
ORIGINAL ARTICLE

Continuous clarification and emergent requirements flows
in open-commercial software ecosystems

Eric Knauss1 • Aminah Yussuf2 • Kelly Blincoe2 • Daniela Damian2 •

Alessia Knauss2

Received: 20 August 2015 / Accepted: 16 September 2016
! The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Software engineering practice has shifted from
the development of products in closed environments

toward more open and collaborative efforts. Software

development has become significantly interdependent with
other systems (e.g. services, apps) and typically takes place

within large ecosystems of networked communities of

stakeholder organizations. Such software ecosystems pro-
mise increased innovation power and support for con-

sumer-oriented software services at scale and are

characterized by a certain openness of their information
flows. While such openness supports project and reputation

management, it also brings requirements engineering-re-

lated challenges within the ecosystem, such as managing
dynamic, emergent contributions from the ecosystem

stakeholders, as well as collecting their input while pro-

tecting their IP. In this paper, we report from a study of
requirements communication and management practices

within IBM"’s Collaborative Lifecycle Management"

product development ecosystem. Our research used

multiple methods for data collection, including interviews
within several ecosystem actors, on-site participatory

observation, and analysis of online project repositories. We

chart and describe the flow of product requirements
information through the ecosystem, how the open com-

munication paradigm in software ecosystems provides

opportunities for ‘‘just-in-time’’ RE—and which relies on
emergent contributions from the ecosystem stakeholders—,

as well as some of the challenges faced when traditional

requirements engineering approaches are applied within
such an ecosystem. More importantly, we discuss two

tradeoffs brought about by the openness in software

ecosystems: (1) allowing open, transparent communication
while keeping intellectual property confidential within the

ecosystem and (2) having the ability to act globally on a

long-term strategy while empowering product teams to act
locally to answer end users’ context-specific needs in a

timely manner. A sufficient level of openness facilitates

contributions of emergent stakeholders. The ability to
include important emergent contributors early in require-

ments elicitation appears to be a crucial asset in software
ecosystems.

Keywords Requirements engineering !
Software ecosystem ! Mixed method

1 Introduction

Recent research has regarded the development of large-

scale software projects as ecosystems of interacting and
interconnected organizations. Collaboration within an

ecosystem increases the competitive advantage of the

organization and the ecosystem itself [19]. By allowing
third-party organizations to join a software ecosystem, a

& Eric Knauss
eric.knauss@cse.gu.se

Aminah Yussuf
aminah.yussuf@gmail.com

Kelly Blincoe
kelly.blincoe@gmail.com

Daniela Damian
danielad@cs.uvic.ca

Alessia Knauss
alessiaknauss@gmail.com

1 Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Gothenburg, Sweden

2 Department of Computer Science, University of Victoria,
Victoria, BC, Canada

123

Requirements Eng

DOI 10.1007/s00766-016-0259-1

http://orcid.org/0000-0002-6631-872X
kblincoe@acm.org

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0259-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0259-1&domain=pdf

development organization increases its innovation power

and market reach [22].
One strategy to initiate and maintain a software

ecosystem that is becoming popular is the open-commer-

cial approach [21] (a.k.a Extended Software Enterprises
[27]). In this approach, organizations open up internal

information about the product, development process, and

project communication, while maintaining a commercial
licensing and copyright model to protect some of the

organization’s intellectual property. This approach lies
between the more extreme approaches on the degree of

openness—such as the widely proprietary, closed infor-

mation flows around a defined set of partners (e.g. SAP)
and the completely open information flows found in open-

source ecosystems (e.g. IBM’s Eclipse). The open-com-

mercial model tends to abolish barriers, facilitate the
building of communities and product adoption, and provide

advantage over the non-open competitors [27, 28]. The

increased transparency supports learning from observation
and reputation management [12].

The openness in these types of software engineering

environments, however, has important implications for the
collection and management of the information related to

software requirements from the multiple ecosystem stake-

holders. One would expect decentralized ways of facili-
tating the flow of requirements among stakeholders, similar

to those found in open-source projects [28]. However,

unlike open-source projects, the scale and complexity of
stakeholder relationships might be different in open-com-

mercial enterprises; contractual considerations and com-

mercial business models lead to problems in managing
diverse sources of requirements and information flows,

while the ecosystem’s openness results in lowered ability

to protect product strategic information. The lack of
research in RE processes for software ecosystems has been

highlighted in the systematic literature reviews [2, 42], and

only recently we find case studies on this highly relevant
topic [23, 61, 33]. In this paper, we extend this body of

knowledge with findings from a mixed-method empirical

study of requirements management practices within
IBM"’s open-commercial software ecosystem CLM"

(Collaborative Lifecycle Management).

The contribution of this work is twofold: First, we
provide a detailed description of RE processes and how

requirements flow through the open-commercial software

ecosystem in IBM’s CLM development environment.
Specifically, we describe practices as well as challenges in

stakeholder selection, communication and prioritization of

requirements, managing context, and mapping require-
ments to the ecosystem’s actors. We also identify two main

underlying tradeoffs in open-commercial ecosystems: (1)

Maintaining the openness and transparency in the ecosys-
tem needs to be balanced with keeping the confidentiality

of paying customers’ business needs and (2) responding to

market demands requires the ability to globally define
requirements on the strategic level, while allowing self-

organized teams to locally and timely address context-

specific customer needs ‘‘just-in-time.’’ These findings
build upon our research results reported in our previously

published conference paper [33].

This paper extendsour previous investigationwith a deeper
analysis of the patterns of communication around require-

ments by the various ecosystem stakeholders, and the impact
of their contributions in the requirements process.Wefind that

more traditional requirements engineering activities are

complemented by a considerable inflow of requirements-re-
lated information from emergent contributors, i.e. stake-

holders who were not officially responsible but became

directly involved in the clarification of a specific requirement.
Our findings indicate these emergent stakeholders contribute

to requirements discussions across organizational borders.We

bring evidence that facilitating early emergent contributions
on requirements is crucial in software ecosystems. These

insights, while developed from investigating the IBM’s CLM

ecosystem,have implications for other software ecosystems in
which information about proprietary products, their features,

and development processes is being maintained in channels

with some degree of openness.

2 Research setting and questions

In this study, we investigate requirements engineering and

related knowledge flows in the IBM CLM ecosystem to
understand how requirements flow through the ecosystem

and how the ecosystem actors evolve their software prod-

ucts and services.

2.1 The IBM CLM software ecosystem

IBM’s Collaborative Lifecycle Management (CLM) tool

suite provides a set of integrated software development

tools along with collaboration features. It is characterized
by open communication channels through which all

stakeholders can participate in discussions of work in

progress, and it is built on top of the Jazz platform", a
service-oriented platform based on open standards. Begel

et al. [3] refer to such software development tool suites

with social media aspects as software ecosystems, a term
defined by Jansen et al. [26] as

‘‘A software ecosystem is a set of actors functioning
as a unit and interacting with a shared market for

software and services, together with the relationships

among them. These relationships are frequently
underpinned by a common technological platform or

Requirements Eng

123

market and operate through the exchange of infor-

mation, resources and artefacts.’’

Within the CLM ecosystem, a number of product teams
(set of actors in a shared market) provide products espe-

cially designed to interoperate on the Jazz platform (tech-

nological platform), including1;2 Rational Requirements
Composer (RRC), Rational Quality Manager (RQM),

Rational Software Architect (RSA), Rational Team Con-

cert (RTC), and also some smaller products, such as
Reporting which integrates Rational Insight capabilities in

the ecosystem. In addition, products for crosscutting and

platform-related concerns exist, such as Jazz Foundation3

or Application Lifecycle Management (C/ALM).4 The size

of each product team ranges from tens to hundreds of

engineers. In this paper, we refer to the product teams (or
more generally: organizations) that provide or consume

software products or services within a software ecosystem

as actors.
Therefore, actors are constituents of the software value

chain. Stakeholders are individuals or organizations,

internal or external to the ecosystem, with an interest in the
software products.

The CLM ecosystem is coordinated by IBM Rational"

(an IBM brand), and integration adapters are available to
connect the CLM ecosystem with other major players and

ecosystems in the field. A special partner program allows
third parties to offer products with certified compatibility to

the Rational CLM products. Consequently, CLM environ-

ments are highly customizable and a solution for a specific
customer is defined by the mixture of Rational and third-

party products that work together in order to provide the

required services.
For exploring RE practices in software ecosystems, the

CLM ecosystem is particularly interesting, because of its

transparent developer–customer communication through
open communication channels. These channels include

open chat rooms, wikis in which CLM developers author

technical documentation, and a publicly available issue
tracker with rich discussion forums around features, bug

reports, and change requests. Developers learn specific

end-user needs and important information on how the

services in the software ecosystem are used. Customers and

end users can articulate doubts about certain changes.
One could argue that our observations relate to any

software development effort of significant scale and com-

plexity. For example, Curtis et al. [11] discuss that in large-
scale projects the distance between developers and cus-

tomers is a major threat to project success. Software

ecosystems have been proposed as one way to address
complexity of large-scale software projects. Ecosystems

divide a large-scale, complex software system into separate
and independent products and encourage high innovation

rates by allowing these products to be replaced and

extended by third-party contributions [19]. We interpret
results from this study as indication that while this helps

with many activities of continuous software production, the

underlying complexity still implies serious challenges for
requirements engineering.

While we aimed at covering many product teams in our

qualitative interviews, we focused our analysis of how
external stakeholders contribute to requirements discus-

sions of ecosystem actors (which is based on mining online

repositories) on the RTC product in relation to contribu-
tions from members of Jazz Foundation, C/ALM, and

external actors. Specifically, this allows us to understand

how various stakeholders (e.g. managers, developers,
users) contribute to the requirements clarification across

organizational boundaries within the ecosystem.

2.2 An illustrative example

The following (fictitious but realistic) running example
illustrates the complex RE landscape in the CLM ecosys-

tem [32]:

The CLM ecosystem offers value for lifecycle manage-
ment in all kinds of engineering projects. Yet, there is a

strong focus on software development. Consider Alice Inc.,

a new actor in this ecosystem that wants to leverage the
existing services for requirements management, quality

management, version control, task management, and team

collaboration to build a solution for the automotive
domain. Alice Inc. aims at integrating existing tools and

services in that domain like specialized requirements and

quality management solutions, or domain-specific artifacts
like Simulink models. Alice Inc. could offer CLM-based

services in a cloud-based setup, but also based on local

installation at a customer’s site. Both variants offer similar
challenges for the RE landscape as discussed in this paper.

