This is a post-peer-review, pre-copyedit version of an article published in Information and Software Technology. The final
authenticated version is available online at: https://doi.org/10.1016/j.infsof.2019.03.005

Reference Coupling: An Exploration of Inter-project
Technical Dependencies and their Characteristics
within Large Software Ecosystems

Kelly Blincoe®*, Francis Harrison®, Navpreet KaurP, Daniela DamianP

@ University of Auckland, New Zealand
b University of Victoria, BC, Canada

Abstract

Context: Software projects often depend on other projects or are developed
in tandem with other projects. Within such software ecosystems, knowledge
of cross-project technical dependencies is important for 1) practitioners under-
standing of the impact of their code change and coordination needs within the
ecosystem and 2) researchers in exploring properties of software ecosystems
based on these technical dependencies. However, identifying technical depen-
dencies at the ecosystem level can be challenging.

Objective: In this paper, we describe Reference Coupling, a new method that
uses solely the information in developers online interactions to detect technical
dependencies between projects. The method establishes dependencies through
user-specified cross-references between projects. We then use the output of this
method to explore the properties of large software ecosystems.

Method: We validate our method on two datasets — one from open-source
projects hosted on GitHub and one commercial dataset of IBM projects. We
manually analyze the identified dependencies, categorize them, and compare
them to dependencies specified by the development team. We examine the

types of projects involved in the identified ecosystems, the structure of the iden-

*Corresponding author
Email addresses: kblincoe@acm.org (Kelly Blincoe), francish@uvic.ca (Francis
Harrison), kaur .navpreet4720gmail.com (Navpreet Kaur), danielad@uvic.ca (Daniela
Damian)

Preprint submitted to Elsevier February 2, 2019

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

tified ecosystems, and how the ecosystems structure compares with the social
behaviour of project contributors and owners.

Results: We find that our Reference Coupling method often identifies tech-
nical dependencies between projects that are untracked by developers. We de-
scribe empirical insights about the characteristics of large software ecosystems.
We find that most ecosystems are centered around one project and are inter-
connected with other ecosystems. By exploring the socio-technical alignment
within the GitHub ecosystems, we also found that the project owners social be-
haviour aligns well with the technical dependencies within the ecosystem, but
the project contributors social behaviour does not align with these dependencies.

Conclusions: We conclude with a discussion on future research that is en-

abled by our Reference Coupling method.

1. Introduction

Software is not developed in isolation anymore. Whether open source or
corporate-led, software development takes place within “a collection of software
projects which are developed and which co-evolve together in the same envi-
ronment”, and which are referred to as software ecosystems [1]. Within such
ecosystems, projects depend on one another [1], and yet awareness of such de-
pendencies is not trivial. Identifying technical dependencies to external projects
within the ecosystem is important for two main reasons: First, developers need
to understand how their tasks and code changes impact other projects and who
they need to coordinate their changes with at the ecosystem level [1, 2]. For
open source ecosystems in particular, it is also important for attracting new
contributors [1] since dependencies to other projects within an ecosystem are
more likely to attract attention. Newcomers might decide to join the project
based on a deeper knowledge of the structure of the system as well as of its exter-
nal dependencies. Second, information about software ecosystems and technical
dependencies within them enables further exploration and modeling of software

ecosystems, an area currently understudied in the software engineering litera-

ture [3].

However, identifying technical dependencies between projects on a large scale
has proven to be difficult [4]. Existing static dependency analysis approaches
do not identify dependencies across projects. Methods for extracting exter-
nal dependencies from a project’s source code or configuration files have been
proposed [1, 4, 5, 6, 7, 8, 9, 10, 11], but these approaches limit the types of de-
pendencies detected to explicit relationships. Implicit relationships like depen-
dencies on web services, operating systems, or hardware are not always visible in
configuration files or source code. Further, methods that extract dependencies
from source code require large amounts of memory and computation time, so
they cannot be employed across a large set of projects [12]. Methods that are
applied to configuration or build files are not memory or computation-intensive,
but such files are not always available or accurate since not all projects use a
package manager.

Without a way to easily establish a comprehensive set of dependencies be-
tween projects, software practitioners are unable to quickly identify the external
dependencies of a software project or understand where their project sits within
a software ecosystem.

In this paper, we propose a new method, Reference Coupling, to detect cross-
project dependencies that leverages solely the information in the developers’ so-
cial interactions. The social aspects of a project and its surrounding ecosystem
significantly influence the way in which the software project will evolve over
time [13], and they cannot be ignored in the development of models, guide-
lines and best practices for the analysis and maintenance of software ecosys-
tems’ health [14]. Reference Coupling mines the references to other projects
that developers make in their online interaction (referred to as cross-references
henceforth). We validated the method in identifying true cross-project technical
dependencies by using it in two large datasets of GitHub and IBM projects and
comparing its results with manually identified cross-references in each dataset.
We found that the Reference Coupling method does identify technical depen-

dencies between projects, and we describe several properties of the ecosystems

identified using this method. Reference coupling represents a significant novel
complement to the other existing, but insufficient, code-based or configuration
file-based methods to identify external dependencies within a project’s ecosys-
tem. Our method identifies ecosystems of projects within the same organization,
and also outside of the organization for which there are technical dependencies,
often hidden or even unknown to developers within a project.

Having identified external technical dependencies to projects in our datasets,
we further used our Reference Coupling method with a popular community
detection algorithm [15] to identify ecosystems across all GitHub-hosted projects
and explore socio-technical aspects within these ecosystems. We found that the
developers’ socio-technical behavior within GitHub project ecosystems differs
between the project owners and actual contributors. Our analysis illustrates the
potential for further analysis of software ecosystems’ health, something difficult
to assess given the dynamic nature of relationships within the ecosystem, as well
as the lack of a centralized management structure for overseeing the ecosystem’s
health and survival, most often typical of open source projects [14].

Our previous conference publication reported on some elements of this work
[16]; however, this paper introduces numerous extensions to our work. Specifi-

cally this paper extends our previous publications by:

describing how to utilize the Reference Coupling method on a wide variety

of software tools (compared to just GitHub in the conference publication).

e validating the Reference Coupling approach on a new dataset from a pro-

prietary ecosystem of IBM projects.

e providing a more detailed understanding of the types of dependencies that
are captured by the Reference Coupling method through the analysis and
categorization of dependencies from the IBM ecosystem and a more de-

tailed analysis of the dependencies on GitHub.

e extending the discussion to further describe how the Reference Coupling

method can be used to support software developers and software engineer-

ing researchers.

The paper has also been significantly restructured to better describe our research
methods, development, validation and application of the Reference Coupling
technique.

The rest of the paper is structured as follows: Section 2 provides an overview
of related work in software ecosystems and dependency conceptualizations. The
Reference Coupling method is described in Section 3. Our research methods
are presented in Section 4. Our results are presented in Section 5. In Section 6,
we summarize our findings and discuss open questions for future research. We

provide a brief conclusion in Section 7.

2. Related Work

The term software ecosystem (SECO) has emerged as a paradigm to un-
derstand the dynamics and heterogeneity in collaborative software engineering.
Unlike natural ecosystems, however, there is no common definition for SECO.
Two different perspectives on SECOs have been identified in the literature,
namely business-centric and platform-centric [3]. The business-centric defini-
tion refers to the holistic, business-oriented perspective of a SECO as a network
of actors, organizations and companies [17, 18, 19]. The platform-specific per-
spective emphasizes the social and technical aspects of a set of software projects,
technical platforms, and communities, in line with work of [20, 21]. In our work,
we take a platform-specific perspective to leverage and study the socio-technical
relationships within ecosystems. The ecosystems we consider are not limited to
only those projects in the same organization, but also include projects outside
of the organization for which there are technical dependencies.

The software ecosystems that received the most attention in previous liter-
ature include those around Eclipse (e.g. [6, 22]), Ruby on Rails (e.g. [23, 24]),
Apache (e.g. [7, 9]), and GNOME (e.g. [13]). Notable research developments
also exist in the area of frameworks for analysis of Open Source Software Ecosys-

tems (OSSECOs) (e.g. [21]), OSSECO health measurement (e.g. [25]), and tools

for visualizing OSSECO projects (e.g. [26]).

Recent extensive literature surveys show a growing interest in studies of
ecosystems, both in the domain of proprietary [27] as well as open source soft-
ware development [3]. In the proprietary software space, the focus has been on
the organizational and business aspects of the ecosystems, with a clear lack of
deeper investigations of technical and collaborative aspects of work [27]. In the
open source software ecosystems space, the pressing research challenges include
the development of methods and tools for the ecosystem modelling and analysis,
socio-technical theories to explain the interplay between the social and technical
system within ecosystems, as well as the diagnostic and monitoring of ecosystem
quality and health [3].

