s pull request #376 cross-references com-
poser/composer’s issue #1453, but the problem stems from
the use of the symfony/symfony project. After identifying the
source of the problem, a new issue (#411) is created on the

Zhttps://github.com/blog/1439-closing-issues-across-repositories

everzet/capifony project that identifies the changes that need
to be made to the way the symfony environment is set so that
the composer/composer code executes correctly.

“As described in #376 capifony should execute
composer with the right symfony environment set.
Currently, with ——no-scripts option removed in
#376, composer is always executing symfony scripts
with default dev environment.”

Cross-references to other repositories appearing in GitHub
comments, therefore, do indicate the existence of a technical
dependency. We call this conceptualization of dependencies
between projects reference coupling.

III. GITHUB ECOSYSTEMS

RQ2: What ecosystems exist across GitHub-hosted projects
and what is their structure?

A. Research Method

We constructed a network of the technical dependency rela-
tionships established through reference coupling as described
in Section II. The Dependency Network is defined as a directed
graph G4 =< V, E >. The set of vertices, denoted by V/, is
all GitHub projects involved in at least one cross-reference.
There are 18,533 projects in this set. The set of edges, denoted
by E, is a set of node pairs E(V) = {(z,y)lz,y € V}.
If the project represented by node x; cross-referenced the
project represented by node y;, there is a directed edge from
z; to y;. The weight of each edge is the count of cross-
references for the pair of projects. We filtered the edges to only
consider dependencies between nodes if the pair of projects
have been cross-referenced two or more times to capture only
the stronger dependencies.

To identify ecosystems across projects hosted on GitHub,
we used the popular Louvain community detection
method [10] on the Dependency Network. The Louvain
method is a greedy optimization method that aims to partition
a network into communities of densely connected nodes and
optimize the modularity of the network. Modularity is defined
as “the number of edges falling within [communities] minus
the expected number in an equivalent network with edges
placed at random [15].” The Louvain method is comprised
of two steps. It first optimizes modularity locally by looking
for small communities. Then it aggregates the nodes in
each small community and builds a new network with these
aggregated nodes. It iterates on these two steps until the
modularity is maximized. The Louvain method outperforms
all other community detection methods in terms of both the
modularity that is achieved and the computation time [10].

High modularity scores indicate that there are dense con-
nections within the communities but sparse connections across
communities, showing that an optimal solution has been found.
When high modularity scores are obtained, the communities
have significant real-world meaning [10]. In our network,
the identified communities represent sets of projects densely
connected by technical dependencies. Since dependencies that

Fig. 1.

All GitHub projects with cross-references. The largest connected
component (or giant component) is easily identified as the well-connected
subgraph appearing in the center of the graph.

exist between projects define the structure of an ecosystem [2],
these communities represent software ecosystems.

To identify properties of the identified ecosystems, we
analyzed visualizations of the Dependency Network. We used
the Gephi [16] graphing tool to create visualizations. We
inspected visualizations of the network to visually identify
patterns. We triangulated the patterns visible in the network
with statistics of the network. We also examined the type of
projects prominent in each ecosystem.

B. Results

Of the 18,533 projects in the Dependency Network, 10,484
(57%) are a part of the largest connected component (com-
monly referred to as the giant component [17]), which is
the largest subgraph in which every node is connected to
every other node by some path. The connected components
isolated from the giant component are primarily comprised of
same owner communities in which all nodes in the connected
component are projects owned by the same GitHub user
or organization. For example, the second largest connected
component is comprised of 65 nodes, of which, all but two
are owned by GitHub user deathcap®. Figure 1 shows the full
Dependency Network, though for visibility we only display
nodes with degree of 3 or greater. As visible on the graph, most
of the nodes isolated from the giant component are connected
to only a small number of nodes. In fact, 75% of nodes not
in the giant component are connected to only one other node.

