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Abstract—Background: Third party libraries used by a project

(dependencies) can easily become outdated over time, a phe-

nomenon called technical lag. Keeping dependencies up to date

induces a significant overhead in terms of the resources (e.g.

developer time), but necessary to maintain software quality.

Aims: This study provides a large scale analysis of technical lag

across the major package managers currently in use. Method:

We conducted a mixed-methods study using open-source project

data obtained from 14 package managers using the libraries.io
dataset. Results: The majority of fixed version declarations, along

with a significant number of flexible declarations, are outdated.

Fixed declarations are not regularly updated, except in major

updates, so they quickly lag. Despite the prevalence of breaking

changes in updates, downgrading declarations to earlier versions

are rare. Conclusions: Technical lag is prevalent but preventable

across package managers - semantic versioning based declaration

ranges would remove the majority of lag. Further tooling uptake

is also recommended to minimise technical lag.

Index Terms—semantic versioning, package managers, depen-

dency management, technical lag

I. INTRODUCTION

Most modern software systems are built from existing
packages (i.e., modules, components, libraries - henceforth
termed dependencies) that allow complex functionality to be
delivered easily. These libraries are generally created by third-
party developers and are linked to a project via a symbolic de-
pendency declaration resolved by modern package managers,
such as Maven for JVM languages, Cargo for Rust, or npm
for JavaScript. These package managers allow dependencies
to be downloaded from a remote repository at build time
by declaring constraints which describe the versions of a
dependency compatible with the project, giving significant
flexibility and agility to the dependency management process.

Dependencies usually evolve simultaneously with a project,
so they can become outdated if the version requested by
the program does not get updated regularly to the latest
available version. Keeping dependencies up to date induces
a significant overhead on a developer’s time, but is important
for the security and overall health of the project [1], [2], [3],
[4], and to avoid project bloat, where multiple versions of a
dependency are used by different submodules of a project [5].
The Open Web Application Security Project (OWASP) listed
“using dependencies with known vulnerabilities” as one of the
top 10 most critical security risks to web applications [6].

It is possible for package managers to automatically update
dependencies, based on the industry-led Semantic Versioning
[7] initiative (henceforth termed semver). This initiative is
based on a structured version scheme that encodes compat-
ibility levels. The intention is to facilitate the automated de-
ployment of patches, while preventing compatibility-breaking
changes. However, this is non trivial in practice; research has
shown that the versioning scheme is often not used as intended
(by semver), and this may lead to changes breaking backwards
compatibility [8], [9]. This leads to a situation where a build
breaks and an immediate fix is required, or worse, where the
project breaks at run-time. This is particularly problematic in
dynamically typed languages, where there is not a compilation
phase that flags backwards breaking API changes.

While automated dependency updates where the depen-
dency manager has some freedom to choose the best version
by some metric have become commonplace in some software
ecosystems, a significant number of projects still employ fixed
version dependency declarations [10]. This has the advantage
of greater control - dependencies only get updated after being
(integration-)tested with the rest of the project. The downside
of fixed version declarations is that it makes the updating
process less agile. It requires developers to manually find
updates and change the relevant configuration files by hand.
When manually updating dependencies, they are often not
updated immediately, resulting in technical lag [11], where
newer versions - with their bug fixes, security fixes and other
improvements - are available but not used. This technical lag
has therefore an opportunity cost associated with it [12].

This paper studies this technical lag in detail, and sets out
to answer the following research questions:

• RQ1: How often do dependencies lag?
• RQ2: How much lag is there in dependencies when they

are not up-to-date?
We then examine updates to fixed version declarations:

• RQ3: How often do developers update their dependen-
cies, what type of updates are most common, and what
type of project releases contain dependency updates?

• RQ4: How often do developers update when they lag
behind, and do the updates bring them up to date?

• RQ5: How often do developers make a backwards change
to their dependencies, and why?
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II. RELATED WORK

Technical lag is a major source of security vulnerabilities.
Cox et al. [2] found that projects using outdated dependencies
were four times more likely to have security issues than those
with up-to-date dependencies, although this analysis is likely
to overestimate the risk of vulnerability as Zapata et al. [13]
found in an npm based study that 73% of projects did not
use the vulnerable functions inherited from their dependencies.
Additionally, libraries included transitively are more likely
to be vulnerable [1]. Pashchenko et al. [3] noted that many
vulnerabilities can be fixed by simply updating dependencies.

Technical lag has anecdotally been linked to brittle code.
Raemaekers et al. [14] outlined a case study where a depen-
dency, not updated for several years, was updated to use a
new feature. There were numerous cascading changes, taking
over a week to resolve, which almost caused the planned
new feature to be scrapped. In [8], the same authors studied
the version and time lag on 2,984 dependency updates from
projects on the Maven repository, finding that major changes to
dependency versions were usually included in major updates of
a project, and that most projects did not have large amounts of
technical lag. More recently, Wang et al. has shown that a large
number of Java projects contain technical lag of some kind
[5]. Zerouali et al. [15] quantified technical lag in npm, using
libraries.io, as this study does. They found that the median
technical lag was one minor and three micro versions, and that
much of the technical lag was due to inheriting lag transitively.
Lauinger et al. [1] had similar results in npm using 72 libraries
harvested from GitHub, but found that the time lag can often
be measured in years. In recent studies, Zerouali et al. [16],
[17] showed that JavaScript-based docker images generally
included some lag, particularly in micro versions. Our study
builds on previous technical lag studies by providing the first
large-scale, cross-package manager overview of technical lag.