An important step in this direction lies with methods for the identification
of a project’s external technical dependencies within its ecosystem, in order to
study its structure and socio-technical aspects. Analysis of a project’s source
code is a common technique to identify technical dependencies within a project
(intra-project). However, these techniques do not scale up well to identify depen-
dencies between projects (inter-project). Lungu et al. [5] describe several meth-
ods for extracting inter-project dependencies by considering external method
and class calls in a project’s source code. However, when investigating a large
number of projects, obtaining the source code for every project is not always
feasible. Collecting source code data across an entire versioning system would
require multiple Terabytes of data and more than a year in processing time [12].
Ossher et al. [4] introduced a technique that analyzes import statements in Java
source code to resolve inter-project dependencies. Businge and Serebrenik [6]
employ a similar technique in their study of the Eclipse ecosystem. However, this
technique still requires obtaining a large amount of source code and, therefore,
requires a large amount of memory. These techniques, therefore, are limited in
the number of projects that can be studied.

Previous studies have also proposed ways to identify technical dependencies
without relying on analysis of source code. One method is to identify technical

dependencies by examining declared dependencies from a project’s configuration

files or its build files from a dependency management tool like Maven [1, 7, 8,
9, 10, 11]. However, not all projects declare dependencies in configuration files
or employ a dependency manager, and, even for those that do, the data can be
missing. Bavota et al. [9] found that this information was missing in 37% of
releases in a study of the Apache project. Syeed et al. [23] extracted metadata on
inter-project dependencies from the published specifications at rubygems.org in
their study of the Ruby on Rails ecosystem. However, the specified dependencies
may be out of date and the approach is specific to only projects that publish
dependency specifications.

Considering the social aspects of software ecosystems are also important [3].
The work of Mens and his colleagues highlights the role that social aspects
play in the future understanding and development of tools, prediction models,
guidelines and best practices that allow ecosystem communities to improve upon
their current practices [13]. Several other studies [28, 29] have explored ways to
detect social connections in software ecosystems. These studies used community
detection algorithms to detect communities across GitHub projects focusing on
relationships between developers.

We use technical dependencies for community detection since the structure
of an ecosystem is defined by its technical dependencies [5]. Thung et al. [30]
constructed similar project-to-project networks for GitHub-hosted projects. In
their networks, edges between projects represent a single developer contributing
to both projects. Since developers can often work on multiple independent
projects, sharing developers is not an indication of a technical dependency and
their network is more of a social perspective.

In our approach, we propose a method for automatic identification of techni-
cal dependencies that does not rely on analyzing source code, but takes advan-
tage of the cross-references that can be made in developers’ social interactions.
These cross-references are user-specified links between a pair of projects. They
are made in comments on work items, pull requests, issues, and commits as de-
velopers coordinate and manage their work dependencies. With these identified

technical dependencies we were then able to conduct a socio-technical analy-

sis of the behavior of different project members, namely project owners and

contributors in the GitHub ecosystem.

3. Reference Coupling

To identify dependencies between projects, we relied on comments made by
the developers within one project’s tasks, issues, pull requests and commits that
cross-reference another project. Modern collaborative software development
tools make it easy for developers to create links between projects within their
comments. We call this conceptualization of dependencies between projects
Reference Coupling.

To develop the Reference Coupling method, we manually examined cross-
references between projects on several software development tools to under-
stand how they could be automatically extracted. We examined comments that
cross-reference other projects on the following, popular open source software
code hosting platforms, forges, and issue trackers: GitHub, GitLab, BitBucket,
SourceForge, and Jira. We also examined cross-references in a proprietary soft-
ware ecosystem by examining the comments in an IBM set of products that
together form the Rational solution for Collaborative Lifecycle Management
(CLM).

We found that all of the open source software code hosting platforms, forges,
and issue trackers we examined (GitHub, GitLab, BitBucket, SourceForge, and
Jira) employ Markdown languages, which allow plain text to be formatted in
a lightweight way. When a Markdown language is employed and a user cross-
references another project in a comment using the appropriate syntax, a link to
the other project is automatically created, making it easier to navigate between
the projects. Due to the adoption of these Markdown languages, cross-references
to other projects are created in a standard format to enable these automatic
links to be created. GitHub, Bitbucket, and GitLab all extend the Common-
Mark specification [31], which was introduced to standardize markdown imple-

mentations. Jira and SourceForge, use their own Markdown languages.

Table 1: Syntax of Cross-References

Syntax

Tool Link To Example

Project Identifier Artifact Type | Artifact TD
GitHub,
GitLab Issues/Pull Requests | OWNER/PROJECT # NUMBER rails /rails#123
sitLab,
Bithucket, and . .
i Commits OWNER/PROJECT @ SHA twbs/bootstrap@6e2a82
Jira

PROJECT|[/SUBPROJECT] | bugs NUMBER allura:bugs:#123
SourceForge | Issues

PROJECT[/SUBPROJECT] | features #NUMBER | allura:features:#123

Commits PROJECT|[/SUBPROJECT] | code SHA allura:code:3b9d48
— [work] item NUMBER | work item 123
task NUMBER task 456

— story NUMBER | story 789

IBM CLM Work Item
defect NUMBER defect 123
— URL NUMBER | https://jazz.net /jazz/resource/itemName/
com.ibm.team.workitem. WorkItem /123

*Text in [] is optional

The one proprietary software tool ecosystem we reviewed, the IBM CLM
suite, did not employ a Markdown language. However, it still allowed explicit
links to be created between projects using a graphical user interface. When
entering text in a comment, users can click on a button that will allow them to
insert a link to a work item. This will open a window which will allow the user
to search for the work item(s) they wish to link to.

For all of these tools, whether they employ a Markdown language or not,
the format of the cross-references in the comment follows the same high-level
pattern with an optional project identifier followed by the artifact type and
the artifact identifier. The project identifier is optional in the cases that all
projects in the ecosystem share the same instance of the project management
tool, resulting in unique artifact identifiers across all of the projects, as is the
case in the IBM CLM ecosystem. Given the commonality of the syntax across all
of these tools, such cross-references can be automatically extracted. Thus, our
Reference Coupling method identifies dependencies by considering the following

pattern in comments:
<project identifier (optional) ><artifact type ><artifact identifier >

The detailed syntax for the various tools and artifact types is shown in Table 1.

If this method were to be implemented in a tool, these cross-references could

be automatically stored in a separate database table when they are created,
making the detection of dependencies nearly real-time. Post-hoc analysis, where
cross-references have not been previously extracted and stored, could be done
in O(n) time where n is the number of comments to be analyzed since one
computation is required for each comment to examine whether there is a cross-

reference to another project.

4. Research Methodology

4.1. Research Questions

We validated the Reference Coupling method on two datasets — one from
open-source projects hosted on GitHub and the one commercial dataset of IBM
projects. Our validation was guided by the following research questions:
RQl1a: Does the Reference Coupling method identify inter-project technical de-
pendencies on GitHub issue, pull request, and commit comments? If so, what
are the characteristics of these dependencies?

RQ1b: Does the Reference Coupling method identify inter-project technical de-
pendencies on IBM work item comments? If so, what are the characteristics of
these dependencies?

We then explored the characteristics of as well as socio-technical alignment
within the identified GitHub ecosystems by asking: RQ2: What ecosystems
exist across GitHub-hosted projects and what is their structure?, and RQ3: Do
the project owners’ and contributors’ social behaviours align with the technical

dependencies?

4.2. Research Setting and Data Collection

To answer our research questions, we conducted an analysis of the comments

and cross-references in the GitHub and IBM CLM projects.

4.2.1. GitHub
We obtained data from the GHTorrent [32] project, which provides a mirror
of the GitHub API data. GHTorrent obtains its data by monitoring and record-

10

ing GitHub events as they occur. We used the MySQL 2014-04-02 dataset to
obtain information on the projects since this paper extends our previous con-
ference publication which used this dataset [16]. This dataset contains data on
2,399,526 repositories, 3,426,046 users, and their events — including commits,
issues, pull requests and comments. We define a project as a repository and all
of its forks as recommended by Kalliamvakou et al. [33].

Since the MySQL database contains only the first 256 characters of com-
ments, we obtained all comments from GHTorrent’s main MongoDB server in
May 2014. The MongoDB contains the full text of all comments. These com-
ments were downloaded and stored in a PostgreSQL database for analysis. No
pre-processing was needed.

Using our Reference Coupling method, we identified 89,784 comments in
the GitHub data with a cross-reference to another project!. There are 29,018
repositories (18,533 unique projects when forks are considered) that make a
cross-reference to another project. While this is only a small portion of the
total number of repositories in our dataset, this is expected since Kalliamvakou
et al. [33] have found that the majority of the projects on GitHub are personal

and inactive.

4.2.2. IBM Collaborative Lifecycle Management (CLM)

We collected data from the products in the IBM Rational solution for Collab-
orative Lifecycle Management (CLM). CLM brings together requirements man-
agement, quality management, change and configuration management, project
planning and tracking on common uniform platform. CLM consists of number
of products including Rational Team Concert (RTC), Rational Quality Man-
ager (RQM), Rational DOORs Next Generation (DNG), Rational Requirement
Composer (RRC), Rational Software Architect (RSA), Rational Rhapsody and
Rational insight. The IBM CLM ecosystem is broken into 16 distinct projects.

