
How agile teams make self-assignment work:
a grounded theory study

Zainab Masood1 & Rashina Hoda2 & Kelly Blincoe1

The Author(s) 2020

Abstract
Self-assignment, a self-directed method of task allocation in which teams and individuals
assign and choose work for themselves, is considered one of the hallmark practices of
empowered, self-organizing agile teams. Despite all the benefits it promises, agile
software teams do not practice it as regularly as other agile practices such as iteration
planning and daily stand-ups, indicating that it is likely not an easy and straighforward
practice. There has been very little empirical research on self-assignment. This Grounded
Theory study explores how self-assignment works in agile projects. We collected data
through interviews with 42 participants representing 28 agile teams from 23 software
companies and supplemented these interviews with observations. Based on rigorous
application of Grounded Theory analysis procedures such as open, axial, and selective
coding, we present a comprehensive grounded theory of making self-assignment work
that explains the (a) context and (b) causal conditions that give rise to the need for self-
assignment, (c) a set of facilitating conditions that mediate how self-assignment may be
enabled, (d) a set of constraining conditions that mediate how self-assignment may be
constrained and which are overcome by a set of (e) strategies applied by agile teams,
which in turn result in (f) a set of consequences, all in an attempt to make the central
phenomenon, self-assignment, work. The findings of this study will help agile practi-
tioners and companies understand different aspects of self-assignment and practice it with
confidence regularly as a valuable practice. Additionally, it will help teams already
practicing self-assignment to apply strategies to overcome the challenges they face on
an everyday basis.

Keywords Self-assignment . Task allocation agile practice . Agile software development .

Grounded theory

Empirical Software Engineering
https://doi.org/10.1007/s10664-020-09876-x

Communicated By: Tony Gorschek

* Zainab Masood
zmas690@aucklanduni.ac.nz

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09876-x&domain=pdf
mailto:zmas690@aucklanduni.ac.nz

1 Introduction

The success of any software project depends heavily on the execution of the related manage-
ment activities (Pinto and Slevin 1988). These activities primarily include organizing the
software teams, allocating tasks, and monitoring time, budget, and managing resources
(Boehm 1991; Jurison 1999) and carried out differently depending on the project management
approach followed. In traditional software development, a project manager plays a key role in
task allocation (Guide 2001; Nerur et al. 2005; Stylianou and Andreou 2014). The duties of a
project manager include planning, assigning, and tracking the work assigned to the project
teams. Work is typically allocated keeping in mind the knowledge, skills, expertise, experi-
ence, proficiency and technical competence of the team members (Acuna et al. 2006).

In contrast to the traditional development processes, agile software development offers a
different approach towards managing the software development cycle particularly task allo-
cation. Instead of the manger assigning the tasks, the team members pick tasks for themselves
through self-assignment. This concept of self-assignment is unique to agile software develop-
ment and emerges from the two principles in the agile manifesto i.e. ‘The best architectures,
requirements, and designs emerge from self-organizing teams’, ‘Build projects around moti-
vated individuals. Give them the environment and support they need and trust them to get the
job done’ (Beck et al. 2001). Even though self-assignment is not directly specified by these
principles, but they build the motivation and highlight the significance to study self-
assignment.

In theory, agile methods, particularly the Scrum methodology, encourage self-assignment
for the allocation of tasks among team members (Hoda et al. 2012; Hoda and Murugesan
2016). Self-directed task allocation or self-assignment is also considered a fundamental
characteristic of self-organized teams (Vidgen and Wang 2009; Deemer et al. 2012; Hoda
and Murugesan 2016; Strode 2016; Hoda and Noble 2017). Typically, agile methods like XP,
Scrum, and Kanban encourage team members to assign tasks or user stories to themselves
(Schwaber and Sutherland 2011; Deemer et al. 2012; Hoda and Murugesan 2016). The
different agile methods refer to this notion through different terminologies such as self-
assigning, signing up and pulling (Beck 2005; Lee 2010; Deemer et al. 2012). We refer to it
as self-assignment in this study. Unlike agile practices that have been well-studied such as pair
programming (Williams et al. 2000), daily stand-ups (Stray et al. 2016), and retrospectives
(Andriyani et al. 2017), it is unclear how self-assignment works in agile projects making it a
promising area to study.

In practice, the transition from the manager-led allocation to self-assignment is easier said
than done. This transition may not happen in one day due to multiple reasons. The manager
may not trust teams and individuals (Hoda and Murugesan 2016; Stray et al. 2018) and resist
adopting new ways of working and delegates tasks. The team members may not be comfort-
able to self-assign tasks themselves due to lack of confidence. Some members may always
pick familiar tasks, and others may prefer self-assigning exciting tasks (Vidgen and Wang
2009; Hoda andMurugesan 2016; Strode 2016; Masood et al. 2017b). The team members may
self-assign low priority desirable tasks ignoring the high priority ones (Masood et al. 2017b).
This indicates that self-assignment can be challenging to practice. The related research does
not cover the various aspects of self-assignment in-depth such as comparing the benefits of
practicing self-assignment to manager-led allocation, challenges of practicing self-assignment.
Additionally, limited information on the strategies agile practitioners follow to overcome the
challenges of self-assignment increases the gap in the current research. Therefore, there is a

Empirical Software Engineering

need to investigate how self-assignment works in agile teams to answer several open
questions such as: What leads to practicing self-assignment? What facilitates self-assignment
in agile teams? What constrains self-assignment in agile teams? How do agile practitioners
overcome the constraining conditions?

This research is part of a broader study which aims to cover various aspects of self-
assignment in multiple phases. As part of our future work, we plan to study various aspects
of self-assignment in multiple phases. Some of these aspects are understanding the self-
assignment process, motivational factors to self-assigning tasks, role of manager in self-
assignment. The focus of this paper is to investigate what leads to practicing self-assignment,
conditions influencing the self-assignment process, strategies to overcome the constraining
conditions, and any consequences of adopted strategies. It is to be noted that other aspects such
as the self-assignment process which includes how and when self-assignment is practiced in
agile teams, in what form teams and individual self-assign tasks, and factors individuals keep
into account while self-assigning work items are part of the complete doctoral study on self-
assignment. Some of the data from phase1 of this study has been published (Masood et al.
2017a; Masood et al. 2017b) and reported as preliminary research on self-assignment in related
works in this paper (in Section 2 and 5.1).

This study involved 42 participants representing 28 agile teams from 23 software compa-
nies based in New Zealand, India, and Pakistan. We collected data in two phases through pre-
interview questionnaires, semi-structured interviews, and observations of agile practices such
as daily stand-ups, iteration planning meetings, and self-assignment during task breakdown
sessions. As a result of applying data analysis procedures, we present our grounded theory of
making self-assignment work that describes what leads to and facilitates self-assignment,
strategies used by the agile teams to make self-assignment work despite constraining condi-
tions, details of the phenomenon of making self-assignment work, along with causal condi-
tions, context, intervening conditions, strategies, and consequences. Additionally, we provided
a list of practical implications and recommendations for agile teams, scrum masters and
managers practicing self-assignment or teams that are transitioning into self-assignment.

The main contributions of this study are that it illustrates in-depth theoretical knowledge of
self-assignment as a task allocation practice in agile teams. Future researchers can refer to this
study for understanding the different aspects of self-assignment. Secondly, the practical
strategies and recommendations presented in this study will contribute to the software industry
by helping managers and agile teams overcome the hurdles and challenges faced in practicing
self-assignment.

The remainder of the paper is structured as follows. Section 2 describes related works,
section 3 summarizes the research method, sections 4 presents the findings of this research and
Section 5 discusses the findings and compares with related work with recommendations for
agile community and future researchers. Section 6 concludes the paper.

2 Related Works

Software project management comprises of a set of activities which include but are not limited
to project planning, scope definition, cost estimation and risk management (Boehm 1991;
Jurison 1999). In the conventional process of software development, the activities for project
planning such as project schedule, resource and task allocation are taken care of by the project
manager (Nerur et al. 2005; Stylianou and Andreou 2014). Resource and task allocation are

Empirical Software Engineering

considered important activities in the project planning phase irrespective of what methodology
is used in software development. The project manager is considered to be a single point of
contact with the sole responsibility of taking the task allocation decisions and managing the
project scope and team (Stylianou and Andreou 2014). The project manager role is both
critical and challenging as the competence of the project manager and how well they plan and
execute these activities significantly contributes to the success of the project. In fact, the
managers’ decisions on allocating developers and teams to project tasks and scheduling
developers and teams are considered one of the key indicators of success of a software project
(Stylianou and Andreou 2014).

With the advent of agile software development more than two decades ago, task allocation
is no longer the lone responsibility of a manager (Nerur et al. 2005); rather, it is meant to be
shared within an empowered development team. Agile introduced light-touch management
(Augustine et al. 2005) giving autonomy, empowerment and flexibility to development teams
and valuing customers through engagements without forfeiting governance (Beck et al. 2001;
Augustine 2005; Carroll and Morris 2015). One of the fundamental characteristics of agile
methods is that they support task assignment as a team- and individual-level activity and
disregard the traditional role of the project manager w.r.t. tasks delegation (Nerur et al. 2005).
Typically, teams practicing agile methods self-assign technical tasks or user stories during the
development cycle (Hayata and Han 2011; Hoda and Murugesan 2016). Agile methods are
seen to term this self-assignment differently such as “volunteering”, “signing up”, “commit-
ting”, and “pulling” (Beck 2005; Lee 2010; Deemer et al. 2012). Empirical studies have been
conducted on novice (Almeida et al. 2011; Lin 2013) and experienced agile teams (Masood
et al. 2017a; Masood et al. 2017b) to study task allocation decisions, strategies and workflow
mechanisms. These studies inform us that tasks assignment in Agile teams is not the sole
responsibility of the manager or other team members.

Self-directed task allocation or self-assignment is acknowledged as a fundamental charac-
teristic of self-organized teams (Vidgen and Wang 2009; Deemer et al. 2012; Hoda and
Murugesan 2016; Strode 2016; Hoda and Noble 2017). Yet, research on self-assignment in
agile software teams has been limited in scale and depth. The focus of such studies has mostly
been around task allocation in global software development (Simão Filho et al. 2015). Mak
and Kruchten (2006) proposed an approach to address issues that managers face for task-
coordination and allocation in global software development environments using agile methods.
The proposed solution and Java/Eclipse-based distributed tool ‘NextMove’ was meant to
facilitate project managers in the prioritization of current tasks and generation of suitability
ranking of team members against each available task helping project managers in making day-
to-day task allocation decisions. Other researchers have proposed approaches (Mak and
Kruchten 2006), models (Almeida et al. 2011) and frameworks (Lin 2013) to address task
allocations problems in global software development contexts where agile was being used. The
unique context of global software development implies the challenges of task allocation were
more to do with the teams being distributed rather than them practicing agile methods.

Self-assignment of tasks has also been observed in open source software (OSS) develop-
ment in both commercial and non-commercial projects (Crowston et al. 2007; Kalliamvakou
et al. 2015). In an empirical study (Crowston et al. 2007), developers’ interaction data from
three free/libre open source software (FLOSS) projects was examined to understand the
process by which developers from self-organized distributed teams contribute to project
development. Self-assignment was reported as the most common mechanism among five task
assignment mechanisms, the remaining being, (a) assign to a specified person, (b) assign to an

Empirical Software Engineering

un-specified person, (c) ask a person outside project development team, and (d) suggest
consulting with others. Task allocation in FLOSS development was seen to not involve any
micro-management or task delegation through a project manager or an employer. Since these
teams are composed of volunteers, the task assignment was mostly based on the personal
interests of the contributor. The study identified several drawbacks such as people picking
work, they are not good at or lacking prior experience which could impact the quality of the
contribution and may require review by others. Similarly, developing code management
practices and designing and using such tools is challenging when multiple developers con-
tribute to the same parts of the project.

Existing research on self-assignment in co-located, e.g. non-distributed and non-open
source, agile teams is very limited. Self-assignment in new agile teams is seen to happen as
a gradual process, retaining a manager’s role at the beginning for tasks delegation (Hoda and
Noble 2017). Our preliminary work conducted on a dataset of 12 agile practitioners from four
teams of a single company based in India confirmed five main types of task allocation
approaches in agile teams: manager-driven, manager-assisted, team-driven, team-assisted,
and or self-directed (Masood et al. 2017a). With time and experience, agile teams seem to
dispose of the command and control attitude and are instead seen to move towards manager-
assisted or team-assisted assignment and, in some cases, towards practicing self-assignment
over time (Hoda and Noble 2017; Masood et al. 2017a). As a part of that preliminary work, we
also identified some motivational factors that agile developers take into account while self-
assigning tasks such as technical complexity, business priority, previous experience with
similar tasks, and others (Masood et al. 2017b). However, we do not know in-depth what
strategies the teams use to make self-assignment work despite certain intervening conditions.
In this study, we investigated how self-assignment works in agile teams in a way that it’s not
only beneficial to individuals, teams, and projects but also to the organizations.

Here we presented an overview of the related works of task allocation in agile software
development. We will revisit them in light of our findings in Section 5, comparison to related
work.

3 Research Method

After considering a number of potentially suitable methodologies such as Case study (Yin
2002), Ethnography (Fetterman 2019), and Grounded Theory (Glaser 1978; Strauss and
Corbin 1990), we adopted Grounded Theory (GT). The interest of researchers towards
generating a theory to explain how agile teams make self-assignment work using a cross-
sectional dataset not limited to few cases or organizations led the researchers to use GT. The
intention is to uncover self-assignment from empirical data rather than validating any existing
theories or hypotheses. Also, the focus of this study is around understanding the process,
investigating strategies, and exploring underlying behaviours, and influencing factors, and so
GT was particularly well-suited.

GT comes in various versions, Classical/Glaserian, Strauss and Corbin, and Charmaz
Constructivist, we employed the Strauss and Corbin version due to several reasons:

a. It follows a more prescriptive approach than classical GT (Coleman and O’Connor 2007;
Kelle 2007) leading the researcher through clear guidelines, and, as a novice GT research-
er, the first author found this useful.

Empirical Software Engineering

b. It builds on research question which is open ended and drives the direction of research
(Strauss and Corbin 1998).

c. It provides an additional analytic tool for axial coding in the form of a coding paradigm,
which can help GT researchers identify the categories, sub-categories, and their relation-
ships much earlier in contrast to classical GT theory where this emerges after multiple
rounds of analysis (Seidel and Urquhart 2016).

