
Implicit Coordination: A Case Study of the

Rails OSS Project

Kelly Blincoe and Daniela Damian

University of Victoria
kblincoe@acm.org, danielad@uvic.ca

Abstract. Previous studies on coordination in OSS projects have stud-
ied explicit communication. Research has theorized on the existence of
coordination without direct communication or implicit coordination in
OSS projects, suggesting that it contributes to their success. However,
due to the intangible nature of implicit coordination, no studies have con-
firmed these theories. We describe how implicit coordination can now be
measured in modern collaborative development environments. Through
a case study of a popular OSS GitHub-hosted project, we report on how
and why features that support implicit coordination are used.

1 Introduction

There are many large Open Source Software (OSS) development projects that
succeed despite spanning geographic, organizational and social boundaries. Such
boundaries normally create coordination barriers and make coordination more
expensive [1]. Previous research hinted at the promise of implicit coordination,
defined as coordination “reached without discursive communication, shared plans
or even previous commitment among the actors” [2], in reducing coordination
overhead on OSS projects [2–4]. Bolici et al. [2] identified cases where depen-
dencies between tasks existed with no evidence of explicit communication and
theorized that implicit coordination was used to fulfill these dependencies. How-
ever, since implicit coordination occurs without explicit communication, it is
di�cult to examine, and no studies have confirmed these theories.

Modern software development tools provide unprecedented support for im-
plicit coordination in OSS projects. Developers can understand relevant tasks
without interrupting the developers assigned to those tasks for explicit com-
munication. For example, details of a dependent task can be reviewed to gain
awareness about the task. Developers can document all task related decisions
within task reports and insert comments directly into the source code, all of
which can be easily reviewed by others. Additionally, tools like GitHub provide
notifications of project activity to help developers stay aware. This transparency
supports implicit coordination and makes collaboration easier [5].

We describe how modern development environments enable implicit coordi-
nation. We report on a case study of a popular OSS project hosted on GitHub.
GitHub is a code hosting service and collaboration environment. Its transparency [5]

This is a post-peer-review, pre-copyedit version of an article published in Open
Source Systems: Adoption and Impact. The final authenticated version is
available online at: https://doi.org/10.1007/978-3-319-17837-0_4

and built-in social features enable implicit coordination. In a mixed-method re-
search approach, we surveyed 986 developers, interviewed 14 developers and
conducted a repository analysis. We find that two GitHub features that support
implicit coordination —issue subscriptions and following relationships —are used
frequently and report on how and why these features are used.

2 Implicit Coordination

Previous studies on coordination in OSS projects [6, 7] studied explicit coordina-
tion mechanisms likes emails and bug report comments. Coordination that occurs
without explicit communication is known as implicit coordination, which consists
of consequential communication and feedthrough [8]. Consequential communica-
tion is watching a developer complete their tasks to learn about their activities.
Feedthrough is obtaining information about tasks by examining changes to arti-
facts and is an example of stigmergy. Stigmergy is a concept from biology that
states “work done by one agent provides a stimulus that entices other agents to
continue the job” [4]. Stigmergy occurs when enough information is contained
within an artifact or a task report to enable a new developer to complete an
ongoing task or start a new dependent task without explicit coordination. This
occurs frequently on OSS projects [4]. Even independent tasks build on the work
of others [9], so stigmergy plays a key role in OSS development.

Awareness is “an understanding of the activities of others, which provides a
context for your own activity” [10]. Developers need to be aware of tasks (and
associated artifact changes) and people [11]. A lack of awareness can result in
coordination breakdowns [12, 13]. Previous research found that, on OSS projects,
developers obtain awareness through explicit communication [8], but it can also
be achieved through implicit coordination. Modern software development tools
make development work more visible and transparent [5] providing awareness
and potential for implicit coordination. Therefore, the study we present here
investigated awareness and implicit coordination and was guided our research
question:

How are the features that enable implicit coordination being used on modern
software development environments?