IThese cross-references and the scripts used to identify them are available in a replication

package at https://doi.org/10.5281/zenodo.2555526

11

Method RQla: GitHub RQ1b: IBM

Validation ___, —

A
.0
0350
[0
.. Manual analysis of 200 random Compare IBM Developer specified
'. cross-references dependencies to cross-references

* Technical dependency?

g If yes, type of dependency? Manual analysis of 111 cross-references
Two Coders * , :

not declared as dependency by devs

Method RQ2 RQ3 .
Application Use cross-references to constructa Construct project-to- s | B
technical dependency network project networks based w. 7

on the “following” and =
“starring” activity of the ‘
project owners and contributors

Identify ecosystems using Louvain
community detection method [11]

Characterize ecosystems by:
« Manual analysis of visualizations ~ Compare edge weights of these social
* Compute network statistics networks with the edge weights from

+ Examine project README files the dependency network

Figure 1: Summary of Research Methods

For each CLM project, we collected data on all work items created from
2005 to 2015. A work item is a task or an issue that must be attended to
during development. The data was downloaded in XML format from the IBM
REST API and converted into JSON and stored in PSQL tables. For each work
item, we collected the metadata, history, and comments. No pre-processing was
done on the data. The dataset consisted of 3,009 work items with a total of
17,708 comments. There were 635 cross-references to another project within

those comments. All projects contain cross-references.

4.8. Research Methods

An overview of our research methods to answer each research question are

shown in Figure 1 and described in detail in the following subsections.

12

4.8.1. Reference Coupling: Method Validation

To validate the Reference Coupling method, we used the method to identify
cross-references between projects in both GitHub and the IBM CLM products.
We automatically extracted these cross-references with pattern matching using
Java Regular expressions [34]. Since we are interested only in relationships
between projects, we filtered the cross-references to ignore references within the
same project.

RQl1a: Does the Reference Coupling method identify inter-project technical
dependencies on GitHub issue, pull request, and commit comments? If so, what
are the characteristics of these dependencies?

To verify that the cross-references to other projects made in comments on
GitHub identified through the Reference Coupling method are a valid concep-
tualization of dependencies, we examined 200 random comments which were
classified as dependencies using the Reference Coupling method since they cross-
referenced another project. Different types of comments may be made on differ-
ent artifacts. To ensure our analysis included various types of cross-references
that may occur, we ensured our randomly selected 200 comments were equally
distributed across each of the following relationships: 1) commit comment cross-
references another commit, 2) commit comment cross-references an issue or pull
request, 3) an issue or pull request comment cross-references a commit, and 4)
an issue or pull request comment cross-references another issue or pull request.
Thus, there were 50 random comments selected from each of these types of
cross-references.

This manual content analysis [35] was performed by two people familiar with
software development practices. They classified a comment as a technical de-
pendency if the comment described a work dependency, either direct or indirect,
between the two projects. For each dependency, they also noted if the depen-
dency was direct (between the two projects) or indirect (both projects depend
on a third project).

The same two people further examined the comments that were classified as

13

technical dependencies to identify the types of dependencies that are identified
using the Reference Coupling method. The dependencies were classified using

common dependency types that can be declared in issue tracking systems:

e Duplicate: the issue/commits on the two projects are duplicates of each
other. Within a project, duplicate issues would describe the same problem.
Across projects, an example of a duplicate issue could be both projects
have created issues to deal with a breaking API change from a shared

dependency.

e Blocking: an issue/commit on one project is blocking work in the other
project. For example, one project is waiting for the other project to release
a promised API change before they can finalize a new feature that will be

enabled by that API change.

e Resolving: an issue/commit on one project resolves an issue in the other
project. For example, one project had security issues which it has inherited
from a project it depends on. Once the other project fixes its security

issues, the issue will be resolved in the dependent project as well.

o Affecting: an issue/commit on one project is impacted by an issue/commit
on the other project. In other words, changes need to be made in the first
project due to changes made in the other project. For example, a project
deprecates an old API which would cause any projects using that old API

to update to a more recent API.

When a dependency did not fit one of these categories, open coding was used
to identify the type of dependency [36]. The cross-references that did not match
one of the pre-defined dependency types were reviewed and conceptually similar
comments were grouped into categories. This resulted in two new dependency
categories being introduced, Leveraging and Updating, which are described in
Section 5. Each coder independently did the manual analysis and coding. Then
the two coders met to discuss their results and try to come to a consensus.

The coders were able to come to a consensus for all items after this discussion,

14

Table 2: Inter-coder Reliability: Kohen’s Kappa

Initial Agreement | Initial Cohen’s Kappa | Final Agreement | Final Cohen’s Kappa
Existance of Dependency 99% 0.828 100% 1
Direct/Indirect 97% 0.807 100% 1
Affecting 88.5% 0.678 100% 1
Blocking 98.5% 0.911 100% 1
Duplicate 96.5% 0.895 100% 1
Leveraging 98.5% 0.660 100% 1
Resolving 92% 0.826 100% 1
Updating 98.5% 0.816 100% 1

resulting in 100% agreement. Table 2 shows the inter-coder reliability using
Kohen’s Alpha for each of the categories for the intial independent coding and
the final agreed upon codes. Cohen’s alpha was calculated using ReCal [37].

RQ1b: Does the Reference Coupling method identify inter-project technical
dependencies on IBM work item comments? If so, what are the characteristics
of these dependencies?

To validate the Reference Coupling method identifies true technical depen-
dencies between the IBM projects, we are able to compare the dependencies
identified using the Reference Coupling method to the developer declared de-
pendencies. For each work item, the metadata contains information on depen-
dencies between the work items captured by the developers along with the type
of dependency. IBM developers can choose between 26 established dependency
classifications such as Depends On, Blocks, Duplicate Of, and Resolves.? Of
the 26 classification, only 14 are used by the IBM developers in our dataset.
These 14 dependency classifications are described in Table 3. We grouped the
classifications into types, since there are pairs of classifications which represent
reciprocal relationships.

We analyze these developer specified dependencies to see how many were
also identified by the Reference Coupling method. In addition, we also manu-
ally analysed the cases where the Reference Coupling method identified a depen-

dency, but the IBM developers did not indicate the dependency within the work

2https://jazz.net/help-dev/clm/index.jsp?topic=%2Fcom.ibm.team.concert.sdk.doc%2Ftopics%2Fr_link_domains.html

15

Table 3: Types of Dependencies

Dependency Type | Classification Description

Blocks The work item blocks work item X
Blocking

Depends on The work item depends on work item X

Resolves The work item resolves work item X
Resolving

Resolved by The work item is resolved by work item X

Duplicated by The work item is duplicated by work item X
Duplicate

Duplicate of The work item is a duplicate of work item X

Affected by Defect A work item is affected by a defect
Affecting

Affects Plan Item The work item impacts plan item X

Parent The work item is a parent of work item X
Parent/Child

Children The work item is a child of work item X

Related The work item has a general relationship with work
Related

item X

Related Change Request | The work item is related to a change request item

Contributes to The work item contributes to work item X
Planning

Tracks The work item tracks work item X

item. We analysed these cases to determine if the Reference Coupling method
identifies cases of true technical dependencies that had not been marked as such
by the IBM developers. In the case that the manual analysis revealed a technical
dependency, we also categorized the type of dependency using the same cate-
gories as used by the IBM developers to understand what types of dependencies

Reference Coupling captures.

4.8.2. Reference Coupling: Method Application

RQ2: What ecosystems exist across GitHub-hosted projects and what is their
structure?

To illustrate the applicability of our method, we constructed a network of
the technical dependency relationships established through Reference Coupling
as described in Section 3. The Dependency Network is defined as a directed
graph G4 =<V, E >. The set of vertices, denoted by V, is all GitHub projects
involved in at least one cross-reference. There are 18,533 projects in this set.

The set of edges, denoted by E, is a set of node pairs E(V) = {(z,y)|z,y €

V'}. If the project represented by node x; cross-referenced the project repre-

16

sented by node y;, there is a directed edge from x; to y;. The weight of each edge
is the count of cross-references for the pair of projects. We filtered the edges
to only consider dependencies between nodes if the pair of projects have been
cross-referenced two or more times to capture only the stronger dependencies.

It is important to note that this directed graph captures the direction of
the cross-referencing comments and not the direction of the dependencies that
those comments imply. A project could cross-reference another project because
it is blocked by that project or because it is blocking that project. The nuances
of the dependency direction are not captured by our method.

To identify ecosystems across projects hosted on GitHub, we used the pop-
ular Louvain community detection method [15] on the Dependency Network
established through Reference Coupling. The Louvain method is a greedy opti-
mization method that aims to partition a network into communities of densely
connected nodes and optimize the modularity of the network. Modularity is de-
fined as “the number of edges falling within [communities] minus the expected
number in an equivalent network with edges placed at random [38].” High mod-
ularity scores indicate that there are dense connections within the communities
but sparse connections across communities, showing that an optimal solution
has been found. When high modularity scores are obtained, the communities
have significant real-world meaning [15]. The Louvain method is comprised of
two steps. It first optimizes modularity locally by looking for small communi-
ties. Then it aggregates the nodes in each small community and builds a new
network with these aggregated nodes. It iterates on these two steps until the
modularity is maximized. The Louvain method outperforms all other commu-
nity detection methods in terms of both the modularity that is achieved and
the computation time [15].

