This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:

https://doi.org/10.1145/2989238.2989242

A Hybrid Model for Task Completion Effort Estimation

Ali Dehghan
University of Victoria
Canada

dehghan@uvic.ca

ABSTRACT

Predicting time and effort of software task completion has
been an active area of research for a long time. Previous
studies have proposed predictive models based on either text
data or metadata of software tasks to estimate either com-
pletion time or completion effort of software tasks, but there
is a lack of focus in the literature on integrating all sets of
attributes together to achieve better performing models.

We first apply the previously proposed models on the
datasets of two IBM commercial projects called RQM and
RTC to find the best performing model in predicting task
completion effort on each set of attributes. Then we pro-
pose an approach to create a hybrid model based on se-
lected individual predictors to achieve more accurate and
stable results in early prediction of task completion effort
and to make sure the model is not bounded to some at-
tributes and consequently is adoptable to a larger number
of tasks. Categorizing task completion effort values into Low
and High labels based on their measured median value, we
show that our hybrid model provides 3-8% more accuracy in
early prediction of task completion effort compared to the
best individual predictors.

CCS Concepts

eSoftware and its engineering — Software develop-
ment process management; Software defect analysis;

Keywords

Mining software repositories; machine learning; ensemble
learning; task completion effort; effort estimation

1. INTRODUCTION

Early estimation of required effort to complete tasks is a
common practice in software companies as it helps managers
in planning and allocation of resources. A common approach
in industry is to base these estimates on expert knowledge
[17], however that creates extra work for the developers.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SWAN’16, November 13, 2016, Seattle, WA, USA
© 2016 ACM. 978-1-4503-4395-4/16/11...
http://dx.doi.org/10.1145/2989238.2989242

Kelly Blincoe
University of Auckland

.New Zealand
kblincoe@acm.org

Daniela Damian
University of Victoria
. Canada |
danielad@cs.uvic.ca

Additionally, there is an optimism and a tendency toward
underestimation of effort particularly in cost-competitive sit-
uations [11]. Automatic techniques to predict task comple-
tion effort can reduce the burden on developers and remove
biases.

Many previous studies have proposed predictive models to
estimate either completion time [5, 1, 16, 14] or completion
effort [19, 17] of software development tasks and defects.
The effort needed to complete a task (i.e. person-hours re-
quired to complete a task) does not always correlate with the
calendar time needed to complete the task. For example, a
simple task which requires only a few hours to complete may
be postponed for months due to its low priority [14].

Previously proposed models use various metadata based
attributes, i.e. non-text attributes, of tasks to predict task
completion time or effort. The attributes vary in when they
are available during the task life cycle. Some attributes, like
Reporter and Creation date, are available very early when
the task is created. Other attributes, like Number of com-
mits and Number of subscribers, are not fully known until
the task is complete. Some models also perform text analy-
sis techniques such as document similarity analysis on text
based attributes, like Title and Description. The use of text
analysis has been more popular in predicting effort rather
than completion time.

While many models have been proposed, none have been
able to achieve accuracy that rivals predictions made by de-
velopers with expert knowledge. Previous literature sug-
gests that the average effort estimates from different sources
is likely to be more accurate than most individual effort
estimates [11], but no studies have investigated this claim.
Therefore, in this study, we combine the most accurate of the
previously proposed models to produce a new hybrid model
with greater accuracy. The hybrid model uses three inde-
pendent attribute sets (1) early metadata based attributes,
(2) title and (3) description of software tasks. The model
is also adoptable to a larger number of tasks compared to
previously proposed models, as it is not limited to only one
type of data source that might not be available in all cir-
cumstances.

For this study, we analyzed two commercial projects of
IBM called RQM and RTC. The two projects have a total
of 61,729 work items, i.e. assignable and traceable units of
work, of type Task.

To make the predictions, following the approach proposed
by Giger et al. [5], we discretized effort values, known as
Time spent in our datasets, into two binary labels based on
the median value of time spent of the tasks. Label Low that

represents those having a time spent value less than median
and label High for time spent values greater than the median
value. Having this structure for the dependent variable, the
prediction problem is transformed to a binary classification
problem.