2.3 Research questions for RE in software
ecosystems

In order to examine requirements engineering practices
and challenges in CLM’s open-commercial paradigm, we

1 https://jazz.net/products/clm/-visited2015-7-25.
2 Some of the products have been renamed since the time of our
study. RRC is now Rational DOORS Next Generation and RSA is
now Design Manager.
3 Jazz Foundation is a platform for building collaborative applica-
tions. https://jazz.net/jazz/oslc/projectareas/_Q2fMII8EEd2Q-
OW8dr3S5w last accessed 2015-05-18 (needs Jazz account).
4 C/ALM addresses integration and interoperability of CLM ecosys-
tem actors. https://jazz.net/jazz/admin#action=com.ibm.team.process.
editProjectArea&itemId=_0rSUcMixEd6A25wBGCmItw,last acces-
sed 2015-05-18 (needs Jazz account).

Requirements Eng

123

https://jazz.net/products/clm/
https://jazz.net/jazz/oslc/projectareas/%5fQ2fMII8EEd2Q-OW8dr3S5w
https://jazz.net/jazz/oslc/projectareas/%5fQ2fMII8EEd2Q-OW8dr3S5w
https://jazz.net/jazz/admin%23action=com.ibm.team.process.editProjectArea&itemId=%5f0rSUcMixEd6A25wBGCmItw
https://jazz.net/jazz/admin%23action=com.ibm.team.process.editProjectArea&itemId=%5f0rSUcMixEd6A25wBGCmItw

employed Jansen et al.’s [27] proposal to analyze soft-

ware ecosystems on three different scope levels. Scope
level 1 examines the ecosystem’s relationships to other

ecosystems, Scope level 2 analyzes the relationships

within the ecosystem, and Scope level 3 examines the
ecosystem from the perspective of an individual organi-

zation within the ecosystem. The upper part of Fig. 1

depicts the CLM ecosystem at these three levels. Even
with these scope levels, a full and complete description of

any software ecosystem is very difficult to achieve.
Therefore, in Fig. 1, we depict only the entities and

relationships that serve our research investigation (note

that we refer to actors with the name of the product or
service they provide). The links between actors are

reconstructed from our interviews and indicate that the

actor on the right uses services of the actor on the left.
The figure also shows the workflows, practices, and

challenges we identified in this challenge and which we

describe in detail in Sect. 4. In addition, we describe the
role of emergent contributions crosscutting to these scope

levels (see middle-left of Fig. 1).

Scope level 1 offers an external view on the ecosystem.

The top-left part of Fig. 1 depicts the CLM ecosystem
actors (RTC, RRC, RSA, RQM, Reporting teams) as well

as actors of adjacent software ecosystems around the git,

Jira, and SAP platforms. This scope level is concerned with
differentiating features such as the technological platform,

the target market, the participants, and its connectedness to

other software ecosystems.
On Scope Level 1, RE can impact the ecosystem’s

ability to attract new ecosystem actors (e.g. customers),
integrate with other service providers, or approach new

markets (e.g. by adding new strategic features). Further,

requirements need to be communicated within and beyond
the software ecosystem.

Example Alice Inc. may require certain new features to

be added to the existing products to make CLM services
attractive to the automotive domain. If the CLM ecosystem

fails to prioritize these features on its roadmap (e.g.

because of other priorities), its economic survival might be
endangered. If Alice Inc. is perceived as a strategic partner,

Fig. 1 Research questions, findings (flow of requirements, challenges, practices) in the context of software ecosystem scope levels

Requirements Eng

123

its requirements need to be communicated to all relevant

actors within the ecosystem.

Stakeholder management discusses how different
stakeholder perspectives can generally be synthesized into

a roadmap based on collaborative decision making or game

theory [18, 44], but it is unclear how this can be done on
the scale of software ecosystems. Software ecosystems

characterized by complex interrelationships among diverse

and multiple stakeholders are susceptible to issues of
stakeholder power [45] affecting activities of stakeholder

selection or effective communication of their requirements

[63]. Previous work proposed analyzing stakeholders, their
relation, and their communication as requirements value

chains [20] or based on social network analysis [15]. Yet,

how stakeholders are selected and how requirements flow
through software ecosystems in practice remains an open

question:

RQ1.1: How are stakeholders selected across the

software ecosystem?

RQ1.2: How are requirements communicated across the
software ecosystem?

Scope level 2 shows the ecosystem from an internal per-

spective and allows the actor’s roles and their relationships
to be analyzed (top-middle in Fig. 1). Jansen et al. [27]

discuss three important roles of ecosystem actors: Domi-
nators control the capture of and creation of value in the

ecosystem. Dominators are considered harmful to the

ecosystem because they tend to take over functions of other
actors who are then eliminated, reducing the diversity

within the ecosystem [41]. Keystone players create highly

connected hubs of actors by providing value to surrounding
actors. They increase variability and robustness of the

ecosystem and are considered beneficial to its health [41].

Niche players profit from the value that the keystone
players provide and aim to differentiate themselves by

developing special functions [41]. Based on our focus on

RE, we add consumers as a fourth role, characterized by
consuming services without offering their own services in

the scope of the ecosystem. Table 1 gives an overview of

the actors, their roles, and their typical stakeholders in the
CLM ecosystem.

With respect to RE, it is important to understand how

niche or keystone players position themselves in the
ecosystem. According to related work, a significant amount

of functionality in software ecosystems is based on the

interplay of several subsystems [9, 54, 55]. Actors in the
ecosystem offer services to consumers by re-using other

services in the ecosystem. This value chain defines the

context in which the consumer’s requirements evolve and
how difficult it will be to map new requirements to a

specific service.

Example A consumer from the automotive domain would

probably issue feature requests to Alice Inc., who is pro-

viding CLM ecosystem services to this new domain. Those
feature requests can either be handled by Alice inc. directly

or by one of the more fundamental service providers such

as RTC or RQM product teams. It is not clear, however,
how they are forwarded to the actor in the ecosystem that

can handle them most effectively.

The open-commercial approach allows end users to
articulate changed or new needs through a number of dif-

ferent channels [21]. This high level of openness, however,

challenges end users and customers to send such requests to
the correct recipient [9, 54]. To mitigate this challenge,

suitable forums can be suggested to end users based on data

mining techniques [9] or determined by exploiting sensors
and monitoring capabilities in their mobile devices to

automatically determine a suitable recipient in the ecosys-

tem [54]. In a dynamic ecosystem, the ideal recipient for a
given request changes over time, and it is necessary to

periodically rethink the way requirements travel through the

software organizations and which roles are responsible to
seek alignment of goals [20]. Aligning goals depends on

understanding requirements in their context, which calls for

contextual techniques and observation. Observing how end
users interact with their system allows requirements to be

captured with their relevant context [39, 7]. End users could
also articulate their needs themselves with the help of spe-

cial feedback systems that facilitate adding screenshots and

other context descriptions [38]. In addition, mobile devices
allow users to present and discuss scenarios in the context of

use [57]. Yet, it is not clear if and how practitioners can

apply such approaches for managing the context of
requirements and supporting software managers and devel-

opers in actively aligning development efforts and needs of

relevant stakeholders at the scale of modern ecosystems.

RQ2: How are requirements mapped to ecosystem actors

and how is the context of requirements managed?

Scope level 3 shows the ecosystem from the perspective of

a single organization. For example, the top-right corner of

Fig. 1 shows the perspective of the RQM actor in the CLM
ecosystem. This allows investigating a specific actor’s RE

on a more tactical or operational level.

In a complex software ecosystem environment, it is
unclear how actors can systematically understand the level

of satisfaction of their external stakeholders (customers and

end users) and share this information with internal stake-
holders (software managers and developers).

Example Even for Alice Inc., it is difficult to understand
the satisfaction of a potentially large and heterogeneous

stakeholder landscape in the automotive domain. More

Requirements Eng

123

central actors like RTC or RQM might also suffer from the
fact that important feedback is only given to other actors.

Agile and continuous development implies continuous

clarification of requirements by software managers and
developers throughout the development lifecycle [31].

Especially in distributed development, effective commu-

nication of requirements requires a high level of trans-
parency [14, 13]. Strategies for such communication must

address the challenge of achieving a good representation of

a large and heterogeneous set of stakeholders. Traditional
RE methods have been reported to be insufficient to sup-

port such wide audience requirements elicitation [60]. It

remains an open question how a heterogeneous and
potentially disagreeing audience that differs in their power

to influence decisions can be integrated in the communi-

cation and refinement of requirements in open-commercial
ecosystems.

RQ3: How are requirements communicated and refined
in the scope of an actor in the software ecosystem?

Crosscutting, emergent communication is crucial in

large-scale projects, e.g. to solve technical dependencies
between products or components [56], to identify synergies

[46], and to build communities of practice [58].
In an open-commercial ecosystem, stakeholders across

the software ecosystem can participate in discussions that

shape the way requirements are elicited, analyzed, and
validated within the various ecosystem actors.

Example Developers and customers of Alice Inc. will be

impacted by technical decisions and developments of the
CLM products and thus could decide to participate as

emergent contributors in online discussion of relevant

issues.

This informal way of getting involved in requirements

discussions shows similarities to open-source requirements
engineering, where also informalisms dominate [52].

Recent studies found that requirement discussions are often

cross-functional including developers, business analysts,

and testers [16, 43]. However, these studies did not
investigate how diverse the participants were in terms of

their location within the software ecosystem.

RQ4.1: Who are the ecosystem stakeholders contributing

to the requirements discussions?

RQ4.2: What is the impact of such contributions?

3 Research methodology

We examined the characteristics of the open-commercial

development in the CLM ecosystem based on a mixed-

method research methodology. Our data collection meth-
ods included participatory observation, semi-structured

interviews, and analysis of software repositories.

3.1 Participatory observation

One of the researchers worked as an intern and developer
in the Reporting team at IBM Ottawa for 2 months to

obtain a broad view on the actors in the ecosystem as

well as more in-depth knowledge with the development
processes and practices within one specific actor of the

ecosystem. During that time, he was directly involved in

solving technical issues and participated in project meet-
ings. In a daily journal, he logged information on how the

development team analyzed requirements within this

ecosystem actor and details of the team’s interactions
with a number of other internal and external actors in the

ecosystem. This in-depth involvement with the develop-

ment team within one actor in the ecosystem was
invaluable in selecting interviewees and refining the

research guidelines for the next phase in our data

collection.