In our network, the identified communities represent sets of projects densely
connected by technical dependencies. Since dependencies that exist between
projects define the structure of an ecosystem [5], these communities represent
software ecosystems.

To identify properties of the identified ecosystems, we:

17

e Analyzed visualizations of the Dependency Network. Visualizations of
each ecosystem detected by the Louvain community detection method (as
described above) were manually reviewed. We used the Gephi [39] graph-
ing tool to create these visualizations. One of the authors inspected these
visualizations of the network to visually identify patterns. The identified

patterns were cross-checked by two of the other authors.

e Computed network statistics for each of the ecosystems, such as in-degree

and out-degree of the nodes.

e Examined the types of projects involved in the ecosystems by reviewing
the GitHub README files of the most well-connected project node in

each of the ecosystems.

RQ3: Do the project owners’ and contributors’ social behaviours align with
the technical dependencies?

To complement our investigation of technical dependencies and connect-
edness of projects in GitHub, we also sought to understand the social be-
haviour of project owners/contributors in relation to the ecosystems we identi-
fied. We studied two of GitHub’s social relationships, following users and star-
ring projects. On GitHub, users can follow other users to receive notification
on their activity and star a repository to bookmark it or indicate interest in the
project. To understand how the social behaviour of project owners/contributors
relates to the identified ecosystems, we examine the alignment between social
and technical connections between the projects.

To answer RQ3, we construct project-to-project networks based on the fol-
lowing and starring activity of the project owners and contributors.

Project Owners. We constructed two networks using the following and star-
ring relationships by considering the actions of the project owners. The Owner
Stars Network, G, =< V,E >, and the Owner Follows Network, G,y =<
V, E >, are both undirected graphs whose set of vertices is all GitHub projects
involved in at least one cross-reference. For the Owner Follows Network, there

is an edge from nodes x; to y; if the owner of project x; follows the owner of

18

project y;. There is an edge from z; to y; in the Owner Stars Network if an
owner of any project in our dataset has starred both project x; and project y;.

Project Contributors. We constructed two additional networks using these
following and starring relationships by considering the actions of the project
contributors (users who have made commits on the project or are members
of the project). The Contributor Stars Network, G.s =< V,E >, and the
Contributor Follows Network, G.y =<V, E >, are also undirected graphs whose
set of vertices is all GitHub projects involved in at least one cross-reference. The
Contributor Follows Network has an edge from nodes x; to y; if a contributor of
project x; follows a contributor of project 7;. The Contributor Stars Network
has an edge from z; to y; if a contributor to any project in our dataset has
starred both project x; and project y;.

To compare the social connections with the technical dependencies, we com-
pare the edge weights of these two networks with the edge weights of the De-
pendency Network constructed to answer RQ2. Pearson correlations were used
since the data was normally distributed. The edge weights of these networks

represent the following:

e Dependency Network G4: Number of technical dependencies, measured

through Reference Coupling, between the two project nodes.

e Owner Follows Network G,y: 0 if neither project owner follows the other,
1 if one project owner follows the other project owner, and 2 if both project

owners follow each other.

e Owner Stars Network G,s: Number of project owners who have starred

both projects.

e Contributor Follows Network G.y: Number of contributors with following

relationships for the pair of projects.

e Contributor Stars Network G.s: Number of project contributors who have

starred both projects.

19

5. Results

5.1. Method Validation on GitHub Data

RQ1a: Does the Reference Coupling method identify inter-project technical
dependencies on GitHub issue, pull request, and commit comments? If so, what
are the characteristics of these dependencies?

Of the 200 examined cross-references, we obtained 96.5% precision as 193
were found by the two manual coders to be true technical dependencies. We are
unable to calculate recall of our method since we do not have a ground truth
set of all dependencies.

Of these 193, 176 (91%) were direct dependencies between the two projects
and 17 (9%) were indirect dependencies where the two projects both depend on
a third project.

Dependency between the two projects. The most common type of dependency
found was a direct technical dependency between the two projects. An example
of a direct technical dependency is when an issue created in one project depends
on a fix/update in another project. Another example is when a project needs
to be updated based on changes made in another project.

Below we provide three examples of cross-reference comments that are in-
dicative of direct technical dependencies between the two projects. Project
names follow the pattern user/repository where user is the owner’s GitHub lo-
gin and repository is the name of the project repository.

Issue #449 on the sensu/sensu project describes an issue that is the result
of the interaction between the sensu/sensu code and the ruby-amqp/amg-client
library. The comment references a commit on the ruby-amqp/amg-client that

fixes the issue.

“I verified that the problem is still the one referenced in ruby-amgp/amq-
client#14. This fix is not merged with amg-client’s ‘0.9.x-stable’
branch. This is why I am still hitting it. The commit ruby-amgp/amq-
client@60f1c59 is the fix but it resides only in the master branch.”

20

Issue #8 on the tsujigiri/axiom project notes that changes must be made to
the code base to allow an upgrade to the latest release of the ninenines/cowboy

project.

“Upgrade Cowboy: After Cowboy 0.6.1 Cowboy’s hitp_req record was
made opaque and can not be used directly anymore. I didn’t really
have the time yet to look into it, but it looks like we just need to
remove all references to the record from the documentation and add
directions on how to access cowboy_req:req() via the cowboy_req func-

tions. See ninenines/cowboy#266 and ninenines/cowboy#267.”

Commit 81bbbec21c04b6392{6892{7735243387d295337 on the joyent/node
project closes isaacs/node-graceful-fs issue #6, which describes a problem in
the isaacs/node-graceful-fs code stemming from the use of joyent/node. GitHub
allows automatic closure of issues through commit comments, even when the

commit is in a different repository.?
“This fizes isaacs/node-graceful-fs#6.”

Both projects depend on a third project. We also identified some cases
where the comments describe a dependency on a third project that is not cross-
referenced. For example, everzet/capifony’s pull request #376 cross-references
composer/composer’s issue #1453, but the problem stems from the use of the
symfony /symfony project. After identifying the source of the problem, a new is-
sue (#411) is created on the everzet/capifony project that identifies the changes
that need to be made to the way the symfony environment is set so that the

composer/composer code executes correctly.

“As described in #3876 capifony should execute composer with the
right symfony environment set. Currently, with ——no-scripts op-
tion removed in #376, composer is always executing symfony scripts

with default dev environment.”

3https://github.com/blog/1439-closing-issues-across-repositories

21

Table 4: Types of Dependencies Identified by Reference Coupling

Dependency Type | Count (Ratio)
Resolving 74 (38.3%)
Duplicate 43 (22.3%)
Affecting 43 (22.3%)
Blocking 18 (19.3%)
Updating 9 (4.7%)
Leveraging 6 (3.1%)

5.1.1. Dependency Categories

Most (178 of 193 or 92%) of the dependencies were able to be assigned to
one of the four pre-existing dependency types (duplicate, blocking, resolving or
affecting). The remaining cross-references were examined and open coding was
used to generate additional dependency categories. Only two new categories
were created by the two manual coders, both of which are specific to cross-

project dependencies:

e Leveraging: the two projects depend on a third project and both experi-
ence the same issue due to this shared dependency. One of the projects
leverages a solution to this problem that has been generated by the other

project.

e Updating: one of the projects depends on the other project and is updating

to a more recent version of the other project.

Table 4 shows the breakdown of how often each dependency type appeared

in our data. Resolving is the most common dependency type.

Answer to RQ1la: The Reference Coupling method does identify inter-
project technical dependencies on GitHub pull request, issue and commit
comments; 96.5% of manually analyzed comments revealed technical de-

pendencies between the cross-referenced projects. Of these, most are direct

22

Table 5: Types of Dependencies Not Identified by IBM Developers.

Dependency Type | Count
Duplicate 57
Related 42
Parent/Child 28
Affecting 10
Blocking 6
Planning 2
Resolving 1

dependencies between the two projects, but some are a shared dependency
on a third project. We further classified these dependencies and found that
the Reference Coupling method identifies a variety of dependency types.
The most common type of dependency identified is Resolving: where a

change in one project resolves an issue in the other project.

5.2. Validating Method on IBM Data

RQ1b: Does the Reference Coupling method identify inter-project technical
dependencies on IBM work item comments? If so, what are the characteristics
of these dependencies?

The Reference Coupling method identified dependencies between 2108 pairs
of work items, 635 of which are inter-project dependencies. Of the inter-project
dependencies, 146 (23%) were marked as technical dependencies by the IBM
developers. Table 5 shows the types of dependencies that were both identified
by Reference Coupling and the IBM developers. The most common types of
dependencies that were identified by both the Reference Coupling method and
the IBM developers are duplicates, related, and parent/child relationships.

However, there were 489 inter-project dependencies identified by the Ref-

erence Coupling method which were not marked as dependencies by the IBM

23

developers. To validate that our Reference Coupling method was, in fact, identi-
fying dependencies, despite the fact that not all were marked as such within the
repository, two coders familiar with software development practices reviewed
a random sample of 111 of the 489 work items and manually assessed if the
Reference Coupling method identified a valid technical dependency. The two
coders achieved a 95% inter-coder reliability. They discussed any cases where
their coding did not align and came to a concenus.