The study comprises of two phases, each including multiple iterations of data collection and
analysis as shown in Fig. 1. In the first phase, we explored the task allocation process in Agile
teams. In the second phase, we narrowed down our focus to self-assignment as a specific task
allocation process. We collected the data in multiple rounds, data of each round was analysed
before collecting more data to ensure theoretical sampling. This was done until we reached
theoretical saturation. This is evident from our interview questions which were revisited and
revised to meet the narrowing focus of the GT study. The primary data sources for phase1 were
face-to-face interviews and for phase2 were pre-interview questionnaires, face-to-face semi-
structured interviews, and team observations of agile practices. We describe these in the
following sections. The additional documents, such as interview guides, pre-interview ques-
tionnaire etc. can be found as supplementary material (Masood et al. 2020).

3.1 Data Collection & Analysis (Phase1)

Phase1 aimed to investigate the task allocation process in agile teams. The focus was to study
the task allocation strategies in agile teams. The authors collectively prepared the interview
guide (all authors), conducted semi-structured interviews (second author), transcribed the

Phase1 India

Exploring Task Allocation
in Agile Teams

Semi-structured Interviews

(Participants =12, Teams=4,

Company=1)

Pre-Interview Questionnaire

(N=30)
Semi-structured Interviews

(Participants =30, Teams=24,

Company=22)

Observations

(Team=1, DSM=4, SPM=2,

TBS=2, CR=1,

RET=1, TRI=1, BP=1,

Company=1)

Phase2 New Zealand

Focusing on Self-
Assignment

Report Writing

Data Collection &
Analysis

Data Collection &
Analysis

Fig. 1 Phases of iterative Data Collection & Analysis (DSM=Daily Stand-Up; SPM= Sprint Planning Meeting;
TBS = Task Breakdown Session; CR=Code-Review; RET =Retrospective; TRI=Squad Triage; BP = Backlog
Prioritization)

Empirical Software Engineering

interview recordings (first author) and analysed (all authors) to reduce any bias and improve
internal validity through researcher triangulation. The interview guide designed to collect data
for this phase focused on four main areas (Fig. 2):

a. professional background: e.g. please tell me about your professional background
b. agile experience e.g. how long have you been using agile practices?
c. current team and project, e.g. which practices have been used regularly on this project?
d. task allocation practices e.g. how does task allocation happen in your team?

We sent invitation to the “Agile India” group to recruit participants for phase1. An Indian
software company responded with a willingness to participate in the study. We interviewed 12
participants in-person from that company. Table 1 summarizes the demographics of the
participants (P1-P12), highlighted in lighter shade of grey. Each interview took approximately
30–60 min. These face-to-face interviews helped to record the verbal information and capture
the interviewee’s expressions and tone (Hoda et al. 2012). All these interviews were recorded
and transcribed for analysis. The data collected from phase1 was manually added in NVivo
data analysis software. The data collected helped in developing an initial understanding of task
allocation in agile teams. We applied open coding, the Strauss and Corbin GT’s procedure of
data analysis (Strauss and Corbin 1990) on participants’ transcribed interview responses.
During open coding, we labelled the data with short phrases that summarize the main key
points. These were further condensed into two to three words, captured as codes in the NVivo.
As a result of data analysis, different concepts from similar codes emerged, one the most
prominent of which was task allocation through self-assignment. Others included manager-
driven, manager-assisted, team-driven, and team-assisted task allocation (Masood et al.
2017a). The results of phase1 directed us to focus on self-assignment as the substantive area
of the study in the next phase.

3.2 Data Collection (phase 2)

Phase2 aimed to investigate self-assignment as a task allocation practice and explore how agile
teams make self-assignment work. The goal of the study was to build a theory to identify what
leads to and facilitates self-assignment process, what strategies are used by the agile teams to
make self-assignment work, and the consequences of these strategies. As with phase1, the
authors collectively prepared the instruments i.e. pre-interview questionnaire and interview
guide (all authors), conducted interviews (first author), and analysed them (all authors) to
mitigate potential bias. The pre-interview questionnaire gathered basic and professional details
of the participants and the interview guide was primarily used to facilitate the interviewer and
the interview process to collect details around various aspects of self-assignment. The inter-
view guide was refined throughout to accommodate the exploratory nature of the study. All the
interviews conducted during phase2 were transcribed for analysis either by the first author or
the third-party transcribers. The pre-interview questionnaire and the interview guide used to
collect data during the phase2 focused on the following main areas (Fig. 2):

a. professional background: e.g. please tell me about your professional background
b. agile experience e.g. how long have you been using agile practices?
c. current team and project, e.g.which agile practices have been used regularly on this project?

Empirical Software Engineering

d. Various aspects of self-assignment, e.g. How does self-assignment take place in your
team? What problems do you (as a developer)/your team (as a manager) face while
picking up tasks? Please provide an example with how these problems were solved.

Phase 1: Interview Guide
Sample demographic type questions
……………

Q. Total experience in software industry Years

Q. Total agile experience (years) Years

……………

Sample open-ended semi-structured questions
……………

Q. How does task allocation happen in your team?

Q. In what form does work arrive to your team? Q. In what form does work arrive to you (individually)?

Q. Who allocates work to your team? Q. When does individual task allocation happen?

……………

Phase 2: Pre-Interview Questionnaire
Sample demographic type questions
……………

Q. Total experience in software industry Years

Q. Total agile experience (years) Years

…………

Q. Current Company Name

Q. Reference to company e.g. website

Q. Type of company Check all that apply. Single Product/ Multiple Products / Consultancy/ Others (specify name):

Q. Job Title (select all that apply) Check all that apply. Developer /Tester / Scrum Master /Manager /Business

Analyst Other: (specify name):

…………

Sample project and team type questions
……………

Q. Domain of project Check all that apply. IT Finance & Banking /Transport /Medical / Telecom / Healthcare /

Manufacturing Other: (please specify name):

Q. Project focus: Check all that apply. Migration, New Development, Software as a service (SAAS), Other:

(please specify)

Q. Team Size (Number of people)

Q. Your role on project

Sample agile practices type questions
……………

Q. How long is the team following agile practices Years?

Q. Agile method used: Check all that apply. None/ Scrum / XP / Combo / Kanban/ Crystal /Other:

Q. Iteration length: Not applicable/ 1 week/ 2 weeks/ 3 weeks / 4 weeks

……………

Phase 2: Interview Guide
Sample open-ended semi-structured questions
Q. What are your major responsibilities as per [role mentioned in the pre-interview form]?

Q. In your opinion, is it better to pick up tasks for yourself or for tasks to be assigned by a manager? How?

Q. In what form does work arrive to your team? Can you please elaborate with few examples?

Q. Who allocates work to your team and How? Q. In what form do you pick the work?

……………

Q. How does self-assignment takes place in your team?

Q. When do you pick/self-assign tasks?

……………

Q. What problems do you (as a developer)/your team (as a manager) face while picking up tasks?

Q. How do you overcome these problems? Please provide examples with how these problems were solved.

Q. What benefits of self-assignment have you experienced? Please provide some examples.

Q. Based upon your experience, is self-assignment better than delegation? How? Any weaknesses?

Q. Any improvements you would suggest improving current process of self-assignment?

……………

Q. When did your team start with self-assignment? How and when self-assignment was introduced as a practice in

your teams?

Q. Based on your experience, what leads to an effective self-assignment?

……………

Q. What are the situations when self-assignment does not take place? Why?

…...………

Fig. 2 Examples of interview questions for Phase1 and 2

Empirical Software Engineering

Following Grounded Theory’s guidelines of refinement and constant narrowing-down, the
interview focused on self-assignment and its various aspects. From phase1, we noticed that
capturing participants’ demographics data was taking a significant amount of time during the
interview, sometimes leaving interesting aspects unexplored. So, for phase2, demographics
and supporting details such as professional background, agile experience, current team and
project related details were gathered using a pre-interview questionnaire filled by each
participant before their interview.

To recruit participants for phase2, we sent invitations to multiple online groups, and those
who showed willingness to participate verbally or through emails were contacted. Social
networking sites such as LinkedIn, Meetups groups such as “Agile Auckland”, “Auckland
Software Craftsmanship” served as useful platforms to recruit participants in New Zealand.
Once a participant contacted us showing their willingness, we requested them to share basic
and professional details through the pre-interview questionnaire. The details gathered from the
pre-interview questionnaire also helped us limit our context to individuals and teams who
practice self-assignment at some level and with varied frequency (always, frequently, rarely,
and occasionally). Agile teams not practicing self-assignment were out of scope. We conduct-
ed 30 more interviews (28 in-person and 2 via Skype). These semi-structured interviews were

Table 1 Participants Demographics

P# Team# Role Domain TX AX AM AG
P1 T1 Tech lead IT 11 6-7 SC 31-35

P2 T1 Software engineer IT 2-2.5 1 SC 21-25
P3 T1 Assoc. tech lead IT 4-5 4-5 SC 26-30

P4 T1 Software engineer IT 2.5 2.5 SC 21-25

P5 T2 Tech lead IT; AN 7 7 SC 36-40
P6 T2 Senior software engineer IT; AN 4 2 SC 26-30

P7 T2 Tech lead IT; AN 7.5 7.5 SC 31-35

P8 T3 Tech lead IT; CS 5.5 5-6 KN 31-35
P9 T3 Assoc. tech lead IT; CS 4 2 KN 26-30

P10 T3 Senior software engineer IT; CS 3.5 1 KN 21-25

P11 T3 Assoc. tech lead IT; CS 4.5 2 KN 26-30
P12 T4 Senior software engineer HC 3.5 3.5 SC; KN 21-25

P13 T5 Consultant IT 10 3 SC 31-35

P14 T6 Tech lead; Developer MD 13 7 SC 31-35

P15 T7 Developer; Scrum Master TP 17 7 SC 36-40

P16 T8 Developer IT 10 6 SC 31-35

P17 T9 Developer ACC 2 2 SC 21-25
P18 T10 Software Architect ICT 10 3 SC 36-40

P19 T11 Developer HC 2.5 1.5 SC 21-25

P20 T11 Lead Developer IT 20 3 SC 41-45
P21 T11 Scrum Master CRM 9 6 SC 36-40

P22 T11 Developer HC 12.5 6 SC 41-45

P23 T12 Test Analyst FN; BK 10 5 SC 31-35
P24 T13 Tester MD 12 1 SC; KN 31-35

P25 T14 Developer HC; BK 10.5 4 SC; SP; KN 31-35

P26 T15 Product Owner IT; TC; 12 5 SC 31-35
P27 T11 Developer HC 12 2 SC; KN 36-40

P28 T16 Developer IT 4 3.5 SC 26-30

P29 T17 Developer; Scrum Master IT 8 3.5 SC; KN 31-35
P30 T18 Lead Developer IT 25 9 SC 46-50

P31 T11 Development Manager HR 20 2 SC 46-50

P32 T19 Developer IT 12 7 SC; KN 36-40
P33 T11 Tester MD; HC 10 3 SC; KN 31-35

P34 T20 Scrum Master INV 12 4 KN 36-40

P35 T21 Tester FN 16 14 SC 50-55
P36 T22 Quality Assurance Analyst FN; BK 7.5 2.5 SC 46-50

P37 T23 Head of Product Delivery HC 13 3 SC 36-40

P38 T24 Development Consultant RT 10 5 SC 36-40
P39 T25 Tester IT 5 3 SC; KN 36-40

P40 T26 Consultant IT 11 4 SC 31-35

P41 T27 Senior Architect IT 15 10 SC 36-40

P42 T28 Technical Lead IT; CRM 14 9 SC 31-35

P#: Participants; TX: Total experience in years; Roles (Assoc. =Associate); Domain (HC=Healthcare; BK=Banking; ACC=Accounting; FN=Finance; MD=Medical;

TC=Telecom; RT=Retail; INV=Inventory; TP=Transport; CRM=Customer Relationship Management; TX: Total experience in years; AX: Agile experience in years;

AM: Agile Methods (SC=Scrum; KN=Kanban; SP=Spotify); AG: Age Group

Empirical Software Engineering

conducted for 30–60 min per participant. Table 1 summarizes the demographics of the
participants involved in the phase2 of study in darker shade of grey.

The first author attended multiple sessions of agile practices while observing agile team
‘T11’ comprised of 7 members. This included attending four daily stand-ups of duration 10–
15 min each, two one-hour sprint planning meetings for two sprints, two-hours task-break-
down sessions for two sprints, one 30-mins code-review session, four squad triage sessions of
10–15 min each which focused on the outstanding issues requiring clarifications, discussions
or any decisions, one backlog prioritization 30 mins, and an hour long retrospective meeting.
Figure 3. captures some glimpses of the sessions attended during these observations. Obser-
vations of practices supplemented our understanding of the self-assignment process, practices,
and strategies followed by the teams.

The entire study involved 42 participants represented through numbers P1 to P42 for
confidentiality reasons. Table 1 summarizes the demographics of all the participants. Partic-
ipants were working for software companies developing software solutions for healthcare,
accounting, finance, transport, business analytics, and cloud services. Participants were work-
ing in New Zealand (71.5%) and India (28.5%) and varied in gender with 86% male and 14%
female. Age and professional experience varied from 2 to 25 years of experience. They were
directly involved in the software development with job titles as developer, consultant, product
owner, architect, lead developer, and scrum master. Most of the participants were practicing
Scrum, whereas some used a combination of Scrum and Kanban. They used agile practices
such as daily meetings, customer demos, pair programming, iteration planning, release
planning, reviews and retrospectives.

Fig. 3 Team T11 Observations (Top left: Sprint Planning, Top right: Task Breakdown & Allocation Session,
Bottom left: Physical Task Board, Bottom right: Digital Task Board)

Empirical Software Engineering

3.3 Data Analysis (phase 2)

The Strauss and Corbin’s version of GT comprises of three data analysis procedures: open,
axial, and selective coding (Strauss and Corbin 1990). All these procedures were interwoven
and were conducted mainly by the first author with the underlying steps such as defining
emerging codes, concepts, sub-categories, and categories being thoroughly discussed on an
on-going basis, and finalized with the co-authors, including a GT expert. The use of analytical
tools such as diagramming, whiteboarding, and memo writing facilitated the analysis process.
The quantitative data was collected using a pre-interview questionnaire and the qualitative data
in the form of transcripts, observation notes, and images were uploaded in NVivo. Figure 4
provides a step-by-step example of applying all these procedures.