2. RELATED WORK

Many previous works have attempted to increase predic-
tion accuracy of both task resolution time and effort by
proposing different models and in some cases introducing
new attributes, but there has been a lack of focus on inves-
tigating the feasibility of integrating the proposed attributes
and combining previous models while improving prediction
results. In this section, we will introduce some of the most
notable studies that have either proposed the use of a new
algorithm or method, a set of new attributes or had some
new findings that led us in this study.

Weiss et al. [19] vectorized Title and Description of bugs
in JBoss project and used kNN classifier to find most similar
bugs based on text similarity techniques and used the aver-
age fix effort of similar bugs as the prediction of fix effort
for each new bug and as a result, around 30% of predictions
lied within a £50% range of the actual effort. They also
introduced a-kNN by adding the concept of thresholds to
kNN to dismiss similarity scores less than a certain minimum
threshold and classify the corresponding bugs as Unknown
to increase the prediction accuracy. This way prediction ac-
curacy improved specially for large « values, but at the same
time it was possible to make predictions for fewer issues as
a value of 0.9 left fix effort of 87% of issues unpredictable.

Pfahl et al. [17] looked into text based attributes of bugs
of a commercial project of an Estonian software company
and applied Spherical k-means clustering technique instead
of kNN to find similar issues and predicted fix effort of bugs
based on certain time intervals. They achieved up to 64%
accuracy when accepting up to 0.5 hours error as correct
classification and obtained up to 73% accuracy when ac-
cepting 1 hour error, however these numbers were based on
the bugs that had both Title and Description and also the
presented results were based on the last 50 and 200 issues of
the dataset and prediction quality of models involving the
whole dataset were not presented, although mentioned that
was not as good.

Giger et al. [5] made a comparison of models using pre-
submission data and models that use post-submission data
by analyzing snapshots of bugs in certain time intervals
to classify bugs into two groups of Fast and Slow based
on median value of bug fix time. Performing analysis us-
ing CHAID Decision Tree learner on several open-source
projects, Eclipse, Mozilla and Gnome, they achieved be-
tween 60-70% accuracy using pre-submission data and about
5-10% higher accuracy values when including post-submission
data in the models.

Hewett and Kijsanayothin [9] used several supervised learn-
ers on metadata based attributes of the dataset of a medi-
cal software system to classify defect repair time into three
groups of Low, Medium and High. They used algorithms
like SVM which was not adopted in previous work, but they
achieved the best results using C4.5 Decision Tree algorithm.
They reported accuracy numbers as high as 94%, however
post-assignment data including attributes such as Assignee
and Assign date were included in their models.

Marks et al. [14] made use of Random Forest learner on

23

bugs of Eclipse and Mozilla projects. They used many differ-
ent attributes from three dimensions of Location, Reporter
and Description of bugs and discretized fix times into sev-
eral intervals and achieved 65% classification accuracy. They
also performed some analysis particularly to measure the im-
portance of the attributes in the three different dimensions
to classification performance and showed that attributes af-
fecting bug fix time vary between projects and also vary over
time within the same project.

Abdelmoez et al. [1] used Naive Bayes classifier in order
to predict resolution time of issues of the same open source
projects as Giger et al. [5] studied using the same metadata
based attributes. They made three sets of binary labels,
Fast vs Slow based on median value of resolution time and
also Very fast vs Not very fast and Very slow vs Not very
slow based on the first and last quartile of resolution time of
bugs respectively. For the Slow vs Fast binary classification
they achieved precision values between 57% and 64% and
for the other two sets of labels, precision values were much
lower for the minority classes.

Lucas D. Panjer [16] applied 1-R, Decision Tree, Naive
Bayes and Logistic Regression learners on early attributes
of Eclipse bugs to classify them into certain intervals of res-
olution time. The results were not appealing as he achieved
classification accuracies varying from 31.0% to 34.9%.

In an empirical study conducted based on datasets of Win-
dows Vista and Windows 7, Guo et al. [7] showed that bugs
reported by people with higher reputations are more likely
to get fixed, however in another study by Bhattacharya and
Neamtiu [3] on three open source projects, such correlation
was not found confirming that many attributes and models
proposed for task completion effort and time prediction are
highly context dependent.