Since we are most interested in studying the popular GitHub
ecosystems, we focus our analysis on the interconnected part

3https://github.com/deathcap

RO S -
miS=boilerptate
h?bPl 53’ ~

ht
6

e BrnEiaots O
—0F | (.
fq Y
suhstukln@-bmwsri \
et te -\

Fig. 2. Ecosystems in the largest connected component of GitHub-hosted projects. Project names follow the pattern user/repository where user is the owner’s

GitHub login and repository is the name of the project repository.

of the network or the giant component. Figure 2 shows the gi-
ant component. The color of the nodes represent communities
as detected by the Louvain method. We obtained a modularity
score of 0.913 (out of a possible range of 0 to 1). This high
modularity score indicates that the detected communities are
much more tightly connected by technical dependencies than
would appear in a random graph.

There were 43 ecosystems identified in this network. Nodes
are sized according to their authority to display the nodes that
are more prominent in each ecosystem. When a node has a

high number of cross-reference relationships pointing to it, it
has a high authority value [18]. Table I shows the most well-
connected project node (highest Authority value) in each of
the ecosystems.

C. Properties of GitHub Ecosystems

Ecosystems revolve around one central project. As depicted
in Figure 2, each ecosystem appears to revolve around one
main project. In Table I, the most well-connected project
node in each ecosystem is listed along with a description

TABLE I
ECOSYSTEMS IN GITHUB. DETAILS OF THE MOST WELL-CONNECTED NODE IN EACH ECOSYSTEM.

Project Description Stars | Ecosystem Size | Degree (in,out)
joyent/node Framework 39,373 10.08% 69 (53,16)
symfony/symfony Framework 10,985 8.46% 93 (53,40)
rails/rails Framework 29,744 7.92% 93 (65,28)
JuliaLang/julia Programming Language 5,531 6.74% 51 (35,16)
rubygems/rubygems Package Manager 1,304 6.04% 22 (14,8)
mxcl/homebrew Package Manager 13,723 3.94% 48 (21,27)
zendframework/zf2 Framework 5,841 3.88% 72 (65,7)
travis-ci/travis-ci Development Tool (Continuous Integration Platform) 3,693 3.50% 70 (54,16)
wet-boew/wet-boew Framework 688 3.34% 19 (15,4)
twbs/bootstrap Framework 41,828 3.29% 9 (9,0)
dbashford/mimosa Development Tool (Browser development) 472 2.43% 25 (20,5)
h5bp/html5-boilerplate Framework 31,926 2.37% 19 (15,4)
mitchellh/vagrant Framework 9,274 2.10% 23 (15,8)
libgit2/libgit2 Library 5,161 2.05% 20 (11,9)
Behat/Mink Development Tool (Testing) 673 1.99% 13 (9,4)
OCamlIPro/opam Package Manager 118 1.89% 9 8,1
basho/riak Database 2,520 1.83% 27 (18,9)
Polymer/polymer Library 8,787 1.83% 16 (11,5)
mapnik/mapnik Development Tool (Toolkit for developing mapping applications) 1,003 1.78% 20 (12,8)
mozilla/rust Programming language 5,604 1.78% 36 (29,7)
alphagov/static Other (GOV.UK static files/resources) 67 1.73% 13 (10,3)
adobe/brackets Development Tool (code editor) 23,921 1.46% 26 (16,10)
CocoaPods/CocoaPods Development Tool (dependency manager) 5,711 1.46% 14 (9,5)
yeoman/yeoman Development Tool (web development tools) 7,246 1.46% 18 (13,5)
angular/angular.js Framework 42,950 1.40% 12 (8,4)
dotcloud/docker Development Tool (application container engine) 14,270 1.35% 24 (19,5)
emberjs/ember.js Framework 14,185 1.29% 20 (12,8)
owncloud/core Other (personal cloud storage tool) 3,222 1.19% 26 (13,13)
typhoeus/typhoeus Library 2,465 1.19% 6 (4,2)
facebook/hhvm Other (Virtual machine) 11,506 1.08% 15 (10,5)
celluloid/celluloid Framework 2,855 0.86% 9 (6,3)
xp-framework/rfc Framework 0 0.86% 16 (14,2)
rogerwang/node-webkit Framework 19,737 0.86% 16 (11,5)
ecomfe/edp Development Tool (front-end development platform) 264 0.86% 18 (15,3)
kennethreitz/requests Library 13,812 0.81% 13 (10,3)
documentcloud/underscore | Library 7,135 0.81% 6 (4,2)
middleman/middleman Development Tool (website generator) 4,179 0.75% 8 (5,3)
elasticsearch/elasticsearch Other (search and analytics tool) 10,700 0.70% 11 (11,0)
chapmanb/bcbio-nextgen Other (RNA-seq analysis tool) 173 0.59% 10 (9,1)
wp-cli/wp-cli Development Tool (command line interface for WordPress) 1,968 0.59% 13 (9.4)
cucumber/cucumber Development Tool (Testing) 5,142 0.49% 7 (4,3)
jsdoc3/jsdoc Development Tool (API documentation generator) 2,909 0.49% 6 (3,3)
propelorm/Propel Development Tool (Object-Relational Mapping) 893 0.49% 7 (7,0)