We describe features of modern software development environments that sup-
port awareness of tasks and people and enable implicit coordination in OSS
projects. We then describe our study to address this research question.

3 Implicit Coordination Enabled by Modern

Development Environments

While explicit coordination is characterized by communication, implicit coordi-
nation is achieved by obtaining awareness of the information needed to complete
a task without communication. Modern software development environments have
introduced features that enable implicit coordination. We describe how modern

Issue 1
Technical Dependency

A
ssigned To

A
ssigned To

Following Users
(Awareness of Others’ Activity)

P2

Issue 2

P1

Implicit
Coordination
Relationships
between tasks,
 people & tools

Fig. 1. Awareness Mechanisms for Implicit Coordination in GitHub.

development environments support implicit coordination by enabling awareness
of tasks and people. We specifically highlight the GitHub features that support
implicit coordination and illustrate them in Fig. 1. Issues are GitHub’s repre-
sentation of tasks, so we refer to issues and tasks synonymously. In Fig. 1, a
coordination need exists between developers P1 and P2 due to the technical
dependency that exists between their tasks.

1) Awareness of Tasks

In a previous study, we found that developers prefer to review task details
to understand a task rather than interrupting the task assignee to ask about
the task [14]. Reviewing details of related tasks and the changes made to the
source code as a result of those tasks can help developers gain an understanding
of dependent tasks. Task details can be obtained from the task report in the
team’s issue or bug tracker. Reviewing artifacts in the source code management
system can make developers aware of code changes, and comments left in the
code may provide insight into why the changes were made.

Developers can obtain awareness of tasks by subscribing to feeds. Feeds
broadcast project-related or user events such as incoming issues or code changes.
Developers use feeds to track work and get information [15].

Support in GitHub: GitHub supports awareness of tasks through its issue
subscription feature. When users are subscribed to issues, they receive notifi-
cations of the activity occurring around that issue on their GitHub dashboard
and, if configured, via email. Users are automatically subscribed to issues when
they comment on or are tagged in a comment on that issue. Users can unsub-
scribe if desired. In Fig. 1, developer P1 becomes aware of task 2 through issue
subscription.

Other Development Environments/Tools: SourceForge, another web-based
code management tool, allows users to subscribe to issues through an RSS feed.
Other issue trackers, like Jira and Bugzilla also allow users to obtain notifi-
cations of the activity occurring around issues. Jira has an issue subscription
feature similar to the one provided in GitHub. The cc feature in Bugzilla works

similarly, allowing developers to add themselves to a change request’s cc list to
receive notifications about that change request.

2) Awareness of Others’ Activity

Developers can gain an understanding of others’ activity by reviewing their

work. This was previously accomplished by monitoring version control check-in
logs [8] and has been made easier through feeds that broadcast user activity.
Many software development tools allow users to follow users. When someone
follows a user, they receive notifications about that user’s activity in their feeds.

Support in GitHub: Users can follow others by clicking on the follow button
in a user’s profile. The follower will then receive notifications about that user’s
activity across all GitHub projects. In Fig. 1, developer P1 is following developer
P2 and, therefore, is aware of the activity of P2.

Other Development Environments/Tools: SourceForge enables following of
other users through RSS feeds. In Bugzilla and Jira, you can search for issues or
bugs a user is participating on, but feeds of a user’s activity is not available.

Developers can gain a further understanding of others’ activity by review-

ing information shared through social media. Software developers have
adopted social media tools like wikis, blogs and microblogs. Studies have found
that sharing information through these forums allows easy access to knowledge
and can serve as a coordination method [16].

Support in GitHub: GitHub does not allow developers to share information
about their activity in wikis, blogs or microblogs. External tools are often used
in conjunction with GitHub such as Twitter [16] for this functionality.

Other Development Environments/Tools: No currently adopted development
tools o↵er integrated blogging or microblogging.