Despite the absence of using ensemble learners for task
completion effort estimation, hybrid models have been suc-
cessfully applied in other areas of software engineering re-
search [15, 18, 12]. This study aims to make use of the find-
ings of previous work and fill the research gap by using their
achievements as inputs of a new analysis to build a hybrid
solution on top of the approaches they have proposed.

3. TASK EFFORT PREDICTION

In this section, we describe our research method, introduce
our datasets as well as the attributes that we use in our anal-
ysis. Then, we report the performance of some previously
proposed stand-alone models based on our own datasets and
finally propose our own approach to create a hybrid model.

3.1 Research Method

As the aim of this study was constructing a combined
model of individual independent models proposed in previ-
ous work in order to enhance task completion effort predic-
tion accuracy at early points of a task lifetime, i.e. before
the task is assigned to a developer. We identified the best
performing models based on the previous literature and ap-
plied the models on our own datasets.

According to literature, kNN classification and k-means
clustering algorithms on text based attributes and Naive
Bayes, Logistic Regression, SVM, Decision Tree and Ran-
dom Forest learners on metadata based attributes provided
most promising results. Therefore, the models proposed
based on these algorithms in previous work were applied on
our own datasets. We did not modify the core settings of the

proposed models except for (1) removing post-assignment
attributes to comply with the aim of making prediction be-
fore a task is assigned to a developer (2) avoiding to follow
settings that suggested to exclude some tasks from analysis
or label them as Unknown to comply with the aim of having
a model adoptable to all tasks.

We planned to create a hybrid model to increase the accu-
racy and stability of prediction results, therefore we needed
several well-performing independent models. We had three
independent attribute sets (1) a text based attribute called
Summary (2) a text based attribute called Description and
(3) a set of metadata based attributes, thus we selected those
models which provided the best performance on each of
these attribute sets. Finally we explored several approaches
to integrate attribute sets and combine individual models.
We started off by simply joining all attributes together and
trained a model providing them as the input. Then we
adopted some ensemble learning techniques to combine the
individual models and train meta learners by supplying the
prediction vote and confidence of individual models as in-
put variables. In the end, we compared the results of hybrid
models and examined their performance based on data of
two commercial projects.

We used a variety of tools and libraries for our analy-
sis, however RapidMiner [10] and WEKA [8] were the ma-
jor ones. The evaluation method that we used for all the
models we trained including the hybrid models was m-fold
cross-validation with m=10. Accuracy was used as the per-
formance measure of all trained models. Accuracy repre-
sents number of correctly classified test items divided by
the size of test set.

3.2 The Dataset

For this study we analyzed two commercial projects of
IBM called RQM and RTC having a total number of 61,729
work items of type Task as of May 29, 2016. These two
projects are developed and maintained by two completely
different IBM teams, headquartered in different locations.

RQM, Rational Quality Manager, is a collaborative appli-
cation lifecycle management environment for test planning,
construction, and execution. The project was started in
June 2007, had a total number of 54,478 work items as of
May 29, 2016 and its development team is headquartered in
Raleigh, NC.

RTC, Rational Team Concert, is a collaborative software
development environment that integrates planning, work item
tracking, product builds, source control and reporting. The
project was started in June 2005, had a total number of
173,549 work items as of May 29, 2016 and its development
team is headquartered in Ottawa, ON.

We chose to study two different projects as training and
validation on a single project pose a risk of bias in feature
selection and overfitting to the context of project [11].

Based on the design of our study, we removed the work
items that did not fit our study settings. The ones that were
kept fulfilled the criteria presented in table 1.

The Time spent values in both datasets are measured in
resolution of 1 minute and the values vary from 1 minute to
400 hours. The mean value of Time spent in RQM is 795
minutes and in RTC is 734 minutes and the median value is
300 minutes in both projects.

Following the approach Giger et al. [5] adopted, we dis-
cretized task completion effort into two binary labels based

24

Table 1: Work Item Selection Criteria

Criteria #(RQM) | #(RTC)
Created before 2016-05-29 54,478 173,549
Type is Task 9,029 52,250
Status in (Resolved, Closed) | 8,256 47,327
TimeSpent is not Null 5,522 3,968
TimeSpent is greater than 0 5,477 3,941
EROM RTC
1600
1400
1200
1000
800
600
400
200
0
(0,11 h (1,2]h (2,5]h (5,8]h (1,2]d (2,5]d (1, +inf)w

Figure 1: Distribution of Time spent values

on the median value of Time spent. This approach was a
good fit to the exploratory nature of this study and future
research will look to provide more granular estimates.