Table 1 Stakeholders in the scope of different CLM actors

Actor Stakeholder Role in RE activities

Consumer (e.g. customer) Manager end
user

Source of strategic reqts. and goals source of specific requirements from daily usage

Keystone (e.g. RTC, RQM, RSA,
RRC)

End user While using their own product, developers have specific requirements from daily
usage

Developer Receiver of requirements for implementation

Senior dev. Source of requirements in relation to technical debt

Techn. lead Source of technical requirements, e.g. from architectural considerations

Dev. lead Assigning requirements for implementation and coordination of work

Support Facilitator of requirements flows from customers

Product mgr. Source of strategic requirements for the product

Niche (e.g. Reporting) Same as keystone, but highly affected by technical decisions of keystones

Requirements Eng

123

3.2 Semi-structured interviews

Based on the participatory observation, we conducted a
series of 13 semi-structured interviews to explore the RE

landscape in software ecosystems (RQs 1–3). The partici-

patory observation allowed us to get in contact with
developers and managers within a number of IBM internal

actors of the CLM ecosystem that had a dependency with

the Reporting team. We selected interviewees on different
organizational levels, including six developers, one team

leader, two development leaders, and four technical lead-

ers. Experience of our interviewees in their role ranged
from 6 month to 15 years, with an average of 2–3 years.

During the interviews, we used a semi-structured interview

guide5 that covered our research questions, but allowed us
to pursue related topics our interviewees brought up [6].

The interviewswere conducted by the researcherwho also

did the participatory observation while the other researchers
involved in this work iteratively analyzed the interview data

based on the thematic analysis approach [6] as follows: We

transcribed and read recordings from all interviews to get
familiar with the data. One of the co-authors then coded the

data from the perspective of research questions 1–3 and

started searching for initial themes by grouping the initial
codes. We then reviewed the initial themes in a series of

workshops, regrouped and refined them by cross-checking

the interview data with the generated codes and finally
established a set of themes, consisting of both challenges and

practices. For each theme, we defined a label and classified it

based on scope level and process step. Based on this, we
report on the identified challenges and practices from the

perspective of a software ecosystem and in the context of the

underlying process.

3.3 Analyzing repository data

One of the richer sources of information in this study was

the ecosystem itself. Actors of the CLM ecosystem develop

their products by using the CLM product suite itself, and
developers can be considered as end users (‘‘developer-

end-users’’) in the scope of our study. As a consequence of

its open-commercial development model, all of its
requirements and tasks are documented as workitems in the

integrated issue tracker and are available online. By

querying and analyzing this repository, we were able to
triangulate findings from participatory observation and

semi-structured interviews. For example, we were able to

query the issue tracker for all user stories with attachments

from external partners and confirm the statement from one

of the interviews that while many companies consider such
data to be confidential, others share them openly. We

analyzed workitems and their meta-data (name and affili-

ation of the owner of workitems, comments, and attach-
ments), as well as the discussion of all issues related to the

workitem’s clarification, coordination, and implementa-

tion. This was supported by the fact that each CLM project
has a publicly available list of project members, which

shows the current status of project membership.
We also relied on this data source for a closer analysis of

stakeholders and their contributions (RQ 4), for which we

focused on user stories from the RTC product. We chose
RTC for our analysis because it has a rich issue-tracking

repository in which communication about its requirements is

documented online (in the form of comments) and is trace-
able to requirements. Requirements are defined in the formof

user stories, and ongoing discussions around these user sto-

ries serve as the main mechanism to clarify the meaning of
requirements and to coordinate their implementation [8].

In particular, we analyzed a snapshot of the issue-

tracking system between December 2006 and June 2008.
The snapshot contains 157 stories. Out of the 157 stories,

60 did not have any comments. We thus analyzed 97 sto-

ries and their requirements discussions with a total of 431
comments.

3.4 Manual content analysis and coding

To further analyze the types of contributions made by

ecosystem stakeholders (RQ 4.2), we analyzed the contents
of the contributions using grounded theory methods [10].

We identified categories based on the contributions and

coded each contribution to a category. Two independent
coders completed this coding. When each coder was sat-

isfied with their codes, their code lists were combined to

create a master code list. Each coder performed another
iteration to apply a code from the master code list to each

response. We measured inter-coder reliability with Krip-

pendorff’s alpha measure [34] and found the initial
agreement between the two coders to be reliable (Krip-

pendorff alpha score of 0.81). After the coding was com-

pleted separately by both coders, the two coders compared
their findings and discussed any differences. This round of

reconciliation resulted in a set of codes with 100 %

agreement between the two coders.

4 Findings

Our findings (see summary in Fig. 1) describe how

requirements flow in software ecosystems, themes of RE in
the CLM ecosystem, and the role of emergent

5 Examples of guiding questions: How are requirements elicited and
communicated to you? How do you prioritize requirements? How do
you deal with context in requirements engineering for software
ecosystems?.

Requirements Eng

123

contributions. Our themes include practices for all three

ecosystem scope levels and challenges for scope levels 2
and 3. We do not address challenges at scope level 1 since

our interviewees, software managers and developers in

various ecosystem actors, were not aware of specific
challenges at this high level. Crosscutting through all three

scope levels, we characterize the stakeholders that con-

tribute to requirements discussions as well as the impact of
their contributions.

RQ1.1: How are stakeholders selected across the
ecosystem?

Software product release planning has been extensively
discussed (e.g. [49]). In our interviews, we focused on the

specifics of creating a roadmap for an actor within the

software ecosystem. We found two practices that support
the selection of stakeholders: The first practice, which our

interviewees refer to as five themes, supports roadmapping

and selecting features for the next release, while the second
practice developer conference facilitates decisions about

the technological platform. Since software ecosystems are

inherently open to some degree, stakeholder selection is
done mostly indirectly by announcing a roadmap that is

attractive to certain actors, or by adjusting the technolog-

ical platform to make it easier to join the ecosystem. The
practices five themes and developer conference, which we

discuss in more detail here, influence the willingness and

ability of players to participate in the ecosystem.

Five themes The CLM actors that belong to IBM are

usually managed by a Product Management Committee

(PMC), consisting of technical leads, development leads,
and product managers as well as representatives from

support and sales. This PMC defines five themes to set the
goal for the next release based on strategic considerations

which are then used to define the roadmap for the next

release. By including sales and support, knowledge about
strategic needs of potential new actors is included in this

discussion. These five themes can be considered as the

primary steering instrument, which ultimately open the
ecosystem for new actors by including or excluding crucial

requirements:

‘‘Having those high-level themes helps us to frame,
looking at individual requirements and saying, yeah,

actually that goes along with this sort of cluster of

requirements.’’

Open communication of the five themes for the next

release cycle allows the alignment of several actors and
shapes the attractiveness of the ecosystem to new actors.

Developer conferences These conferences aim to bring
together technical leaders of all actors in the ecosystem and

provide a forum for discussing future directions of the

underlying platform and concepts of the ecosystem,

including actor interdependencies. Thus, they play a major
role in framing the software ecosystem on Scope Level 1.

‘‘[At] innovate conference [we] get this senior tech-

nical team together regularly. We take advantage of
that by spending three solid days planning for the

next release.’’

Technical leaders participating in these yearly events

come from all ecosystem actors (keystone players and

consumers) and meet for 3 days. Many of them are part of
the PMCs (or equivalent in non-IBM actors) and can shape

the five themes and the roadmap based on input from these

conferences.

RQ1.2: How are requirements communicated across the

software ecosystem?

Strategic requirements flow This flow is characterized

by sales and support activities through which business
goals from consumers as well as strategic information from

other actors in the ecosystem are introduced into the

ecosystem and need to be considered during release plan-
ning. The strategic flow resembles traditional RE (e.g.

[47, 49]) by focusing on systematic analysis of business

goals from stakeholders and their refinement to detailed
requirements, but the ecosystem adds an increased need to

take into account strategies of other keystone players and to

anticipate their movement in the ecosystem. Business
models of niche players can be considered, e.g. to under-

stand how those can contribute to the own strategy. For

example, the niche player Reporting offers additional
business value for many CLM products.

Emergent requirements flow The complexity and ever

changing nature of the ecosystem result in many new
requirements that are based on ecosystem trends and

introduced into the ecosystem as emergent requirements
flow. Such emergent requirements originate from end users

from consumers in the ecosystem, who find new ways of

using existing services, and developers from other keystone
or niche players, who come up with innovative solutions.

Consequently, ecosystem trends become visible in discus-

sions of low-level workitems in open communication

Requirements Eng

123

channels and need to be fitted into the different actors’

plans, e.g. by ‘‘squeezing them into the scope of one plan

item’’ as one team lead put it. According to our interviews,

roughly 2
3 of the end-user requirements originate from end

users at the customer sites, while 1
3 originate from CLM

developer–end users. In addition to this, technical debt and
bugs emerge as the ecosystem evolves and are communi-

cated partly internally and partly on open communication

channels. The emergent requirements flow resembles the
requirements practice in open-source projects [52] where

requirements emerge as informalisms, through continually

emerging Webs of software discourse (e.g. email and dis-
cussion forums).

We will discuss the role of such emergent contributions
in the scope of Research Question 4.

RQ2: How are requirements mapped to actors in the

software ecosystem and how is the context of
requirements managed?

Our findings for RQ2 are illustrated in the center of Fig. 1.

Managing the context of requirements and mapping
requirements to actors are highly interconnected and

challenging RE tasks associated with Scope Level 2. We

identified three challenges that express how constraints and
complexity of open-commercial software ecosystems affect

the engineering of requirements at this level:

Confidential requirement In a commercial setting,

customer specifics and requirements often contain confi-

dential information about the customer and cannot be dis-
cussed on open-commercial channels. Development or

team leads are responsible for this confidential information

and forward it to developers as needed.

‘‘We can work on sanitizing the requirement [and]

always translate these into public workitems on
jazz.net [so that] either it does not have any customer

identifiable information in it or [...] the customer is

okay with this.’’