Open coding We started the data analysis with open coding, in which all the interview
transcripts were analysed either line by line or paragraph by paragraph as appropriate and
represented with short phrases as codes in the NVivo software. With constant comparison
within same and across different transcripts, we grouped similar codes to define a concept, a
higher level of abstraction. Sometimes, multiple concepts were generated from single quotes as
shown in a few examples in Fig. 4. These concepts were identified in the data and sometimes
defined in terms of their properties and dimensions to contextualize and refine the concepts.
The extent to which this could be done relied on the level of details were shared by the
participants. Then, we integrated concepts into the next level of data abstraction, categories.
The outcome of open coding was a set of concepts and categories.

Figure 4 illustrates the open coding and constant comparison procedures using multiple
examples, starting from the raw interview transcripts of the participants [P13, P18, P21, P26,
P31], and observation notes [T11] listing the category, concept, property and dimensions for
each transcript excerpt as examples. For example, excerpt from P13 resulted in multiple

Open Coding Axial Coding Selective Coding

Causal
Conditions

Motivators

Category: Motivator to self-assignment;

Concept: Agile transformation,

providing guidance;
Property: Empowerment, Mentor

guidance to empower;

Dimension: Level, frequency of guidance

Category: Barrier to self-assignment;
Concept: Manager presence.

Property: Influence, Intervention;

Dimension: level (e.g. less– more)

Category: Barrier to self-assignment;

Concept: Picking complex tasks, lacking

expertise, demanding effort.

Property: complexity, expertise

Category: Moderator to self-
assignment;
Concept: Providing information;
Property: Task information;
Dimension: level of details (e.g.

less– more)

Category: Overcoming barriers
(workaround)
Concept: Manager leaving before session
Property: Leave by preference
Dimension: Occurrence
(always, sometimes, never)

Interview Transcript: “I felt that my
presence might influence people’s picking
the ones [stories] that they want to work
on” [P31]

Interview Transcript: “…when someone
assigns something that’s too complicated
for their skill level. Also, if you don’t have
any experience, so picking something, you
know, it could be too easy or looked easy,
but it required a lot of work” [P13]

Observation: Prior to task breakdown
session, the manager left the meeting
room [T11].

Interview Transcript: “… having the
tasks detailed with a lot of information
in the tasks enough for someone to
actually pick up and start” [P18]

Interview Transcript: “So you’ve got
a waterfall organisation they’re not
sure how to do agile. They have
someone with an agile hat to guide
them allocating the work themselves,
self-assigning, and empowering them
as much as you can.” [P26]

Interview Transcript: “X[manager]
really likes it [leaving session]
because he just put stuff on the board
and disappears.” [P21]

Category: Outcome of strategy;
Concept: Briefing work and leaving
session
Property: Feeling, consequence
Dimension: feelings (like – dislike),
level (low – high), consequence (+ve, -
ve)

Facilitating
ConditionsModerators

Outcomes Consequences

Barriers
Constraining
Conditions

How agile teams make self-
assignment work

Constraining
Conditions

Consequences

Strategies

Causal
Conditions

Facilitating
Conditions

Intervening Conditions

Contextual
Conditions

Workarounds Strategies

Fig. 4 Example of applying Grounded Theory data analysis procedures, Open Coding, Axial Coding, Selective
Coding

Empirical Software Engineering

concepts ‘picking complex tasks’, ‘lacking expertise’, ‘demanding effort’. All these were
grouped under the category ‘barriers to self-assignment’. These came from the answers to
questions like ‘What problems and challenges do you (as a developer)/your team (as a
manager) face while picking up tasks?’. In addition to concepts and categories, we also
identified properties and dimensions. Properties are ‘characteristics that define and explain
a concept’ and dimensions are ‘variations within properties’. For example, one of the
participants P31 shared that their presence influenced people’s self- assignment choices and
decisions. This led us to classify ‘intervention’ as a property, and ‘intervention level’ as a
dimension (see Fig. 4). The open coding process was applied on the entire data set (interviews
and observations) of the study. This way all the conditions, strategies and consequences were
identified, categorized, and reported. The categorisation was discussed during regular team
meetings and refined with constant feedback from the co-authors.

Axial coding Next, we applied axial coding, a ‘process of systematically relating categories
and sub-categories’. Sub-categories are also concepts that refer to a category providing further
clarifications/details. Strauss recommends using ‘analytical tools’ to define relationships
between categories and sub-categories (Strauss and Corbin 1990). One such tool is Coding
Paradigm which guides the researcher to illuminate the conceptual relationships between
concepts/categories by identifying the conditions, actions/interactions, and consequences
associated with a phenomenon. Strauss proposed variants of the coding paradigm to facilitate
axial coding (Urquhart 2012). All of these are used as analytical tools and organization
schemes (Corbin and Strauss 2008) which help to arrange the emerging connections and
identify the relationships. To the best of our knowledge, this is one of the very few software
engineering research studies (Giardino et al. 2015; Lee and Kang 2016) that apply and
illustrate an in-depth application of Strauss and Corbin’s Grounded Theory, including the
use of their “coding paradigm” (in Fig. 5, presenting the Phenomenon, Context, Causal
Condition, Intervening Conditions, Strategies, and Consequences).

We applied the coding paradigm as it assembled our data well, the structure of the coding
paradigm mapped well to our emerging categories (Strauss and Corbin 1990; Corbin and
Strauss 2008). The coding paradigm contains different terminologies such as context, causal
conditions, intervening conditions, action/interactional strategies, and consequences. Table 2.
states the Strauss and Corbin definitions of the coding paradigm terminologies (2nd column)
with how we applied them to our study on self-assignment (3rd column). Our categories from
open coding such as motivators, barriers, moderators, outcomes are mapped to the coding
paradigm terminologies such as causal conditions, intervening conditions, consequences (rep-
resented by the symbol in Fig. 4). The relationships between the sub-categories (other
categories) were represented as per the terminologies of the coding paradigm (defined in
Table 2, represented by ⇨ in Fig. 4). For instance, we know from the definition that causal
conditions are the reasons why teams adopt self-assignment and leads to the phenomenon under
study. Similarly, we know that the strategies to work around challenges of self-assignment
result in different consequences. All the relationships between categories and sub-categories
were iteratively and constantly validated with the data (within each participant’s data and across
other participants’ data) throughout the analysis process. This was done in multiple analytical
iterations and the relational statements evolved with continuous reflections over time.

In Selective Coding, we started building a storyline presenting the essence of our study
where each sub-category and category captured a part of the whole story of making self-
assignment work (presented in Fig. 4). How agile teams make self-assignment work emerged

Empirical Software Engineering

as the most prominent and central phenomenon from our data analysis process (described in
section 4) that was binding all the sub-categories together, strengthening the relationships
identified during the axial coding. It was during the selective coding, we confirmed which
relational phrases such as ‘mediates’, ‘overcome by’, ‘give rise to’ were fitting well to our

Constraining Conditions
C1: Dependent tasks

C2: Urgent work

C3: Tracking work distribution and

accountability

C4: Distance factor

C5: Manager Intervention

C6: Inadequate expertise and resources

C7: Multiple people interested in similar

tasks

C8: Self-assigning tasks not skilled at

C9: Self-assignment for new team

members

C10: Personality Traits

Facilitating Conditions
F1: Appropriate task information

F2: Appropriate task breakdown

F3: Well-defined Definition of Done

F4: Well-groomed product backlog

F5: Collective estimation and task

breakdown

F6: Estimation before prioritization

F7: Strong product knowledge

F8: Good understanding of problem

F9: People behaviour

Phenomenon
How Agile Teams Make
Self-Assignment Work

Causal Conditions
U1: Natural part of agile transformation

U2: Issues with manager-driven

assignment (growing frustrations

among team members, lack of

motivation, low quality, ineffective

time estimation and wrong

assumptions)

Strategies
S1: Task delegation

S2: Offering work

S3: Manager’s absence from task allocation

sessions

S4: Facilitating self-assignment

S5: Self-assigning the next available task

S6: Active Participation and Use of Tools

S7: Highlighting Dependencies

S8: Isolating Dependent Tasks

S9: Standalone tasks definition

S10: Flexible estimations

S11: Task’s Reassignment

S12: Team-up with experienced resources

S13: Informal team discussions and

negotiations resources

S14: Fixed Work Assignment

Consequences (+/-)

N1: Autonomy

N2 Time utilization

N3: Team culture

N4: Delivery

N5: Quality

N6: Opportunity to learn, grow & improve

N7: Cross-Functionality

N8: Productivity

N9: Team Communication

N10: Knowledge sharing

N11: Transparency

N13: Accountability

4.1

4.3

4.5

Context
Agile software teams practicing self-

assignment

Work experience (novice/experienced)

Agile experience (novice/experienced)

Team setup (co-located/distributed)

4.2

leads to

mediates

results in
give rise to

Intervening Conditions

4.4.2
4.4.1

overcome by

4.4

4.6

Fig. 5 How agile teams make self-assignment work (using Strauss’s Coding Paradigm, including Phenomenon,
Context, Causal Condition, Intervening Conditions, Strategies, and Consequences)

Empirical Software Engineering

entire theory model in Fig. 5. It was also during the selective coding, when theoretical
saturation was reached and no new concepts, categories or insights were identified. Then,
finally we revisited and refined the categories to make sense of the entire theory explaining the
phenomenon.

4 Results

We present our grounded theory of making self-assignment work in agile teams. The section
is structured to follow Fig. 5. which visually represents our theory and illustrates its categories
in the following sub-sections in detail. In the following sections, we present all our findings
that comprise the overall theory (Fig. 5), including plenty of quotations from the raw data and
sample observation notes/memos.

The grounded theory of making self-assignment work in agile teams explains the (a)
context (described in section 4.2) and (b) causal conditions that give rise to the need for self-
assignment (described in section 4.3), (c) a set of facilitating conditions that mediate how
self-assignment may be enabled (described in section 4.4.1), (d) a set of constraining
conditions that mediate how self-assignment may be constrained (described in section
4.4.2) and which are overcome by a set of (e) strategies applied by agile teams (described
in section 4.5), which in turn result in (f) a set of consequences (described in section 4.6), all in
an attempt to make the central phenomenon, self-assignment, work.

4.1 The Phenomenon – How Agile Teams Make Self-assignment Work

One of the key findings of our study is that self-assignment is not as easy and straightforward
as might be expected. It comes with challenges and requires a set of strategies to make it work
in practice. Our findings indicate clearly that self-assignment does not simply imply picking
whatever tasks team members want. Development team members are bound to choose tasks
based on their business needs and priorities as stated by P30.

Table 2 Terminologies of Coding Paradigm (Strauss and Corbin 1990) as applied in this study

Terminologies Strauss and Corbin Definition Our study

Phenomenon The actions of an individual as well as
interactions between different people revolve
around the phenomenon

Making self-assignment work represents
the phenomenon

Causal Conditions Events, incidents, happenings that lead to the
occurrence or development of a
phenomenon

Causes leading to self-assignment,
reasons why teams adopt
self-assignment

Intervening
Conditions

The conditions that intervene the strategies
taken within a specific context

Facilitating and constraining conditions
influencing self-assignment

Context/Contextual
Conditions

Context represents the particular set of
conditions within which the
action/interactional strategies are taken

The specific set of conditions within
which the strategies to make
self-assignment work occur

Action/Interactional
Strategies

Strategies devised to manage, handle, carry out,
and respond to a phenomenon under a
specific set of perceived conditions

Adopted strategies to work around
challenges of self-assignment

Consequences Outcomes or results of action and interaction Impact of adopting these strategies to
make self-assignment work

Empirical Software Engineering

‘It’s not just like, go out there and choose whatever you want to work on…it’s like team
commits, and whatever they’ve committed, they’ve selected tasks from a triaged [prior-
itized] list and they’re committing to that work.’ – P30, Lead Developer

We identified that transitions to self-assignment does not happen automatically but teams with
a positive mindset, an encouraging Scrum Master who values teams and empowers autonomy,
and the use of effective strategies lead to effective self-assignment smoothly. As such, the key
phenomenon identified in our analysis was “how agile teams make self-assignment work”.

4.2 The Context– Contextual Details and Conditions

Beyond the demographics captured in the pre-interview questionnaires (participant
age, gender, experience, etc.), other contextual details emerged during our in-person
interviews and while observing team practices to understand how self-assignment
works. The variation in the team setup (co-located, distributed), work experience
(novice, experienced) and team’s agile experience (novice, transitional, mature) can
have influence on the facilitating/constraining conditions and corresponding strategies.
We will see that the contextual conditions vary in their application. For example,
strategies identified to facilitate self-assignment in distributed team contexts were
different to those for co-located team context. Similarly, strategies for new team
members were different from those for mature, experienced teams. While manager
intervention may not be a constraining condition for teams with flat structure without
managers and so the strategies cannot be applied in such settings. Teams self-selecting
their tasks at the beginning of the sprint may have different constraining conditions
when compared to teams which self-assign the tasks during the sprint. The contextual
details are best understood in relation to the related conditions and strategies, and so
these contextual details are weaved into our descriptions in the following sub-sections.

4.3 The Causal Conditions – Leading to Adopting Self-assignment

In this study, the participants were questioned about why they chose to self-assign. In result,
we identified many different reasons for adopting self-assignment. The most common cause
was it being a natural part of the agile transformation represented as U1. Other causes reported
by the participants are related to issues with manager-driven assignment referred by U2. We
used the term ‘manager’ to refer to all management roles (i.e. project managers, scrummasters,
and team leads).

4.3.1 U1: Natural Part of Agile Transformation

The most common rationale [N = 10] behind opting to practice self-assignment evolved
naturally with an understanding of the scrum methodology (Deemer et al. 2012) and agile
manifesto (Beck et al. 2001). As teams adopted agile methods, they also became more self-
organized.

‘...It [self-assignment] naturally started off that individuals in a team are responsible to
go and select ... So, I think it was just our understanding of the Scrum methodology and
agile Manifesto’ –P42, Technical Lead

Empirical Software Engineering

4.3.2 U2: Issues with Manager-driven Assignment

Issues with the manager-driven assignment approach caused some participants to drift towards
self-assignment. These issues include growing frustrations among team members, lack of
motivation, low quality of work and inaccurate estimates.

Growing frustrations among team members A quality assurance analyst P36 identified
frustrations as a cause that led to the team adopting self-assignment. The Scrum Master may
not always be aware of frustrations of the team, as explained by the participant, recalling a
particularly challenging experience:

‘It was one Quality Assurance Analyst, she broke down, saying that I can’t do it
anymore. She was required [assigned] to test something in the cloud, introducing her
in just the last minute…When I saw her collapsing down, I had lots of empathy with her.
And then in our retrospective, I also started exploding and I’m not taking any allocation.
This is all going wrong. The scrum master went back, she came again, and she said, I
will not allocate anything, you, as a team, sort out the distribution.’ –P36, Quality
Assurance Analyst

Lack of motivation Some participants described that team members are more motivated and
happier when they have some level of ownership and when they see value in what they’re
doing. For example, participant P41 highlighted lack of motivation as a reason to replace the
manager-driven task allocation with self-assignment and participant P40 revealed happiness
among team members with self-assignment.