A number of studies have looked into how dependencies are
updated. Wang et al. [5] found that the majority of projects in
the Maven ecosystem contained dependencies which had never
been updated. Decan et al. [18] found that in npm, CRAN and
Rubygems, 80% of dependencies would be updated within 18
months of being declared. Kula et al. [12] investigated latency
when adopting library releases and found that developers were
more likely to adopt updated versions later into a project’s
lifecycle. This goes hand in hand with observations from
Espinha et al. [19], who notes that early versions of projects
are particularly unstable w.r.t. their APIs. Kula et al. [12]
also found that the trend is for developers to automatically
go to the newest version when introducing new libraries.
Decan and Mens [20] found that declarations are updated
every 3-7 versions, with more restrictive declarations and pre-
1.0.0 versions being updated more regularly. Decan et al.
[21] examined technical lag and updates in the npm ecosystem,
showing that dependencies are most likely to be brought up
to date during a major version update. They also conducted
an experiment finding that adopting semver compliant ranges
could reduce technical lag in 18% of dependencies - this test

has been mirrored in RQ1 for all package managers included
in this study. We build on these studies by considering, across
most major package managers, when updates are made in
terms of version milestones of a project, classifying the types
of updates made, and considering how often updates occur in
fixed declarations if there is lag present.

Côgo et al. [22] looked at backwards changes to version
declarations in npm, explaining that downgrades were caused
by either moving away from buggy versions to a stable release,
or as a preventive measure, going from a version range to a
fixed version. They found that most downgrades happened to
only one dependency at a time, indicating that this is usually
done as a fix rather than a policy change. Raemaekers et
al. [8] showed that often semver versions were incorrectly
updated, with an average 30 backwards compatibility issues
even in micro and minor updates - updates that should be fully
backwardly compatible. The same study showed that breaking
changes in non-major releases has decreased over time from
28.4% in 2006 to 23.7% in 2011, indicating that developers
are becoming more aware about semver ideas.

For the declaration update research questions, we focus on
fixed declarations only. Dietrich et al. [10] showed that a
significant number of dependencies in the libraries.io dataset
used fixed declarations, particularly in Maven where 98% of
declarations were fixed (sub-classified as soft, which only dif-
fers from fixed by how dependency resolution is implemented).
Other major package managers relied less on fixed versions,
with Pypi, Packagist, npm and Atom having between 10%-
20% fixed declarations, and Cargo and Rubygems below 5%.
This points to a large disconnect between how each ecosystem
manages their dependencies, a finding also noted in Bogart
et al. [23]. Bogart et al. notes that upstream and downstream
developers have a contract where upstream developers promise
to maintain backwards compatibility in a predictable manner,
but that attitudes towards these contracts vary significantly by
ecosystem. Decan and Mens [20] have found that in Cargo,
npm, Packagist and Rubygems, developers are increasingly
using semver compliant declarations (i.e., minor or micro
ranges) instead of fixed declarations or open ranges.

Previous studies investigated some aspects of technical lag,
but were limited to a few specific package managers (e.g.,
npm or Maven). Our study takes a broader view, providing an
empirical viewpoint into technical (version and time) lag in
a wide range of package managers. It goes on to consider
how semver compliant declarations can decrease technical
lag in package managers, look at when dependencies are
updated (w.r.t. the dependent project’s evolution) to provide
insights into challenges still faced by developers in minimising
technical lag, and make a case for further tool support that
provides safer dependency updates.

III. METHODOLOGY

This study uses v1.4.0 (Dec 2018) of the libraries.io dataset
[24], containing 2.7M unique open source projects from 37
package managers and 235M dependencies between projects.



TABLE I
DEPENDENCY DECLARATION TYPES

Classification Explanantion Example
Fixed One specific version 1.3.0
Micro Micro versions from min [1.3.2, 1.4.0)
Minor Micro or minor versions from min [1.3.2, 2.0.0)
At-Most Any versions up to a limit [0.0.1, 1.3.2]
At-Least Any versions from min [1.3.2, 1)
Any Any versions [0.0.1, 1)
Range Any custom range [0.3.2, 0.7.1]

A. Semantic Versioning

Semver [7] is an industry initiative for versioning dependen-
cies. This study focuses solely on projects which adhere to the
semver syntax. Semver-compliant versions have three dot sep-
arated numbers, with an optional tag, i.e. major.minor.micro-
tag, for example v1.2.0-rc1. Whenever new versions are
published, one of the three numbers is incremented, with the
numbers to the right of it reset to zero (e.g., a minor update
would look like 1.7.2 ! 1.8.0). A dependency has a
major change if the major number has changed, and so on for
minor and micro changes. As tag updates are considered pre-
release by semver principles, we do include them in technical
lag calculations. However, as dependencies are sometimes
updated within tag releases, they are still included in the
analysis as no-change updates of a project or dependency.

B. Declaration Classification Process

Table I demonstrates the main types of dependency version
declarations. Declarations that only allow one version are
termed fixed. Fixed declarations can also be soft where a spe-
cific version is specified but the package manager may choose
another close version in order to satisfy some constraints.

All declarations that allow for more than one version are
termed flexible. There are multiple types of flexible decla-
rations. The micro and minor classifications are based on
semver1. There are other classifications that are not based on
semver standards, including any,at-most, at-least, and range
classifications. The at-least and any are the most permissive,
and should not suffer from technical lag (this ultimately
depends on the package resolution strategy of a package
manager), but they risk compatibility issues.