Consequently, important information (especially related

to the context) is not shared through open communication
channels, threatening the transparency of the software

ecosystem.

‘‘Informally the context is captured with one require-

ment, we understand this requirement is coming from

organizations with this kind of environment and this
kind of expectations [...] shouldn?t we be capturing

that context in a way that is more structured?’’

Crosscutting concern Practitioners frequently struggle to
understand whether requests of different customers could

be addressed generally (closer to the platform) or only

specifically (by a peripheral actor). This includes dealing
with crosscutting concerns that affect several actors or

requirements that should entirely be assigned to other

actors in the software ecosystem. Particularly, when
several actors need to collaborate to work on such a

request, a systematic approach is desirable, yet missing.

Keystone dominates Niche players couple their value

creation in a narrow niche closely to integrating services

provided by keystone players. Thus, they depend on these
other actor’s technical decisions which can have more

impact on the niche player’s requirements than the needs of

customers or end users.

‘‘Most of the stuff, we just have to do it to keep up

with the ecosystem and platform.’’

This challenge is caused by the nature of software

ecosystems and significantly impacts the way requirements
are mapped to niche players. Yet, niche players have little

power to deal with this challenge themselves. If it is encoun-

tered too frequently, this challenge canhave a serious effect on
the ecosystem’s overall health [41]. Keystone players should

be considerate in their action: while each major design deci-

sion can offer new opportunities to some of the actors in the
ecosystem, it is potentially harmful to others. Keystone

players need to provide some stability to niche players,

because their limited resourcesmight not allow them to follow
new technical trends [41]. Yet we found no evidence for a

systematic approach tomonitor the requirements and needs of

niche players to support decision making on this level.
Practitioners address these three challenges based on

three practices:

Commitment wall As a consequence of the confidential
requirement challenge, the release planning is partly

intransparent, because confidential information like cus-
tomer priorities cannot be disclosed. To mitigate potential

conflicts (e.g. when a paying customer is over-bidden by

another), developers are not allowed to commit to a feature
or bug-fix for a specific milestone or time-frame.

‘‘We try to ensure that there is a bit of a wall in place

between development and customers when it comes to
commitment for enhancements [...] or for new

features.’’

Requirements Eng

123

Protected developer Open-commercial channels facil-

itate direct feedback from end users to developers, but

developers are widely relying on their senior team
members to give them all required information. The less

seniority our interviewees had, the less awareness for the

special challenges of ecosystems they showed. Senior
team members intercept and resolve these ecosystem

challenges and allow developers to focus on development

tasks.

‘‘There are customer calls [taken by team or techni-

cal lead], then priorities are passed down in weekly

meetings.’’

In this way, team leads and other managers effectively

shield their developers from any challenges arising from
context-specific requirements.

Personal network In the ecosystem, it becomes difficult
to map emergent requirements to specific actors, especially

since these requirements are often crosscutting over several

players in the ecosystem. It is important to understand the
context of such requirements and to systematically forward

this information to other relevant players in the ecosystem.

Our interviews indicate that this task depends on individual
excellence and ad hoc coordination between seniors of

several ecosystem actors.

A common practice of internal stakeholders is to make

use of their personal network. They meet senior staff of

other actors in the ecosystem and try to follow relevant
developments in the ecosystem, which allows them to

discover and resolve crosscutting concerns, map (and for-

ward) requirements to different subsystems, and to under-
stand their general context.

‘‘A lot of it is basically talking to the senior people on

the [different] team[s].’’

Some internal stakeholders even actively track open

communication channels of other actors to identify cross-
cutting problems without this task being formally assigned

to them.

‘‘You need to know all workitems of the last years and
their history.’’

The ability of these senior team members to function in this
job depends, in large part, on their personal experience and

network. We found no systematic approach for capturing

and managing context. Our interviewees expressed their
concern that without such an approach, the success of an

actor in the ecosystem depends too much on individuals,

endangering long-term health and reliability of large-scale
software development.

RQ3: How are requirements communicated and refined
in the scope of an actor in the software ecosystem?

On Scope Level 3 (right-hand side in Fig. 1), developing

teams struggle with the complexity of the software
ecosystem and with the consequences of practices at Scope

Levels 1 and 2. For example, protecting developers from

the challenges of developing software for an ecosystem
(practice on Scope Level 2) can cause those developers to

be surprised by developments in the ecosystem (see sur-
prising priorities below) or cause testers to struggle to set

up a representative test frame or reproduce a bug. Another

challenge on this scope level, happy-or-gone, refers to a
lack of immediate contact with end users and customers.

Surprising priorities We found especially junior devel-

opers to heavily rely on their managers and senior devel-
opers in the team for navigating the software ecosystem

challenges (see also the protected developer practice).

Consequently, it is hard for them to anticipate changes of
requirements or priorities.

‘‘You’d ask [name of technical lead] or one of the
persons in charge, then you get pointed to the guys

who know about an issue. [...I would like] a head

start about something becoming a priority, before it
becomes that urgent thing that needs to be fixed right

away.’’

Priorities become even more surprising due to the large

number of information channels, which are only partly

open, and due to the lack of systematic feedback about
stakeholder satisfaction.

Happy-or-gone Strong sales and support processes are in
place to understand stakeholder needs, and user experience

teams can provide further input (see strategic requirements

flow practice), but there is a lack of transparency and
systematic approaches for channeling positive stakeholder

feedback. If there is a problem, development teams usually

receive consumers’ complaints, but if there is no com-
plaint, they do not know if the consumers are happy with

the service or if they have stopped using it.

Requirements Eng

123

‘‘[Sometimes I wonder if it is] really going well for

everybody or is nobody using it. And those two situ-

ations are sometimes hard to distinguish.’’

In the presence of these challenges, we found practi-

tioners to rely on two general flows of requirements:

Top-down requirements flow Members of the PMC,

team leads, and developers work with specific artifacts in

the CLM issue tracker, as indicated by the top-down
requirements flow on the right-hand side of Fig. 1. The

PMC works with the so-called plan items in the issue

tracker to create a release plan. Such plan items refer to
major development efforts and comprise several [user]

stories (another specific workitem type). User stories are

derived from plan items and assigned to team leads. Tasks
are defined based on these stories and assigned to devel-

opers. It is usually during this final refinement that most of

the crosscutting concerns and context specifics are
resolved, so that developers can focus on the task with

minimal distraction.

‘‘[...] PMC lead would assign me some of the plan

items which I will own and which I can refine then

and assign to [team lead name] or whoever else is on
my team. Then refine those into stories, enhance-

ments, and tasks that we can give to the developers to

actually work on.’’

The top-down requirements flow addresses traditional

requirements refinement in an effective way, but on its own
is not sufficient to address the software ecosystem

challenges.

Bottom-up requirements flow In order to deal with

challenges discussed at both Scope levels 2 and 3, team

leads and senior developers use their personal contacts to
facilitate the flow of requirements between their team and

support or other development teams. Open-commercial

instruments allow customers and end users (including
developer–end users) to introduce requirements themselves

(by filing bugs or change requests) or to discuss their needs

in the comment stream of an existing workitem.

‘‘[Customers are] either submitting workitems

directly, like defects, or there is some forum / blogs,
where people ask questions.’’

Such information is often available on a very specific
and low abstraction level, and senior developers who have

a good overview of such issues are consulting the PMC

directly or indirectly about trends as well as technical debt.

‘‘When we come up with these high level themes, we

often come, we always come up with this grab bag

called technical debt.’’

In the absence of a systematic approach or formal process,

we found the personal network and experience of team

leads and senior developers to be the only way to
understand the level of stakeholder satisfaction and to

highlight technical debt that should be addressed.

‘‘[You need to] Get a feeling about a large number of
reported issues. It really depends on your experi-

ence’’. —‘‘One thing I did was internally, just infor-

mally, poll the people who I know to be the technical
leaders on the team.’’

We describe this ad hoc treatment of emerging require-
ments and technical debt as bottom-up requirements flow

(on the right in Fig. 1).

With respect to knowledge management, this situation is
dangerous, because experienced and well-connected team

leads and senior developers are hard to replace. In addition,

the complex environment results in a steep learning curve
for new developers and managers, before they can assess

stakeholder satisfaction or manage requirements flows.

Managers among our interviewees agree that finding a
more systematic solution for managing complexity of

software ecosystems is one of the future challenges.

RQ4.1: Who are the ecosystem stakeholders contributing

to the requirements discussions?

Through our analysis of the requirements discussions in the

RTC issue tracker, we discovered developers openly discuss

features they are currently developing. This behavior stems
from the agile development process and actively promotes the

ecosystemand its actors [21]. In addition, our analysis revealed

that many contributions to these discussions were provided
from stakeholders not associated with the RTC product team.

This confirms our finding of the emergent requirements flow

practice: We indeed find such emergent contributions from
other actors of the CLM ecosystem. We refer to such con-

tributors as emergent stakeholder and define them as follows:

Definition An emergent stakeholder (or emergent con-

tributor) is a stakeholder who (1) is not officially required

or responsible for the requirement, yet (2) contributes to
the discussion of the requirement in some way.

We analyzed the RTC repository data to identify

emergent stakeholders. We considered emergent stake-
holders as those https://jazz.net users who (1) were not a

Requirements Eng

123

https://jazz.net

member of the RTC project but (2) contributed to an online

discussion around an RTC requirement in the issue tracker.
Emergent stakeholders identified through this analysis

included developers from other IBM products and even

https://jazz.net users external to the IBM organization.
Figure 2 shows a visualization of contributions made on

RTC requirements discussions. The figure highlights the

large number of contributions from emergent stakeholders.
For visibility, the visualization is limited to emergent

stakeholders from two other CLM products, C/ALM and
Jazz Foundation, and emergent stakeholders external to the

IBM organization. Table 2 provides more details on the

number of emergent contributions. Of the 431 comments
we analyzed, 231 or 54 % originate from emergent stake-

holders, indicating that such stakeholders play an important

role in the requirement clarification process.

RQ4.2: What is the impact of such contributions?

Based on our analysis of RTC workitem discussions, we

characterize the impact of emergent stakeholders’

contributions. Manual content analysis of the discussions

revealed four main categories of contribution: requirement
negotiation, coordination, information, and implementation

status (Table 2). The remaining categories identified during

this analysis each accounted for only a very small number of
comments and are summarized as other comments in Table 2.