Of the 111 work items, all were found to have dependencies with other
projects by the coders. The coders also categorized these 111 dependencies using
the dependency types in Table 3. They also used an additional type (Unknown)
to label dependencies that did not easily fit into one of the 26 pre-established
dependency types.

Table 6 shows the types of dependencies that were evident among the pairs
of work items. The most common dependency type that was identified by our
Reference Coupling method but was not marked as a dependency by the IBM
developers was ‘Affected by Defect’. For example, this comment describes how a
defect, which is associated to a different project, caused problems on the current

project.

“The Validate is not defined error from comment 2 was fized in defect

162650.”

Another common dependency type identified by Reference Coupling but not
flagged as a dependency by the developers is ‘Related’. For example,

“This is related to item 125838.”

The links between projects are not as clearly seen in the textual comments
in IBM CLM, since the project associated with the work item is only available
in the metadata on the work item. In these cases, it would be quite easy for
developers to be unaware that a coordination need with another project exists

since the fact that these work items are part of another project is not apparent.

24

Table 6: Types of Dependencies Not Identified by IBM Developers.

Dependency Type | Count
Affecting 73
Related 30
Planning 1
Blocking 1
Unknown 6

Answer to RQ1b: The Reference Coupling method does identify inter-
project technical dependencies on IBM work item comments. It identifies a
wide variety of dependency types. The most common type of dependency
that is found with the Reference Coupling method but missed by the IBM

developers is the ‘Affecting’ category.

5.8. Applying Reference Coupling to identify and examine GitHub ecosystems

5.8.1. Ecosystem Identification

RQ2: What ecosystems exist across GitHub-hosted projects and what is their
structure?

Figure 3 shows the full Dependency Network, though for visibility we only
display nodes with degree of 3 or greater. As visible on the graph, most of
the nodes (10,484 of 18,533 projects or 57%) are part of the largest connected
component (commonly referred to as the giant component [40]), which is the
largest subgraph in which every node is connected to every other node by some
path. The connected components isolated from the giant component are primar-
ily comprised of same owner communities in which all nodes in the connected
component are projects owned by the same GitHub user or organization. For
example, the second largest connected component is comprised of 65 nodes, of

which, all but two are owned by GitHub user deathcap.? Most of the nodes

4https://github.com/deathcap

25

With Outliers Outliers Removed

[¢] 0 — (o]
o
o
Yol
N ~ o]
o
3
o [¢] © .
N l
l
l
l
1
o n — |
S | l
w l
~ [
l
l
< !
1
o
S _| o X
= l
- 1
o o .
o
g - :
N_
o — —i— - -

Figure 2: Number of unique cross-referenced projects for all projects that make at least one

cross-reference to another project on GitHub.

isolated from the giant component are connected to only a small number of
nodes. In fact, 75% of nodes not in the giant component are connected to only
one other node.

Figure 2 shows boxplots for the number of unique cross-references for each
project which cross-references at least one other project. These boxplots show
that while some projects make cross-references to many other projects, most
projects have only a small number of other projects which they cross-reference.

Since we are most interested in studying the popular GitHub ecosystems, we
focus our analysis on the interconnected part of the network or the giant com-

ponent. Figure 4 shows the giant component. The color of the nodes represent

26

Figure 3: All GitHub projects with cross-references. The largest connected component (or
giant component) is easily identified as the well-connected subgraph appearing in the center

of the graph.

communities as detected by the Louvain method. We obtained a modularity
score of 0.913 (out of a possible range of 0 to 1). This high modularity score
indicates that the detected communities are much more tightly connected by
technical dependencies than would appear in a random graph.

There were 43 ecosystems identified in this network. Nodes are sized ac-
cording to their authority to display the nodes that are more prominent in each
ecosystem. When a node has a high number of cross-reference relationships
pointing to it, it has a high authority value [41]. Table 7 shows the most well-
connected project node (highest Authority value) in each of the ecosystems.

Properties of GitHub Ecosystems

Ecosystems revolve around one central project. As depicted in Figure 4, each
ecosystem appears to revolve around one main project. In Table 7, the most

well-connected project node in each ecosystem is listed along with a description

27

Figure 4: Ecosystems in the largest connected component of GitHub-hosted projects. Project
names follow the pattern user/repository where user is the owner’s GitHub login and repository

is the name of the project repository.

of the project, the number of stars the project has, the size of the associated
ecosystem, and the node’s degree. Each of these projects has a higher in-degree
than out-degree with the exception of the mxcl/homebrew project. On the
other hand, low-degree project nodes are four times as likely to be dependent
on another project than they are to have a project depend on them. This
shows that ecosystems are being formed around a central project with the other

projects in the ecosystem mostly depending on that central project. This results

28

Table 7: Ecosystems in GitHub. Details of the most well-connected node in each ecosystem.

Project Description Stars | Ecosystem Size | Degree (in,out)
joyent/node Framework 39,373 10.08% 69 (53,16)
symfony /symfony Framework 10,985 8.46% 93 (53,40)
rails/rails Framework 29,744 7.92% 93 (65,28)
JuliaLang/julia Programming Language 5,531 6.74% 51 (35,16)
rubygems/rubygems Package Manager 1,304 6.04% 22 (14.8)
mxcl/homebrew Package Manager 13,723 3.94% 48 (21,27)
zendframework /zf2 Framework 5,841 3.88% 72 (65,7)
travis-ci/travis-ci Development Tool (Continuous Integration Platform) 3,693 3.50% 70 (54,16)
wet-boew /wet-boew Framework 688 3.34% 19 (15.4)
twbs/bootstrap Framework 41,828 3.29% 9 (9.0)
dbashford /mimosa Development Tool (Browser development) 472 2.43% 25 (20,5)
h5bp/html5-boilerplate Framework 31,926 2.37% 19 (15.,4)
mitchellh/vagrant Framework 9,274 2.10% 23 (15.8)
libgit2,/libgit2 Library 5,161 2.05% 20 (11,9)
Behat/Mink Development Tool (Testing) 673 1.99% 13 (9.4)
OCamlPro/opam Package Manager 118 1.89% 9 (8,1)
basho/riak Database 2,520 1.83% 27 (18,9)
Polymer/polymer Library 8,787 1.83% 16 (11.5)
mapnik /mapnik Development Tool (Toolkit for developing mapping applications) 1,003 1.78% 20 (12.8)
mozilla/rust Programming language 5,604 1.78% 36 (29.7)
alphagov/static Other (GOV.UK static files/resources) 67 1.73% 13 (10,3)
adobe/brackets Development Tool (code editor) 23,921 1.46% 26 (16,10)
CocoaPods/CocoaPods Development Tool (dependency manager) 5,711 1.46% 14 (9.5)
yeoman/yeoman Development Tool (web development tools) 7,246 1.46% 18 (13,5)
angular/angular js Framework 42,950 1.40% 12 (8,4)
dotcloud/docker Development Tool (application container engine) 14,270 1.35% 24 (19.5)
emberjs/ember js Framework 14,185 1.29% 20 (12.8)
owncloud /core Other (personal cloud storage tool) 3,222 1.19% (13,13)
typhoeus/typhoeus Library 2,465 1.19% 6 (4,2)
facebook /hhvm Other (Virtual machine) 11,506 1.08% 15 (10,5)
celluloid/celluloid Framework 2,855 0.86% 9 (6.3)
xp-framework /rfc Framework 0 0.86% 16 (14,2)
rogerwang /node-webkit Framework 19,737 0.86% 16 (11,5)
ecomfe/edp Development Tool (front-end development platform) 264 0.86% 18 (15,3)
kennethreitz/requests Library 13,812 0.81% 13 (10,3)
documentcloud /underscore | Library 7,135 0.81% 6 (4.2)
middleman /middleman Development Tool (website generator) 4,179 0.75% 8(5.3)
elasticsearch /elasticsearch | Other (search and analytics tool) 10,700 0.70% 11 (11,0)
chapmanb/bcbio-nextgen Other (RNA-seq analysis tool) 173 0.59% 10 (9.1)
wp-cli/wp-cli Development Tool (command line interface for WordPress) 1,968 0.59% 13 (9.4)
cucumber /cucumber Development Tool (Testing) 5,142 0.49% 7(43)
jsdoc3/jsdoc Development Tool (API documentation generator) 2,909 0.49% 6(3.3)
propelorm/Propel Development Tool (Object-Relational Mapping) 893 0.49% 7(7,0)

in a star pattern. The twbs/bootstrap ego network (Figure 5) clearly depicts
this pattern within the graph.

Predominant type of ecosystems is software development support. Interest-

ingly, nearly all of the ecosystems are centered around projects whose purpose

29

yabawock/| p-sasgglt'gl g f rap-cdn

dart-lan lang.or

trap-cdn

otstrap
rouges| esome FotAwesom nt-Awesome

migallag/m ootstrap-3

Figure 5: twbs/bootstrap Ego Network. Portraying a sample star pattern in the network.

Table 8: Ecosystem Types. Nearly all support software development.

Type Count

Software Development Tool 14

Framework 13
Library 5
Package Manager 3
Programming Language 2
Database 1
Other 5

is to support software development, such as frameworks, libraries and program-
ming languages. In fact, as shown in Table 8, of the 43 ecosystems, there are
only 5 whose purpose is not to support software development. The 14 software
development tools include a testing tool, a continuous integration platform, and
an API documentation generator. The type of each ecosystem is also shown in
Table 7.