Low, if TimeSpent < median

High, otherwise

completionE f fort = {

Label Low represents those tasks having a Time spent
value less than median and label High represents Time spent
values greater than the median value. This way we tackled
a binary classification problem.

3.3 The Attributes

In this section, we introduce the attributes that we used
in our models. All these attributes have been proposed in
previous work . As our aim was to make early predictions
of task completion effort, we only use the attributes that
are usually available before the task is assigned to a devel-
oper. In summary these are the attributes that (1) have been
proposed in some models proposed in previous work (2) are
available in our datasets (3) are most of the time available in
early stages of task creation, in particular, before the task is
assigned to a developer. Some of these attributes have been
referred to with different names in the literature than our
datasets. Table 2 provides a list of these attributes, a short
explanation for them and their common alternative name(s)
in the literature.

3.4 Metadata Based Models

Among the algorithms that have been utilized in previ-
ous work for models predicting task completion time and
effort that perform based on metadata based attributes, we
selected the best-performing ones according to reported re-
sults and applied them on our datasets using the same at-
tribute sets suggested by the authors. In this section, we
present the results that we obtained for each selected model.

Table 2: Explanation of Dataset Attributes

Attribute Name

Alternative Name(s)

Explanation

Summary Title A half-line abstract of the problem

Description - What causes the problem, how the problem could be reproduced and in
some cases some early instructions on how to solve the problem

Severity - How strong the impact is on the user

Priority - How important the problem is from managers/developers perspective

Creator Reporter The developer who created the task

Creation year

Year opened

In what year the task was created

Creation month

Month opened

In which month the task was created

Creation week

In what week of the year the task was created

How found Testing phase The testing phase in which the corresponding problem was found
Found in Version The product release in which the problem was found

Filed against Component The component to which the task corresponds

Planned for Milestone The iteration for which it was planned

Time spent

Resolution time, fix time,
repair time, fix effort

The actual effort, time or man-hour spent to complete the task, with
resolution of 1 minute

3.4.1 OneR Classifier

Following the idea of Panjer [16] we applied OneR classi-
fier to find the most strongly correlated attribute with Time
spent and have a baseline for the accuracy of our further
predictive models. The resulting model showed that Re-
porter is the most important attribute in our datasets when
predicting Time spent.

3.4.2 Naive Bayes classifier

Following the study of Abdolmoez et al. [1] adopting
Naive Bayes classifier, we used their proposed attributes
that were available in our datasets before task assignment.
The equivalent attributes in our datasets are named Creator,
Priority, Severity, Creation year, Creation month, Planned
for and Filed against. Performing binary classification us-
ing Naive Bayes classifier, we achieved 68.27% accuracy on
RQM project and 64.88% accuracy on RTC.

3.4.3 Logistic Regression

Following the proposal of Panjer [16] to apply Logistic re-
gression learner using Priority, Severity, Filed against, Found
in, Planned for and Reporter, we achieved 68.30% and 64.37%
accuracy numbers for RQM and RTC datasets respectively.
The suggestion in [17] to adopt Ordered Logistic Regression
to improve results was not appropriate to our datasets as we
were not, performing multiclass classification.

3.4.4 Support Vector Machine

SVM has been successfully adopted in predictive analysis
of many software engineering studies including studies on
defect prediction [6, 2, 4]; nevertheless, the only work we
found utilizing SVM learner for the particular purpose of
task completion time prediction was the study of Hewett and
Kijsanayothin [9]. They applied many learning algorithms;
however, SVM was not among the promising ones according
to the results. Therefore we decided to apply this algorithm
using all metadata based attributes mentioned in subsection
3.2. The achieved classification accuracies were fair, 69.22%
and 64.45% for RQM and RTC projects respectively.

3.4.5 (4.5 Decision Tree

We also applied C4.5 Decision Tree algorithm using at-
tribute sets suggested in [9] and [16] separately. Using equiv-

25

alent attributes suggested in [9], How found, Filed against,
Severity, Reporter, Creation year and Creation month pro-
vided better results. Accuracy numbers were 68.72% and
65.30% for RQM and RTC respectively.