Emergent contributions account for 79 % of require-

ment negotiation comments indicating that emergent
stakeholders play a large role in developing new require-

ments. On the other hand, non-emergent stakeholders
account for 80 % of implementation status comments. This

is not surprising since the non-emergent stakeholders are

those responsible for the workitems.
Since emergent stakeholders bring a different perspec-

tive to the requirement process, we believe it is important

for them to contribute early. We, thus, analyzed the timing
of emergent contributions to identify whether emergent

stakeholders are contributing early in the timeline of a

requirement life cycle.
A Mann–Whitney test of difference in distribution

shows that emergent stakeholder contributions occur later

than non-emergent contributions when considering the
number of days a contribution is made after the creation of

the workitem (Table 3). The difference is even more

Fig. 2 Visualization of emergent communication in the CLM
ecosystem (here: from the perspective of RTC). Discussions of
requirements in the RTC issue tracker receive contributions from
emergent contributors, either from other product teams within IBM or

from other organizations. Size of nodes depicts number of emergent
contributions by this stakeholder, color of links depicts comment type
(yellow requirements negotiation, green coordination, brown infor-
mation) (color figure online)

Requirements Eng

123

https://jazz.net

significant when considering the timing of the first contri-

bution of each stakeholder on a workitem. Emergent
stakeholders begin contributing later than non-emergent

stakeholders.

Since emergent stakeholders play a large role in
requirement negotiation yet contribute later than other

stakeholders, we analyzed the comments on the workitems

to see how these emergent contributions impact the
requirement process.

Early contributions by emergent stakeholders drive the
requirement: We observed some cases where the emergent

stakeholders commented early in the workitem timeline

describing their need for the particular feature implemen-
tation or defect fix. The emergent stakeholders, therefore,

acted as catalysts for these changes. From the discussions,

it appears that the early contributions from the emergent
stakeholders speed up the requirements clarification and

decision-making process. Those responsible for imple-

menting the task (non-emergent stakeholders) respond
quickly to the needs of the emergent stakeholders.

The discussions around Workitems 1 and 2 shown in

Tables 4 and 5, respectively, illustrate this pattern. On
Workitem 1, we see two emergent stakeholders clarifying

the requirements. The developer assigned to the workitem

agrees on the requirements and implements the function-
ality. On Workitem 2, we see two emergent stakeholders

commenting to voice their need for the new feature that is

later implemented.

Late contributions by emergent stakeholders can cause

disruption and rework in the requirement process. How-
ever, we also observed cases where emergent stakeholder

contributions start or accumulate much later in the work-

item time line. In many cases, the late involvement of an
external stakeholder caused problems. For example,

Workitem 3, in Table 6, shows a case where two emergent

stakeholders provide some input early, but then are not
involved for a long time. Only late in the lifetime (after day

120), more emergent contributors start to clarify additional
requirements, after much of the work has already been

completed. Such late clarification can cause rework and

problematic changes in scope. Based on these observations,
we argue that without emergent stakeholders driving the

need for a user story early, decision making is slower and

requirements are not always well understood. This can lead
to a unsuccessful outcome.

5 Discussion: continuous and emergent
requirements clarification

In this paper, we studied Requirements Engineering prac-

tices and challenges in the CLM ecosystem. We employed
a mixed-method methodology that included participatory

observation, semi-structured interviews and qualitative

coding, analysis of repository data as well as manual
content analysis. Our findings suggest that communication

about requirements in the ecosystem involves many groups

and layers. We found requirements flow both bottom up
and top down. In particular, we found that a traditional

inflow of strategic requirements is complemented by an

emergent requirements flow. To more closely analyze the
latter phenomenon, we investigated characteristics of

ecosystem stakeholders and their contributions in the

emergent requirements flow. We found that more than half
of all contributions originate from emergent stakeholders

and that those contributions can be critical success factors

when they can be elicited early in a new features lifecycle.
The observations and findings in our study are of course

specific to the CLM ecosystem. However, they reveal

underlying implications for research and practice (includ-
ing tools) as well as tradeoffs that openness brings to how

requirements are managed within software ecosystems. In

this section, we discuss these implications and tradeoffs, as

Table 2 Characteristics of comments from emergent/non-emergent
stakeholders

Comment Number of
comments

Emergent Non-
emergent

Requirement
negotiation

112 88 (79 %) 24 (21 %)

Coordination 111 48 (43 %) 63 (57 %)

Information 65 31 (48 %) 34 (52 %)

Impl. status 51 10 (20 %) 41 (80 %)

Sum (rel. classes) 339 177 (52 %) 162 (48 %)

Other comments 92 54 (59 %) 38 (41 %)

Sum (total) 431 231 (54 %) 200 (46 %)

Table 3 Timing of contributions (median number of days after cre-
ation of workitem)

All contributions First contribution

Emergent 29 days 28 days

Non-emergent 21 days 14 days

Mann–Whitney test W ¼ 24; 864:5* W ¼ 8316**

* p\0:05, ** p\0:01, *** p\0:001

Requirements Eng

123

well as the ways in which IBM teams approached associ-

ated challenges.

5.1 Implications for RE research, practice, and tools
in software ecosystems

Our findings highlight the need for development of theo-

ries, techniques, and tools to help developers, and their
organizations effectively manage the growing amount of

information in their product development ecosystem. For
organizations, staying abreast of market trends while

maintaining strategic partnership with other organizations

in their product development ecosystem creates real com-
petitive advantage in today’s interconnected software

industry.

Toward this goal, our research contributes a method for
identification of conceptual dependencies between project

stakeholders in the ecosystem; those who contribute to

discussions have some relationship to the requirements
being discussed. These relationships could be known or

emerging in the products’ architectures. Either way,

knowledge about such relationships helps toward under-
standing the stakeholder structure and dependencies of

particular features and thus should be leveraged for more

effective support for coordination of requirements
development.

Our research suggests that project managers and tech-

nical leaders, in particular, would immensely benefit from
development of new methods and supporting tools (e.g.

recommender systems) for release planning of current

iterations. Such methods and tools should help to involve
relevant ecosystem stakeholders early in the requirements

discussion and validation. Involving the right ecosystem

stakeholders early ensures appropriate product direction,
improving overall productivity and quality. Supporting

tools could automatically analyze existing information
from online stakeholder collaboration and inform effective

planning of future product releases. Those stakeholders that

have been found to have a positive impact in earlier iter-
ations on requirements that are similar or dependent on

those in the current release should be included in the cur-

rent release.

5.2 Tradeoffs in open-commercial software
ecosystems

5.2.1 Tradeoff 1: act openly versus act proprietarily

The open-commercial approach in the CLM ecosystem

means that customers and end users, in fact every stake-

holder interested in the development, have access to the
issue tracker and can see the current progress of the project.

Table 4 Sample Workitem 1. Emergent stakeholders’ needs driving requirement process

User Type Day Comment

1 Non-emergent 0 This story talks about how we will enable [feature x] for team concert 1.0

2 Emergent 43 Don’t we need the ability to create [feature y], with [a and b] functionalities as well?

3 Emergent 43 I agree and we really need to define the scope here with a scenario. I’ve added a [P] item to the [M] plan

2 Emergent 102 Without [b] functionality, you can’t complete the [a] task, I think we need to include that. If I think about
how our IT folks work, I would really like to see the Web UI cover the [function a] scenario

4 Non-emergent 108 We will introduce the notion of [z] feature. The web ui should allow to carry out [function a and b]

5 Non-emergent 132 Primary functionality added in M5...will continue to polish in M6

Table 5 Sample Workitem 2. Emergent stakeholders’ needs driving requirement process

User Type Day Comment

1 Non-emergent 0 I’m currently working on [function a] for Jazz

2 Emergent 122 I’d be very interested in this functionality. I am investigating using RTC for my Team (and my Area). Is
this available in RTC 1.0?

3 Emergent 148 Do you need testers for this? We have an immediate need [for function a]

4 Emergent 189 So is this still happening or was it taken off of the board?

3 Emergent 190 The [team X] folks have started an open source project inside IBM. It’s currently in early design phase

5 Emergent 204 If this feature is ready, will RQM benefit from this too? Then people using RQM can [utilize function a].
Really looking forward to it

6 Non-emergent 214 Dear all, iteration 1 for [function a] has been released

6 Non-emergent 278 Dear all, iteration 2 for [function a] has been released

Requirements Eng

123

End users can comment and submit bugs, and they can see

the status of their requests. Yet, business needs make it
necessary to treat certain information confidentially. The

following forces need to be balanced with respect to this

tradeoff.

Information flow. The open-commercial approach with its

open communication channels facilitates information flows
between end users, customers, developers, and software

managers. This high level of transparency is, one could

argue, an unprecedented opportunity in how software

Table 6 Sample Workitem 3. Late emergent contribution causing rework

User Type Day Comment

1 Non-emergent 0 We need a common approach and guidelines for how to improve error messages. The result of this effort is a
wiki page with agreed on guidelines for the component teams

1 Non-emergent 10 I’ve added some screenshots with examples of non-supportive error messages

2 Non-emergent 19 A first draft of the wiki page is available

3 Emergent 20 Looks good:) couple points I did not see in the wiki [list of recommendations]

2 Non-emergent 23 The draft has been updated

4 Emergent 31 We currently don’t have a story for expressing process problems to REST clients, such as our web UIs. Do
we address this gap here or somewhere else? Also, was it our intent for this work item to also improve how
web UIs display error messages or is this work item focused on only the Eclipse-based UIs?

2 Non-emergent 31 So far we only looked at the eclipse UI and I agree that we need to extend the scope to include the WebUi

5 Emergent 35 I’ve read the proposal and tried to implement it, I have some feedback based on this experience. Let’s start
with an example. [long list of issues omitted, including:] This message has to be internationalized based on
the clients locale

Emergent 3 35 [Re : This message has to be internationalized based on the clients locale. Ouch right, the server may be in
China and the client in Germany...[...]

2 Non-emergent 39 In respect to comment 12: having the client library in charge as in the suggestions for issues (1) and (2)
makes sense if there are appropriate client library calls[...]