Ecosystems are interconnected. The graph in Figure 3 shows two types of
communities that occur in GitHub-hosted projects, those that are part of the

largest connected component and those that are isolated from the largest con-

30

nected component. The majority of project nodes, 10,484 or 57%, are involved
in the largest connected component, indicating that many ecosystems are con-
nected to each other across the projects in our Dependency Network. The next
biggest connected component in the graph is only 65 nodes indicating that the
ecosystems that are isolated are small and have not attracted public attention.

Figure 4 displays the interconnected part of the network, and the connec-
tions between the ecosystems are apparent. As an example, Figure 6 shows
the rubygems/rubygems ego network, clearly depicting its connection to the
rails/rails project. This is not surprising, since the rubygems project is a pack-
age management framework for the Ruby programming language and rails/rails
is a web application framework written in Ruby. There is a direct connection
between the rubygems/rubygems and rails/rails nodes. In addition, there are
projects, like carlhuda/bundler and airblade/paper_trail, which connect the two

projects.

Answer to RQ2: The Reference Coupling method can be used to
identify and examine ecosystems. The predominant type of ecosystems
on GitHub is software development support. Ecosystems tend to revolve

around one central project and be interconnected to other ecosystems.

5.8.2. Investigation of Socio-Technical Alignment within the Ecosystems

RQ3: Do the project owners’ and contributors’ social behaviours align with
the technical dependencies?

Project Owners: Table 9 shows strong, positive correlations between the
technical dependencies and the social behaviour of the owners. Along with these
strong correlations, Figure 7 shows a pronounced star pattern in the Owner
Follows Network. This indicates that the project owners in an ecosystem tend

to follow the owner of the central repository.

Project Contributors. As shown in Table 10, the social behaviour of project

contributors does not align with the technical dependencies. This indicates

31

whi!537lv@gil!ip.com

freerafgg)mocha rubygems[@ygems.org

jmb@bler
- -
i installer ’m"@vm.
one:llck@ms Lol o
nnnnnnnnnnnn s@\wbwcs-wn
bundlet/bundler
carlhud@lbundier rupib)[jruby
ms@:u mm@mm
rubygems/rubygems
rubinius/rubinius
airblade(@aper-trail

rspecirépec-rails

railsfrails

rdoRy g sare globalizgglobalize

wayneesgeguin/rvm
Figure 6: rubygems/rubygems Ego Network. Portraying connections between ecosystems.

Table 9: Project Owners: correlations between technical dependencies and social behaviour.

Pearson Correlation | p-value

Technical Dependencies and Following 0.91 <0.001
Technical Dependencies and Stars 0.79 <0.001

that, while the project owners seem to follow the right people and are aware of

the right projects based on the technical dependencies that exist in the ecosys-

32

Figure 7: The Owner Follows Network, G, .

Table 10: Project Contributors: correlations between technical dependencies and social be-

haviour.
Pearson Correlation | p-value
Technical Dependencies and Following 0.0002 0.98
Technical Dependencies and Stars 0.001 0.88

tem, the social behaviour of project contributors is not aligned with project
dependencies.

Figure 8 shows the Contributor Follows Network. As shown, the structure
is quite different than the Dependency Network. Communities do not have one

central project and the network is much more densely connected.

Answer to RQ3: The Reference Coupling method can be useful for
other investigations of software ecosystems where identification of inter-
project technical dependencies is needed. We investigated social behaviour

in software ecosystems. We found that the project owners social behaviours

33

® .’ ... Y
° .a ...:. .'..u..: 7 .; ®e
oo oo.;. .'. : A 2u o2 ...
ﬁ o. .?. ? ...o
. %ﬁ: &.‘: < 5@ : e ; °9:°-.:-
[} ° ® . o ..,: Z .0..0
* P . .:‘..-.6.". > ° °
oS5 .°:'.o..°°.° OSSN
* ° 4 . (O] < .. ° 3
...o',:f..-... g . @ ..l. *
".-;. . 0'.) .% . o
'%'. .. .-.Q .. .'.o.. ..o.
2R0.050 8 g0 g
-’) % < .:DS'...
’ ..: ..” ° [e) °
N % ® SO %
*w

Figure 8: The Contributor Follows Network, G..

do align with the technical dependencies, but the project contributors social

behaviours do not align with the technical dependencies.

6. Discussion

The method we proposed in this paper, Reference Coupling, identifies cross-
references to other projects within a project’s ecosystem in the comments made
by developers on project artifacts like issues, commits, pull requests or work
items. We showed that the method outputs are a valid conceptualization of
technical dependencies by analyzing the content of these cross-references and
comparing the cross-references to dependency relationships identified by the
development team.

Our method adds to the important, but scarce, research that leverages the
social aspects of work within software ecosystems [13]. Reference Coupling de-

tects technical dependencies that may not manifest themselves in source code by

34

identifying tasks, issues, pull requests, or commits that rely on another project,
and, therefore, it can identify dependencies not identified by other methods.
Our results show that the cross-references identify many different types of de-
pendencies including duplicates, affecting, blocking, and related relationships.

Our method is analogous to the logical coupling method that detects de-
pendencies within a project proposed by Gall et al. [42] except at the ecosys-
tem level. Where logical coupling detects dependencies when artifacts have
been worked on together, our method detects dependencies when issues, pull
requests or commits have been worked in conjunction with another project (as
evidenced through user-specified cross-references). Thus, the dependencies es-
tablished through our method are those that are logical.

Limiting the detected dependencies to those that are logical is important
when using those dependencies to identify ecosystems. Methods that detect
technical dependencies between projects through analysis of code or configu-
ration files may not be best suited for identifying software ecosystems. For
example, when one project uses another project, it does not necessarily mean
the two software projects are evolving together in the same environment, espe-
cially when the dependency is to an established, off-the-shelf software package.
Thus, identifying all relationships that manifest in the source code or configura-
tion files may result in dependencies that are not important for the identification
of ecosystems.

For the GitHub projects, we used Reference Coupling to identify and ex-
plore ecosystems. To do this, we used a popular community detection algo-
rithm [15] on the dependency network, which identifies clusters of nodes densely
connected by technical dependencies. These detected communities represent
software ecosystems. Through analysis of the resulting ecosystems found in
GitHub-hosted projects, we showed that the ecosystems are centered mostly
around projects that support software development through developing frame-
works and toolkits. The predominant structure of the ecosystems is a star where
one central project is the hub of the ecosystem.

Our method also allows for the identification of dependencies across ex-

35

tremely large sets of projects. For example, we ran our method on all public
projects hosted on GitHub. Other methods that detect dependencies are limited
to analyzing a given project or set of projects. Analyzing the dependencies of
a popular project through its source code or configuration files to identify its
ecosystem would not identify projects that rely on that project. We saw that
most ecosystems across the GitHub-hosted projects are centered around one
main project and many projects depend on that project without a reciprocal
relationship. These relationships would be missed if only the dependencies of
the main project were studied to identify its ecosystem. Since the ecosystems
are not always well-defined, it would be impossible to know which other projects
to consider for analysis. Thus, our method is better suited to identifying ecosys-

tems since it is not limited in the number of projects it can analyze.

6.1. A Research Agenda

The ability to easily identify technical dependencies between a large set of

projects opens the door for many interesting avenues of research.

Socio-technical analysis. Studies that have attempted to study how commu-
nication aligns with dependencies across projects have been limited to studying
well-defined ecosystems where dependency information is publicized in some
way. For example, dependencies can be made available through a project’s
configuration files, build files, or through publicly available dependency specifi-
cations [1, 7, 8, 9, 10, 23, 11]. Our method allows the identification of technical
dependencies more broadly across projects and opens the door to continuing
the study of socio-technical alignment across a larger set of projects and their
stakeholders.

In this study, we found that when dependencies exist between a pair of
projects, the project owners tend to be following the owner of the other project.
Conway was the first to describe the possibility of an alignment between social
connections and technical dependencies in software engineering projects, com-
monly referred to as Conway’s law [43]. The transparent nature of GitHub could

encourage technical connections between projects by providing an awareness of

36

activity across projects. An interesting future research question is understand-
ing how and when these technical dependencies and social connections came to
exist. Did the social connections exist first and result in a technical dependency
or did the technical dependency exist first and result in a social connection? If
the social connections existed first, what was the driver behind the creation of
the technical dependency? Perhaps, the awareness of the other project, enabled
through GitHub’s notifications, was enough to spur a technical dependency in-
dicating that GitHub’s transparency is changing the landscape of OSS projects.
These research questions could be investigated in future research.

While the project owners’ social behaviours (following users and starring
projects) aligned with the technical dependencies in our study, we did not wit-
ness such an alignment for all project contributors. The follower network of
project contributors showed that there were no clear central projects and com-
munities were densely connected. This is in contrast to the technical dependency
network. These results align with recent research that found that the reasons
behind following others extends beyond project coordination needs [44]. Fu-
ture work should investigate the usefulness of following others for coordination
purposes.