To classify the version declarations into these classifications,
the methodology of Dietrich et al. [10] was used (declarations
were tested with regular expressions tailored to each package
manager). The FIXED and FLEXI columns in Table II show
the number of pairs considered fixed or flexible, respectively.

C. Filtering Process

The following filters were applied to the data:
1) Not Semver-compliant Syntax: Projects with versions

that could not be parsed to the semver format specified in
Section III-A were discarded, as version ordering would be
problematic. Similarly, versions with unusually large num-
bers (usually related to timestamps) were discarded. The

1semver.org does not officially discuss declaration ranges, however package
managers (such as npm) consider minor and micro ranges to be based on
semver standards. The nomenclature used here is adopted from [20].

TABLE II
PAIRS OF PROJECTS INCLUDED BY PACKAGE MANAGER

PM FIXED FLEXI NOT SV SUBCMP MISSING
Atom 2276 17565 2 642 147
Cargo 1237 81543 90 4030 42
Dub 43 999 0 109 128
Elm 0 3988 0 253 0
Haxelib 192 568 0 266 5
Hex 698 10531 0 592 88
Maven 389044 23860 7358 106631 47015
npm 876534 7449356 2254 335976 19130
NuGet 2010 245725 738 64038 13568
Packagist 19250 474455 19784 70975 19886
Pub 157 16142 0 809 672
Puppet 204 7210 0 1800 242
Pypi 3300 25418 31 1185 569
Rubygems 14940 606994 93 21931 1586

NOT SV column in Table II shows the number of depen-
dency pairs filtered out due to semver violations. In some
cases, they were package manager specific issues, such as
only specifying ‘@dev’ tags in Packagist (without any ac-
companying version number), or unresolved variables like
‘${project.version}’ in Maven.

2) Missing Project Information: Projects sometimes in-
clude dependencies to other projects which were not included
in the dataset. This meant that information about their version
history was not available, making them unsuitable for our
study. The MISSING column in Table II shows the number
of pairs filtered out due to lack of data (1% of dependencies).

3) Groups of Packages with Coordinated Releases: Often,
the developers working on project A also work on its de-
pendency B. This is most regularly associated with the two
projects being components of a single overarching project.
Often these dependencies are updated as part of the internal
release procedures (e.g., coordinated product release, Apache
Lucene is an example of such coordinated releases2). Including
them would lead to under-reporting the level of technical lag in
independent projects. The SUBCMP column in Table II shows
the number of pairs filtered out due to being suspected sub-
components. For the purpose of this study, pairs are considered
subcomponents of a wider project if either the first half of their
names (minimum 4 characters) are the same, or their entire
project names are the same. To ensure that this only captures
subcomponent pairs, we conducted a manual analysis with
cross-validation on the first 300 pairs per package manager
(giving a confidence interval of 95% with a 12% margin of
error) – resulted in a < 1% false positive rate.

D. Package Manager Selection

There were initially 17 package managers with dependen-
cies in the dataset. Three package managers (CPAN, CRAN,
Homebrew) were ruled out of scope as their declaration
patterns are entirely open range based (the any and at-least
classifications) which means they do not have technical lag
due to their dependency resolution strategies. The remaining
14 package managers (shown in Table II) were used to answer
the questions about how much technical lag is present in

2https://mvnrepository.com/artifact/org.apache.lucene



dependencies (RQ1 and RQ2). To answer RQ3-5 on fixed
version update strategies, nine of the package managers with
a sufficient number of fixed declaration pairs were used (from
the most fixed pairs to the least - npm, Maven, Packagist,
Rubygems, Pypi, Atom, NuGet, Cargo and Hex).

E. Quantifying Technical Lag
The approach of quantifying technical lag in this study is

similar to previous studies [15], [16], [17], [8], using both
version lag and time lag. For each project, the versions are or-
dered according to semver principles (sorted by major, minor,
then micro versions, and finally by tags ordered according to
publish dates). For each version of project A, Ai, that has a
dependency to project B, Bdec, there is technical lag if Bdec

is not the latest version of project B when Ai is released.
We calculate three different types of lag (major, minor and

micro lag) which we formalise below. In this notation, B is
the set of all versions in project B that were published before
Ai. Each version in this set is represented by Bi 2 B, and
Bdec is the version chosen by the package manager based on
the declaration. As described in III-A, each version number
contains properties major, minor and micro. We denote the
major, minor, and micro version numbers of each version, Bi

as Bi.major, Bi.minor, and Bi.micro, respectively.
Major lag (Lmajor) is calculated as the distinct major

versions later than Bdec. More formally:
Lmajor = |{Bi.major | Bi.major > Bdec.major}|

To calculate minor lag and micro lag, we consider narrower
version ranges. Minor lag (Lminor) is calculated as the distinct
minor versions later than Bdec within the same major range.
Micro lag (Lmicro) is calculated as the distinct micro versions
later than Bdec within the same minor range. This means
that there could be a more newer minor and micro versions
than reported, but within other major or minor version ranges.
Limiting micro and minor lag to these narrower version ranges
allows direct comparisons to be made with semver compliant
micro and minor ranges - the most common alternative dec-
larations to fixed declarations [10]. More formally:

Lminor = |{Bi.minor | Bi.minor > Bdec.minor

^Bi.major = Bdec.major}|
Lmicro = |{Bi.micro | Bi.micro > Bdec.micro

^Bi.minor = Bdec.minor

^Bi.major = Bdec.major}|
The total lag of any release Ai towards project B is defined

as the major, minor, and micro lags, following the semver idea
that any major lag is more significant than all minor lag, and
any minor lag is more significant than all micro lag.