3 Non-emergent 39 [C.] Made the following recommendations/observations: [...] the recommendation to ‘‘hide functionality’’
when the connection is lost might not work well in situations where connectivity is frequently interrupted
for a short time (e.g. when you’re on a train that goes through many tunnels [...] This supports the user’s
intent to ‘‘create a work item’’ without having to figure out what the preconditions are

Emergent 39 I’m wondering what is implied by ‘‘Always handle StaleDataException for all of your save methods.’’ What
exactly does ‘‘handle’’ mean? Should auto-merging always be attempted, or can the user be prompted
whether to overwrite or not? [...] Or is simply displaying a nicer error than the raw StaleDataException an
acceptable way of handling it?

5 Emergent 39 The low bar is what you proposed as the last option, provide a nicer explanation to the user about what
happened [...]

7 Emergent 122 [...] We need a rule that code must never throw a new exception, checked or unchecked, without a message.
[...] Several times we’ve been presented with exceptions where there was no associated message which
made it difficult for consumers to solve their own problem, and difficult for developers to match up the
error with the problem. The line numbers often don’t line up between the stack trace and the current version
of the code, so any message is helpful to the developer

3 Emergent 126 Ahhh, the joy of ’exception with no message’:) [...] do we need more than the stack trace? maybe the build?
Some screen capture? [...should we] provide internal info as first failure data capture to the development
team [...]?

7 Emergent 126 [...] Seeing an actual message, whether it’s in a log file, a bug report, a JUnit test result in a build, or an
instant message window, makes diagnosing the problem much easier[...]

3 Emergent 126 [...] How much value would we have getting an ’anArg is null’ and a stack trace versus just the stack trace
that points us to the line in the code where I can see I was doing an assert?[...]

7 Emergent 126 The stack trace with a line number works great when the line numbers match up. Oftentimes however the
developer has a newer version of the file loaded in his workspace, and so a line number only will not
always get you to the right place[...]

3 Emergent 126 [...] I see 2 things that could be done in parallel (1) adding a message that is unique so I can find the exact line
in the code (and can provide value) (2) [...] when one opens a work item and attaches a stack trace, RTC
can [...] parse it, find the exact build and open the ’source code’ at the exact line (in the old code stream)
and shows the new one...crazy idea?:)

8 Emergent 126 You’re not the only one with crazy ideas;-). See item NNN

Requirements Eng

123

projects are engineered and an asset in dealing with the

complexity of such ecosystems.
Confidentiality. If, for example, a new report has to be

created for a given customer, this will appear as a workitem

in the issue tracker on https://jazz.net. For the develop-
ment, it is important to know the context of this report:

How is it embedded in the customer’s processes and what

exactly are the customers information needs. An example
of an old report this customer is using would be helpful.

However, most customers are reluctant to share such inti-
mate information about their central business processes in

an openly accessible issue tracker. For this reason, it is not

possible to have all information at one place, and the
openness is broken.

Priorities. A special case of confidential information is

priorities and their rationales, which cannot be openly
shared in many commercial settings, leading to incom-

plete information and intransparent decisions on open

channels.

General solution strategy: Introduce layers between cus-
tomers and developers. In our case study, actors acquire

sensitive, confidential context-specific information
through sales and support groups and share them directly

with the developers in charge. They ensure that discus-

sions in open communication channels are on a high level
of abstraction, e.g. by introducing acronyms such as

LUGA (Large Unknown Government Agencies) to refer

to anonymous entities. We found, however, that this
strategy hinders the information flow, significantly adds to

management effort, and increases the challenge of creat-

ing a holistic product strategy that is in line with context-
specific requirements of specific customers, which we will

discuss next.

5.2.2 Tradeoff 2: act globally versus act locally

The CLM ecosystem is in direct or indirect competition
with other lifecycle management solutions, e.g. Visual

Studio Application Lifecycle Management [48] or SAP

Solution Manager [53]. In order to position CLM against
these competitors, strategic decisions need to be made

that affect the whole ecosystem. To define a global

strategy in a software ecosystem of this complexity, a
strict plan-driven top down approach is suitable. At the

other end of the spectrum, very local decisions need to be

made to adjust services to meet the ever changing con-
sumer needs or to address technical debt. In a constantly

evolving software ecosystem, these fast and agile deci-

sions ask for local empowered development teams. The
following forces need to be balanced with respect to this

tradeoff:

Understanding customers in context. User stories and

tasks can be difficult to understand when the context is not
clear [57]. Context in the CLM ecosystem depends on

various factors, and descriptions of workitems frequently

show gaps due to confidential information. Consider, for
example. a given customer with a unique setup, consisting

of server and client platforms as well as a specific mixture

of CLM and third-party products. If such a customer has a
new requirement, it is often not obvious whether this

requirement is only valid for this single customer or if this
is a request for a feature with general value. Developers in

the CLM ecosystem had clear difficulties making decisions

about the customer’s specific context especially when the
customer’s development process and culture were different

from those that CLM developers experience everyday, thus

not being able to rely on their own domain knowledge.
This situation is similar to the one found in Fricker’s

requirements value-chain vision paper [20], where locally

empowered development teams actively pulled in
requirements to offer value in the ecosystem based on their

domain expertise and context-related knowledge. In fact, it

is unclear, if any other approach can scale for tomorrows
ultra-large-scale software systems [19].

Learning curve and dependence on experience. Product
and team leadership remove requirement conflicts and
inconsistencies that result from the large set of stakeholders

and their different contexts. The complexity of this task

imposes high requirements on experience and a strong
personal network across the CLM ecosystem, to allow

basing decisions on the views of senior people in related

projects. Hiring new software managers or promoting
developers is made difficult by this steep learning curve.

Crosscutting concerns. Empowering local teams typically

increases the need to deal with crosscutting concerns and
hidden technical dependencies [56]. In the CLM ecosystem,

even if discovered, such crosscutting concerns are difficult

to tackle. Descriptions of workitems are often unclear, and it
is difficult to identify the person that might help with clar-

ifying. Because differences in time zones do not allow

regular synchronous communication, emails or workitem
comments are used to identify a developer who might pro-

vide clarification, often leading to long email threads over

several days without any valuable information.

Emergent Requirements Flow. Emergent stakeholders

from across the ecosystem, especially keystone players and

consumers, play an important role in the requirements
negotiation. If involved, emergent users are catalysts and

drive the requirements discussion. However, late emergent

contributions can cause disruption and rework in the
requirements process.

Requirements Eng

123

https://jazz.net

General solution strategy: 1. Leverage personal excel-
lence. We found that the challenges caused by the tradeoff
between acting globally to define a strategy for the

ecosystem top down and acting locally to understand and

react to context-specific requirements are mitigated by
excellent lower and middle management. Successful

managers have several years of experience of working in

the CLM ecosystem and in addition a strong network
throughout the keystones of the ecosystem. By this, they

are able to resolve crosscutting concerns and reassign
misclassified requirements. Nevertheless, this situation is

far from satisfactory. It is increasingly difficult to hire

qualified managers that can be effective in a reasonable
amount of time. Dealing effectively with context-specific

requirements depends partly on luck and requires that the

right person becomes aware of an issue at the right time. A
more systematic approach to manage and distribute the

contextual knowledge is needed to ensure continuous

excellence. Such an approach could systematically facili-
tate bottom-up information flows to support global deci-

sions in the ecosystem, and horizontal information flows to

handle crosscutting concerns between actors or even teams
[56].

General solution strategy: 2. Get emergent users involved
early. Our study findings suggest that the majority of
requirements clarification should be done early in the user

story’s life cycle (i.e. in the first half). As emergent users

mostly contribute to requirements clarification and often
trigger more discussion, early involvement could signifi-

cantly reduce the development risk by reducing uncertainty

early. Thus, facilitating networking across ecosystem
actors, e.g. through developer conference, becomes more

and more important.

5.3 Threats to validity

Conclusion validity In our mixed-method approach, dif-
ferent research methods have interacted to provide an in-

depth exploration of the CLM ecosystem. Participatory

observation helped to inform semi-structured interviews,
and both offered input to the qualitative analysis. The

findings of the qualitative analysis shaped our quantitative

analysis of repository data as well as the manual content
analysis. In each step, we reported and motivated our

decisions. While this research is still highly specific to its

particular circumstances, we hope that other researchers
find this information useful when retracing our inquiry in

similar environments.

Construct validity To mitigate threats to construct validity
[29], we examined the CLM ecosystem using terms defined

in the extensive treatment of ecosystems edited by Jansen

et al. [29], and we triangulated our findings with insights

from multiple methods: participatory observation, inter-

views, and repository analysis.

External validity With respect to external validity, our

study was on a particular domain of action, and our find-

ings should be regarded as tendencies rather than predic-
tions [62]. We are confident that our results will prove

useful for other similar organizations and contexts, i.e.

software ecosystems that are neither fully open nor fully
closed with respect to requirements-related communica-

tion. For example, our conceptualization and quantitative
analysis of emergent contributors should be applicable to

other scenarios where an issue tracker is used for require-

ments management and clarification.
In addition, we should mention that we only quantita-

tively analyzed emergent contributions to RTC and can

only speculate that similar behavior would also be found in
the data of other IBM CLM product teams.

Internal validity To increase the internal validity, our

author team closely collaborated during the participatory
observation phase to create the interview guide for the

semi-structured interviews. All interviews were performed

by the same author, who did not participate in transcription
and coding of interviews but was available for clarification

questions. The other authors searched, reviewed, and

defined the themes iteratively and discussed intermediate
results regularly with practitioners.

In the same way, the qualitative analysis of the type of

contributions from emergent stakeholders was driven by
two of the authors in several iterations, and cross-examined

by the other authors.

During the analysis of repository data, it was challeng-
ing to automatically identify emergent contributors,

because while the issue tracker provided a history of

changes to the workitem, it did not reveal a history of the
contributors’ affiliation. Instead, we could only retrieve a

snapshot of all contributors’ affiliation that was valid at the

very end of the timeline of our dataset. Project member-
ship, however, is dynamic, and it is not uncommon for

developers to work for a while in one project before getting

assigned to a different one. Thus, if a contributor was part
of a product team at the time of their contribution, but later

changed to a different product team, they could have been

falsely classified as emergent. In the same way, we could
have missed emergent contributors that were not part of the

product team when they made a comment, but later swit-

ched into this project team. In the course of this research,
we prioritized precision over recall. Hence, we accepted

that we would not find all emergent contributors, and

focused on mitigating the risk of wrongly classifying a
contributor as emergent. For this, we introduced a second

criteria: A contributor from product team A that com-

mented on user stories in product team B was not classified

Requirements Eng

123

as an emergent contributor if she also did major changes on

issues of product team B, such as marking an issue as
solved, assigning stakeholders to the workitem. To mitigate

this problem, we checked for each user that we classified as

emergent, whether this person made a major change to any
workitem of the project (i.e. creating and modifying the

workitem text or metadata like resolution status) and only

identified them as emergent when they did not. This way,
we ensure that we only classify persons as emergent who

are emergent with respect to our definition and, as a
tradeoff, accept that some of the persons that we classify as

non-emergent were indeed emergent at the time of their

discussion contribution.
During this work, we also checked whether the comment

a person made that we classified as emergent was plausible,

i.e. we controlled for wrong classification of emergent
contributors.