It is also worth studying in more detail the coordination needs of developers
on OSS projects. Perhaps the mere existence of a technical dependency does
not imply a coordination need, especially given the transparent environment
of GitHub. Our previous work [45] begun this investigation, but coordination

needs at the ecosystem level are also worthy of investigation.

FEcosystem emergence and evolution. The most prominent nodes in Fig-
ure 4 are not always the most popular projects on GitHub when considering
the number of stars each project has. In fact, the two projects with the most
stars, angular/angular.js and twbs/bootstrap, have significantly smaller ecosys-
tem size and lower degree than other projects. Future work can investigate how
and why ecosystems emerge and why some projects become popular without

growing a large ecosystem. Such a study could include a temporal analysis of

37

the composition of the ecosystem and density of connections together with a
temporal analysis of project history information such as number of contribu-
tors, forks, stars, etc. It would also be worth triangulating results with other
information on important project events now commonly available through blogs
and wikis. Such a study on the evolution of ecosystems can be a first step in
understanding when and why projects accumulate an ecosystem.

Previous research has examined ecosystem growth [46], but this analysis was
focused on the size of the code base (measured in lines of code) of all projects
within an organization. We propose for future research to expand this view by
considering the growth of an ecosystem also based on the number of projects

that the ecosystem comprises of when considering technical dependencies.

Ecosystem size and strength of connections and project success. On many
open source projects, volunteers are crucial to project success as they rely on
volunteers to submit new features and fix bugs. As a project accumulates more
projects in its ecosystem, it is also likely to increase its contributions as devel-
opers on dependent projects will be more likely to fix bugs that they encounter
through their dependency. Future research could investigate this relationship to
identify if the size of a project’s ecosystem is a good predictor of various project
health and success metrics like the number of contributions it receives or the

number of forks it has.

Automatic detection of inter-project dependencies. Another avenue for future
research is creating tools to make developers aware of their technical dependen-
cies outside of their own project. It is important for developers to know who
they need to coordinate with across the ecosystem and to understand how their
tasks fit into the big picture. For example, when a developer on GitHub creates
a cross-reference to an issue on another project, it could be useful for the de-
veloper to be made aware of other projects that have also cross-referenced that
same issue. The issue may be causing problems in many projects and those
project could minimize duplicated effort by being more aware of each other.

Such a tool could increase awareness of coordination needs that extend outside

38

GitHub e resosion Explors Features Enterpriss Blog L sen

Another User Name / fakeinformation ©Watch 3 Star 7 YFork §

removed os property of package.json #1

XS] Another User merged 1 commiinto Another usersnaster. fom Your User Nane:pdate-package-fson on Aug 24, 2012

& Conversation 1 - Commits 1 @) Files changed 1 +1-2 mmm

. Your User Name commented on Aug 24, 2012 Labets R
Noreyet

Please remove this line for any platforms. See also: yui/yui3#134 [0

renoved os property of package. json

@ 4 Arothor sar marges o ez o sntvrisrimstr o g 24, 202 N

. Another User commented on Aug 24, 2012 owner

Removed it. Thanks!

Figure 9: A proposed improvement to GitHub’s Flavored Markdown, which would not only
create a link to the pull request, issue or commit referenced in the comment, but would also
allow users to click to see what other comments in other projects have also made the same

reference.

project boundaries. For example, in Figure 9, we show a prototype we developed
that improves GitHub’s Flavored Markdown by allowing users to click on the
“Get Suggestions” button to see a list of other comments from other projects
that have made a reference to the same pull request, issue or commit. If there
is a large number of other projects that share the dependency, natural language
processing techniques could be used to summarize the information. This will
allow developers to easily review the details from the other projects that share
the same dependency. Similarly, other tools, including those used at IBM, could
be modified to help developers become aware of inter-project dependencies that
are automatically detected by our Reference Coupling method. Reference Cou-
pling could be used to automatically create dependency relationships between

issues or work items in a project’s issue tracking system.

Automatic detection of inter-project dependencies can also be used by soft-
ware engineering researchers in future unrelated studies. For example, a study
of the effects of multi-tasking across multiple projects could include an analysis

on the dependencies that exist between the projects to better understand the

39

reasons for multi-tasking or the amount of context switch that occurs. Many
other software engineering research studies can benefit from an easy way to

identify inter-project dependencies.

Automatic detection of ecosystems. With the ability to automatically detect
individual technical dependencies between projects, it would also be useful to
automatically detect and visualize ecosystems. Such a tool could help developers
gain a better view of the ecosystem surrounding their project. It could also help

researchers in future studies on software ecosystems.

6.2. Threats to Validity

One threat stems from our selection of the GHTorrent dataset to obtain
the GitHub data. GHTorrent may not be a full copy of all GitHub data [32].
Nevertheless, it is a best-effort approach that has been widely accepted in the
research community as evidenced by its inclusion as the dataset for the MSR
2013 Mining Challenge [47] and the many recent papers that utilize its data in
their analysis.

The GHTorrent dataset used in our analysis is from 2014. The structure and
dynamics of ecosystems could have changed since this dataset was captured. Fu-
ture studies should reevaluate ecosystems using more recent datasets. Such a
study can also consider ecosystem evolution since our results provide a snap-
shot that can be compared against. In this direction, Zhang et al. have used
our Reference Coupling method to identify the GitHub projects in the Rails
ecosystem [48]. They found that developers tend to make more cross-references
to other projects over time.

Our manual exploration of cross reference comments illustrates a variety
of types of technical dependencies found in GitHub cross-references, but these
results can not be generalized. While we achieved saturation in our results, our
results could be impacted by selection bias. To mitigate this, we ensured an
equal number of comments for each source (commit, issue, pull request) were
included in our sample. However, the types of dependencies identified seem

reasonable for any software project. Future work can continue this investigation

40

by examining the content of cross-reference comments across a wide range of
projects and code hosting environments.

Cross-references could appear more frequently when there are a higher the
number of shared contributors between the two projects. We have not controlled
for this since the presence of shared contributors does not diminish the existence
of the dependencies. However, it could mean that dependencies on projects
where there are no shared contributors are not easily found using this method.

Future work should investigate this.

7. Conclusion

In this paper, we proposed a new method for detecting technical dependen-
cies between projects, called Reference Coupling, which utilizes user-specified
cross-references between projects. We validated this method on datasets from
GitHub and IBM. We found that Reference Coupling identifies many dependen-
cies which appear to be untracked by developers. The most common type of
dependency that is untracked by developers but found with Reference Coupling
is ‘Affected by defect’, which indicates that a task is impacted in some way by
another defect. In these cases, especially, it could be useful for other develop-
ers to be aware of other projects that are impacted by the same defect. This
could allow these projects to coordinate their efforts in creating workarounds or
negotiating completion of the defect removal. The Reference Coupling method
enables tools to be developed that can help developers become aware of these
types of shared dependencies.

We also used our Reference Coupling method to identify ecosystems in
GitHub-hosted projects by using an existing community detection algorithm
to identify densely connected clusters of projects. Through an analysis of the
identified ecosystems, we find that most ecosystems are centered around a single
project. While small, unpopular ecosystems remain isolated, most ecosystems
are interconnected. The isolated ecosystems tend to contain projects owned

by the same GitHub user or organization. The popular ecosystems are mostly

41

centered around tools that support software development.

Our Reference Coupling method opens the door for future research in soft-

ware ecosystems including studying the socio-technical relationships, evolution,

health and success of ecosystems.

Acknowledgment

This work was partly funded by NSERC Canada. Thanks to Sunny Wang

and Diksha Sharma for their assistance in the manual content analysis.

References

1]

[5]

M. F. Lungu, Reverse engineering software ecosystems, Ph.D. thesis, Uni-

versity of Lugano (2009).

D. Cubranic, G. C. Murphy, J. Singer, K. S. Booth, Hipikat: A project
memory for software development, Transactions on Software Engineering

31 (6) (2005) 446-465.

O. Franco-Bedoya, D. Ameller, D. Costal, X. Franch, Open source software
ecosystems: A systematic mapping, Information & Software Technology 91
(2017) 160-185. doi:10.1016/j.infsof.2017.07.007.

URL https://doi.org/10.1016/j.infsof.2017.07.007

J. Ossher, S. Bajracharya, C. Lopes, Automated dependency resolution
for open source software, in: Proceedings of 7th Working Conference on

Mining Software Repositories, IEEE, 2010, pp. 130-140.

M. Lungu, R. Robbes, M. Lanza, Recovering inter-project dependencies in
software ecosystems, in: Proceedings of the International Conference on

Automated Software Engineering, ACM, 2010, pp. 309-312.

J. Businge, A. Serebrenik, M. van den Brand, Survival of Eclipse third-
party plug-ins, in: Proceedings of 28th International Conference on Soft-

ware Maintenance, IEEE, 2012, pp. 368-377.

42

[7]

8]

[11]

F. W. Santana, C. M. L. Werner, Towards the analysis of software projects
dependencies: An exploratory visual study of software ecosystems., in: Pro-
ceedings of International Workshop on Software Ecosystems, Citeseer, 2013,

pp. 7-18.

J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, D. M.
German, Macro-level software evolution: A case study of a large software

compilation, Empirical Software Engineering 14 (3) (2009) 262-285.