of the project, the number of stars the project has, the size
of the associated ecosystem, and the node’s degree. Each of
these projects has a higher in-degree than out-degree with
the exception of the mxcl/homebrew project. On the other
hand, low-degree project nodes are four times as likely to
be dependent on another project than they are to have a
project depend on them. This shows that ecosystems are
being formed around a central project with the other projects
in the ecosystem mostly depending on that central project.
This results in a star pattern. The twbs/bootstrap ego network
(Figure 3) clearly depicts this pattern within the graph.

Predominant type of ecosystems is software development
support. Interestingly, nearly all of the ecosystems are cen-
tered around projects whose purpose is to support software
development, such as frameworks, libraries and programming
languages. In fact, of the 43 ecosystems, there are only
5 whose purpose is not to support software development.

There are 13 frameworks, 5 libraries, 3 package managers,
2 programming languages, 1 database, and 14 other tools that
support software development like a testing tool, a continuous
integration platform, and an API documentation generator.

Ecosystems are interconnected. The graph in Figure 1
shows two types of communities that occur in GitHub-hosted
projects, those that are part of the largest connected compo-
nent and those that are isolated from the largest connected
component. The majority of project nodes, 10,484 or 57%,
are involved in the largest connected component, indicating
that many ecosystems are connected to each other across
the projects in our Dependency Network. The next biggest
connected component in the graph is only 65 nodes indicating
that the ecosystems that are isolated are small and have not
attracted public attention.

Figure 2 displays the interconnected part of the network, and
the connections between the ecosystems are apparent. As an

td|
yabawock/b: p—sasggral :’

dart-lan lang.or

trap-cdn

otstra|
prougesl

wesome Q)

migallag/m ootstrap-3

Fig. 3. twbs/bootstrap Ego Network. Portraying a sample star pattern in the
network.

whiSTtincom
< o
m@nm
-
G
.mm@m..:@m e
bundle¢/bundler
carlhud@bundlier rupibyJjruby
R N ot
rubygemsfyubygems
rubiniusfrubinius
'imda@w}‘;;eclr®c—rails
ilsirail
rd u@ﬁ.m@.ﬂh globalizgllobalize
wayneegeguin/rvm

Fig. 4. rubygems/rubygems Ego Network. Portraying connections between
ecosystems.

example, Figure 4 shows the rubygems/rubygems ego network,
clearly depicting its connection to the rails/rails project. This
is not surprising, since the rubygems project is a package
management framework for the Ruby programming language
and rails/rails is a web application framework written in Ruby.
There is a direct connection between the rubygems/rubygems
and rails/rails nodes. In addition, there are projects, like
carlhuda/bundler and airblade/paper_trail, which connect the
two projects.

IV. SOCIAL BEHAVIOUR OF PROJECT
OWNERS/CONTRIBUTORS

RQ3: Do the project owners’ and contributors’ social
behaviours align with the technical dependencies?