‘Prior to this [self-assignment] they [team members] were less motivated’ –P41, Senior
Architect
‘With self-assignment people are happier. They feel more in charge of what they’re
doing, they have that sense of ownership.’-P40, Consultant

Low quality It was also indicated that when it was someone else in the team assigning the
tasks, the quality of the work was not that good. This could be because the person assigning
the task may not always be well-aware of an individual’s technical skills and interests.

‘[Earlier] most of the time it was Scrum Master or the PM’s say who’s going to do
what….and the quality of the output wasn’t that great’ – P37, Head of Product Delivery

This in a way is correlated with lack of motivation as work quality is good when the team
members are motivated and more committed.

‘When they [team members] are motivated, I see them delivering exceptional results’ –
P41, Senior Architect

Inaccurate estimates It was also reported that the shortcomings of manager-driven task
allocation helped participants take up self-assignment. One of these shortcomings was the
possibility of making wrong assumptions because the manager was not always fully aware of
the actual implementation details, underlying technical risks, and the expected time to perform
a task, potentially leading to inaccurate estimates.

Empirical Software Engineering

‘When a manager hands it [user stories/tasks] down, often they’ll either make estimates,
and then they’ll hold you to their estimates and then there are all sorts of problems. –
P15, Technical Lead & Scrum Master

The developer P16, agreed with the Scrum Master’s point of view.

‘Team deciding on their own capacity is better than being handed down [estimates]
because if a manager puts their finger in the air and makes a wrong assumption, that
sends unrealistic message to the business’ – P16, Developer

4.4 The Intervening Conditions – Conditions Influencing Self-assignment

These causal conditions led agile teams to adopt and practice self-assignment. Next, we will
see what and how the intervening conditions influence the self-assignment process. We have
elaborated these conditions as factors that facilitate or constrain our phenomenon. The
conditions that facilitated the self-assignment process are described as facilitating conditions
in sub-section 4.4.1 and the conditions that hindered the process are mentioned as constraining
conditions in sub-section 4.4.2. These are listed in Table 3.

4.4.1 Conditions Facilitating Self-assignment

There are certain facilitating conditions, which are broad, general conditions that influence the
phenomenon. The phenomenon can be facilitated provided these conditions are met. In this
study, we identified nine facilitating conditions classified into three categories. Some of these
are specified as attributes of the artefacts and agile practices, others as attributes of people.

Artefacts-related facilitating conditions Agile teams create artefacts in the course of product
development. These artefacts are useful in tracking product progress, providing transparency
and prospects for inspection and adaptation to the stakeholders (Schwaber and Sutherland
2011). Some of the common Scrum artefacts are Product backlog, Sprint backlog, Definition
of Done (DoD), etc. (Deemer et al. 2012). Attributes of agile artefacts were reported to
facilitate self-assignment, such as F1 (appropriate task information), F2 (appropriate task

Table 3 Facilitating Conditions and Constraining Conditions

Facilitating Conditions Constraining Conditions

Artefacts F1: Appropriate task information C1: Self-assignment for Dependent Tasks
F2: Appropriate task breakdown
F3: Well-defined Definition of Done
F4: Well-groomed product backlog

Practices F5: Collective estimation and task breakdown C2: Urgent Work
F6: Estimation before prioritization C3: Tracking work distribution and accountability

C4: Distance Factor
People F7: Strong product knowledge C5: Manager Intervention

F8: Good understanding of problem C6: Inadequate expertise & resources
F9: People Behaviour C7: Multiple people interested in similar tasks

C8: Self-assigning tasks not skilled at
C9: Self-assignment for new team members
C10: Personality Traits

Empirical Software Engineering

breakdown), F3 (well-defined Definition of Done), and F4 (well-groomed product backlog).
These are detailed through examples below.

F1: Appropriate task information. Requirements-related work items in agile are
generally defined as epics or features (for high-level requirements) and user stories
or tasks (for lower level requirements) (Bick et al. 2018). High-level work items are
generally allocated to the development teams who break them down into user stories
and technical tasks either individually or collectively. Providing enough information
on the work items was seen to be of vital importance to effective self-assignment and
is identified as the most important facilitating condition as stated by a majority of the
participants [P14, P18, P19, P20, P22, P26, P28 - P31, P37, P40-P42]. The team
members understand the problem and feel confident to self-assign if sufficient details
are provided against the work items. Having comprehensive information not only
helps the development team understand the problem and propose solutions but also
identifies the task dependencies involved and the impact it makes on other modules.
Particularly, this supports the junior team members who are initially hesitant to ask
for help. Additionally, with enough details on the tasks, it is quite unlikely that team
members will have to go to other team members for getting clarifications and instead
rely on themselves. This is accepted by both the managers and the developers as
indicated in quotes below.

‘It [task] should have enough details, that’s the most important thing.’ –P22, Developer
‘You’ve got to make sure that you have enough information either in the card or in the
explanation so that they (team members) do feel confident with taking on that task.’ –
P14, Technical lead & Developer

F2: Appropriate task breakdown. Appropriate level of granularity while breaking down
tasks is seen to drive the work allocation in the right way. This indicates that it’s not
just the task’s comprehensiveness that makes it understandable to team members, but
the way the breakdown is done also adds clarity on it. For example, while defining a
form if developers start writing about every field name as a task, most of the time
will be taken defining it which is not useful in any way. If the tasks are not broken
down appropriately it could lead to ambiguity resulting in assignee’s lack of confi-
dence to complete the task on time. A more decent breakdown of tasks facilitates the
individuals in making reasonable choices as it makes the tasks clearer, more under-
standable, and easier to do.

‘The key is not to split tasks to such a smaller level so that it becomes very difficult to
allocate. You want granularity but you want a certain level of granularity’ – P18,
Software Architect

F3: Well-defined Definition of Done. DoD provides clarity to work item’s (feature, story, or
task) definition and is considered met when it fulfils the customer’s acceptance criteria. If the
acceptance criteria or DoD is vague and lacks clarity, then there is a potential risk of wrong
interpretations of the work items. The team members may not pick them to avoid discussions
required to gain clarity or assume the task could be harder to complete. They may not pick
them considering that fleshing out the right acceptance criteria would be an additional task.
Well-defined done criteria help in making effective choices while self-assignment tasks, as
stated by P27.

Empirical Software Engineering

‘It is important that done criteria is properly defined at the beginning of the sprint or
whenever the task is available, with insufficient DoD they [team members] are unlike to
choose the work’ – P27, Developer

F4: Well-groomed product backlog. Agile teams perform product backlog grooming and
refinement sessions mainly to refine and improve user stories, and to estimate and prioritize the
backlog items (Deemer et al. 2012). A well-refined structure in the product backlog seems to
contribute as a facilitating factor towards effective self-assignment. The backlog should not be
only well-groomed but also consistent so that it’s not undergoing extraneous changes in
priorities. With too many changing priorities, the backlog can be unwieldy and challenging
to manage as indicated by P29.

‘If you have an environment where the backlog of stories coming up, or switching the
priorities, or changing every day, then it’s hard’ – P29, Developer & Scrum Master

Well-defined and detailed artefacts and concepts such as the technical tasks or user stories,
product backlog and definition of done facilitated self-assignment.

Practices-related facilitating conditions Facilitating conditions consisted of practices such as
F5 (collective estimation and task breakdown) and F6 (estimation before prioritization).

F5: Collective estimation and task breakdown entails a combined effort involving every-
one in the team (Deemer et al. 2012; Hoda and Murugesan 2016). This helps in getting input
from all the team members, sometimes defending their individual estimates, sharing assump-
tions and knowledge, keeping all on the same page, therefore providing all team members the
opportunity to choose any task. This collective estimation and effort support collective
awareness of the task. No one can disregard a task as the team members collectively perform
the breakdown and estimation of tasks, share the information, help and indicate the right
direction so the chances of mistakes and inaccurate estimates can be less.

‘During the planning we do everything together, sharing, creating the tasks, it means
that everyone knows and owns those tasks. So, no one could say I didn’t grab a task, it’s
not my estimate’ – P15, Technical Lead & Scrum Master

F6: Estimation before prioritization. In a few cases, it is seen as important to estimate tasks
well in advance of the sprint. Having estimations a few iterations ahead of the sprint was seen
to help the teams practice self-assignment since it ensures a long list of tasks is available to
choose from providing more options for the team to select and exercise autonomy. This
provides an opportunity to get prepared for the work in advance allowing the team to move
tasks as per their and business needs. As a result, team members can commit to tasks of their
choice.

‘We made sure that we were about 4 to 5, maybe more, Sprints ahead in estimation at
any point in time. So the problem with prioritising before estimation is that when the
team commits, the set of options is very small so they don't actually feel like they’re
exercising autonomy. So by giving us the flexibility to be 5-6 Sprints ahead, allowed the
team to go, ‘you know, if we do this thing that’s in Sprint number 4 now, you know,
we’re preparing the groundwork for something that’s coming later, let’s move that up’.
And now the team starts self-organising or practicing autonomy’ – P30, Lead Developer

Empirical Software Engineering

As reported, this worked well in an experienced autonomous team of developers who were
free to bring items into the backlog, based on their requirements. The team was doing
estimations within a two-week Sprint, product grooming three times, every two weeks. It
should be noted that estimating 4–5 sprints in advance may not be practical in all settings due
to time constraints. However, estimating 2–3 sprints ahead may not be that unrealistic as a
trade-off for the team to self-organize and practice autonomy.

People-related facilitating conditions Some attributes of the people involved in the self-
assignment, such as F7 (In-depth product knowledge), F8 (Good understanding of problem),
F9 (People behaviour including technical self-awareness, sense of ownership, understanding
of importance) are also reported to mediate the self-assignment process.

F7: Strong product knowledge. Strong in-depth product knowledge makes developers and
testers familiar with different areas of the application. That makes them more competent, and
they are more comfortable to make the right choices when self-assigning tasks. It is likely to
build their confidence, increase productivity, and improve their work quality.

‘Well naturally whoever knows the area of work, the piece of software or the problem
that needs to be addressed that’s most productive’ – P20, Lead Developer

F8: Good understanding of problem. Also, understanding the work items and associated
problems plays an important role as acknowledged by both developers and Scrum
Masters. With an incorrect understanding of a problem, it is possible that the attempts
to resolve the problem will also be flawed. Therefore, having a mutual and accurate
understanding of the problem is important for self-assignment. Developers are typi-
cally seen reluctant to choose the tasks that they do not understand well as indicated
by P29.

‘Having a good understanding of the stories that need to be done, I think that is
important. If I have many questions about a story, I can’t self-assign, because I don’t
know what needs to be done.’ – P29, Developer & Scrum Master

F9: People Behaviour. Additionally, other behaviours and attitudes that were reported as
facilitating conditions by multiple experienced managers and team members were: self-
awareness of technical abilities as a team or as individuals and having sense of ownership
and commitment. If the individuals and teams are well-aware of their technical abilities, they
would make reasonable choices individually or collectively.

It has been acknowledged both by the managers and agile team members that when people
select a task, they have the freedom to choose their own direction which boosts their
motivation to perform better.

‘The most important thing in my view is people have buy-in, they commit and agree on
the tasks that they want to go and do. And I think that gives them a sense of ownership, it
gives them a sense of choice and commitment.’ –P42, Technical Lead

With this autonomy and opportunity to choose, one can naturally grow responsibility and
commitment towards that work enabling a sense of ownership. On the other hand, if the team
members are being forced to work on something, they are less likely to own it. This indicates if
these attitudes are manifested in individuals, they can help to facilitate the self-assignment
process.

Empirical Software Engineering

4.4.2 Conditions Constraining Self-assignment

We identified ten conditions that were seen to constrain self-assignment through posing some
challenges. Similar to the facilitating conditions, these fall under Practices, Artefacts and
People-related conditions.

Artefacts-related constraining conditions The only constraining condition reported in this
study under artefacts is C1 (Self-assignment for Dependent tasks) which is listed below.

C1: Self-assignment for Dependent tasks. Some tasks rely on other tasks to be completed
before they can be started. This can sometimes be challenging as some developers may pick
work which may have a dependency on other tasks in the sprint. If the team members are
unaware of these dependencies, they will likely self-assign such tasks, which can lead to slow
or minimal progress.

‘Certain stories are dependent, but we avoid that as much as possible’ – P32, Developer
‘We try to avoid having dependant tasks, but it happen’ – P16, Developer

Practices-related constraining conditions C2 (Urgent Work), C3 (Tracking work distribu-
tion and accountability), and C4 (Distance Factor) are identified as constraining conditions
influencing the self-assignment process.

C2: Urgent Work.Many participants indicated that urgent work coming during the running
sprint is one of the most influential factors that constrains practicing self-assignment [P13,
P14, P16, P18, P19, P21, P23, P25, P28, P30, P33-P36, P40, P41]. When there is some high
priority urgent task, e.g. a high impact bug in some part of the application or a show-stopper
support reported by the customer, then self-assignment is constrained. An example of such
work is shared below.

‘When product owner is getting feedback from the app stores about…..being annoying
for customers…., Well guys, it’s really important that we squeeze this in as customers
are really complaining about it’ – P23, Test Analyst

This is sometimes disturbing for the team members as it supersedes their ability to choose and
takes away time and resources from the ongoing sprint. One of the participants disclosed this
as follows:

‘Obviously, there are urgent stuff that just gets put onto my desk’ –P19, Developer

Another participant indicated that they could refuse to take up such urgent things but find it
culturally incorrect. This could be because knowing the urgent nature of the work, and still not
showing a willingness to work on such task may not please the manager or contradicts the
team or business interest.

‘Although we can say no, we’re not gonna do it, but it wouldn’t be culturally nice to say
that’ – P23, Test Analyst

C3: Tracking work distribution and accountability. Multiple team members choosing the
tasks on the go during the running sprint gets challenging as no single individual is directly
accountable for any specific issue which is reported later on. This is because multiple people
contribute to one story by committing to different tasks. For instance, a story X may consist of
10 tasks, and if these tasks are done by five different developers, it could be hard to backtrack

Empirical Software Engineering

an issue as so many developers have been involved in the development of the story as stated by
one participant. However, this is not reported to happen frequently.