3.4.6 CHAID Decision Tree

CHAID Decision Tree algorithm was also applied follow-
ing the proposal of Giger et al. [5]. The proposed attributes
were the same as those proposed in [1] as they were studying
the same projects. The performance on RQM was higher
than many rivals, providing 69.31% accuracy, however re-
sults on RT'C were not competitive.

3.4.7 Random Forest

Following the proposal of Marks et al. [14] to use bug
attributes to train Random Forest algorithm, we also trained
a model based on Random Forest with 80 as number of trees
using the attributes they suggested and were available in our
datasets, namely Creation year, Creation week, How found,
Found in, Severity, Priority, Filed against, Planned for and
Reporter. Random Forest classifier performed better than
its rivals on both RQM and RTC projects providing 70.97%
and 65.39% prediction accuracy respectively.

Table 3: Performance of Metadata Based Models

Predictor Acc(RQM) | Acc(RTC)
OneR 66.66 63.26
Logistic Regression 68.30 64.37
Naive Bayes 68.27 64.88
SVM 69.22 64.45
CHAID Decision Tree 69.31 63.61
C4.5 Decision Tree 68.72 65.30
Random Forest 70.97 65.39

3.5 Text Based Models

There has been two major methods for predicting task
completion effort using text analysis in previous studies. In
this section we present the procedure of applying them to
our datasets as well as the results we achieved.

3.5.1 Nearest Neighbour Approach (kNN)

Following the approach of Weiss et al. [19], we applied
Nearest Neighbour algorithm to find the most similar tasks
and considered their average label as the prediction. For
both Summary and Description attributes each separately,
after text preprocessing, removing numbers, punctuation
marks and white spaces we tokenized the documents, fil-
tered out one-character tokens, then transformed all tokens
to lowercase, removed all common English stop words and
then applied Porter stemming algorithm [20] to remove re-
dundant synonyms of tokens. Then we created a weighted
word matrix for each task using TF-IDF algorithm. We ran
a kNN classifier utilizing Cosine similarity function as sug-
gested by Weiss . We used different k values of 3, 5, 7, 9
and 11 and we got the best results with k=3 for the Sum-
mary attribute and with k=9 for Description. The detailed
results are presented in table 4 which show a better perfor-
mance when targeting attribute Summary consistent with
the findings achieved by Weiss.

Table 4: Performance of kNN Model

Attribute | k Acc(RQM) | Acc(RTC)
Summary 3 68.50 62.09
Summary 5 68.50 61.94
Summary 7 68.16 61.18
Summary 9 68.05 61.05
Summary 11 68.03 57.98
Description | 3 64.67 56.48
Description | 5 64.58 57.09
Description | 7 65.86 57.50
Description 9 65.88 58.49
Description 11 65.44 57.09

Despite the suggestion of Weiss, we did not filter tasks
without Description or Summary nor we used a-kNN, the
approach which sets a minimum similarity threshold and
predicts Unknown if finds no similar tasks, as we aimed to
propose a hybrid model that is not limited to availability
of a certain attribute, capable of making predictions for all
tasks.

3.5.2 Spherical k-means Clustering Approach

Following the proposal of Pfahl et al. [17], the same pro-
cedure of text preprocessing described in subsection 3.5.1
was applied separately on both Summary and Description
attributes and a weighted word vector was created for each
task. We then applied Latent Semantic Analysis in order
to reduce the dimension of word vector and capture poten-
tial hidden relationships between words in the target text
based attribute of each task. Then we performed Spherical
k-means analysis adopting cosine similarity function using
various k values and evaluated the cluster quality using Sil-
houette index in each iteration. This way we determined
the best k value for each dataset. Pfhal does not mention
how they used the clusters and which classification algo-
rithm they utilized in order to make predictions, therefore
we trained several algorithms providing the clusters as their
input, although the results in average were not as good as the
kNN approach discussed in previous section. The accuracy
numbers when using Naive Bayes algorithm is presented in
table 5. The accuracy numbers that we achieved using this
method were not as high as was obtained in [17], however

26

their reported results were based on only the newest issues
in their dataset. Although we performed the analysis on
different subsets of tasks following their suggestion and re-
sults slightly changed depending and the selected subset, we
did not base our analysis on those subsets as this approach
was not a good fit to the aim of this study to have a hybrid
model adoptable to all tasks.