A. Research Method

To complement our investigation of technical dependencies
and connectedness of projects in Github, we also sought to
understand the social behaviour of project owners/contributors
in relation to these ecosystems. We studied two of GitHub’s
social relationships, following users and starring projects. On
GitHub, users can follow other users to receive notification on
their activity and star a repository to bookmark it or indicate
interest in the project. To understand how the social behaviour
of project owners/contributors relates to the identified ecosys-
tems, we examine the alignment between social and technical
connections between the projects.

To answer our research question, we construct project-to-
project networks based on the following and starring activity
of the project owners and contributors. We ran correlations
between the edge weights in the Dependency Network with
the edge weights in each social network to determine if there
is a relationship between the technical dependencies and the
social connections. Pearson correlations were used since the
data was normally distributed.

Project Owners. We constructed two networks using the
following and starring relationships by considering the actions
of the project owners. The Owner Stars Network, G,s =<
V,E >, and the Owner Follows Network, G,y =< V,E >,
are both undirected graphs whose set of vertices is all GitHub
projects involved in at least one cross-reference. For the Owner
Follows Network, there is an edge from nodes z; to y; if the
owner of project z; follows the owner of project y;. There is
an edge from z; to y; in the Owner Stars Network if an owner
of any project in our dataset has starred both project x; and
project y;.

To compare the social connections with the technical depen-
dencies, we compare the edge weights of these two networks
with the edge weights of the Dependency Network described
earlier. The edge weights of these three networks represent the
following:

o Dependency Network G4: Number of technical depen-
dencies, measured through reference coupling, between
the two project nodes.

o Owner Follows Network G : 0 if neither project owner
follows the other, 1 if one project owner follows the other
project owner, and 2 if both project owners follow each
other.

e Owner Stars Network G,s: Number of project owners
who have starred both projects.

Project Contributors. We constructed two additional net-
works using these following and starring relationships by
considering the actions of the project contributors (users who
have made commits on the project or are members of the
project). The Contributor Stars Network, G.s =< V, E >, and
the Contributor Follows Network, G.y =<V, E >, are also
undirected graphs whose set of vertices is all GitHub projects
involved in at least one cross-reference. The Contributor Fol-
lows Network has an edge from nodes x; to y; if a contributor

TABLE II
PROJECT OWNERS: CORRELATIONS BETWEEN TECHNICAL DEPENDENCIES
AND SOCIAL BEHAVIOUR.

TABLE III
PROJECT CONTRIBUTORS: CORRELATIONS BETWEEN TECHNICAL
DEPENDENCIES AND SOCIAL BEHAVIOUR.

Pearson Correlation | p-value Pearson Correlation | p-value
Technical Dependencies and Following 0.91 <0.001 Technical Dependencies and Following 0.0002 0.98
Technical Dependencies and Stars 0.79 <0.001 Technical Dependencies and Stars 0.001 0.88

Fig. 5. The Owner Follows Network, G, f-

of project z; follows a contributor of project y;. The weight
of each edge is the count of contributors with following
relationships for the pair of projects. The Contributor Stars
Network has an edge from z; to y; if a contributor to any
project in our dataset has starred both project x; and project
y;. The weight of each edge is the count of project contributors
who have starred both projects.

B. Results

Project Owners. Table II shows strong, positive correlations
between the technical dependencies and the social behaviour
of the owners. Along with these strong correlations, Figure 5
shows a pronounced star pattern in the Owner Follows Net-
work. This indicates that the project owners in an ecosystem
tend to follow the owner of the central repository.

Project Contributors. As shown in Table III, the social
behaviour of project contributors does not align with the
technical dependencies. This indicates that, while the project
owners seem to follow the right people and are aware of the
right projects based on the technical dependencies that exist
in the ecosystem, the social behaviour of project contributors
is not aligned with project dependencies.

Figure 6 shows the Contributor Follows Network. As shown,
the structure is quite different than the Dependency Network.
Communities do not have one central project and the network
is much more densely connected.

Fig. 6. The Contributor Follows Network, Gcf.