G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella, How the
apache community upgrades dependencies: An evolutionary study, Empir-

ical Software Engineering (2014) 1-43.

D. M. German, J. M. Gonzalez-Barahona, G. Robles, A model to under-
stand the building and running inter-dependencies of software, in: Pro-
ceedings of 14th Working Conference on Reverse Engineering, IEEE, 2007,
pp. 140-149.

S. Raemaekers, A. van Deursen, J. Visser, Measuring software library
stability through historical version analysis, in: Software Maintenance
(ICSM), 2012 28th IEEE International Conference on, IEEE, 2012, pp.
378-387.

A. Mockus, Amassing and indexing a large sample of version control sys-
tems: Towards the census of public source code history, in: Proceedings of
6th Working Conference on Mining Software Repositories, IEEE, 2009, pp.
11-20.

T. Mens, M. Goeminne, Analysing the evolution of social aspects of open
source software ecosystems, in: S. Jansen, J. Bosch, P. R. J. Campbell,
F. Ahmed (Eds.), Proceedings of the Third International Workshop on
Software Ecosystems, Brussels, Belgium, June 7th, 2011, Vol. 746 of
CEUR Workshop Proceedings, CEUR-WS.org, 2011, pp. 1-14.

URL http://ceur-ws.org/Vol-746/IWSEC02011-1-InvitedPaper-MensGoeminne. pdf

43

[14]

[16]

[17]

[18]

T. Mens, B. Adams, J. Marsan, Towards an interdisciplinary, socio-
technical analysis of software ecosystems health, in: Proceedings of the
16th edition of the BElgian-NEtherlands software eVOLution symposium,
Antwerp, Belgium, December 4-5, 2017., 2017, pp. 7-9.

URL http://ceur-ws.org/Vol-2047/BENEVOL_2017 _paper_2.pdf

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding
of communities in large networks, Journal of Statistical Mechanics: Theory

and Experiment 2008 (10) (2008) P10008.

K. Blincoe, F. Harrison, D. Damian, Ecosystems in GitHub and a method
for ecosystem identification using reference coupling, in: Proceedings of the
12th Working Conference on Mining Software Repositories, IEEE Press,
2015, pp. 202-211.

J. Bosch, From software product lines to software ecosystems, in: Soft-
ware Product Lines, 13th International Conference, SPLC 2009, San Fran-
cisco, California, USA, August 24-28, 2009, Proceedings, 2009, pp. 111-119.
doi:10.1145/1753235.1753251.

URL http://doi.acm.org/10.1145/1753235.1753251

S. Jansen, A. Finkelstein, S. Brinkkemper, A sense of community: A
research agenda for software ecosystems, in: 31st International Confer-
ence on Software Engineering, ICSE 2009, May 16-24, 2009, Vancou-
ver, Canada, Companion Volume, 2009, pp. 187-190. doi:10.1109/ICSE-
COMPANION.2009.5070978.

URL https://doi.org/10.1109/ICSE-COMPANION.2009.5070978

K. Manikas, Supporting the evolution of research in software ecosystems:
Reviewing the empirical literature, in: Software Business - 7th Interna-
tional Conference, ICSOB 2016, Ljubljana, Slovenia, June 13-14, 2016,
Proceedings, 2016, pp. 63-78. doi:10.1007/978-3-319-40515-5_5.

M. Lungu, Towards reverse engineering software ecosystems, in: 24th

IEEE International Conference on Software Maintenance (ICSM 2008),

44

[21]

[23]

[26]

September 28 - October 4, 2008, Beijing, China, 2008, pp. 428-431.
doi:10.1109/ICSM.2008.4658096.
URL https://doi.org/10.1109/ICSM.2008.4658096

M. Goeminne, T. Mens, A framework for analysing and visualising open
source software ecosystems, in: Proceedings of the Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010.,
2010, pp. 42-47. doi:10.1145/1862372.1862384.

D. Dhungana, I. Groher, E. Schludermann, S. Biffl, Software ecosystems vs.
natural ecosystems: Learning from the ingenious mind of nature, in: Pro-
ceedings of the 4th European Conference on Software Architecture: Com-

panion Volume, ACM, 2010, pp. 96-102.

M. Syeed, K. M. Hansen, I. Hammouda, K. Manikas, Socio-technical con-
gruence in the Ruby ecosystem, in: Proceedings of The International Sym-

posium on Open Collaboration, ACM, 2014, p. 2.

J. Kabbedijk, S. Jansen, Steering insight: An exploration of the Ruby

software ecosystem, in: Software Business, Springer, 2011, pp. 44-55.

S. Jansen, Measuring the health of open source software ecosystems: Be-
yond the scope of project health, Information & Software Technology
56 (11) (2014) 1508-1519. doi:10.1016/j.infsof.2014.04.006.

M. Lungu, J. Malnati, M. Lanza, Visualizing Gnome with the small project
observatory, in: M. W. Godfrey, J. Whitehead (Eds.), Proceedings of
the 6th International Working Conference on Mining Software Reposito-
ries, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada, May
16-17, 2009, Proceedings, IEEE Computer Society, 2009, pp. 103-106.
doi:10.1109/MSR.2009.5069487.

URL https://doi.org/10.1109/MSR.2009.5069487

45

[27] K. Manikas, K. M. Hansen, Software ecosystems—a systematic literature

review, Journal of Systems and Software 86 (5) (2013) 1294-1306.

[28] S. Syed, S. Jansen, On clusters in open source ecosystems, in: Proceedings
of International Workshop on Software Ecosystems, Citeseer, 2013, pp. 19—
32.

[29] Y. Yu, G. Yin, H. Wang, T. Wang, Exploring the patterns of social behavior
in GitHub, in: Proceedings of the 1st International Workshop on Crowd-
based Software Development Methods and Technologies, ACM, 2014, pp.
31-36.

[30] F. Thung, T. F. Bissyandé, D. Lo, L. Jiang, Network structure of social
coding in GitHub, in: Proceedings of 17th European Conference on Soft-

ware Maintenance and Reengineering, IEEE, 2013, pp. 323-326.

[31] J. MacFarlane, Commonmark spec. 2017, URL http://spec. commonmark.
org/0.25.

[32] G. Gousios, D. Spinellis, GHTorrent: GitHub’s data from a firehose, in:
Proceedings of the 9th Working Conference on Mining Software Reposito-
ries, IEEE, 2012, pp. 12-21.

[33] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining GitHub, in: Proceedings
of the 11th Working Conference on Mining Software Repositories, ACM,
2014, pp. 92-101.

[34] Oracle, Java platform standard edition 7
api specification: Package java.util.regex,
https://docs.oracle.com/javase/7/docs/api/java/util/regex/package-summary.html,
accessed 29 November 2016.

[35] K. A. Neuendorf, The Content Analysis Guidebook, Sage, 2016.

46

[36]

[37]

[38]

[39]

J. Corbin, A. Strauss, Basics of Qualitative Research: Techniques and Pro-

cedures for Developing Grounded Theory, Sage, 2008.

D. Freelon, Recal oir: Ordinal, interval, and ratio intercoder reliability as

a web service., International Journal of Internet Science 8 (1).

M. E. Newman, Modularity and community structure in networks, Pro-

ceedings of the National Academy of Sciences 103 (23) (2006) 8577-8582.

M. Bastian, S. Heymann, M. Jacomy, et al., Gephi: an open source soft-
ware for exploring and manipulating networks., Proceedings of Interna-

tional AAATI Conference on Web and Social Media 8 (2009) 361-362.

M. Molloy, B. Reed, Critical subgraphs of a random graph, The Electronic
Journal of Combinatorics 6 (R35) (1999) 2.

J. M. Kleinberg, Authoritative sources in a hyperlinked environment, Jour-

nal of the ACM 46 (5) (1999) 604632.

H. Gall, K. Hajek, M. Jazayeri, Detection of logical coupling based on
product release history, in: Proceedings of International Conference on

Software Maintenance, IEEE, 1998, pp. 190-198.
M. E. Conway, How do committees invent, Datamation 14 (4) (1968) 28-31.

K. Blincoe, D. Damian, Implicit coordination supported by GitHub: A
case study of the rails oss project, in: Open Source Systems: Adoption and

Impact, Springer, 2015, pp. 35—44.

K. Blincoe, G. Valetto, D. Damian, Do all task dependencies require co-
ordination? the role of task properties in identifying critical coordination
needs in software projects, in: Proceedings of the 9th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ACM, 2013, pp.
213-223.

47

[46] J. W. Paulson, G. Succi, A. Eberlein, An empirical study of open-source
and closed-source software products, IEEE Transactions on Software Engi-

neering 30 (4) (2004) 246-256. doi:10.1109/TSE.2004.1274044.

[47] G. Gousios, The GHTorent dataset and tool suite, in: Proceedings of the
10th Working Conference on Mining Software Repositories, IEEE Press,
2013, pp. 233-236.

[48] Y. Zhang, Y. Yu, H. Wang, B. Vasilescu, V. Filkov, Within-ecosystem issue
linking: a large-scale study of rails, in: Proceedings of the 7th International

Workshop on Software Mining, ACM, 2018, pp. 12-19.

48