‘You may get [into situations], like if there’s a problem found [later], there may be less
ownership on, maybe five people worked on a story, well, whose bug is that, yeah
(laughter).’ – P15, Technical Lead & Scrum Master

As the team members are given freedom to choose tasks they may not choose wisely and make
wrong estimations. The reasons could be that they try to impress a manager by taking more,
long or complicated tasks or want to show their efficiency by working harder. This can
sometimes lead to situations where the product is delayed due to the fact the person is not
able to finish the tasks they committed. They are given a choice, but their wrong choice led to
significant delays. However, managers sometime feel that people are not choosing enough
tasks for a sprint.

‘The only bit of it[self-assignment] that I don’t like is it can get a little bit unambitious in
terms of what can I get done. Like it’s easy to have an expectation set of 20 points per
person, per Sprint for example. And mentally that’s what I tend to think…But sometimes
I wonder if there would be more that could be done if people worked harder...And I felt
like either somebody wasn’t working on their tasks or it wasn’t getting done’ – P31,
Development Manager

One the other hand, one of the participants P20 shared the experience of penalizing by over-
committing more tasks in a particular sprint and acknowledged picking amount of work that
they are sure to accomplish.

I [team member] remember my took on a lot of work through, and hadn't finished things
at the end of the sprint and so things were uncompleted and he [Manager] doesn't like
that. So, I felt like trying to work hard is penalized. So, what happens now is I’ll do all
the work in the sprint, won’t take on anything else’ – P20, Lead Developer

C4: Distance Factor. The distance factor, or remote location of teams and working across
different time zones, seems to influence the application of self-assignment in some way as
brought up by a couple of participants. This especially happens when half of the team is sitting
close to the Product Owner or the client while the other half don’t have Product Owner or the
client representative. They don’t get as much connectivity as the collocated ones and partic-
ularly disadvantaged when people don’t speak very clearly during discussions, missing some
important piece of information. Similarly, the collocated members get an edge of expressing
their interest for any task grabbing it earlier, enjoy the opportunity to show their enthusiasm
and collaborate with the client in person. When the development team is collocated, it
enhances communication and coordination of activities while picking tasks, e.g. sharing prior
knowledge on a task, less or no pair programming with a remote team member. Working with
teams in different time zones is more challenging. There is a good chance to struggle to get a
task of interest if teams are operating in different time zones.

One of the team members who worked remotely revealed that being away from team
physically sometimes jeopardized practicing self-assignment in its true essence.

‘Sometimes we are on remote call, client and US team are together in same room, when
they start picking the tickets, having discussions, everyone is interested doing that work
they have advantage of raising their hands they will quickly say ‘Hey, I'm interested

Empirical Software Engineering

...they have advantage.... auction never starts here’ –P1, Tech Lead
‘If some person is on a different time zone, he’s still sleeping, and the job comes in
today, how can he know, how can he assign himself on that? I’m going to do it.’ – P33,
Tester

One manager shared how working dynamics such as real physical presence, missing facial
expressions and gestures, sharing thoughts and skipping offline talks and different insights can
undermine the self-assignment for people working remotely.

‘If you’re not in the room with seven other people, you’re on a speaker phone, you can’t
see what’s going on, don’t experience the dynamic. And then people vote because you’re
not seeing the hands go up, you’re not influenced by the democratic process. So, you
have a different thought or insight because everybody else has been talking about it
offline or whatever the case may be so, there’s a gap.’ – P30, Lead Developer

While observing one of the stand-up meetings [T11], one developer who used to work
remotely for a couple of days every week due to some personal situation seemed disadvan-
taged. The daily stand-up was a lot harder, he had to dial in for it, and the team had to relocate
to the recreation area for making the call. While observing the stand-up, we also noticed that
the people weren’t speaking very clearly, so he probably did not hear half of it and even his
voice broke up once during the call. Above we have included a memo (Fig. 6.) saved in NVivo
on to exemplify the influence of distance factor on making self-assignment work.

Some intervening conditions apply to a specific context as identified by memo (See Fig. 5.),
e.g. distance factor is specified as one of the constraining factors, but this only applies when
one or more team members are working remotely. These constraining conditions lead to
certain action/interaction strategies which are adopted by agile individuals and teams as
presented in Fig. 7.

People-related constraining conditions Some of these constraining conditions are associat-
ed to people’s behaviours. These are C5 (Manager Intervention), C6 (Inadequate exper-
tise & resources), C7 (Multiple people interested in similar tasks), C8 (Self-assigning
tasks not skilled at), C9 (Self-assignment for new team members), and C10 (Person-
ality Traits).

C5: Manager Intervention. Some technical managers or leads were often found proposing
or suggesting their way of doing things. This emerged as another intervening condition in
letting team members practice self-assignment. The managers may not necessarily push their
decisions, but team members may not like this interference while performing the task. They
rather prefer doing it on their own without any directions as shared by P19.

‘But there definitely been times when he [manager] looked over and given suggestions.
So, I don't really mind but I prefer him to not be there just so I can do it [task] on my
own.’ – P19, Developer

On the other side, manager intervention can also be inadvertent. One manager talked about
instances when it’s not their intention to assign tasks but the gestures like looking at someone
during the daily stand-up, asking a question about a task or discussing an issue gives them an
indication that the manager wants them to pick it. Another manager accepted that there are still

Empirical Software Engineering

times when they could not resist assigning a task, limiting the team members to make their
own choices.

‘I guess there are still times where I might go up to someone and effectively assign them
the task, because I’ve asked them a question and then I’ve said can you look into this...
So that still does happen.’ – P31, Development Manager

Similarly, while observing team’s sprint planning meeting, this was also noticed that the
manager having an eye contact with one of the developers while elaborating a story might have
influenced the developer choosing the story as that team member was seen to self-assign that
story.

C6: Inadequate Expertise & Resources. As another constraining factor, sometimes inad-
equate or limited resources are seen to influence the smooth execution of self-assignment. As
an example, in a team with one tester, there is no option of choosing tasks. As an exceptional
case, when most of the members in the team happened to be away, then also self-assignment is
kept back.

‘There’s no self-assignment, because the Quality Assurance Analyst is a single person,
he cannot, it’s only the Quality Assurance Analyst who can take up the thing –P29,
Developer & Scrum Master

Also, sometimes managers and scrum masters have to assign tasks to keep a balance for equal
distribution of work among the resources. For instance, if there is a high priority task that must
be assigned, it goes to the person who is free but if it was not high priority, it could just go in
the queue. Participant P21 shared an example of this as:

Fig. 6 Memo on influence of distance factor on self-assignment

Empirical Software Engineering

‘I [Scrum Master] tend to have something in my mind about who might be assigned
partly because I want to make the logistics work, this person becomes free, this person
has some other work therefore it probably goes to the person who is free.’ – P21, Scrum
Master

From these examples, it is evident that sometimes when the resources are not fully available
the manager has to purposely suspend self-assignment. Also, to keep a check and balance. This
indicates that the availability of expertise and resources also impacts the self-assignment
process.

C7: Multiple people interested in similar tasks. There are times when many developers/
testers are interested in picking same tasks. This could be due to the level of ease or interest,
potential for outside endorsement, opportunity to learn new technology etc. However, it could
sometimes get challenging to not let the same people pick the fascinating ones, keeping an
equal balance among all the team members and getting the full benefits of self-assignment.

‘As you’re [team] working down the board, getting stories done, you know, maybe the
one [task] everyone wants to do is story number 4…’ –P3, Technical Lead & Scrum
Master

C8: Self-assignment tasks not skilled at. Different instances were revealed around
people’s reactions as constraining factors towards self-assignment. Developers and
testers are seen to choose tasks that they might be interested in doing to explore
and learn new things, and this sometimes ends up into low productivity, needing more
help or making wrong estimations. This is because they may perceive the level of
difficulty and effort required to complete the task incorrectly. The task could be more
challenging and time-consuming than initially anticipated. But an encouraging man-
ager has to outweigh these, firstly for the promising benefits of employee satisfaction
through some control over what they pick for themselves and secondly allowing them
to try, learn and improve their skills. However, this can be challenging as the task
may need to be estimated accordingly or given more time for completion. It is also
reported that sometime someone picks a task they are not skilled at and struggle later
on which is indirectly encountered as another challenge with self-assignment.

‘A person might go and take a task that they’re not the right person for. So e.g. there
might be a very specialist task in a security piece of work, and a person who might not
have self-awareness might go and pick it up. And rather than them doing it in an hour, it
might take about three days’ –P42, Technical Lead

C9: Self-assignment for new team members. Newcomers are neither well-acquainted with
their fellow members nor with the team’s development processes in the beginning. They
require some time to settle in, understand development practices, build trust and co-ordination
with other team members. Similarly, introducing new members to self-assignment seems
challenging, irrespective of being a novice or experienced professional they need some
assistance to understand the team’s task assignment process in addition to getting an under-
standing of the technical domain and code base.

‘They’re [new member] just starting to know everything [process & project] and in a
complex project as this, if you ask me, I would like them [Manager] to assign as I don’t
know a thing about it’ – P33, Tester

Empirical Software Engineering

C10: Personality Traits. Some people struggle in having confidence in their own choices, it
might be part of their personality, or the culture they come from or due to lack of self-
confidence. For instance, the shy or introvert members may find it intimidating to self-assign a
task. They sit back while others self-assign tasks leaving behind the ones not picked up by
others. Then, there are also less-confident members who may have the right skillset and
knowledge to perform the task but are scared to raise their voice or are under the impression
that other team members may be more capable of performing that task quickly and more
efficiently. They have a natural tendency to believe in other opinions more and seen more
comfortable with working on tasks assigned by others.

‘There are members who don’t want to pick something, it’s hard for them to step in front
of the team and take something, rather than getting something. And that is a personal
attitude, and that’s hard and if you have a team where more than one is like that, it’s
hard to counter…’ – P32, Developer

4.5 Actions/interactions Strategies– To Workaround Challenges of Self-assignment

The constraining conditions described in sub-section 4.4.2 steer the individuals and
teams to adopt strategies for overcoming the undesirable effects of the phenomena.
We identified 14 strategies, which we describe in this sub-section and are illustrated
in Fig. 7.

S1: Task delegation Task delegation is the most common strategy [N = 16] used for an urgent
piece of work (C2) and when the team is short of resources (C6). Our analysis suggests that
very high priority tasks are assigned directly to the person considered best suited, the
specialists as indicated by a lead below.

‘So typically, I’d pick one of the more specialist people who know what’s going on and
say ‘hey, can you please jump in and grab this task?’ – P14, Technical lead &
Developer

Sometimes the task is allocated to the most suitable person with the desired technical skillset,
at other times it may be directed to a person who has done similar work in the past as expressed
by Participant P21 through an example:

‘We made a change in partition manager [module] three months ago, and this is related
to that change. ‘You did that change, so you understand it. Can you go and do it?’ –
P21, Scrum Master

This can result in a quick solution to the problem but was perceived as a threat to autonomy as
the team members are no longer allowed to choose their own tasks, rather the assignment is
being enforced on them through their manager.

S2: Offering work An uncommon strategy [N = 6] practiced to address urgent work (C2) is
that the manager will post a message through online channels, like slack or email, or during the
stand-up indicating the high priority of the task and let the team members choose. Listed is an
example where true autonomy can be easy to practice by providing the opportunity of choice
as a variant of self-assignment in the form of volunteering.

Empirical Software Engineering

‘X [Manager] posts a message that this ticket is priority, can someone have a look and
then everyone will volunteer’ – P33, Tester

S3: Manager’s absence from task allocation sessions To minimize the influence of the
manager (C5), teams are seen to conduct the task allocation sessions without them. It helps
them choose their tasks without the manager’s persuasion.

‘Had to persuade dev manager that [stepping out] would work and worked in other
places till he reckoned and agreed the team was a bit more mature and he would step
back letting them assign the tasks themselves and do their own breakdown.’ –P21,
Scrum Master

Managers seem to have this self-realization too as expressed by P31.

‘I felt that I could be a little bit coercive too by saying yeah, X would be best to work on
that one, and then suddenly he’s assigned to it by default only because I said that. And
so that’s why I don’t participate in those meetings.’ – P31, Development Manager

We observed during a sprint planning meeting [T11], the manager briefed all the user stories to
the team, and they collectively estimated them. Then the manager left the meeting room, and
the team conducted the task breakdown session without him.

C6: Inadequate

expertise &

resources

C10: Personality

Traits

C2: Urgent Work

C3: Tracking work

distribution &

accountability

C4: Distance

Factor

C5: Manager

Intervention

S7: Highlighting

Dependencies

S8: Isolating

Dependent Tasks

S9: Standalone

definition

S1: Task delegation

S2: Offering work

S4: Facilitating self-

assignment

S5: Self-assigning the

next available task

S6: Active

Participation & Use

of Tools

C1: Self-

assignment for

Dependent Tasks

S3: Manager’s

absence from task

allocation sessions

S1: Task delegation

C7: Multiple people

interested in

similar tasks

S5: Self-assigning the

next available task

S12: Team-up with

experienced resources

S13: Informal team

discussions & negotiations

S4: Facilitating self-

assignment

S4: Facilitating self-

assignment

S10: Flexible estimations

S12: Team-up with

experienced resources

Constraining

Conditions

C9: Self-assignment

for new team

members

S4: Facilitating self-

assignment

S12: Team-up with

experienced resources

S14: Fixed Work

Assignment

S11: Task’s Reassignment
C8: Self-

assigning tasks

not skilled at

Fig. 7 Action/Interaction Strategies for constraining conditions. The rectangular boxes represent constraining
conditions, and the round-cornered boxes represent the strategies. Dashed lines link the constraining conditions
with their respective strategies

Empirical Software Engineering

S4: Facilitating self-assignment The scrum master is seen to play an influential role for
ensuring an even distribution of work within the team (C3). When managers believe people are
not choosing enough tasks for a sprint, it is the scrum master who is seen investigating the
underlying cause. People may not be picking more tasks due to low confidence, no experience,
lack of interest, other commitments such as working on other business as usual tasks, or to help
others. In exceptional cases, when multiple team members show interest in similar tasks (C7),
sometimes it’s the scrum master who intervenes to keep a balance ensuring everyone gets
equal opportunities to learn and grow by experimenting new things.