V. DISCUSSION

We developed a way to detect technical dependencies
between projects by considering the cross-references made
in comments on GitHub. We found that cross-references
are commonly included in GitHub comments. By analyzing
the content of these cross-references, we showed that they
are a valid conceptualization of technical dependencies. We
used this conceptualization of dependencies, called reference
coupling, to identify ecosystems. To do this, we used a popular
community detection algorithm [10] on the dependency net-
work, which identifies clusters of nodes densely connected by
technical dependencies. These detected communities represent
software ecosystems.

Through analysis of the resulting ecosystems found in
GitHub-hosted projects, we showed that the ecosystems are
centered mostly around projects that support software de-
velopment through developing frameworks and toolkits. The
predominant structure of the ecosystems is a star where one
central project is the hub of the ecosystem.

Our method detects technical dependencies that may not
manifest themselves in source code by identifying issues,
pull requests or commits that rely on another project, and,
therefore, it can identify dependencies not identified by other
methods. Our method is analogous to the logical coupling
method that detects dependencies within a project proposed
by Gall et al. [19] except at the ecosystem level. Where

logical coupling detects dependencies when artifacts have
been worked on together, our method detects dependencies
when issues, pull requests or commits have been worked in
conjunction with another project (as evidenced through user-
specified cross-references). Thus, the dependencies established
through our method are those that are logical.

Limiting the detected dependencies to those that are logical
is important when using those dependencies to identify ecosys-
tems. Methods that detect technical dependencies between
projects through analysis of code or configuration files may
not be best suited for identifying software ecosystems. For
example, when one project uses another project, it does
not necessarily mean the two software projects are evolving
together in the same environment, especially when the de-
pendency is to an established, off-the-shelf software package.
Thus, identifying all relationships that manifest in the source
code or configuration files may result in dependencies that are
not important for the identification of ecosystems.

Our method also allows for the identification of dependen-
cies across all projects hosted on GitHub. Other methods that
detect dependencies are limited to analyzing a given project
or set of projects. Analyzing the dependencies of a popular
project through its source code or configuration files to identify
its ecosystem would not identify projects that rely on that
project. We saw that most ecosystems across the GitHub-
hosted projects are centered around one main project and
many projects depend on that project without a reciprocal
relationship. These relationships would be missed if only the
dependencies of the main project were studied to identify
its ecosystem. Since the ecosystems are not always well-
defined, it would be impossible to know which other projects
to consider for analysis. Thus, our method is better suited to
identifying ecosystems since it is not limited in the number of
projects it can analyze.

GitHub’s built-in social features and transparency may
foster these comments about project interconnections. Future
work should investigate if similar comments are made on
other software development environments that would allow
this method to be extended beyond GitHub. Future work
should also compare the dependencies established via refer-
ence coupling to those that manifest themselves in the source
code to provide greater insight into the types of dependencies
that manifest using this method.

A. A Research Agenda

The ability to easily identify technical dependencies be-
tween a large set of projects opens the door for many in-
teresting avenues of research.

Socio-technical analysis. Studies that have attempted to
study how communication aligns with dependencies across
projects have been limited to studying well-defined ecosystems
where dependency information is publicized in some way.
For example, dependencies can be made available through
a project’s configuration files, dependency manager files or
through publicly available dependency specifications [1], [6],

[71, 18], [9], [20]. Our method allows the identification of
technical dependencies more broadly across projects and opens
the door to continuing the study of socio-technical alignment
across a larger set of projects and their stakeholders.

In this study, we found that when dependencies exist
between a pair of projects, the project owners tend to be
following the owner of the other project. Conway was the
first to describe the possibility of an alignment between social
connections and technical dependencies in software engineer-
ing projects, commonly referred to as Conway’s law [21].
The transparent nature of GitHub could encourage technical
connections between projects by providing an awareness of
activity across projects. An interesting future research question
is understanding how and when these technical dependencies
and social connections came to exist. Did the social con-
nections exist first and result in a technical dependency or
did the technical dependency exist first and result in a social
connection? If the social connections existed first, what was
the driver behind the creation of the technical dependency?
Perhaps, the awareness of the other project, enabled through
GitHub’s notifications, was enough to spur a technical depen-
dency indicating that GitHub’s transparency is changing the
landscape of OSS projects. These research questions could be
investigated in future research.