L(Ai,B) = (Lmajor, Lminor, Lmicro)

Fig. 1 provides a working example of how technical lag is
quantified. There, project A v4.1.0 depends on v1.0.0 of
project B. Since this was not the latest version of project B
at the time of release of project A v4.1.0, there is technical
lag. Both the major and minor lag are 1 since there was one
later major release and one later minor release available when

Fig. 1. Quantifying Technical Lag. The arrows indicate the dependencies.
Technical lag (grey shaded regions) occurs when Project A depends on a
Bdec that is not the latest version of B available at the time Ai was released.

v4.1.0 was released. The micro lag is 2 since there were
two later micro releases available within the v1.0 minor
release. Note that there is also a micro release v2.0.1
available, but since it is not within the v1.0 release, it is
not considered since most flexible versioning strategies would
not automatically update to this micro release.
Time lag is calculated as the number of days before the release
of Ai that the first version after Bdec was available. Time lag
is also calculated in three parts: major, minor, and micro. As
shown in in Fig. 1, v4.1.0 has major, minor, and micro lag.
Since this release was made on 1 Dec, the time lags are:

• 91 day micro lag since v1.0.1 was released on 1 Sept.
• 61 day minor lag since v1.1.0 was released on 1 Oct.
• 30 day major lag since v2.0.0 was released on 1 Nov.

Note that the release of v1.0.2 on the 15th of September
does not impact the micro time lag since this is not the first
micro release after Bdec. The dependency began to be out
of date the moment v1.0.1 was released, so the time lag
is calculated based on this release date. Lag is counted for
every version Ai which has a Bdec. Therefore, project pairs
with long version histories of dependencies are represented
multiple times in the aggregated results.

F. Update Classification

RQs 3-5 focus on the change in the dependency declara-
tions. Due to the complexities in parsing and categorising
differences in flexible declarations, this study has focused
on fixed declarations. Between any two versions, Ai and
Ai+1, if there exists a declaration in both, the declarations are
compared. This results in classifying the declaration change
as no change, a forwards change, or a backwards change. The
forwards and backwards changes are further split into major
(the major version changed), minor (the minor version changed
but not the major version), or micro (only the micro version
changed). In the case that one of the two contiguous versions
did not have a declaration, no update data was recorded.

To calculate backwards updates, two adjacent versions Ai

and Ai+1 were selected and compared (e.g. 4.0.1 and
4.0.2). To account for cases of simultaneous development, if
Ai was published after Ai+1, a new Ai was chosen as the most
recent version published before Ai+1. This can occur at the
boundary between distinct major versions (e.g., 3.5.2 being
published after 4.0.0) in the case where major versions 3
and 4 are both under development together.



G. Validation

There have been two main processes used to transform the
data in the libraries.io dataset for analysis.

1) Flexible Declarations (RQ1-2): To answer the lag-based
questions, all fixed and flexible pairs from III-C were used.
This involved parsing raw declaration strings from each of the
14 package managers. To help make this process accurate,
the raw strings were classified using the method found in
[10], and each common pattern was parsed into (potentially
multiple) inclusive ranges. To validate the parsing process
(which differed for all 14 package managers), a test suite
was created from the example declarations from [10]. These
had been chosen after manual validation of the dataset, and
therefore are representative of both the specifications from
that package manager, as well as common syntactic deviations
found in the actual dataset. Each declaration would be tested
with three to five boundary versions, resulting in an average
of 60-80 tests per package manager.

2) Update Data (RQ3-5): The update information was
gathered from pairs that only had fixed declarations. Validation
for this section was done in an iterative manner. 10 random
pairs from various package managers were manually checked
for all data in this section. Where there were issues, failing
test cases were created, and the analysis scripts were debugged
until they succeeded. 10 more pairs were then reviewed until
there were no further issues found. Rare cases such as pairs
updating to an older dependency version, or outlier lag values
have been considered separately by the same process.

As the backward updates had additional complications
due to simultaneous development, noted in Section III-F, to
validate these heuristics, we manually analysed a random
sample of 95 pairs with backward changes, looking for false
positives where our heuristics identified a backward change
but one did not occur. This sample size gives us a confidence
interval of 95% with a 10% margin of error. The manual
validation was done by two of the authors. For each pair
of a backward change, we searched the commit history in
the related repositories to identify whether it is actually a
true backward change. We excluded samples where repository
information is not publicly available. Of the 95 manually
analysed backward changes identified through our heuristics,
5 out of 95 (5.3%) were false positives (meaning no backward
change had occurred). There were two reasons for the false
positives. In one case, the dependent project had changed its
dependency strategy from a date based versioning system to
semver. Thus, the dependency changed from v2015.03.12
to v1.4.6, which was incorrectly identified as a backward
change. The other four false positives occurred due to the
projects performing parallel release development. In some of
these cases, the projects appeared to explicitly maintain a par-
allel release to continue to offer support for a prior version of a
dependency. For example, one project released v0.7.0 with a
dependency on project B v2.15.0. Shortly after that release,
another release was made called v0.7.0-projB-2.12
which depended on v2.12.4 of project B. Our heuristics

incorrectly classified these as backward changes since the
release of the parallel version depending on the older version
of project B occurred after the release which was updated to
the new version of project B.

Since our heuristics were able to correctly classify 90 of the
95 (94.7%) backward changes, and the other cases could not
be easily identified automatically, we used these heuristics to
identify backward changes for the remaining analysis.