Table 5: Performance of Spherical k-means

Attribute | Accuracy(RQM) | Accuracy(RTC)
Summary 66.48 61.42
Description | 63.43 59.24

3.6 The Hybrid Model

As suggested by Jorgensen [11], combining and averaging
several independent models is likely to produce a more stable
model with a higher accuracy. According to the experiments
and results described in previous sections, we selected the
best-performing individual model on each independent set
of attributes in order to combine them and create the hy-
brid model: (1) Random Forest learner on metadata based
attributes (2) kNN learner on attribute Description (3) kNN
learner on attribute Summary.

First by joining attributes together and then using some
common ensemble learning methods, we investigated the
feasibility of adopting four types of model integration tech-
niques to gain better predictive performance.

3.6.1 Single Learner on all Attributes

We applied the same procedure described in subsection
3.5.1 on Summary and Description of tasks separately to
generate a weighted vector for each and then joined the word
vectors together providing them as input of a kNN classi-
fier using Cosine similarity function. For k=3 we achieved
a classification accuracy of 68.91% for tasks of RQM and
61.96% for tasks of RT'C project which does not indicate an
improvement in average. Next, metadata based attributes
were also joined with Summary and Description which con-
siderably damaged the results. These two simple methods of
joining attributes were meant to provide a baseline of poten-
tial possible improvements without using ensemble learning
techniques.

3.6.2 Voting on Label

Voting or Majority Voting [13] is a common ensemble
learning technique that considers the majority prediction of
input models as the final prediction. Using the three selected
independent models mentioned in subsection 3.6, we applied
this technique on both datasets and achieved approximately
4% improvement in prediction accuracy compared to the av-
erage accuracy of input predictors.

3.6.3 Voting on Confidence

For this method as well as the next one, we needed a mea-
sure of confidence for class predictions. Our best individual
models were based on Random Forest and kNN algorithms
which are not probabilistic classifiers, therefore they do not
natively produce confidence values.

For kNN we used the number of the neighbours with the
predicted class divided by k as the measure of prediction

confidence:
k
confidencexny = Z(classi = prediction)/k
i=1
And for the confidence of Random Forest, we used the
average confidence of each individual tree.
This way we achieved confidence values between 0 and
1 alongside binary classifications for each individual model.
For this method, we mimicked a voting system by summing
the confidence of individual predictors when predicting High
and chose the label with higher sum of confidence value as
the prediction. In other words:

Low, if confidence; < n/2
prediction = ;

High, otherwise

where n is the number of input predictors, in our case 3.

This method provides a slight improvement over the stan-
dard method of voting on labels. The accuracy improvement
on RQM dataset is not tangible and on RTC is 0.73

3.6.4 Stacking Individual Models

Stacking [21] is a common ensemble learning technique
that provides predictions of other models as input data of
a combined learner to make the final predictions. Provid-
ing predictions of individual models as input of the meta
learner did not improve results compared to previous ap-
proaches. Then we chose to use confidence of individual
models rather than their predicted labels to supply more
information for the combined learner and as a result this
method yielded better results. Logistic Regression, SVM,
Naive Bayes and C4.5 Decision Tree were used as the com-
bined learners and we achieved the best results using Logis-
tic Regression. Stacking individual models on each of the
projects, we achieved 5.06% more accuracy on RQM and
4.24% accuracy improvement on RTC compared to the av-
erage accuracy of their input models.

Table 6: Accuracy of Hybrid Models

Method RQM | RTC
I1 - Random Forest on metadata 70.97 | 65.39
I2 - kNN on summary 68.50 | 62.09
I3 - kNN on description 65.86 | 58.49
Hla - kNN on summary + description | 68.91 | 61.96
H1b - kNN on all attributes 56.14 55.44
H2 - Voting on label 72.35 | 65.69
H3 - Voting on confidence 72.37 | 66.42
H4 - Stacking on label 72.43 | 65.57
H5 - Stacking on confidence 73.51 | 66.23

Table 6 shows the performance of different approaches in
creation of a hybrid model as well as the performance of their
three input models for both projects. For RQM dataset,
the Stacking on confidence approach provides the most sig-
nificant boost on performance while simple Voting on con-
fidence performs better on the RTC dataset. The results
confirm that all the approaches based on standard ensemble
learning techniques provide better results compared to the
individual predictors.