4 Case Study

We examined Ruby on Rails, a popular project hosted on GitHub, often referred
to simply as Rails. Rails is an open source web application framework written
in the ruby programming language. Many companies and other OSS projects
use the framework for creating web applications. Rails, therefore, attracts many
contributors looking to fix bugs a↵ecting their own products or add new features
that are useful for them. We choose to study Rails since it has a large group
of code contributors, resulting in frequent coordination needs. To answer our
research question, we collected and analyzed both qualitative and quantitative
data through a survey, developer interviews, and a statistical analysis of Rails
project repository data. We applied a grounded theory approach on the survey
and interview data [17]. For the project repository analysis on Rails, we obtained
data from GHTorrent [18], which provides a mirror of the GitHub API data.
GHTorrent obtains its data by monitoring and recording GitHub events as they
occur. We selected the project with the most code contributors in the GHTorrent
2014-04-02 dataset —Rails. We analyzed the most recent release available in
that dataset, 4.0, which was developed from January 20, 2012 to June 25, 2013.

Using GHTorrent, we obtained issue subscription information for all issues and
following relationships for all users. We included data from the main branch and
any associated forks as recommended in [19]. We included all 2,437 issues that
were closed during that release. There were 7,935 users who contributed through
commits, comments, or issues. We refer to users and contributors interchangeably
since we are studying only Rails contributors.

4.1 Methods

To answer our research question, we analyzed data from an online survey, inter-
views with 14 contributors, and the project repository. Survey instrument. We
sent an online survey to all 7,492 GitHub users with valid email addresses that
participated on Rails during the release of interest. Any user who performed one
of the following actions was identified as a participant: committed code; created
an issue; submitted a pull request; commented on a commit, issue or pull request;
closed, merged or reopened an issue or pull request; or subscribed to an issue.
We asked survey participants if, how and why they used the features that sup-
port implicit coordination in GitHub, subscribing to issues and following users.
The questions in the survey were both multiple-choice and open-ended. Our
survey is available at http://web.uvic.ca/⇠kblincoe/survey.pdf. We used unbal-
anced (skewed towards the positive) rating scale questions since we expected
mostly positive answers and wanted to measure the degree of the responses [20].
We received 986 responses (12.4% response rate). We used standard qualitative
coding techniques [17] to categorize responses and identify themes. Interview
instrument. To gain a better understanding of how implicit coordination takes
place, we interviewed 14 of the survey respondents who volunteered for inter-
views. We randomly selected participants from the 19.2% of respondents who
identified themselves as currently active participants of the Rails project. Inter-
views were semi-structured and lasted 30 minutes on average. The interviews
were focused on coordination with questions like ‘How do you know what others
are working on?’ and ‘Are there ways you stay aware of project activity and avoid
duplicate work or conflicts in your own work without explicitly communicating
with other teammates?’ Similar to the survey data, we used a grounded theory
approach in our analysis of the interview transcripts [17]. Repository analysis.
We examined how the features that support implicit coordination are used in
GitHub by examining their frequency of use.

4.2 Results

1) Awareness of Tasks: Issue Subscription

Issue subscriptions are used extensively on Rails. 79.7% of issues have at
least one subscriber. Of the issues with subscriptions, many (35.6%) have sub-
scribers who have not commented or been tagged within a comment. For issues
with subscribers, there is an average of 4.1 subscribers per issue (median is 3).
Many contributors subscribe to issues. Through repository analysis, we found

that 48.1% of contributors are subscribed to at least one issue. Users who sub-
scribed to issues were subscribed to 3.9 project issues on average (median is 1).
Our interviewees talked about how the notifications make it easier to stay aware
of what is going on. While you can see what others are working on by looking
through the code to identify changes, issue notifications are much more e�cient.