6 Related work

To adequately describe the related work around software
ecosystems, we cover three software engineering research

areas: open-source software [52], modeling and architec-

ture (e.g. software evolution, architecture, and product
lines [5]), and managerial perspectives (e.g. business

aspects and co-innovation [27]). Some degree of openness

is a precondition for software ecosystems. Different
degrees exist, from widely proprietary ecosystems to pure

open-source ecosystems [1, 28]. Jansen et al. [25], Bosch

et al. [5], and Manikas et al. [40] discuss how to analyze
software ecosystems and relationships among the actors of

ecosystems. While considering these related works, our

study focuses on understanding the implications of the
actor relationships on RE practice and vice versa.

The literature discusses both proprietary ecosystems

and free-and-open-source ecosystems [42]. RE practice in
traditional proprietary software projects (as, e.g., descri-

bed in [47, 49]) differs significantly from the way

requirements are handled in open-source projects, where
requirements are post-hoc assertions of functional capa-

bilities and included into the system feature set after their

implementation [52]. Our study indicates that although
the open-commercial approach of the CLM ecosystem

does include a more open way of communicating

requirements than in traditional approaches to RE, the
requirements processes and flows are different than in

open-source projects. The emergent requirements flows

generated by the technical implementation at the opera-
tional level are complemented by strategic requirements

flows that allow the ecosystem to consider the refinement

of requirements from high-level, business goals into
strategic release planning.

Emergent stakeholders play a major role in driving

requirements discussion and decision making. To our
knowledge, however, research has so far mainly investi-

gated emergent developers [46, 24, 51] and emergent

knowledge [59], while only few works exist that start to
investigate the effect of emergent contributors on require-

ments [35]. This is however an important aspect, as soft-

ware ecosystems facilitate communication between the
various levels of involved organizations and the role of

emergent collaboration spans beyond developers and soft-
ware teams [33]. Users with in-depth domain knowledge,

the implicit knowledge about client needs, their business

domain and the system’s environment [17], must partici-
pate even when they span team or geographic boundaries

[4]. Our research here adds to this body of knowledge by

offering insights into how often contributions from emer-
gent stakeholders occur, what the characteristics of these

contributions are, and how they affect requirements

clarification.
Transparency has been proposed as a non-functional

requirement in order to address the increasing demand of

society to understand digital infrastructure in the informa-
tion age [37]. Our research speaks to the value of trans-

parent requirements information in complex, evolving,

commercial systems but also highlights limitations and
challenges for such openness in proprietary environments.

Despite these challenges, open communication channels

have shown their value for building communities around
healthy ecosystems [30]. For commercial software

ecosystems, this offers an exciting opportunity to improve

scalability by facilitating decentralized ‘‘just-in-time’’ RE
and to support agile development [36].

Tamburri et al. [58] give a taxonomy of social com-

munities in software development. This work offers a
complementary perspective of the requirements landscape

in our case study by focussing on the community of

stakeholders. Accordingly, our study here exhibits a strong
situatedness of developers and managers (development and

technical leads), and while in many cases this community

is already defined over the organization (a feature team), it
can often also be characterized as a (emergent) community

of practice. A good example is the technical lead describ-

ing the situation of his new formed feature team where he
was not officially responsible for the majority of develop-

ers recruited (and still belonging to) other teams.

In addition, Tamburri et al.’s [58] work allows us to
characterize the community of stakeholders in CLM as

informal network, based on that it is highly dispersed and

has a high degree of informality, e.g. with end users and
customers discussing issues with developers through

workitem comments.

There is, however, also a formal way of tying customers
and key users to the developing organization through the

Requirements Eng

123

sales team as well as through the support process, which

has to be seen as a formal network, according to [58]. The
coexistence of formal and informal network is one source

of irritation we encountered during our interviews, since

requirements from both sources of information need to be
aligned.

7 Conclusion

In this paper, we described RE challenges and practices
within the CLM software ecosystem and identified two

tradeoffs that openness brings about in software ecosys-
tems. First, open information channels support both global

strategic and local just-in-time action. Both global and

local actions are needed to make the software ecosystem a
competitive business partner, but to allow for both, bottom-

up and horizontal information flows need to be dealt with

systematically. Second, organizations must find ways to
adhere to non-disclosure agreements, protect intellectual

property, and maintain confidentiality in such open envi-

ronments. We also found that openness encourages con-
tributions from emergent stakeholders whose early

involvement can be crucial for the success of requirements.

Our work addresses a particular lack of RE research in the
rapidly growing field of software ecosystems. A good

starting point for future work is the development of

methods and tool support for commercial organizations to
optimize their RE to address the following challenges:

• Manage stakeholder interaction across multiple orga-
nizational boundaries and between teams.

• Manage domain and technical knowledge during con-

tinuous deployment across all organizational levels and
actors.

• Systematically transform requirements flows into tech-

nological and strategic decisions to position actors in
the software ecosystem.

• Connect the right people early when clarifying require-

ments for new features in software ecosystems.

Acknowledgments We thank the various participating IBM teams
and especially James Moody for their support, and all researchers and
practitioners for their feedback on this work: the SEGAL group at
University of Victoria, IBM research, and the Division of Software
Engineering in Gothenburg. This research was partly funded by the
NECSIS Network, Canada, the NGEA-project (Vinnova, Sweden),
and the Software Center initiative (Ecosystemability Assessment
Method, www.software-center.se).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
made.

References

1. van Angeren J, Kabbedijk J, Popp KM, Jansen S (2012)
Managing software ecosystems through partnering. In: Software
ecosystems: analyzing and managing business networks in the
Software Industry, chap 5. pp 85–102

2. Barbosa O, Pereira R, Alves C, Werner C, Jansen S (2012) A
systematic mapping study on software ecosystems through a
three-dimensional perspective. In: Software Ecosystems: ana-
lyzing and managing business networks in the Software Industry,
chap 4. pp 87–129

3. Begel A, Bosch J, Storey M (2013) Bridging software commu-
nities through social networking. IEEE Softw 30(1):26–28.
doi:10.1109/MS.2013.3

4. Boden A, Avram G (2009) Bridging knowledge distribution-the
role of knowledge brokers in distributed software development
teams. In: Cooperative and Human Aspects on Software Engi-
neering, 2009. CHASE’09. ICSE Workshop on IEEE, Vancou-
ver, Canada

5. Bosch J (2009) From software product lines to software ecosys-
tems. In: Proceedings of the international conference on software
product lines. San Francisco, CA, USA, pp 111–119

6. Braun V, Clarke V (2006) Using thematic analysis in psychology.
Qual Res Psychol 3:86–94

7. Brill O, Knauss E (2011) Structured and unobtrusive observation
of anonymous users and their context for requirements elicitation.
In: Proceedings of the international requirements engineering
conference (RE’11). Trento, Italy, pp 175–184

8. Cao L, Ramesh B (2008) Agile requirements engineering prac-
tices: an empirical study. IEEE Softw 25(1):60–67

9. Castro-Herrera C, Duan C, Cleland-Huang J, Mobasher B (2008)
Using data mining and recommender systems to facilitate large-
scale, open, and inclusive requirements elicitation processes. In:
Proceedings of the international requirements engineering con-
ference (RE’08). Barcelona, Spain, pp 165–168

10. Corbin J, Strauss C (2008) Basics of qualitative research, 3rd edn.
Sage, Beverly Hills

11. Curtis B, Krasner H, Iscoe N (1988) A field study of the software
design process for large systems. Commun ACM 31:1268–1287

12. Dabbish L, Stuart C, Tsay J, Herbsleb J (2013) Leveraging
transparency. IEEE Softw 30(1):37–43. doi:10.1109/MS.2012.
172

13. Damian D (2007) Stakeholders in global requirements engi-
neering: lessons learned from practice. IEEE Softw 24:21–27

14. Damian D, Didar Z (2003) RE challenges in multi-site software
development organisations. Requir Eng 8(3):149–160

15. Damian D, Marczak S, Kwan I (2007) Collaboration patterns and
the impact of distance on awareness in requirements-centred
social networks. In: Proceedings of the international requirements
engineering conference (RE’07). New Delhi, India, pp 59–68

16. Damian D, Kwan I, Marczak S (2010) Requirements-driven
collaboration: leveraging the invisible relationships between
requirements and people. In: Collaborative software engineering.
Springer, pp 57–76

17. Damian D, Helms R, Kwan I, Marczak S, Koelewijn B (2013)
The role of domain knowledge and hierarchical control structures
in socio-technical coordination. In: Proceedings of the interna-
tional conference on software engineering (ICSE’13). San Fran-
cisco, CA, USA, pp 442–451

18. Easterbrook S (1991) Elicitation of requirements from multiple
perspectives. PhD thesis, University of London

Requirements Eng

123

http://www.software-center.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1109/MS.2013.3
http://dx.doi.org/10.1109/MS.2012.172
http://dx.doi.org/10.1109/MS.2012.172

19. Feiler P, Sullivan K, Wallnau K, Gabriel R, Goodenough J,
Linger R, Longstaff T, Kazman R, Klein M, Northrop L, Schmidt
D (2006) Ultra-large-scale systems: the software challenge of the
future. Software Engineering Institute, Carnegie Mellon Univer-
sity. ISBN:0-9786956-0-7. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetID=30519

20. Fricker S (2010) Requirements value chains: stakeholder man-
agement and requirements engineering in software ecosystems.
In: Proceedings of the international working conference on
requirements engineering: foundation for software quality
(REFSQ’10). Essen, Germany, pp 60–66