27

4. DISCUSSION

According to the results presented in previous section, our
proposed hybrid models not only increase the task comple-
tion effort estimation accuracy, but also the adoptability of
automatic effort estimation to a larger number of tasks. As
an example, by avoiding to include the concept of thresholds
to the KNN classification technique using document similar-
ity, this individual model will always have a prediction re-
gardless of how confident it is but with different confidence
levels which will be leveraged in a hybrid model working
based on confidence values.

We analyzed the data of two different commercial projects
developed and maintained by two separate teams. Although
we achieved better accuracy numbers in one project com-
pared to the other one, there is a promising consistency in
the improvements made by the hybrid models within the
two projects. This could be an indication of generalizability
of the proposed hybrid models to other projects from differ-
ent contexts being developed by different teams. Software
companies could follow the same procedure as in this study
to apply the previously proposed models on their projects
and find the best performing ones based on the context of
their projects and the attributes they measure and eventu-
ally create their own hybrid models using the approaches
suggested in this study.

Some companies might find expert-based estimation more
reliable and therefore have not adopted such machine learn-
ing techniques yet. Following the idea of this study, using
the hybrid prediction approaches that we proposed, those
companies can use the machine learning predictive models in
conjunction with their own expert-based estimations to en-
hance estimation precision while expanding the predictions
to more work items.

Predicting task completion effort and time is still an inter-
esting and active area of research. Individual predictors have
evolved over time and will continue to evolve in future. This
would also be true about model integration techniques. This
study would be a good starting point for other researchers to
investigate more sophisticated model integration techniques
while studying on improving individual predictors.

5. LIMITATIONS

Like any other empirical study, this study has some limi-
tations that should be taken into account when interpreting
the results. In this study, we analyzed only those tasks hav-
ing a measured and entered value for the attribute Time
spent. Those tasks might not necessarily be a good repre-
sentative for all of the tasks in our datasets and therefore
the results might not be generalizable to all development
tasks. We applied our analysis on two commercial projects
of IBM which supposedly have different standards and work
practices from average software companies as well as open
source projects. The datasets of this study did not have
historical snapshots to make sure that the final value of in-
cluded attributes for all tasks are equal to their value before
they were assigned to a developer. However looking into
historical versions of 10 tasks randomly chosen from each
project, including those tasks with large Time spent values,
the value of only one attribute, namely Planned for, was
changed for two tasks in total. That shows that the values
of these attributes rarely change and could not have affected
our results in a tangible way.

6. CONCLUSION AND FUTURE WORK

In this study, we explored various previously proposed
models working on different attribute sets, applied them on
two different commercial projects, found the best perform-
ing ones and proposed several approaches to integrate those
individual models in order to increase task completion ef-
fort estimation accuracy. We showed that our integration
approaches consistently increase early effort prediction per-
formance on both projects providing 3-8% more accurate
predictions compared to the best individual predictors.

Future work includes extending this study to other projects
to see how the results generalize. The target projects could
be from other large-scale companies, average software com-
panies or from open source communities. We also plan to ex-
tend this research to other types of work items to see whether
the prediction improvement of proposed hybrid models per-
tain. As time and effort estimation could be also beneficial
in the middle of a task’s lifecycle, we also would like to inves-
tigate the inclusion of post-assignment data into our models
and assess our approaches in the consequent settings. The
focus of this study was on task completion effort estima-
tion but further research is required to examine if the same
hybrid techniques are also applicable to completion time es-
timation models. Assessing the performance of these hybrid
models on multiclass predictions instead of binary classifica-
tion is another future work. Further prediction integration
techniques also need to be explored, including integration of
automatic predictive models with expert-based estimations.

Another avenue of future work includes extending this re-
search to predict completion effort for work items at higher
abstraction levels like stories or plans that encompass mul-
tiple bugs and development tasks. Future studies should
investigate the adoptability of previously proposed models
as well as the hybrid model proposed in this study on high
level work items.