While the project owners’ social behaviours (following
users and starring projects) aligned with the technical depen-
dencies in our study, we did not witness such an alignment
for all project contributors. The follower network of project
contributors showed that there were no clear central projects
and communities were densely connected. This is in contrast
to the technical dependency network. These results align with
recent research that found that the reasons behind following
others extends beyond project coordination needs [22]. Future
work should investigate the usefulness of following others for
coordination purposes.

It is also worth studying in more detail the coordination
needs of developers on OSS projects. Perhaps the mere ex-
istence of a technical dependency does not imply a coordi-
nation need, especially given the transparent environment of
GitHub. Our previous work [23] begun this investigation, but
coordination needs at the ecosystem level are also worthy of
investigation.

Ecosystem emergence and evolution. The most prominent
nodes in Figure 2 are not always the most popular projects on
GitHub when considering the number of stars each project has.
In fact, the two projects with the most stars, angular/angular.js
and twbs/bootstrap, have significantly smaller ecosystem size
and lower degree than other projects. Future work can investi-
gate how and why ecosystems emerge and why some projects
become popular without growing a large ecosystem. Such a
study could include a temporal analysis of the composition
of the ecosystem and density of connections together with
a temporal analysis of project history information such as
number of contributors, forks, stars, etc. It would also be
worth triangulating results with other information on important

project events now commonly available through blogs and
wikis. Such a study on the evolution of ecosystems can be a
first step in understanding when and why projects accumulate
an ecosystem.

Ecosystem size and strength of comnections and project
success. On many open source projects, volunteers are crucial
to project success as they rely on volunteers to submit new
features and fix bugs. As a project accumulates more projects
in its ecosystem, it is also likely to increase its contributions
as developers on dependent projects will be more likely
to fix bugs that they encounter through their dependency.
Future research could investigate this relationship to identify
if the size of a project’s ecosystem is a good predictor of
various project health and success metrics like the number of
contributions it receives or the number of forks it has.

Automatic detection of ecosystems. Another avenue for
future research is creating tools to support developers at the
ecosystem level. It is important for developers to know who
they need to coordinate with across the ecosystem and to un-
derstand how their tasks fit into the big picture. A tool could be
developed that automatically identifies technical dependencies
across projects and provides a visualization of the ecosystem.
Such a tool could increase awareness of coordination needs
that extend outside project boundaries and help developers
gain a better view of the ecosystem surrounding their project.

B. Threats to Validity

One threat stems from our selection of the GHTorrent
dataset, which may not be a full copy of all GitHub data [12].
Nevertheless, it is a best-effort approach that has been widely
accepted in the research community as evidenced by its inclu-
sion as the dataset for the MSR 2013 Mining Challenge [24]
and the many recent papers that utilize its data in their analysis.

Another threat is that our analysis was limited to only
projects hosted on GitHub. We do not generalize our results to
other coding hosting environments. Future work can investi-
gate whether similar cross-reference comments that indicate
technical dependencies are found in other coding hosting
environments.

Our manual exploration of cross reference comments illus-
trates a variety of types of technical dependencies, but these re-
sults also can not be generalized. While we achieved saturation
in our results, our results could be impacted by selection bias.
To mitigate this, we ensured an equal number of comments
for each source (commit, issue, pull request) were included in
our sample. Further, for each repository, the manual analysis
was performed by only one person introducing a possible
risk of unreliable results. However, the types of dependencies
identified seem reasonable for any software project. Future
work can continue this investigation by examining the content
of cross-reference comments across a wide range of projects
and code hosting environments.

VI. RELATED WORK

Much work has been done studying the technical, business
and social dimensions of software ecosystems [25]. Studies of

OSS software ecosystems have mostly focused on the analysis
of a well-defined OSS ecosystem like Eclipse [4], [26], Ruby
on Rails [20], [27] or Apache [6], [8]. Instead, we introduce
a way to identify unknown ecosystems by using community
detection methods.