21. Frost R (2007) Jazz and the eclipse way of collaboration. IEEE
Soft 24(6):114–117

22. Gawer A (2009) Platforms, markets, and innovation. Edward
Elgar, Cheltenham

23. Guzman E, Maalej W (2014) How do users like this feature? a
fine grained sentiment analysis of app reviews. In: Proceedings of
22nd international requirements engineering conference (RE
’14). Karlskrona, Sweden, pp 153–162

24. Haenni N, Lungu M, Schwarz N, Nierstrasz O (2014) A quanti-
tative analysis of developer information needs in software
ecosystems. In: Proceedings of the 2014 European conference on
software architecture workshops (ECSAW ’14), vol 12. ACM,
Vienna, Austria, pp 12:1–12:6. doi:10.1145/2642803.2642815

25. Jansen S, Cusumano MA (2012) Defining software ecosystems: a
survey of software platforms and business network governance.
In: Software ecosystems: analyzing and managing business net-
works in the software industry, chap 1. pp 13–28

26. Jansen S, Finkelstein A, Brinkkemper S (2009) A sense of
community: a research agenda for software ecosystems. In:
Proceedings of the international conference on software engi-
neering. NIER Track, pp 187–190

27. Jansen S, Brinkkemper S, Finkelstein A (2012a) Business Net-
work Management as a Survival Strategy. In: Software ecosys-
tems: analyzing and managing business networks in the software
industry, chap 2. pp 29–42

28. Jansen S, Brinkkemper S, Souer J, Luinenburg L (2012b) Shades
of gray: opening up a software producing organization with the
open software enterprise model. J Syst Softw 85:1495–1510

29. Jansen S, Cusumano MA, Brinkkemper S (eds) (2012c) Software
ecosystems: analyzing and managing business networks in the
software industry. Edward Elgar, Cheltenham

30. Kilamo T, Hammouda I, Mikkonen T, Aaltonen T (2012) Open
source ecosystems: a tale of two cases, chap 13. In: Jansen S,
Brinkkemper S, Cusumano M (eds) Software ecosystems. Ana-
lyzing and managing business networks in the software industry.
pp 276–306

31. Knauss E, Damian D, Poo-Caamaño G, Cleland-Huang J (2012)
Detecting and classifying patterns of requirements clarifications.
In: Proceedings of the international requirements engineering
conference (RE’12). Chicago, pp 251–260

32. Knauss E, Damian D, Cleland-Huang J, Helms R (2014a) Pat-
terns of continuous requirements clarification. Requir Eng J.
doi:10.1007/s00766-014-0205-z

33. Knauss E, Damian D, Knauss A, Borici A (2014b) Openness and
requirements: opportunities and tradeoffs in software ecosystems.
In: Proceedings of 22nd international requirements engineering
conference (RE ’14). Karlskrona, Sweden, pp 213–222. doi:10.
1109/RE.2014.6912263

34. Krippendorff K (2003) Content analysis: an introduction to its
methodology. Sage, Cheltenham

35. Kwan I, Damian D (2011) The hidden experts in software-engi-
neering communication: NIER track. In: Proceedings of the
international conference on software engineering (ICSE’11).
Waikiki, Honolulu, Hawaii, USA, pp 800–803. doi:10.1145/
1985793.1985906

36. Lee M (2002) Just-in-time requirements analysis—the engine that
drives the planning game. In: Proceedings of the 3rd international
conference on extreme programming and agile processes in
software engineering. Alghero, Italy, pp 138–141

37. Leite JCSdP, Cappelli C (2010) Software transparency. Bus Inf
Syst Eng 2(3):127–139

38. Liskin O, Herrmann C, Knauss E, Kurpick T, Rumpe B, Sch-
neider K (2012) Supporting acceptance testing in distributed
software projects with integrated feedback systems: experiences
and requirements. In: Proceedings of the international conference
on global software engineering. Porto Alegre, Rio Grande do Sul,
Brazil, pp 84–93

39. Maalej W, Thurimella AK (2009) Towards a research agenda for
recommendation systems in requirements engineering. In: Pro-
ceedings of the international workshop on managing require-
ments knowledge (MaRK’09). Atlanta, USA, pp 32–39

40. Manikas K, Hansen KM (2013a) Characterizing the Danish tel-
emedicine ecosystem: making sense of actor relationships. In:
Proceedings of the international conference on management of
emergent digital ecosystems (MEDES’13). Neumünster Abbey,
Luxembourg, pp 211–218

41. Manikas K, Hansen KM (2013b) Reviewing the health of soft-
ware ecosystems–a conceptual framework proposal. In: Pro-
ceedings of the international workshop on software ecosystems.
Potsdam, Germany, pp 33–44

42. Manikas K, Hansen KM (2013c) Software ecosystems: a sys-
tematic literature review. Syst Softw 86:1294–1306

43. Marczak S, Kwan I, Damian D (2009) Investigating collaboration
driven by requirements in cross-functional software teams. In:
Requirements: communication, understanding and softskills,
2009 collaboration and intercultural issues on, IEEE. pp 15–22

44. Menzies T, Easterbrook S, Nuseibeh B, Waugh S (1999) An
empirical investigation of multiple viewpoint reasoning in
requirements engineering. In: Proceedings of the international
symposium on requirements engineering. IEEE Computer Soci-
ety Press, pp 7–11

45. Milne A, Maiden N (2012) Power and politics in requirements
engineering: Embracing the dark side? Requir Eng J 17(2):83–98

46. Minto S, Murphy GC (2007) Recommending emergent teams. In:
Proceedings of the international workshop on mining software
repositories (MSR’07). Minneapolis, USA. doi:10.1109/MSR.
2007.27

47. Robertson S, Robertson J (1999) Mastering the Requirements
Process. Addison-Wesley, Reading

48. Rossberg J, Olausson M (2012) Pro application lifecycle man-
agement with visual studio 2012, 2nd edn. Apress, New York

49. Ruhe G (2010) Product release planning: methods, tools and
applications. CRC Press, Boca Raton

50. Runeson P, Höst M (2009) Guidelines for conducting and
reporting case study research in software engineering. Empir
Softw Eng 14:131–154

51. Sadi MH, Dai J, Yu E (2015) Designing software ecosystems:
How to develop sustainable collaborations? scenarios from apple
ios and google android. In: Proceedings of CAiSE 2015 work-
shops, vol 215. Stockholm, Sweden, LNBIP, pp 161–173. doi:10.
1007/978-3-319-19243-7_17

52. Scacchi W (2009) Understanding requirements for open source
software. In: Proceedings of design requirements workshop, vol
14. Springer LNBIP, pp 467–494

53. Schäfer MO, Melich M (2011) SAP solution manager. SAP Press,
Quincy

54. Schneider K (2011) Focusing Spontaneous Feedback to Support
System Evolution. In: Proceedings of the international require-
ments engineering conference (RE’11). Trento, Italy, pp 165–174

55. Schneider K, Meyer S, Peters M, Schliephacke F, Mörschbach J,
Aguirre L (2010) Feedback in context: supporting the evolution

Requirements Eng

123

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30519
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30519
http://dx.doi.org/10.1145/2642803.2642815
http://dx.doi.org/10.1007/s00766-014-0205-z
http://dx.doi.org/10.1109/RE.2014.6912263
http://dx.doi.org/10.1109/RE.2014.6912263
http://dx.doi.org/10.1145/1985793.1985906
http://dx.doi.org/10.1145/1985793.1985906
http://dx.doi.org/10.1109/MSR.2007.27
http://dx.doi.org/10.1109/MSR.2007.27
http://dx.doi.org/10.1007/978-3-319-19243-7_17
http://dx.doi.org/10.1007/978-3-319-19243-7_17

of IT-ecosystems. In: International conference on product
focused software process improvement, pp 191–205

56. Sekitoleko N, Evbota F, Knauss E, Sandberg A, Chaudron M,
Olsson HH (2014) Technical dependency challenges in large-
scale agile software development. In: proceedings of the inter-
national conference on agile software development. Rome, Italy

57. Seyff N, Maiden N, Karlsen K, Lockerbie J, Grünbacher P, Graf
F, Ncube C (2009) Exploring how to use scenarios to discover
requirements. Requir Eng 14(2):91–111

58. Tamburri D, Lago P, van Vliet H (2013) Uncovering latent social
communities in software development. IEEE Softw 30(1):29–36.
doi:10.1109/MS.2012.170

59. Treude C (2012) The role of social media artifacts in collabora-
tive software development. PhD thesis. University of Victoria,
Victoria

60. Tuunanen T, Rossi M (2004) Engineering a method for wide
audience requirements elicitation and integrating it to software

development. In: Proceedings of the hawaii international con-
ference on system sciences, vol 7. doi:10.1109/HICSS.2004.
1265420

61. Valenca G, Alves C, Heimann V, Jansen S, Brinkkemper S
(2014) Competition and collaboration in requirements engineer-
ing: a case study of an emerging software ecosystem. In: Pro-
ceedings of 22nd international requirements engineering
conference (RE ’14). Karlskrona, Sweden, pp 384–393

62. Walsham G (1995) Interpretive case studies in is research: nature
and method. Eur J Inf Syst 4:74–81

63. Williams C, Wagstrom P, Ehrlich K, Gabriel D, Klinger T,
Martino J, Tarr P (2010) Supporting enterprise stakeholders in
software projects. In: Proceedings of workshop on cooperative
and Human Aspects of Software Engineering. Cape Town, South
Africa, pp 109–112

Requirements Eng

123

http://dx.doi.org/10.1109/MS.2012.170
http://dx.doi.org/10.1109/HICSS.2004.1265420
http://dx.doi.org/10.1109/HICSS.2004.1265420

	Continuous clarification and emergent requirements flows in open-commercial software ecosystems
	Abstract
	Introduction
	Research setting and questions
	The IBM CLM software ecosystem
	An illustrative example
	Research questions for RE in software ecosystems

	Research methodology
	Participatory observation
	Semi-structured interviews
	Analyzing repository data
	Manual content analysis and coding

	Findings
	Discussion: continuous and emergent requirements clarification
	Implications for RE research, practice, and tools in software ecosystems
	Tradeoffs in open-commercial software ecosystems
	Tradeoff 1: act openly versus act proprietarily
	Tradeoff 2: act globally versus act locally

	Threats to validity

	Related work
	Conclusion
	Acknowledgments
	References