H. Identifying reasons for backward changes
To understand the reasons why developers make backwards

changes to dependencies, we manually reviewed the random
sample of 95 backward changes identified by the heuristics
described above. For each backward change, a search was done
in the project repositories to look for the related commits,
any associated issues or discussions, and release notes to look
for mentions of reasons why the backward change was being
made. We were able to find information on the reason behind
the change for 66 of the backward changes.

We used Thematic Content Analysis [25] to identify the
main themes from the reasons found in the project repositories.
Three of the authors jointly discussed the reasons to develop
the themes. The three authors involved in the process all have
prior or current experience in the software development indus-
try as software developers. One is a software engineer and two
are academic researchers. The themes were developed through
extensive joint discussions between the three authors. In cases
of disagreements, discussions continued until a consensus was
reached. There were two backward changes that we did not
categorize due to a lack of information. When describing the
identified themes in the results, we provide detailed examples
for each theme, including quotes from developers obtained in
our analysis.

Our scripts and the filtered dataset are publicly available for
replication purposes [26].

IV. RESULTS AND DISCUSSION

The first question, how often do dependencies lag, has
been analysed from three separate angles: 1) How does each
declaration type affect lag? 2) What types of lag are present?
3) How would increased used of semver ranges affect lag?
RQ1.1: Lag by declaration type.

Table III shows the proportion of declarations that lag in
each package manager, based on classifications discussed in
III-B. As expected, the more restrictive the declaration is, the
more likely it is to lag. Fixed declarations are more likely
to lag than micro ranges, which are more likely to lag than
minor ranges. At-most declarations tend to lag even more than
fixed versions. Many smaller ecosystems keep declarations up
to date, while the larger ecosystems are more likely to lag, as
seen in Table III’s Overall column, which shows the proportion
of lagging declarations once open range declarations are
removed. For example, Maven has a significant amount of
technical lag within its ecosystem. We also see the effects of
including the declarations that cannot lag - NuGet, Pypi and
Rubygems, three package managers with high levels of lag,



TABLE III
PERCENTAGE OF DEPENDENCIES THAT LAG*

PM Fixed Micro Minor At-Most Range Overall
Atom 49.9% 40.7% 17.4% 34.0% 17.4% 28.3%
Cargo 36.3% 13.6% 2.8% 51.0% 19.8% 11.7%
Dub 29.9% 13.1% 10.3% - 12.0% 15.4%
Elm - - - - 18.1% 18.1%
Haxelib 8.1% - - - - 8.1%
Hex 34.6% 21.5% 9.8% 50.0% 11.0% 16.2%
Maven 63.2% 29.2% 7.8% 75.0% 14.8% 63.0%
npm 51.6% 34.6% 26.5% 47.2% 38.6% 32.2%
NuGet 39.2% - - 69.8% 54.0% 49.4%
Packagist 71.7% 47.7% 23.1% 80.0% 35.9% 31.9%
Pub 57.5% - - 11.0% 18.4% 19.0%
Puppet 33.6% 52.7% 8.5% 47.5% 13.0% 15.7%
Pypi 51.5% - - 69.8% 23.5% 45.8%
Rubygems 56.6% 39.5% 61.0% 72.0% 22.0% 53.5%

*This excludes declarations that cannot lag, such as ’at-least’ or ’any’

show much lower levels of lag once their ’any’ and ’at-least’
declarations are included.

A strong reliance on fixed declarations correlates with
higher levels of lag. This is especially true for Maven (63%
lagging), which primarily uses fixed declarations. Other pack-
age managers show similarly high lag in fixed declarations,
however, in most other package managers, they are used less
frequently, so have a smaller effect on overall levels of lag.

In general, minor range declarations have a low probability
of lagging, with npm at a high of 26% to Cargo with a low
of 3% lagging minor range declarations. The outlier here is
Rubygems in which 61% of its minor ranges are lagging.
About 30% of Rubygems declarations are minor ranges,
indicating that there is a widespread issue in Rubygems
projects where semver compliant declarations are not being
kept up to date. In most package managers, custom ranges,
which do not use micro or minor range shortcuts provided
by a package manager, form a small part of the overall
number of declarations. They often do not align with semver
style micro or minor ranges, but instead form a subset of a
micro, minor, or major range. However, in Elm, Packagist
and Pub, ranges are the most common way to set up flexible
declarations, even where micro or minor ranges are intended.

RQ1.2: Types of lag present.

In addition to considering how dependencies lag based on
the type of declaration used, we also considered what type of
lag is present in the dependencies. Micro version lag may not
mean a significant difference between the dependency used
compared to the newest dependency available, but lagging
behind by a major (or to some extent, minor) version generally
implies that there are more improvements that have been
missed out on.

We split how a declaration lags into seven categories- the
seven possible combinations of major, minor and micro lag
(i.e., major, major & minor, major & micro, major & minor
& micro, minor, minor & micro and micro). Fig. 2 shows
the average percentages of the type of lag (or no lag) found
across all package managers. Due to space constraints, the
detailed results from each package manager is provided in our
replication package [26].

When a dependency has major lag, it is behind the newest

Fig. 2. Type of technical lags

available version by at least one major version, but it is up
to date within its declared major version - it has no minor or
micro lag. In several package managers, such as Atom, Maven,
npm and Packagist, there are a disproportionate number of
dependencies that lag only by major versions and therefore
are up to date within that specific major range.