We also plan to validate the results of our analysis with
the IBM developers and investigate whether the type of pre-
dictions from our models resemble the reality of task com-
pletion effort in their projects.

7. ACKNOWLEDGMENTS

We are grateful to Kevin Ryan for his early feedback on
this analysis. Thanks also to Adam Neal and Alan Yeung
from IBM for their valuable inputs to this study.

8. REFERENCES

[1] W. Abdelmoez, M. Kholief, and F. M. Elsalmy. Bug
fix-time prediction model using naive bayes classifier.
In Comp. Theory and Applications (ICCTA), 2012
22nd Int’l Conf. on, pages 167-172. IEEE, 2012.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proc. of the 28th international conference
on Software engineering, pages 361-370. ACM, 2006.

[3] P. Bhattacharya and I. Neamtiu. Bug-fix time
prediction models: can we do better? In Proc. of the
8th Working Conference on Mining Software
Repositories, pages 207-210. ACM, 2011.

[4] K. O. Elish and M. O. Elish. Predicting defect-prone
software modules using support vector machines.
Journal of Systems and Software, 81(5):649-660, 2008.

[5] E. Giger, M. Pinzger, and H. Gall. Predicting the fix
time of bugs. In Proc. of the 2nd International

Workshop on Recommendation Systems for Software

Engineering, pages 52-56. ACM, 2010.

D. Gray, D. Bowes, N. Davey, Y. Sun, and

B. Christianson. Using the support vector machine as

a classification method for software defect prediction

with static code metrics. In Int’l Conf. on Eng. Apps.

of Neural Networks, pages 223-234. Springer, 2009.

[7] P. J. Guo, T. Zimmermann, N. Nagappan, and

B. Murphy. Characterizing and predicting which bugs

get fixed: an empirical study of microsoft windows. In

2010 ACM/IEEE 32nd International Conf. on

Software Eng., volume 1, pages 495-504. IEEE, 2010.

M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. H. Witten. The weka data

mining software: an update. ACM SIGKDD

explorations newsletter, 11(1):10-18, 20009.

[9] R. Hewett and P. Kijsanayothin. On modeling
software defect repair time. Empirical Software
Engineering, 14(2):165-186, 2009.

[10] M. Hofmann and R. Klinkenberg. RapidMiner: Data
mining use cases and business analytics applications.
CRC Press, 2013.

[11] M. Jorgensen. What we do and don’t know about
software development effort estimation. IEEE
software, 31(2), 2014.

[12] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita,
N. Ubayashi, and A. E. Hassan. Studying just-in-time
defect prediction using cross-project models. Empirical
Software Engineering, pages 1-35, 2015.

[13] J. Kittler, M. Hatef, R. P. Duin, and J. Matas. On
combining classifiers. IEEE transactions on pattern
analysis and machine intelligence, 20(3):226—239,
1998.

[14] L. Marks, Y. Zou, and A. E. Hassan. Studying the
fix-time for bugs in large open source projects. In
Proc. of the 7th International Conf. on Predictive
Models in Software Eng., page 11. ACM, 2011.

[15] A. T. Misirl, A. B. Bener, and B. Turhan. An
industrial case study of classifier ensembles for
locating software defects. Software Quality Journal,
19(3):515-536, 2011.

[16] L. D. Panjer. Predicting eclipse bug lifetimes. In Proc.
of the Fourth International Workshop on mining
software repositories, page 29. IEEE Computer
Society, 2007.

[17] D. Pfahl, S. Karus, and M. Stavnycha. Improving
expert prediction of issue resolution time. In Proc. of
the 20th Int’l Conf. on Evaluation and Assessment in
Software Engineering, page 42. ACM, 2016.

[18] S. W. Thomas, M. Nagappan, D. Blostein, and A. E.
Hassan. The impact of classifier configuration and
classifier combination on bug localization. I[EEE
Transactions on Soft. Eng., 39(10):1427-1443, 2013.

[19] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proc. of the
Fourth International Workshop on Mining Software
Repositories, page 1. IEEE Computer Society, 2007.

[20] P. Willett. The porter stemming algorithm: then and
now. Program, 40(3):219-223, 2006.

[21] D. H. Wolpert. Stacked generalization. Neural
networks, 5(2):241-259, 1992.

6

8