“Trying to look at the actual code, like the todos or comments in the code or
that people have open branches on that, that ends up being really di�cult. You
can spend a long time looking and not figure it out.” [P10]

Many contributors subscribe to issues they are not participating on. Nearly half
(49.4%) of our survey respondents said that they subscribe to issues that they are
not actively participating on (where active participation considers reporting the
issue, developing code or commenting on the issue). This is important because
it implies that they are using these notifications for awareness of tasks that they
are not working on (like developer P1 in Fig. 1 becomes aware of Issue 2 by
subscribing to that issue even though she is not working on that issue).

“[Issue notifications] are the best way to passively stay up to date with things
that are going on.” [P11]

In fact, many of our survey respondents (65.9%) stated that they use the infor-
mation obtained from issue notifications di↵erently than when they are actively
participating on an issue. When actively participating on an issue, they “use the
notifications for more direct actions rather than just a general feeling of what’s
going on.” They treat the notifications as a ‘to-do’ list. When they are not ac-
tively participating on the issues, they use the notifications more passively. They
gave several reasons why they would subscribe to notifications for issues they
are not participating on:

– Dependencies. 31% of respondents explicitly state that they subscribe to
issues because of dependencies in their code or because they are experiencing
the same issue. One respondent stated, “Something I’m working on could be
depending on the outcome of the resolution.” Another respondent said, “I ran
into the same issue . . . when they fix it, I will update to [the new version].”

– Issue Status. 31% of respondents simply reported that they subscribe to
know when the issue is resolved without giving a more detailed reason.

– Project Status. 22% subscribe to maintain an overall awareness of project
activity. “For some projects that I’m not actually interested in contributing
actively, [subscribing to issues] is the closest you can get to a newsletter to
get to know what new features are getting in and other general stu↵.”

– General Interest / Education. 9% subscribe because of general interest in
the issue or to learn from the discussion or solution. One respondent said,
“I like to see the changes and comments made by others to learn more.”

– Awareness for Future. 7% subscribe to obtain knowledge for future develop-
ment. One respondent said the notifications around certain issues “may help
me make changes in the area in the future more easily”. Other respondents
noted they follow certain issues so they can o↵er help if needed.

Does information obtained from issue notifications reduce the amount
direct communication needed to coordinate your development work?

Does information obtained from issue notifications help keep you
aware of what others are working on?

78% 22%

 Not at all Insignificantly Somewhat Significantly Very Significantly

8% 14% 50% 24% 4%

94% 6%
2% 4% 28% 48% 17%

Fig. 2. Survey Responses around Issue Notifications.

One of the most common reasons for receiving notifications (31%) is to obtain
information on dependencies. This is a form of implicit coordination. The re-
spondents who receive notifications to provide awareness for the future (7%) are
also implicitly coordinating. They obtain awareness about code changes so they
are familiar with the code and the design decisions to be able to contribute in the
future more e�ciently. Only a small number of our survey respondents subscribe
to issues out of general interest (9%). Our interviewees only subscribe to issues
that a↵ect them directly.

“I used to try to follow things that I was just interested in to know what was
going on with them, and I found that it was totally irrelevant. If I’m not actively
using a repository, I really don’t need the notifications.” [P5]

Subscribing to issues helps reduce communication and increase awareness.
Fig. 2 shows that 78% of survey respondents found that the information obtained
from issue notifications can reduce the amount of direct communication and 94%
said it can increase awareness of what others are working on. One respondent
said, “I can stay up-to-date on others thinking and inputs on a specific topic
without needing to talk to them.” Another respondent focused on the awareness
he obtains from the information contained in issue notifications saying, “through
their comments and patches I can see what others are working on and what their
progress is.” Our interviewees talked about how the notifications help reduce
direct communication around issue status.

“If I am waiting for a fix on something, then the notifications will help me stay
up-to-date . . . I don’t have to contact the developer for the status.” [P5]

Interviewees also noted that communication is often limited to only when di↵er-
ences of opinion occur.