In general, there are three distinct groups of package man-
agers separated by the amount of lag present. One group
consists of the mature package managers that primarily use
fixed or semver compliant ranges. In this group, comprised of
Maven, Packagist, npm and Atom [10], between one-third and
two-thirds of declarations lag. A second group (NuGet, Pypi
and Rubygems) consists of other mature package managers
that primarily use open ranges [10] - often relying heavily
on ‘any’ and ‘at-least’ classifications. As these classifications
may not lag3, the package managers overall have low levels
of lag (<15%). The third group consists of newer package
managers, Cargo, Dub, Elm, Haxelib, Hex, Pub and Puppet.
This group has extremely low levels of lag (<12%) with most
lag being micro and minor lag.
RQ1.3: How would increased semver adoption affect lag?

An interesting observation from the results of the types of
technical lag is that the sum of three categories (minor, minor
& micro, and micro) gives the proportion of declarations that
semver compliant ranges such as minor ranges would allow
a project to have no technical lag. Across all dependencies,
this results in 9.2% less dependencies incurring lag, a third
of all lag. In Maven, where fixed declarations are the norm,
the improvement is even starker - 45% of dependencies (two-
thirds of all lagging Maven dependencies) would avoid lag.

3NuGet’s dependency resolution strategy [27] to take the lowest version
possible is at odds with other resolution strategies. Since our analysis assumes
the highest version in a range is chosen, the lag in NuGet is under reported.



Fig. 3. Technical lag in versions by package manager*

RQ1 Summary: Technical lag is common, although the quan-
tity varies widely by package manager. The more permissive
open range declarations are much more likely to be current
than semver compliant ranges or fixed declarations. Increased
use of semver would eliminate a third of all technical lag.

RQ2: How much lag is there in dependencies when they

are not current?

Figs. 3 and 4 show the mean value of technical lag (in terms
of number of versions) and time lag (in terms of days) by
package manager, based on the approach described in Section
III-E. Despite dependencies often having technical lag, the
median lag for major, minor and micro versions is zero. The
data is quite skewed, where a few percent of dependencies
are heavily outdated, with the vast majority behind by 0-2
versions. Once dependencies without the respective types of
lag have been excluded, the standard deviation of the data
is generally similar in size to the mean, indicating a heavily
right-skewed distribution.

As shown in Fig. 3, when there is a lag in major releases, all
package managers have an average of 1 to 2 major versions
lag. The values increase for micro releases, where lag can
be close to 10 (NuGet). Micro releases happen much more
frequently than minor or major releases, accounting for 67%
of the releases in this dataset (2% are major, 16% are minor
and 15% are tag updates), so it makes sense that there is more
micro lag. NuGet’s high micro lag comes from only 0.35% of
dependencies with a standard deviation of 3.5 times the mean,
indicating that a small handful of outlier projects with large
micro lags are responsible for its large result.

For time lag (Fig. 4), the lag in number of days for major
releases is higher than minor and micro releases for most
package managers. There is a range between Pub, which has
an average of 112 days lag, to Rubygems, which has an
average of 498 days lag between major versions. In most
mature package managers, when lag exists, it is slightly under
a year out of date. Maven is an interesting outlier for time
lag, as the the value of time lag for major releases is much
higher than other package managers (1439 days). This could
be due to the Maven ecosystem’s long history of simultaneous
development in prominent packages, where developers can
continue to use an outdated major version and still receive

Fig. 4. Technical lag in days by package manager*
* mean values where the relevant type of lag is present in the declaration

TABLE IV
FREQUENCY OF DEPENDENCY UPDATES

Project A Update Type Dependency Update Type
Major Minor Micro

Major 5.16% 5.43% 3.83%
Minor 0.96% 4.34% 3.15%
Micro 0.27% 0.92% 2.19%
Tag update 0.28% 2.12% 2.70%

the necessary updates to keep it secure. The Maven ecosystem
tends to be conservative (it is the only major package manager
that primarily uses fixed declarations [10], and works within
the Java philosophy of maintaining backwards compatibility as
much as possible. To quote Martin Buchholz: ‘Every change is
an incompatible change. A risk/benefit analysis is always re-
quired.’4). It also suffers from binary compatibility issues dur-
ing updates that may dissuade developers from updating. Other
package managers such as npm, on the other hand, inform
developers at build time of vulnerabilities in dependencies,
motivating them to update dependencies faster. Other generic
tools, such as Snyk5, also provide similar functionalities of
warning developers of potential vulnerabilities in libraries.

RQ2 Summary: When lag exists, it is generally in small
amounts. Most dependencies do not get more than 1-2 major
or minor versions behind, or 3-5 micro versions, owing to
that micro updates represent two-thirds of project updates. The
time lag for most package managers is between 0.5-1.5 years.

RQ3: How often do developers update their dependencies,

what type of updates are the most common, and what type

of project releases contain dependency updates?

This research question investigates update frequencies for
fixed declarations only, as discussed in Section III-C.

Fig. 5 shows how often a given dependency is updated,
and the types of dependency updates made - whether the
dependency is increased a micro, a minor, or a major version.

4https://tinyurl.com/y3avjslo
5https://snyk.io



The predominant type of dependency update is the micro
update, where only the micro number is increased, e.g. 1.0.1
! 1.0.2. In most package managers, micro declaration
updates are two to three times more likely to occur than minor
updates. Micro updates are less likely to cause compatibility
issues. Semver mandates that they never cause compatibility
issues, but this is not always true in practice [8]. Across
all ecosystems, major declaration updates, where backward
breaking changes are expected, occur in <1% of versions.