Similarly, individuals and teams new to agile practices (C9) sometimes are seen struggling to
adopt to that level of self-organization due to multiple reasons such as teammember’s background,
experience and attitude. It was shared by the scrum master [P21] that they started practicing self-
assignment only to be part of the project initially i.e. practicing it for new development work. This
was done to persuade their technical manager who had concerns around meeting a deadline when
client demanded quick completion of work. SMs’ shared their experiences, when they had issues
trying to get some members to take ownership and operate autonomously. There are diligent
members who have no trouble picking tasks voluntarily, while it is also not unusual that there are
members who barely self-assign unless everyone else in the team has self-assigned tasks. They rely
on the SM to suggest themwhat tasks to self-assign. In such cases, scrummasters andmanagers are
seen to play a primary role to encourage team members to volunteer and steer the team in the
direction of self-organization as indicated below.

‘I am trying to get people in the way of thinking more with agile mindset. But also try not
to push them too hard or too fast, cos then they kind of resist it’ –P29, Developer &
Scrum Master
‘We’re trying to build a culture where people volunteer for stuff when Sprint planning
happens. But we don’t have a team that is currently groomed with that attitude and
mindset. So, we’re coaching them to be at that stage, so we ask them to call themselves
out on what they want to work on, because they’re unsure of what to pick up first’– P26,
Product Owner

Similarly, a good coaching conversation or one-on-one mentoring by the scrum master is
reported as a strategy to help people who are not comfortable in raising their voices and
choosing work for themselves (C10). However, as indicated by the participant this does not
happen straightaway and demands a supportive scrum master and consistent team support to
help shy, introverted people make choices and feel confident in their decisions.

I had one colleague, he was very silently, he was not really talking, he was a wonderful
developer, he was really, really good, but he was not able to step in front of the team
and take something. And I worked very long with him together, and we ‘taught’ him, and
mentored him on a friendly way. It took a while, a long while ……… Because I taught
him, I was kind of his mentor … and he learned it. – P32, Developer

This also goes back to the type of culture the team possesses. In an environment where people
can have open discussions and address such problems either on individual or team level, this is
easy to address. On an individual level, it is mostly the scrum master, mentor or coach who is
responsible to facilitate the self-assignment process providing the guidance and helping them
to overcome individual problems towards self-assignment. On the team level, the development
team members work together to facilitate self-assignment, e.g. senior peers are also seen to
play a significant role to support the junior team members.

Empirical Software Engineering

S5: Self-assigning the next available task When many people show interest in the same
tasks (C7), for most of the teams the sprint rule of self-assigning the next available task
automatically handles such situations. The first person who runs out of work can take the next
available task on the storyboard. A senior participant shared that even being a senior
developer, if he likes to do a task, at times he misses out because of this rule. This naturally
addresses the issues of short of work, unequal distribution, under-committing, and over-
committing of tasks (C3). In this scenario, it is to be ensured that there are enough tasks on
the board so that no one gets short of work. It was observed during the sprint planning meeting
[T11] that the scrum master included few stories as ‘could have’ to ensure everyone has work.
These were treated as stretch tasks for the sprint.

‘As you’re[team] working down the board, getting stories done, you know, maybe the
one[task] everyone wants to do is story number four, but no one can go to it until story
number three has no more tasks they can work on. So, but the first person who runs out
of tasks above that story will grab the task.’ – P15, Developer & Scrum Master

S6: Active participation and use of tools Software tools facilitate self-assignment by
providing all the information related to a work item in one place. They serve as central source
of information and enable teams to stay up to date, increase transparency and visibility of work
items. The use of online tools is identified as a useful strategy in keeping the remote members
involved during the allocation process (C4). These tools make self-assignment easier as the
team members can just access the tool irrespective of their location, look at the product and
sprint backlog and self-assign items. The moment a task is selected it reflects the assignee
details against the task. It serves as the single source of truth for everyone making the progress
visible to people inside and outside the team, highlighting if people are picking up work, how
long they are taking to accomplish the tasks or even used as a platform to ask or offer others
help. These tools assist the team members to collaborate and communicate actively.

‘That’s the reason why we’ve got systems. So, for example, if I decided to work on this
task, I’ll go into the system, assign that task against my name, and then nobody can take
it from there. So, you can’t work on a task unless it has been assigned to you’ – P37,
Head of Product Delivery

The remote team members are expected to engage more than the non-remote members, as they
may be missing information and important discussions due to their physical absence. A
participant stated that remote members need to participate more actively than the non-
remote members.

‘So, you know, I always say that if you’re remote, you’ve got to do more work to engage,
and the people that are not remote don’t care about your remoteness actually’ – P30,
Lead Developer

S7: Highlighting dependencies Another way to address dependencies between stories or
tasks was through highlighting blockers on the story board to notify others that this task has
dependency (C1).

‘We’ve got these little magnetic red things, we just go and put a blocker on them
[dependent tasks], and the team knows why it’s a blocker. When the person finishes that

Empirical Software Engineering

card, they’ll pull it off, and often they’ll just pick that card as the next one anyway, just
because they’ve finished it, and it’s unblocked.’ – P14, Technical lead & Developer

S8: Isolating dependent tasks The team shared several ways they handle dependent tasks (C1)
and some of them are reported to work well. The most effective and common method [N= 14]
stated to face the challenge of dependent tasks is isolating dependent tasks across sprints. One sprint
takes care of first part of dependency while the next handles the other dependent part.

‘The way we do it [dependent tasks] is we do identify that this will block this one.
Because we’re only doing one-week sprints we sometime put the two cards in two
different sprints. So, there’s immediately like a divorce between sprints, so you say hey
we’ll do this one and this one, this one and this one, and often that works quite well.’ –
P14, Technical lead & Developer

S9: Standalone task definition Defining tasks in a way that they are kept mostly independent
from the start is another shared strategy to address dependent tasks (C1). For example, defining a
task in one step (including front- and back-end) is seen to be practiced instead of segregating them
into front-end and back-end tasks which is more likely to increase dependency and cause delays.

‘So, its start to finish, like from the front end to the back end. So, we [team] don’t have a
story where it’s just the front end, and a story that’s just the back end, so that then
becomes a dependency.’ – P16, Developer
‘When they [team] slice a story or even the tasks, they create tasks that are what we call
atomic, and are standalone.’ –P42, Technical Lead

S10: Flexible estimations The most common strategy [N = 8] that is reported when devel-
opers pick tasks, they are not good at (C8) is to give more time i.e. over-estimate such tasks.
P15 stated how team estimation goes low in such cases below.

‘If someone picks [a task] up, and they’re not familiar with it, our [team] estimate starts
maybe too low. So, we would expect them to meet up that expectation, and say, maybe it
was five hours, maybe the guy says it’s going to take me eight hours or 10 hours. And
once it gets too big, you go, okay, do you need some help on that’ – P15, Developer &
Scrum Master

S11: Task’s reassignment In a few reported cases, the work gets taken away from the
struggling person (C8) and given to others to accomplish the deadline. Team members find
this removal from tasks as demotivating, so this is not specified as a preferred action. Others
prefer passing on such tasks as indicated below.

‘If someone was struggling, they may give it away, but it’s never been taken’ –P15,
Developer & Scrum Master
‘We’ve had examples where work has been picked up by somebody, and they’ve had to
pass it onto somebody else to do, that happens.’ – P23, Test Analyst

Similarly, another participant specified considering task’s urgency to decide whether they will
provide assistance or take away the task from them.

Empirical Software Engineering

‘In those instances, two choices; either we put a mentor to work along with him and
train him. If it’s not time critical, that’s what we would prefer doing. If it’s time critical,
then we just take the task away from him and assign it someone else.’ – P37, Head of
Product Delivery

S12: Pairing up with experienced resources Teaming up with experienced resources and
providing assistance to speed up the completion is also reported when someone has self-
assigned a task, they are not good at (C8). This was also observed during the task breakdown
session where two developers worked in parallel, one who was the module specialist worked
on the development part of the story, while the other new to the module chose to prepare the
unit tests for that story. This was how they were pairing up to work outside their expertise.
When multiple developers are interested in similar tasks (C7), senior developers providing
assistance is reported as another strategy where senior team members play the role of a mentor
leading the other developer through completion of that task sharing knowledge.

‘Don’t just take the work and do it yourself [senior team members], even though it is
easier for you, it’s good for them [member picking work not good at] teach them to do it’
– P29, Developer & Scrum Master

Similarly, new team members (C9) are seen pairing up to other experienced team members to
obtain help. Having assistance from the day they started, is proven to be useful for new team
members. This helps to build confidence over the time.

‘Just explain to them [new member], you work from the top down, and grab the next
task that, that you think you can work on. We’ll probably do it, for the first few weeks,
we’ll probably help him [new member] choose his tasks that might be easier for them to
get into. Because they may not really understand what the tasks are. But after that,
they’ll just grab something.’ –P15, Developer/Scrum Master

Pairing up the new team member with some senior developers is also reported to help them
learn and fit in the team as indicated by P14.

‘I kind of buddied them up with one of my more senior dev [developer]. So, I made it
very clear with him [Sr. Developer] that he was really responsible for making sure that
this developer was up to speed. And because there was a buddy system, like she would
always go to him first for some advice, for some help, and it was part of his day to day
business that he had to help her’. – P14, Technical lead & Developer

At stages when the team members are found struggling with tasks, they have self-
assigned (C8), some strategies are reported to address these situations. This is
apparent in the shorter Sprints where tasks that are not accomplished get automatically
noticed, and people start asking about the obstacles and offering help.

S13: Informal team discussions and negotiations Managers shared multiple strategies
e.g. involving all members in team discussions to develop mutual understanding and
collective ownership for sprint tasks. This way all team members gained insights into
the tasks, increasing their understanding from a technical point of view. So, having
these conversations allowed them to make well informed self-assignment decisions.
Similarly, another strategy is to encourage team members to have open informal

Empirical Software Engineering

discussions when multiple members are interested to work on the same task. This way
everyone gets the opportunity to speak up if they want to work on that task. Team
members are also seen negotiating with each other to work on tasks that interests
them but picked by others (C7).

‘There’s always room for a team member to say, Look! I’ve seen that you’ve assigned
yourself to this card. Do you mind if I do it, I’ve got particular skills in this area? That
happens, it does happen’ – P23, Test Analyst

On the other hand, a couple of participants indicated this has never been a serious concern and
most of the time team members are happy with whatever is on the top of the board.

S14: Fixed work assignment One of the participants shared another strategy where they
had a role ‘the bug manager’ in the team for the new team member (C9). The new
team member was only responsible to handle all the bugs and ensure the stability of
the platform. This way the new member was introduced to various areas of the
application which helped them to explore, learn, and expand their knowledge with
practice.

When I [new] joined the team... how do you [team] want me to be the bug manager,
when I don’t know anything about your platform? Oh, it’s not, our platform now. So, I
was for two weeks the bug manager, and after the two weeks, I knew the platform. –
P32, Developer

4.6 Consequences – Of Strategies to make Self-assignment Work

The aforementioned strategies are used to overcome situations introduced by the constraining
conditions and facilitate the process of self-assignment. These adopted action/interaction
strategies helped to practice self-assignment positively, but there are also instances when
undesired behaviours of practicing self-assignment are reported as negative consequences of
adopted strategies. A list of consequences of these strategies, either positive, negative or both,
are listed in Table 4. Details on which consequences relate to each strategy are presented in
Table 5 with a few examples elaborated below.

Manager’s absence from task allocation sessions (S3) The manager may not know the nuts
and bolts of a particular task while delegating it. Letting individuals choose takes off the
responsibility from the manager allowing them to use their time and energy for other important
and useful tasks. The strategy of not having the manager in assignment sessions (S3) results in
effective utilization of manager’s time (N2+) as they will be able to invest their time on
handling bigger problems then deciding which work should be done by whom.

This promotes autonomy (N1+) and increases opportunity to learn, grow and improve (N6+
). It will provide individuals a chance to work on different tasks irrespective of their skillset
supporting more cross-functionality (N7+) in the team. Team members can take on tasks
outside of their areas of speciality which help them develop different skills offering them an
opportunity to learn, grow and improve (N6+) their skills as stated by a developer.

‘It gives an opportunity for the individual to work on tasks that they would like to
improve their skills on’ – P17, Developer

Empirical Software Engineering

This improvement is not limited to individual’s technical skills, but also provides an oppor-
tunity to work on unexplored parts of the product. This technical learning can be more
impactful when complemented with extensive product knowledge for career development
and growth.

‘That way [self-assigning] we start discovering parts of the software that you not
familiar with’ –P20, Lead Developer

This autonomy helps developers with effective self-management (N13+) and control their
tasks. They could manage their own work e.g. prioritizing smaller, easier or harder tasks first
suiting their convenience. The time they spend to ask to someone about the next task is utilized
increasing productivity (N8+).

Task delegation (S1) When an urgent piece of work arrives (C2) or the team is short of
resources (C6) and task delegation (S1) is chosen as a strategy, then the manager would want
them to work on areas where they would remain focused on their core activities and prior
experience as acknowledged below:

‘Had it been me [manager] assigning, I would have always gone with my past
experience and said, you’ve done it before, you do it quickly. So, the learning oppor-
tunities would have reduced in that kind of a scenario’ –P37, Head of Product Delivery

With this task delegation, autonomy (N1-), the opportunity to learn and grow (N6-) will be
compromised resulting in threat to cross-functionality (N7-) and healthy team culture (N3-).
Furthermore, empowering team members to choose instead of enforcing delegations automat-
ically fosters healthy team culture (N3+) in the long run as indicated by one of the participants.