Several studies [28], [29] have used community detection
algorithms to detect communities across GitHub projects,
but they have focused on relationships between developers
rather than technical dependencies between projects. Thung
et al. [30] constructed project-to-project networks for GitHub-
hosted projects, but edges between projects in their network
represent a single developer contributing to both projects.
This method can not be used to detect dependencies between
projects since developers can often work on multiple indepen-
dent projects and, thus, sharing developers is not an indication
of a technical dependency. We use technical dependencies for
community detection since the structure of an ecosystem is
defined by its technical dependencies [2].

Analysis of a project’s source code is a common technique
to identify technical dependencies within a project (intra-
project). However, these techniques do not scale up to iden-
tify dependencies between projects (inter-project). Lungu et
al. [2] describe several methods for extracting inter-project
dependencies by considering external method and class calls
in a project’s source code. However, when investigating a large
number of projects, obtaining the source code for every project
is not always feasible. Collecting source code data across an
entire versioning system would require multiple TBs of data
and more than a year in processing time [5]. Ossher et al. [3]
introduced a technique that analyzes import statements in Java
source code to resolve inter-project dependencies. Businge and
Serebrenik [4] employ a similar technique in their study of the
Eclipse ecosystem. However, this technique still requires ob-
taining a large amount of source code and, therefore, requires
a large amount of memory. These techniques, therefore, are
limited in the number of projects that can be studied.

Previous studies have proposed ways to identify technical
dependencies without relying on analysis of source code. One
method is to identify technical dependencies by examining
declared dependencies from a project’s configuration files or
its dependency management tool like Maven [1], [6], [7],
[8], [9]. However, not all projects declare dependencies in
configuration files or employ a dependency manager, and, even
for those that do, the data can be missing. Bavota et al. [8]
found that this information was missing in 37% of releases
in a study of the Apache project. Syeed et al. [20] extracted
metadata on inter-project dependencies from the published
specifications at rubygems.org in their study of the Ruby on
Rails ecosystem. However, the specified dependencies may be
out of date and the approach is specific to only projects that
publish dependency specifications.

Our approach, which does not rely on analyzing source
code, takes advantage of the cross-references that can be
made in comments on GitHub. These cross-references are user-
specified links between a pair of projects. They are made in
comments on pull requests, issues, and commits as developers

coordinate and manage their work dependencies.

VII. CONCLUSION

In this paper, we proposed a new method for detecting
technical dependencies between projects, called reference cou-
pling, which utilizes user-specified cross-references between
projects. We used this reference coupling method to identify
ecosystems in GitHub-hosted projects by using an existing
community detection algorithm to identify densely connected
clusters of projects. Through an analysis of the identified
ecosystems, we find that most ecosystems are centered around
a single project. While small, unpopular ecosystems remain
isolated, most ecosystems are interconnected. The isolated
ecosystems tend to contain projects owned by the same GitHub
user or organization. The popular ecosystems are mostly
centered around tools that support software development.

Our reference coupling method opens the door for fu-
ture research in software ecosystems including studying the
socio-technical relationships, evolution, health and success of
ecosystems.

ACKNOWLEDGMENT
This work was partly funded by NSERC Canada.

REFERENCES

[1] M. F. Lungu, “Reverse engineering software ecosystems,” Ph.D. disser-
tation, University of Lugano, 2009.

[2] M. Lungu, R. Robbes, and M. Lanza, “Recovering inter-project depen-
dencies in software ecosystems,” in Proceedings of the International
Conference on Automated Software Engineering. ACM, 2010, pp. 309-
312.

[3] J. Ossher, S. Bajracharya, and C. Lopes, “Automated dependency
resolution for open source software,” in Proceedings of 7th Working
Conference on Mining Software Repositories. 1EEE, 2010, pp. 130-
140.