The amount developers update their dependencies varies
significantly by package manager, with dependencies being
updated less than 5% of the time in Pypi, npm and Atom,
through to over 45% of the time in NuGet. The types of
dependency updates that developers do varies by the sort of
update in their own project, as shown in Table IV. Across
package managers, major updates to dependencies most often
coincide with major changes to the dependent project A. Minor
updates are more likely in major or minor updates of project
A, while micro updates tend to happen in micro or pre-
release changes (the Tag update row, e.g. 1.4.0-beta.1
! 1.4.0-beta.2). These results make sense within the
semver construct, as major updates to dependencies are more
likely to require a significant amount of refactoring or re-
designing of a project if the external APIs are not well
insulated from the internal logic, so it may be easier to
make these disruptive dependency updates when the dependent
project would be undergoing significant changes regardless.
RQ3 Summary: In most package managers, fixed version
dependencies are not updated regularly. NuGet (46%), Cargo
(33%) and Hex (20%) are the only package managers where
fixed dependencies are updated in >10% of version releases.
Developers tend to update fixed dependencies much more
often in major changes to their own projects than in minor
or micro updates. They are also more likely to update to a
new major version of the dependency at this point as well.

RQ4: How often do developers update when they lag

behind, and do the updates bring them up to date (or

are they intentionally staying behind in some way)?

This question also focuses on fixed declarations. Table V
shows how often declarations are updated, classified by if they
are outdated. The final column shows declarations that were
already up to date, so did not require developer intervention.
The second-to-last column shows the percentage of time
declarations are updated and are now current (without the
developer’s intervention, they would have become outdated),
e.g. Bdeci�1 is 3.7.2 and Bdeci has been changed to 3.7.3 -
the newest version of B available. Together these two columns
show declarations that do not have technical lag. Technical lag
is updated <10% of the time, with the exception of Cargo and
NuGet, where over half of outdated declarations get updated.

The first two columns of Table V together show the de-
pendencies that are outdated. The second column shows the
ones that are out of date and did not have any changes made
to them. Notice that in most package managers, over half of
fixed dependencies fall within this category. The first column

TABLE V
UPDATES VS LAG

Updated No Update Updated No Update
& Outdated & Outdated & Current & Current

With any lag being considered as outdated
Atom 0.6% 52.1% 2.9% 44.4%
Cargo 1.8% 23.0% 31.5% 43.7%
Hex 2.3% 35.4% 17.8% 44.5%
Maven 3.8% 62.7% 4.8% 28.7%
npm 0.7% 49.2% 2.3% 47.9%
NuGet 7.3% 28.9% 38.6% 25.2%
Packagist 2.9% 62.0% 2.8% 32.3%
Pypi 0.3% 54.0% 0.9% 44.9%
Rubygems 2.2% 50.7% 7.1% 40.1%

Allowing for major lag to be classified as current*
Atom 0.5% 41.9% 3.0% 54.6%
Cargo 1.8% 22.7% 31.5% 43.9%
Hex 2.2% 33.2% 17.9% 46.7%
Maven 2.8% 53.8% 5.8% 37.7%
npm 0.4% 38.8% 2.5% 58.2%
NuGet 4.5% 19.7% 41.5% 34.4%
Packagist 2.5% 57.3% 3.2% 37.0%
Pypi 0.2% 49.2% 0.9% 49.6%
Rubygems 1.7% 45.1% 7.5% 45.7%

*with only minor or micro lag being reported as outdated

are the dependencies that have had some type of change, but
are still out of date. These ones are the most interesting, as they
indicate that the developer is choosing an outdated version for
some reason, rather than going to the newest version.

The definition of being outdated is quite coarse - if there is
any lag (major, minor or micro), the dependency is considered
outdated. However, a common situation in some ecosystems is
to have a project with simultaneous development on two major
versions (Python 2 and Python 3 being a very well known
example). This analysis was rerun, considering major lag as
not being outdated, and only considering minor and micro lag
to be outdated, allowing for projects in a lagging major version
to still be counted as up to date if they are at the newest minor
and micro version. This is reported in the second half of Table
V. Comparing the second half of Table V with the first half
shows that over 10% of projects using fixed declarations in
Atom, Maven, npm and NuGet are lagging overall but are up
to date within that old major version.
RQ4 Summary: Developers in some package managers up-
date fixed dependencies regularly to stay current, with NuGet
and Cargo updating their lagging dependencies most of the
time. In most package managers, however, < 10% of depen-
dencies that are out-of-date get updated with a new version.

RQ5: How often do developers make a backwards change

to their dependencies, and why?

In the fixed declarations analysed, backwards changes,
where a project deliberately increases the technical lag in a
dependency, were a rare case. Table VI reports the frequency
of backwards changes across all package managers. The results
range from zero found in Cargo, up to 0.33% found in Maven
- representing 1 in 300 declarations. There are no major trends
towards making a particular type of backwards change based
on the dependency’s version change.

Through the manual review of backward changes and



Fig. 5. Updates by package manager

Thematic Content Analysis described in Section III-H, we
identified several reasons for backward changes:
Project A goes stable. The most common time we saw back-
ward changes in dependencies is when project A moves from
an unstable release to a stable release (26 of the 66 backward
changes). These downgrades were not explicitly discussed in
the project repositories, but it is likely they tried to update
their dependencies to the latest versions in the unstable release
candidates, but experienced some problems and reverted when
releasing the stable version.
Compatibility issues. The next most common reason for
backward changes were compatibility issues (14 of 66). The
project A developers often discussed the compatibility issues
in the new version before downgrading the dependencies.
Some examples include6:

“... many of our production systems use OTP20 still
and this change is not backwards compatible.”
“Downgrade to [project B] 2.7.5 until [our project]
is compatible with 2.8.”