‘It [Delegation] will give you some sort of sense of progress in the short term if
somebody micromanages other people, I guess you will get some traction and you will
get some movement. But I don’t think in the long term that is sustainable or beneficial
for the type of culture that we want to have’ –P42, Technical Lead

But at the same time since the task, in this case, will be done by an experienced person so the
chances of errors will be less, the quality (N5+) of the work will be good and the maintenance

Table 4 Consequences of strategies for the constraining conditions

Consequences Positive (+) Negative (−)

N1: Autonomy (+) promote (−) threaten
N2 Time utilization (+) effective (−) ineffective
N3: Team culture (+) healthy (−) unhealthy
N4: Delivery (+) quick (−) delayed
N5: Quality (+) improved (−) unimproved
N6: Opportunity to learn, grow & improve (+) increase (−) decrease
N7: Cross-Functionality (+) promote (−) threaten
N8: Productivity (+) increase
N9: Team Communication (+) increase
N10: Knowledge sharing (+) increase
N11: Transparency (+) increase
N12: Accountability (+) increase
N13: Self-management (+) effective

Empirical Software Engineering

Table 5 Consequences listed against the strategies

Strategies Consequences

S1: Task delegation N1: Autonomy (−)
N2: Time utilization (+)
N4: Delivery (+)
N5: Quality (+)
N6: Opportunity to learn, grow & improve (−)
N7: Cross-Functionality (−)
N3: Team Culture (−)

S2: Volunteering and Offering work N1: Autonomy (+)
N2: Time utilization (±)
N4: Delivery (±)
N5: Quality (±)
N6: Opportunity to learn, grow & improve (±)
N7: Cross-Functionality (±)
N3: Team Culture (+)

S3: Manager’s absence from task allocation
sessions

N2: Time utilization (+)
N1: Autonomy (+)
N6: Opportunity to learn, grow & improve (+)
N7: Cross-Functionality (+)
N14: Self-management (+)

S4: Facilitating self-assignment N12: Accountability (+)
N3: Team culture & individual well-being (+)
N6: Opportunity to learn, grow & improve (+)

S5: Self-assigning the next available task N6: Opportunity to learn, grow & improve (±)
N7: Cross-Functionality (±)
N1: Autonomy (+)
N2: Time utilization (±)
N4: Delivery (±)
N5: Quality (±)

S6: Active Participation and Use of Tools N2: Time utilization (+)
N3: Team culture (+)
N9: Team Communication (+)
N10: Knowledge sharing (+)
N11: Transparency (+)

S7: Highlighting Dependencies N9: Team Communication (+)
N2: Time utilization (+)
N4: Delivery (+)
N11: Transparency (+)

S8: Isolating Dependent Tasks
S9: Standalone definition

S10: Flexible estimations N4: Delivery (−)
N6: Opportunity to learn, grow & improve (+)
N7: Cross-Functionality (+)

S11: Task’s Reassignment (Taken away) N3: TakenAway: Team culture& individual well-being (−)
N4: Delivery (+)

S12: Team-up with experienced resources N10: Knowledge sharing (+)
N9: Team Communication (+)
N7: Cross-Functionality (+)
N3: Team culture (+)
N6: Opportunity to learn, grow & improve (+)

S13: Informal team discussions and negotiations N9: Team Communication (+)
N6: Opportunity to learn, grow & improve (+)
N7: Cross-Functionality (+)

S14: Fixed Work Assignment N10: Knowledge sharing (+)
N6: Opportunity to learn, grow & improve (+)

Empirical Software Engineering

time will not be more (+) compared to a situation where issues could arise due to lack of
knowledge or experience. This would get things going quickly (+).

4.7 Volunteering and Offering Work (S2

If volunteering and offering work (S2) is chosen as a strategy then it encourages individuals to
choose asserting autonomy (N1+) which naturally fosters a healthy team culture (N3+).
However, depending on who picks the tasks, another contextual condition e.g. if an experi-
enced person picks the task this is typically beneficial as the task will be done quickly (N4+)
due to previous experience and the quality will not be downgraded (N5+).

‘I have experience in this, let me just pick this up and do it, and they can quickly resolve
it. So, we’re able to respond quicker to the customer’s problems’ –P37, Head of Product
Delivery

On the other hand, if task is being picked by an unskilled or inexperienced team member, then
this can lead to a delay to deliver (N4-) with a potential compromise on quality (N5-).

5 Discussion

We found that agile teams are seen practicing self-assignment either as part of achieving self-
organization and agile transformation or to address issues with manager-driven assignment, as
described in sub-section 4.3. We identified that self-assignment is influenced by a set of
intervening conditions i.e. facilitating and constraining conditions which can either facilitate or
hinder its adoption as addressed in sub-section 4.4. We also found that different strategies are
used to mediate the adoption of self-assignment (sub-section 4.5) with all the ensuing conse-
quences specified in sub-section 4.6. These intervening conditions can also be understood w.r.t.
impact they make. e.g. people choosing tasks they are not skilled at is one of the primary
challenges, as this leads to delay in delivering but sometimes this is acknowledged as the price
for promoting learning and keeping people happy, and is accepted by managers as a trade-off to
bear the benefits of self-assignment. However, there needs to be a balance, if all team members
choose tasks, they are not skilled at, then this would definitely affect the team’s productivity and
become a major constraining condition. But if one or two teammembers, choose tasks outside of
their comfort zone that would not make a big difference. So, part of the manager (i.e. scrum
master/coach/mentor) role is to ensure that assignments are not leading to failures, imposing risks
on the broader context while balancing the need for learning and cross-functionality consistently.

It can also be seen from our data analysis that participants workaround some of the
constraining conditions through different strategies. By definition, these strategies are used
to ‘overcome the undesirable effect of the phenomena’. However, we found that some of the
strategies, in fact, are geared towards avoiding self-assignment (e.g. S1, S11, S14) and do not
have a positive impact on the team or the process. For example, when urgent work comes in, a
major constraining condition, tasks are delegated to the most skilful person as the most
obvious strategy which is an underlying threat to autonomy. On the other hand, if the manager
asks for volunteers rather than enforcing decisions on them, they will feel they are still making
a choice and exercising autonomy, which could give better outcomes. Knowing and under-
standing the priority and impact of the work, it is generally expected that only experienced or
skilful person would be the one choosing such work. Interestingly, most of the strategies (e.g.

Empirical Software Engineering

S3, S4, S10) help facilitate and make self-assignment work within their settings. The analysis
of data also shows that remote location does not necessarily affect the self-assignment
decisions. It may, however, impact communication among the team members like any other
agile practices, e.g. remote daily stand-up, retrospective, etc. which can introduce some
challenges. Similarly, dependent tasks are specified as one of the constraining conditions,
but it may be the poor planning and breakdown of tasks that can cause delays not the self-
assignment choices.

The consequences specified in this study can be interpreted as pros and cons of the
strategies to practicing self-assignment for individuals, teams and organizations. For instance,
the opportunity to learn, grow and improve and self-management can be inferred as individual
benefits, healthy team culture as a team benefit and improved quality and fast delivery as
organizational benefits arising from the strategies of promoting self-assignment. On the
contrary, situations such as taking away a task could influence the well-being of an individual
negatively, i.e. demotivate them, delegating a task to a specialist frequently would stall the
growth of the other team members, keeping flexible estimates can lead to delayed delivery
eventually impacting customer satisfaction and organizational reputation. Our results showed
that the scrum masters, technical managers, and team leads play a significant role in mediating
these negative consequences to make self-assignment work in a sustainable manner. It would
be useful to delve deeper into how the manager or team can mitigate and manage for these
negative consequences in future studies. Interestingly, these pros and cons of strategies can
also be interpreted as long or short-term consequences depending on the impact they make e.g.
within a relatively short period of time, the impact (effective use of manager’s time) from not
having manager involved in task allocation sessions can be seen. Similarly, delegating tasks
might seem to be a fast way of getting the work done, but the impact it makes may not be
beneficial for healthy team culture in the long run. On the other hand, outcomes like healthy
team culture, improved quality, and better all-round teams may not be achieved instantaneous-
ly but will be evident over a period of time.

5.1 Comparison to Related Work

Although no other studies dedicatedly addressed self-assignment, there are some related
studies addressing benefits and challenges of self-assignment as part of their findings.

Self-assignment helps to keep the teams motivated as identified by one of the empirical
studies on agile challenges (Hoda and Murugesan 2016). This has also been supported by our
results. Our study also reveals how self-assignment benefits individuals, teams and organiza-
tions. Researchers identified some challenges around self-assignment. Poor self-assignment
can lead to loss of cross-functionality when the team members pick familiar and simple tasks
(Vidgen and Wang 2009; Hoda and Murugesan 2016). However, Scrum master’s continuous
monitoring and support can help the teams to address the risk of losing cross-functionality
(Hoda and Murugesan 2016). Our results also acknowledged that the Scrum master plays a
significant role in facilitating self-assignment in agile settings. Some examples include ensur-
ing an even distribution of work with equal opportunities to learn and grow, good coaching
conversations providing guidance, and helping team members to overcome individual prob-
lems towards self-assignment. Team members avoiding boring tasks (Strode 2016) is identi-
fied as another challenge. Team members are often hesitant to pick tasks with unclear
requirements and acceptance criteria (Hoda and Murugesan 2016). These were identified as
reasons to self-assignment challenges.

Empirical Software Engineering

Our study identified other factors that make self-assignment challenging. These are C1:
Self-assignment for Dependent tasks, C2: Urgent Work, C3: Tracking work distribution and
accountability, C4: Distance Factor, C5: Manager Intervention, C6: Inadequate expertise &
resources, C7: Self-assigning tasks not skilled at, C8: Multiple people interested in similar
tasks, C9: Self-assignment for new team members, and C10: Personality Traits. In addition, we
present a list of strategies such as S1 (Task delegation), S2 (Offering work), S3 (Manager’s
absence from task allocation sessions), S4 (Facilitating self-assignment), S5 (Self-assigning the
next available task), S6 (Active participation and use of tools), S7 (Highlighting dependen-
cies), S8 (Isolating dependent tasks), S9 (Standalone definition), S10 (Flexible estimations),
S11 (Task’s reassignment), S12 (Team-up with experienced resources), S13 (Informal team
discussions and negotiations), and S14 (Fixed work assignment) to overcome these challenges
[C1-C10]. It is also pointed out that multiple developers are seen interested in similar tasks due
to their individual preferences. We have reported some of these individual preferences as
motivational factors developers consider while self-assigning tasks (Masood et al. 2017b) in
one of our preliminary study.

5.2 Implications

Findings articulated in this study have direct significant implications for researchers and agile
practitioners. The main contribution of this research is a theory of making self-assignment
work based on rich empirical data. It adds to the limited agile literature on self-assignment and
will assist researchers and practitioners in agile community. Other researchers can expand on
this research while exploring various aspects of self-assignment and validating the study’s
theoretical model (Fig. 5) in similar or different settings. This research has implications for
agile practitioners. Our descriptions of the positive consequence of self-assignment should
encourage novice agile teams and their managers to attempt and engrain self-assignment as a
key practice. It will also assist agile teams struggling to practice self-assignment find solutions
to their challenges as shared in this study. Our findings can also be used as a guide for the
managers to facilitate self-assignment by empowering team members. The theory of making
self-assignment work is presented in a form that can be understood and applied through well-
defined: (a) context and (b) causal conditions (c) facilitating conditions, (d) a set of
constraining conditions (e) strategies applied by agile teams, and (f) a set of consequences
to make self-assignment work. Agile practitioners can benefit from these findings in multiple
ways. For example, the mapping between constraining conditions and enabling strategies
(captured in Fig. 7) can be used to find relevant strategies to tackle the constraints faced by
agile practitioners in their unique contexts. For example, they could have flexible estimations
(S10) foreseeing any delays. In situations when the assignee struggles to complete the task
within the committed time, they should be encouraged to reassign (S11) i.e., pass it on or ask
for help without fear or discomfort. The scrum master and the team can mutually decide to
help or take away a task considering the task’s urgency. As another strategy, teaming up with
an experienced member (S12) would help individuals get familiar and speed up the completion
time.

From the data analysis and findings of this study, some of the recommendations for
managers and teams are presented below. These recommendations are based on the strategies
illustrated in the section 4.5 and in some cases one recommendation is related to multiple
strategies indicated through the corresponding S#.

Empirical Software Engineering

5.2.1 Recommendations for Managers and Teams

& Managers can play a supporting role and encourage team members to choose tasks for
themselves to gain benefits of self-assignment (S4).

& Managers can ensure that the self-assignment decisions do not lead to increased special-
izations or threaten cross-functionality, rather assignment choices provide equal opportu-
nities to learn (technology, applications, and tools) to maintain a balance of knowledge
sharing (S4).

& Managers can guide the team members if they feel they have committed to something
which is hard to accomplish. However, they should avoid discouraging members to pick
complex tasks. Taking away tasks from the team members is also not recommended (S4).

& Once required information has been conveyed among the team and estimates and task
breakdown is done, the manager can step out from the assignment sessions (S3).

& If an urgent task comes in during a running sprint, the manager can ask for volunteers
rather than imposing tasks on someone. Knowing the time pressure, it is likely that person
with relevant skills will pick such a task (S2).

& If multiple people are interested in working on the same task, they can either pair up (S12)
or the manager can step-in and let one of them pick a task (S4), ensuring that the next time
the other one gets to select their preferred task (S13).

& The manager in collaboration with the team can monitor the status of the tasks on their
preferred project management platform, e.g. Trello, JIRA, or a physical Scrum board. For
instance, if an assigned task has the same status (e.g. “in progress”) for a long time it could
be an indication of the assignee struggling to complete that task (S4, S6). Such issues can
also be explicitly shared during the daily standup.

& Managers can initially let the new team members observe the team allocating their tasks
and understand the task allocation strategies. Other team members can help them choose
easier tasks (S4) or pair them up with senior members for better understanding of the
process (S12).

& If someone selects a task, they are not familiar with or skilled at, the estimate for
the task should take this into consideration and be kept generous to allow for
extra effort (S10).

& The team members miss updating their tasks on their preferred project management
platform, which can potentially lead to issues e.g. multiple people working on similar
tasks. Automatic reminders through tools or reminders in daily stand-ups can be useful to
remind them to update their tasks regularly (S6).

& Individuals can pick tasks in the presence of other team members e.g. at planning or at
stand-up. This way other team members who have more knowledge about the task can
provide assistance and transfer relevant knowledge if needed (S13).

& The manager or team could include some ‘stretch tasks’ in every sprint, i.e. a few extra
tasks ready, elaborated and estimated, in reserve, so team members can self-assign and
complete them if they happen to finish all the other tasks early (S5).

& After picking a story or task, if it turns out to be a significant unit of work, then the
assignee or the team should break them down into sub tasks and set their status to
unassigned on their preferred project management platform so that other members can
self-assign them (S11).

& Teams starting with self-assignment can initially apply for a part of their project e.g. new
development features, enhancements etc. rather practicing for the entire project (S4).