[4] J. Businge, A. Serebrenik, and M. van den Brand, “Survival of eclipse
third-party plug-ins,” in Proceedings of 28th International Conference
on Software Maintenance. 1EEE, 2012, pp. 368-377.

[5]1 A. Mockus, “Amassing and indexing a large sample of version control
systems: Towards the census of public source code history,” in Pro-
ceedings of 6th Working Conference on Mining Software Repositories.
IEEE, 2009, pp. 11-20.

[6] F. W. Santana and C. M. L. Werner, “Towards the analysis of soft-
ware projects dependencies: An exploratory visual study of software
ecosystems.” in Proceedings of International Workshop on Software
Ecosystems. Citeseer, 2013, pp. 7-18.

[71 J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and
D. M. German, “Macro-level software evolution: a case study of a large
software compilation,” Empirical Software Engineering, vol. 14, no. 3,
pp. 262-285, 2009.

[8] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How
the apache community upgrades dependencies: an evolutionary study,”
Empirical Software Engineering, pp. 1-43, 2014.

[9] D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “A model

to understand the building and running inter-dependencies of software,”

in Proceedings of 14th Working Conference on Reverse Engineering.

IEEE, 2007, pp. 140-149.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A

project memory for software development,” Transactions on Software

Engineering, vol. 31, no. 6, pp. 446-465, 2005.

G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”

in Proceedings of the 9th Working Conference on Mining Software

Repositories. 1EEE, 2012, pp. 12-21.

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th Working Conference on Mining Software Repositories.
ACM, 2014, pp. 92-101.

J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage, 2008.

M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp.
8577-8582, 2006.

M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source
software for exploring and manipulating networks.” Proceedings of
International AAAI Conference on Web and Social Media, vol. 8, pp.
361-362, 2009.

M. Molloy and B. Reed, “Critical subgraphs of a random graph,” The
Electronic Journal of Combinatorics, vol. 6, no. R35, p. 2, 1999.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, p. 604632, 1999.

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proceedings of International Conference
on Software Maintenance. 1EEE, 1998, pp. 190-198.

M. Syeed, K. M. Hansen, I. Hammouda, and K. Manikas, “Socio-
technical congruence in the ruby ecosystem,” in Proceedings of The
International Symposium on Open Collaboration. ACM, 2014, p. 2.
M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
pp- 28-31, 1968.

K. Blincoe and D. Damian, “Implicit coordination: A case study of the
rails oss project,” in Proceedings of International Conference on Open
Source Systems, 2015, to appear.

K. Blincoe, G. Valetto, and D. Damian, “Do all task dependencies
require coordination? the role of task properties in identifying critical
coordination needs in software projects,” in Proceedings of the 9th Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering.
ACM, 2013, pp. 213-223.

G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories. 1EEE
Press, 2013, pp. 233-236.

C. Werner and S. Jansen, “A systematic mapping study on software
ecosystems from a three-dimensional perspective,” Software Ecosystems:
Analyzing and Managing Business Networks in the Software Industry,
pp. 59-81, 2013.

D. Dhungana, I. Groher, E. Schludermann, and S. Biffl, “Software
ecosystems vs. natural ecosystems: learning from the ingenious mind
of nature,” in Proceedings of the 4th European Conference on Software
Architecture: Companion Volume. ACM, 2010, pp. 96-102.

J. Kabbedijk and S. Jansen, “Steering insight: An exploration of the
ruby software ecosystem,” in Software Business. Springer, 2011, pp.
44-55.

S. Syed and S. Jansen, “On clusters in open source ecosystems.”
in Proceedings of International Workshop on Software Ecosystems.
Citeseer, 2013, pp. 19-32.

Y. Yu, G. Yin, H. Wang, and T. Wang, “Exploring the patterns of social
behavior in github,” in Proceedings of the 1st International Workshop on
Crowd-based Software Development Methods and Technologies. ACM,
2014, pp. 31-36.

F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in Proceedings of 17th European Conference on
Software Maintenance and Reengineering. 1EEE, 2013, pp. 323-326.