Bug in project B. Another common reason (11 of 66) was that
the backward change was made because of a bug introduced
in the project B release. For example, after encountering
issues after the project B dependency upgrade, one developer
identified the problem stems from project B and explains7:

“I made the following change to [project B]’s source
code ... can we push this issue upstream ... could we
downgrade [project B] until an upstream fix can be
applied?”

Release not available. Another reason for backward changes
(7 of 66) was that the project B release was no longer available
in the dependency manager.
Performance issues. The new release of project B introduced
performance issues in project A (2 of 66).
New stable version of project B. Project A depended on an
unstable minor release of project B, and B released a new
stable micro release of the previous minor version (2 of 66).
Consistency. One of the backward changes was made to ensure
consistency across the components in project A.

6https://github.com/AdRoll/erlmld/pull/9
7https://github.com/renovatebot/renovate/issues/196

TABLE VI
FREQUENCY OF BACKWARDS CHANGES

PM Micro Minor Major
Atom 2 0.01% 3 0.01% 0 0.00%
Cargo 0 0.00% 0 0.00% 0 0.00%
Hex 0 0.00% 2 0.08% 0 0.00%
Maven 1357 0.05% 7453 0.25% 899 0.03%
npm 1561 0.02% 2828 0.04% 1890 0.03%
NuGet 5 0.02% 41 0.13% 37 0.12%
Packagist 176 0.15% 53 0.05% 49 0.04%
Pypi 17 0.03% 16 0.03% 13 0.02%
Rubygems 25 0.02% 33 0.03% 13 0.01%

“update [project B] version to match other compo-
nents”

Mistake. One of the backward changes was made by mistake.
The project went from depending on version 1.0.1 to version
0.0.1. When this was questioned, one of the developers said
“Thank you; it’s a typo. We’ll fix it.”8. The change was reverted
in the next release.

The remaining two backward changes with explanations did
not provide enough details for us to categorize them into one
of our themes. They both mentioned that the change was being
made as a fix, but did not provide additional details on what
was being fixed. It is likely these were compatibility issues or
bugs in project B, but we did not include them in the categories
above due to lack of available information.

RQ5 Summary Backwards updates are uncommon across
package managers; the highest rate is 1 of 300 changes in
Maven. Through qualitative analysis of a sample of backward
changes, we found the common reasons for the backward
changes include: 1) project A moved from an unstable to stable
release, 2) project A is not compatible with the newer version
of project B, and 3) project B introduced a bug.

V. THREATS TO VALIDITY

There are a number of threats that can affect the validity of
this study.
Construct Validity. We developed a number of scripts that
extracted and then processed data obtained from libraries.io.
We built our scripts in iterations, first testing them on small
samples size (from a selected set of package managers) that
could be manually verified before employing them on the
larger dataset in order improve precision. Our scripts and
filtered dataset are publicly available for replication pur-
poses [26].
External Validity. In this study we used a data dump from
libraries.io that contains data from over 2.7 million projects
from 37 package managers. We consider this to be a represen-
tative sample size for a large scale empirical study. However,
we cannot claim that the results can be generalised for other
package managers that are not investigated in this study.
Each package manager has different approaches in handling
dependencies, which might result in different conclusions.

The dataset contains some missing and incorrect data. We
estimate that up to 5% of dependency information within

8https://github.com/pouchdb/pouchdb/issues/5430



a given project was missing. Some timestamps were also
not correct - some excluded projects in NuGet had default
timestamps (1900-01-01), while up to 3% of versions had
incorrect timestamps, usually on the order of hours or a few
days. This caused some issues of declarations being declared
before version releases, but overall constituted a minor issue.
Conclusion Validity. To answer RQ5, we adopted a manual
review procedure and Thematic Context Analysis of a selected
sample set of pairs in order to identify reasons for backward
changes. To improve accuracy, this process was done by two
authors. Still, we cannot exclude potential precision issues
(false classification), even if this is partially mitigated through
the discussion between the authors involved in this process.

VI. CONCLUSION

In this paper, we showed that technical lag, which can
cause security vulnerabilities and make software more brittle,
is common. Many dependencies lag, but this varies widely by
package manager, as declarations can be anywhere on a con-
tinuum from fixed (where lag is avoided by regular developer
intervention), to open ranges (where the latest version can
always be chosen by the package manager). When lag exists,
it is generally in small amounts. Most dependencies do not get
more than 1-2 major or minor versions behind, or 3-5 micro
versions behind. It appears that moving from custom ranges
and fixed declarations to semver compliant ranges would solve
about a third of technical lag present.

Developers tend to update fixed dependencies much more
often in major changes to their own projects than in minor or
micro updates. In general, fixed declarations are not regularly
updated, leading to fixed declarations lagging significantly.

We found backwards updates are uncommon - the highest
rate is 1 in 300. When backward changes happen, the most
common reasons are: 1) project A moves from an unstable to
a stable release, 2) project A is not compatible with the new
version of project B, or 3) project B introduces a bug.

Automated dependency tracking tools, such as Dependabot9
and Renovatebot10, offer another way to expedite updates and
minimise technical lag. Both tools are provided as GitHub
plugins and can automatically create pull requests to update
dependencies. This allows developers to run tests against the
updates to check for compatibility before merging. Widespread
adoption of such tools could provide a safe and convenient
alternative to flexible declarations for reducing technical lag.
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