Empirical Software Engineering

5.3 Evaluation

We used Strauss and Corbin’s criteria list to evaluate the empirical grounding of the study
(Strauss and Corbin 1998). We will address these criteria QC1-QC7 one by one. During open
coding, we generated the concepts both in-vivo from the practitioners and conceptual codes
given by the authors (QC1: Are concepts generated?). Figure 4 shows an example of how
these were generated, and the coding process was applied. We systematically defined the
relationships between concepts and categories and conceptual linkages applying coding
paradigm during axial-coding. The coding processes used in the study resulted in concepts
and categories with well-defined properties and dimensions (QC2: Are the concepts system-
atically related? QC3: Are there many conceptual linkages and are the categories well
developed? Do categories have conceptual density?). While the study reports a single central
phenomenon (making self-assignment work), it does determine conditions under which the
phenomenon happens keeping into account the underlying variations and dimensions (QC4: Is
variation built into the theory?). We gathered data from agile practitioners from various
companies and different settings to examine concepts in different conditions so that our theory
is representative of the contextual variations and wider agile community. We have used the
participants’ real quotes, anecdotes, and experiences to define the concepts, associated prop-
erties and dimensions and have explained with examples (QC5: Are the conditions under
which variation can be found built into the study and explained?). We have presented the
research methodology (Section 3) and provided the sufficient data (coding examples, inter-
viewers quotes, excerpts from interview guides and pre-interview questionnaire (Fig. 2) and
research process details (Section 3) to justify the reliability of the process (QC6: Has process
been taken into account?). The authors have explained the study’s analysis and findings in
corresponding sections and believe the theoretical findings make a significant contribution to
the current literature filling the gap with a comprehensive study on self-assignment. The
presented theory and particularly the strategies and recommendations are beneficial for the
agile practitioners (QC7: Do the theoretical findings seem significant, and to what extent?).

5.4 Limitations and Threats to Validity

This study has covered a limited review of related literature in research area as not much is
available in literature about self-assignment as a way of task allocation in agile software
development. We have not attempted to review the research findings which are not related to
agile and software development and acknowledge that as a limitation. Our data set is limited to
agile practitioners who showed willingness to participate. We have kept the participants, their
companies, products, and third-party clients’ data confidential to adhere to the human ethics
policy governing this study.

The study includes team practices observations from one company only. The strategies
reported by the participants were based on data from phase 2 which involved co-located team
members. Few participants shared their past experiences of working in remote settings, or
instances where few members worked remotely so it is hard to differentiate strategies more
suitable for co-located or distributed teams from the current dataset, this is included as a
limitation and potential area for future research. The paper reported the important role the
managers play to facilitate self-assignment. However, it is yet to be explored that how
managers reconcile individual preferences with team priorities and business goals to make
self-assignment beneficial for individuals, teams, and project outcomes. The study did not

Empirical Software Engineering

evaluate the effectiveness of the strategies used to work around the constraining conditions,
which can be an exciting area for potential future work.

In this section, we describe the validity of the overall research method and
findings. The data collected does not represent the entire agile community and we
cannot claim generalizability. However, we employed data triangulation through
multiple data sources (participants varying in roles, experiences, skillset, context,
environment, culture, companies & domains) on a large dataset to mitigate the threats
of lacking generalizability in the study. A detailed description of the data collection
methods (pre-interview questionnaires, interviews & observations), context in which
the research was conducted, and the findings are presented in the paper to benefit
other researchers who wish to apply these to different contexts and settings. To
mitigate the threat to internal validity concerning the author’s potential bias towards
GT procedures, the coding activities and model representation were discussed and
shared for insights with the experienced co-authors throughout the study. We observed
the team practicing self-assignment and collected supporting artefacts (e.g. whiteboard
images, screenshots from the management tools) from the team to verify the state-
ments made by the team members during the interviews. Additionally, collecting same
information from different team members also validated the integrity of the data. We
have provided interview quotes as examples to mitigate the reporting bias. To mitigate
the risk of possible inadequate description of study constructs, we adopted in-vivo
and explanatory descriptive labels for codes, concepts and categories to capture the
underlying phenomenon without losing relevant details.

6 Conclusion

Self-assignment is not an easy and straightforward practice to follow. In this paper, we
demonstrated how self-assignment works in an agile environment. Through interviews with
42 software professionals representing 28 different agile teams from 23 different software
companies, and applying the Strauss and Corbin GT procedures, we present the grounded
theory of making self-assignment work in agile teams. The theory explains the context and
causal conditions that give rise to the need for self-assignment e.g. natural part of agile
transformation, issues with manager-driven assignment. It presents a set of facilitating condi-
tions that mediate how self-assignment may be enabled e.g. appropriate task information,
collective estimation, and task breakdown. It also presents a set of constraining conditions
that mediate how self-assignment may be constrained e.g. urgent work, manager intervention
which are overcome by a set of strategies applied by agile teams e.g. manager’s absence from
task allocation sessions, flexible estimations, facilitating self-assignment. These strategies
result in a set of consequences either positive, negative or both. The study also provides a
set of recommendations which can be used by agile practitioners to make self-assignment a
valuable practice in their settings. While more empirical work is in progress, it is believed that
these findings are a first step towards addressing multiple facets of self-assignment in depth
within software agile world and provides a platform for further work. Future work would
investigate self-assignment from an individual versus manager’s perspective, such as exploring
the factors software developers consider while self-assigning tasks, trade-offs to reconcile
individual preferences with product goals.

Empirical Software Engineering

Acknowledgements We would like to thank all the participants for their valuable inputs to this study. This
study was conducted under approval from the Human Participants Ethics Committee at the University of
Auckland.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Acuna ST, Juristo N, Moreno AM (2006) Emphasizing human capabilities in software development. IEEE Softw
23(2):94–101

Almeida LH, Pinheiro PR, Albuquerque AB (2011) Applying multi-criteria decision analysis to global software
development with scrum project planning. Springer, International Conference on Rough Sets and
Knowledge Technology

Andriyani Y, Hoda R, Amor R (2017) Reflection in agile retrospectives. Springer, International Conference on
Agile Software Development

Augustine, S (2005). Managing agile projects, Prentice Hall PTR
Augustine S, Payne B, Sencindiver F, Woodcock S (2005) Agile project management: steering from the edges.

Commun ACM 48(12):85–89
Beck, K (2005). Chrysler goes to “extremes”. Oct, 1998
Beck, K, M Beedle, A Van Bennekum, A Cockburn, W Cunningham, M Fowler, J Grenning, J Highsmith, A

Hunt and R Jeffries (2001). “Manifesto for agile software development.”
Bick S, Spohrer K, Hoda R, Scheerer A, Heinzl A (2018) Coordination challenges in large-scale software

development: a case study of planning misalignment in hybrid settings. IEEE Trans Softw Eng 44(10):932–
950

Boehm BW (1991) Software risk management: principles and practices. IEEE Softw 8(1):32–41
Carroll, J And D Morris (2015). Agile project management in easy steps, In Easy Steps
Coleman G, O’Connor R (2007) Using grounded theory to understand software process improvement: a study of

Irish software product companies. Inf Softw Technol 49(6):654–667
Corbin, J and A Strauss (2008). “Basics of qualitative research: Techniques and procedures for developing

grounded theory.”
Crowston K, Li Q, Wei K, Eseryel UY, Howison J (2007) Self-organization of teams for free/libre open source

software development. Inf Softw Technol 49(6):564–575
Deemer P, Benefield G, Larman C, Vodde B (2012) A lightweight guide to the theory and practice of scrum. Ver

2:2012
Fetterman DM (2019) Ethnography: step-by-step. SAGE Publications
Giardino C, Paternoster N, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2015) Software development in

startup companies: the greenfield startup model. IEEE Trans Softw Eng 42(6):585–604
Glaser, B (1978). “Theoretical sensitivity.” Advances in the methodology of grounded theory
Guide, A (2001). Project management body of knowledge (pmbok® guide). Project Management Institute
Hayata, T. And J. Han (2011). A hybrid model for IT project with scrum. Service operations, logistics, and

informatics (SOLI), 2011 IEEE international conference on, IEEE
Hoda R, Murugesan LK (2016) Multi-level agile project management challenges: a self-organizing team

perspective. J Syst Softw 117:245–257
Hoda, R and J Noble (2017). Becoming agile: a grounded theory of agile transitions in practice. Proceedings of

the 39th international conference on software engineering, IEEE Press
Hoda R, Noble J, Marshall S (2012) Developing a grounded theory to explain the practices of self-organizing

agile teams. Empir Softw Eng 17(6):609–639
Jurison J (1999) Software project management: the manager’s view. Communications of the AIS 2(3es):2

Empirical Software Engineering

https://doi.org/

Kalliamvakou, E, D Damian, K Blincoe, L Singer and DM German (2015). Open source-style collaborative
development practices in commercial projects using GitHub. Proceedings of the 37th international confer-
ence on software engineering-volume 1, IEEE Press

Kelle, U (2007). “” emergence” vs.” forcing” of empirical data? A crucial problem of” grounded theory”
reconsidered.” historical social research/Historische Sozialforschung. Supplement: 133-156

Lee, E (2010). “push vs. pull in scrum.”. From https://blogs.msdn.microsoft.com/elee/2010/01/21/push-vs-pull-
in-scrum/

Lee S, Kang S (2016) What situational information would help developers when using a graphical code
recommender? J Syst Softw 117:199–217

Lin, J. (2013). Context-aware task allocation for distributed agile team. Proceedings of the 28th IEEE/ACM
international conference on automated software engineering, IEEE Press

Mak, DK and PB Kruchten (2006). Task coordination in an agile distributed software development environment.
Electrical and Computer Engineering, 2006. CCECE’06. Canadian Conference on, IEEE

Masood, Z, R Hoda and K Blincoe (2017a). Exploring workflow mechanisms and task allocation strategies in
agile software teams. International Conference on Agile Software Development, Springer

Masood, Z., R. Hoda and K. Blincoe (2017b). Motivation for self-assignment: factors agile software developers
consider Cooperative and human aspects of software engineering (CHASE), 2017 IEEE/ACM 10th
international workshop on, IEEE

Masood, Z., R. Hoda and K. Blincoe (2020). Supplementary Material - How Agile Teams Make Self-
Assignment Work: A Grounded Theory Study. Figshare. [Online]. https://doi.org/10.17608/k6.
auckland.12133494.v8

Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile methodologies. Commun ACM
48(5):72–78

Pinto JK, Slevin DP (1988) Critical success factors across the project life cycle. Institute, Project Management
Schwaber, K and J Sutherland (2011). “The scrum guide.” Scrum Alliance 21
Seidel S, Urquhart C (2016) On emergence and forcing in information systems grounded theory studies: The case

of Strauss and Corbin. Enacting Research Methods in Information Systems: Volume 1. Springer, pp 157–
209

Simão Filho M, Pinheiro PR, Albuquerque AB (2015) Task allocation approaches in distributed agile software
development: a quasi-systematic review. Springer, Software Engineering in Intelligent Systems, pp 243–252

Stol, K.-J., P. Ralph and B. Fitzgerald (2016). Grounded theory in software engineering research: a critical review
and guidelines. Software engineering (ICSE), 2016 IEEE/ACM 38th international conference on, IEEE

Strauss A, Corbin JM (1990) Basics of qualitative research: grounded theory procedures and techniques. Sage
Publications, Inc

Strauss, A and JM Corbin (1998). Basics of qualitative research techniques, Sage publications, Inc
Stray V, Sjøberg DI, Dybå T (2016) The daily stand-up meeting: a grounded theory study. J Syst Softw 114:101–

124
Stray, V, Moe, NB and Hoda, R (2018). “Autonomous agile teams: challenges and future directions for

research.” proceedings of the 19th international conference on agile software development
Strode DE (2016) A dependency taxonomy for agile software development projects. Inf Syst Front 18(1):23–46
Stylianou C, Andreou AS (2014) Human resource allocation and scheduling for software project management.

Springer, Software Project Management in a Changing World, pp 73–106
Urquhart, C (2012). Grounded theory for qualitative research: a practical guide, Sage
Vidgen R, Wang X (2009) Coevolving systems and the organization of agile software development. Inf Syst Res

20(3):355–376
Williams L, Kessler RR, Cunningham W, Jeffries R (2000) Strengthening the case for pair programming. IEEE

Softw 17(4):19–25
Yin, RK (2002). “Applications of case study research second edition (applied social research methods series

volume 34).”

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Empirical Software Engineering

https://blogs.msdn.microsoft.com/elee/2010/01/21/push-vs-pull-in-scrum/
https://blogs.msdn.microsoft.com/elee/2010/01/21/push-vs-pull-in-scrum/
https://doi.org/10.17608/k6.auckland.12133494.v8
https://doi.org/10.17608/k6.auckland.12133494.v8

Zainab Masood is currently pursuing her doctoral degree at the University of Auckland (Electrical, Computer,
and Software Engineering), New Zealand. Her research interests include agile software development, software
testing and quality assurance, and human aspects of software engineering.

Rashina Hoda , PhD (Victoria University of Wellington), B.Sc. Hons (Louisiana State University), is an
Associate Dean (Academic Development) and an Associate Professor in software engineering at the Faculty of
Information Technology at Monash University where her research focuses on human-centred software engineer-
ing, agile software development, and grounded theory. Rashina received a distinguished paper award at
ICSE2017 and a distinguished reviewer award at ICSE2020. She serves on the IEEE TSE reviewer board and
IEEE Software advisory panel, as associate editor for JSS and on the organizing committees for ICSE2021,
XP2020, and ASE2020. Rashina is currently writing a book on Grounded Theory for Software Engineering. For
more information please visit: www.rashina.com

Empirical Software Engineering

http://creativecommons.org/licenses/by/4.0/

Kelly Blincoe is a Senior Lecturer at the University of Auckland’s Department of Electrical, Computer, and
Software Engineering. Her research is mainly in the human aspects of software engineering with a focus on
collaborative software development and software requirements. She currently serves on the editorial board of the
Empirical Software Engineering Journal and the Journal of Systems and Software. She is also on the Executive
Board of Software Innovation New Zealand.

Affiliations

Zainab Masood1 & Rashina Hoda2 & Kelly Blincoe1

Rashina Hoda
rashina.hoda@monash.edu

Kelly Blincoe
k.blincoe@auckland.ac.nz

1 Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland,
New Zealand

2 Faculty of Information Technology, Monash University, Melbourne, Australia

Empirical Software Engineering

	How agile teams make self-assignment work: a grounded theory study
	Abstract
	Introduction
	Related Works
	Research Method
	Data Collection & Analysis (Phase1)
	Data Collection (phase 2)
	Data Analysis (phase 2)

	Results
	The Phenomenon – How Agile Teams Make Self-assignment Work
	The Context– Contextual Details and Conditions
	The Causal Conditions – Leading to Adopting Self-assignment
	U1: Natural Part of Agile Transformation
	U2: Issues with Manager-driven Assignment

	The Intervening Conditions – Conditions Influencing Self-assignment
	Conditions Facilitating Self-assignment
	Conditions Constraining Self-assignment

	Actions/interactions Strategies– To Workaround Challenges of Self-assignment
	Consequences – Of Strategies to make Self-assignment Work
	Volunteering and Offering Work (S2

	Discussion
	Comparison to Related Work
	Implications
	Recommendations for Managers and Teams

	Evaluation
	Limitations and Threats to Validity

	Conclusion
	References