“I might see that someone is working on a particular issue and . . . take a look
at the code that has actually been implemented and see if it is along the same
lines as what I was thinking, kind of a preview. So if somebody is o↵ on the
wrong track or going down a code path that I don’t think is actually going to
fix the bug or implement that feature then I might send them an email or hop
in a chat.” [P9]

Do notifications obtained from following others reduce the amount of
direct communication needed to coordinate your development work?

Do notifications obtained from following others keep you aware of
what others are working on?

43% 28% 22% 5% 1%

28% 72%

80% 20%
9% 11% 40% 32% 9%

 Not at all Insignificantly Somewhat Significantly Very Significantly

Fig. 3. Survey Responses around Following.

The notifications also help keep developers aware of dependencies or work
that has been done on related issues, according to our interviewees.

“If we have multiple pull requests that rely on each other. . . just seeing com-
ments come across and the pull requests come in, helps me know where that is
in the process.” [P6]

2) Awareness of Others’ Activity: Following

Many users follow other users. 66.7% of survey respondents say they follow
other GitHub users. This is consistent with our repository analysis, which found
that 64.3% of all Rails contributors follow other GitHub users. The reasons for
following others are quite varied:

– Track activity. 41.8% follow others to see what they are up to and track their
activity. “As a means of seeing what they are working on. Their contributions
are working towards solutions in my general problem space.” This reason is
the most suggestive of implicit coordination, unlike the ones that follow.

– Learn about new projects. 23.8% follow others to see what projects they
contribute to or star. “I have discovered a lot of projects from looking at
what users I am following are looking at.”

– Social. Many respondents (21.2%) said they follow others for social reasons.
“That’s basically the ‘friend’ feature on GitHub. I just follow others I know.”

– Useless. Some survey respondents (6.8%) stated that the following feature is
useless. “[It] is not really a useful feature because it adds too much noise.”

– Education. 3.6% said they follow others to learn. “I follow experts in certain
code bases to educate myself by reviewing their check-ins and comments.”

– Bookmark users. 2.8% said they follow others to ‘bookmark’ interesting
GitHub users since it “makes it easier to find their profiles in future.”

Users often follow other contributors on their projects. 46.1% of Rails con-
tributors are following other Rails contributors. Those who are following other
contributors are following 7.2 project contributors on average (median is 3).

Following other users does not reduce communication but does increase aware-
ness. Fig. 3 shows 72% of survey respondents found that the notifications ob-
tained from following others does not reduce the amount of direct communica-
tion. However, 80% found the notifications did increase awareness of what others
are working on. One respondent said, “I can see other people’s activity and what

projects they are actively working on.” Our interviewees noted that the notifi-
cations from following others is too high-level to be useful for coordination.

“I just see the repositories they create, the repositories they fork, what they star
and stu↵ like that. . . . It is just a general overview of what they are doing, and
if I want to know anything in detail, I have to still ask them or go to them or
just look at the code to see what’s going on.” [P2]

In addition, since following others results in notifications related to their
activity on all repositories, the notifications can contain a lot of noise.

“When I follow a person, they work on an assortment of repositories, most of
which have nothing to do with me probably. I follow very few people.” [P5]

5 Discussion

The findings from our study of Rails, a prominent OSS project hosted in GitHub,
indicate that both issue subscription and following other users are widely adopted
by OSS users. There are various reasons why users choose to use these features.
The main reason for subscribing to issues is to obtain information on depen-
dencies, a form of implicit coordination. Survey respondents believed that sub-
scribing to issues reduced their direct communication. However, many of our
interviewees and survey respondents indicated that notifications from following
others introduced too much noise and, therefore, were not useful. Additional sur-
veys or interviews could shed some light on what notifications are most useful for
implicit coordination so the notifications can be minimized to only the most rele-
vant information. Important research questions include: What is the most useful
information for inclusion in notifications of other’s activity? Are users influenced
by the actions of the users they follow? The e↵ect of explicit coordination has
been studied by quantitatively assessing how the coordination structure of a
team aligns with the teams’ coordination needs. Conway’s Law [21] was the first
to introduce the idea of such an alignment. Now that implicit coordination can
be measured through features like issue subscription and following, future re-
search can study the impact of implicit coordination. If implicit coordination
improves productivity and quality, managers can encourage implicit coordina-
tion to reduce coordination overhead. Further, tools that provide coordination
recommendations to developers could focus on less expensive, implicit means of
coordination.

While bringing new knowledge about indirect collaboration in modern, open
development environments, this study is only the beginning of our exploration
into indirect coordination. We investigated only one project in detail; thus, it
su↵ers from some threats to validity regarding generalizability. Our survey re-
spondents and interviewees were all Rails contributors and were self-selected. We
reached saturation in our results, but they may not generalize to other GitHub
projects. However, many of our interviewees were active contributors to many
GitHub projects and their responses drew on their experience across multiple
projects. Additional studies can continue this investigation on other GitHub
projects. Further, this investigation can be continued through future studies of

implicit coordination in other modern development environments like Source-
Forge, Jazz or Bitbucket.

References

1. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordi-
nation. In: FSE ’07, IEEE Computer Society (2007) 188–198

2. Bolici, F., Howison, J., Crowston, K.: Coordination without discussion? socio-
technical congruence and stigmergy in free and open source software projects. In:
STC ’09. (2009)

3. Elliot, M.: Stigmergic collaboration: The evolution of group work. m/c journal 9
(2006)

4. Heylighen, F.: Why is open access development so successful? stigmergic organi-
zation and the economics of information. arXiv preprint cs/0612071 (2006)

5. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in github: transparency
and collaboration in an open software repository. In: CSCW ’12, ACM (2012)
1277–1286

6. Bird, C.: Sociotechnical coordination and collaboration in open source software.
In: ICSM ’11, IEEE (2011) 568–573

7. Crowston, K., Wei, K., Li, Q., Eseryel, U.Y., Howison, J.: Coordination of free/libre
and open source software development. (2005)

8. Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed software
development. In: CSCW ’04, ACM (2004) 72–81

9. Howison, J., Crowston, K.: Collaboration through open superposition: A theory
of the open source way. MIS Quarterly 38 (2014) 2950

10. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In:
CSCW ’92, ACM (1992) 107–114

11. Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software devel-
opment teams. In: ICSE ’07, IEEE CS (2007) 344–353

12. Damian, D., Izquierdo, L., Singer, J., Kwan, I.: Awareness in the wild: Why
communication breakdowns occur. In: ICGSE ’07, IEEE (2007) 81–90

13. de Souza, C.R., Redmiles, D.F.: An empirical study of software developers’ man-
agement of dependencies and changes. In: ICSE ’08, ACM (2008) 241–250

14. Blincoe, K., Valetto, G., Damian, D.: Facilitating coordination between software
developers: A timely and e�cient approach. Technical Report DCS-354-IR (2014)

15. Treude, C., Storey, M.: Awareness 2.0: staying aware of projects, developers and
tasks using dashboards and feeds. In: ICSE ’10, IEEE (2010) 365–374

16. Singer, L., Figueira Filho, F.M., Storey, M.A.D.: Software engineering at the speed
of light: how developers stay current using twitter. In: ICSE ’14. (2014) 211–221

17. Corbin, J., Strauss, A.: Basics of qualitative research: Techniques and procedures
for developing grounded theory. Sage (2008)

18. Gousios, G., Spinellis, D.: Ghtorrent: Github’s data from a firehose. In: MSR ’13,
IEEE (2012) 12–21

19. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.: The promises and perils of mining github. In: MSR ’14, ACM (2014) 92–101

20. Parasuraman, A., Grewal, D., Krishnan, R.: Marketing research. Cengage Learning
(2006)

21. Conway, M.E.: How do committees invent. Datamation 14 (1968) 28–31

