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Abstract
In this case study, we are extending feature engineering approaches for short text
samples by integrating techniques which have been introduced in the context of
time series classification and signal processing. The general idea of the presented
feature engineering approach is to tokenize the text samples under consideration
and map each token to a number, which measures a specific property of the token.
Consequently, each text sample becomes a language time series, which is generated
from consecutively emitted tokens, and time is represented by the position of the
respective token within the text sample. The resulting language time series can be
characterised by collections of established time series feature extraction algorithms
from time series analysis and signal processing. This approach maps each text sample
(irrespective of its original length) to 3970 stylometric features, which can be analysed
with standard statistical learning methodologies. The proposed feature engineering
technique for short text data is applied to two different corpora: the Federalist Papers
data set and the Spooky Books data set. We demonstrate that the extracted language
time series features can be successfully combined with standard machine learning
approaches for natural language processing and have the potential to improve the
classification performance. Furthermore, the suggested feature engineering approach
can be used for visualizing differences and commonalities of stylometric features. The
presented framework models the systematic feature engineering based on
approaches from time series classification and develops a statistical testing
methodology for multi-classification problems.

Keywords: Time series analysis; Language; Machine learning; Natural Language
Processing; tsfresh; Feature mining

1 Introduction
Language in its diversity and specificity is one of the key cultural characteristics of human-
ity. Driven by the increasing volume of digitized written and spoken language, the fields
of computational linguistics and natural language processing transform written and spo-
ken language to extract meaning. Famous examples for applications of natural language
processing are speech recognition for human interaction interfaces [1] and the identi-
fication of individuals [2], forecasting of sales [3] and stock markets using social media
content [4], and the analysis of medical documents in the context of precision driven
medicine [5].
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Both written and spoken language are temporally encoded information. This is quite
clear for spoken language, which for example might be recorded as electrical signal of a mi-
crophone. Yet, written language appears static due to its encoding in words and symbols.
However, while reading a specific text it becomes temporally encoded in the human per-
ception [6]. This characteristic of human perception is frequently used by authors to create
an arc of suspense. In natural language processing, the temporal order of words is usually
captured in terms of word combinations (n-grams) and Markov chains [7], which are quite
successful approaches for characterizing the writing style of authors, the so-called stylom-
etry [8], such that individual authors can be identified from a text sample [9].

In this work, we analyse natural language in a new way to gain new insights into the
temporal nature of language. We explore a novel approach to extract meaningful stylo-
metric features, which are based on approaches from time series classification [10, 11].
The general idea is to map each text sample into a sequence of token measures, and to
characterize each of these real-valued sequences using a library of time series feature ex-
traction algorithms, which fingerprint each sequence of token measures with respect to its
distribution of values, entropy, correlation properties, stationarity, and nonlinear dynam-
ics [12]. This feature extraction approach utilizes the fact that the respective sequences are
ordered either with respect to their position of the respective token within the text sample
(so-called language time-series [13]) or other ordering dimensions such as ranks. Due to
their intrinsic ordering, these sequences of token measures can be interpreted as realiza-
tions of functional random variables [14], such that the presented approach of extracting
stylometric features might be described as functional language analysis. Because the time
series feature extraction algorithms are agnostic of the varying lengths of text samples and
corresponding functional random variables, each text sample is characterised by a feature
vector for well-defined length. In total, we are extracting 794 different stylistic features per
sequence, and because we are considering 5 different types of mappings from text sample
to real-valued sequence, we are extracting a total of 3970 stylistic features per text sample.
The systematic evaluation of our approach was guided by the following research question:

RQ: Can time series analysis be combined with existing natural language processing
methods to improve accuracy of text analysis for the authorship attribution problem of
individual sentences?

To answer this research question, we examine the efficiency of the proposed method
and the extracted stylometric features with respect to their improvement of two different
authorship attribution problems: the well-studied Federalist-Paper data set [15, 16] and
the Spooky Books data set [17]. While the latter poses an authorship attribution problem
with balanced class labels, the Federalist-paper data set is imbalanced.

Our work has two main contributions. First, we introduce a consistent mathematical
model for mapping texts to language time series or functional language sequences. Second,
we apply systematic feature engineering for language time series based on approaches
from time-series classification, which leads to a new class of stylometric features.

This paper is organized as follows: We first outline related work in Sect. 2. Next, in
Sect. 3, we introduce our method that combines time series classification with natural
language processing. We call our method functional language analysis. We illustrate the
extracted stylometric features in Sect. 4. In Sect. 5, we describe the evaluation methodol-
ogy used to answer our research question. We present the results of the evaluation for the
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Spooky Books data set in Sect. 6 and for the Federalist Papers in Sect. 7. The paper closes
with a discussion (Sect. 8) and an outlook (Sect. 9).

2 Related work
2.1 Functional data analysis and time series classification
Typical big data applications arise from collections of heterogeneous data collections like
social media posts [18, 19] or functional data like sensor time series [20], which are ordered
with respect to an external dimension like time. A typical machine learning problem for
functional data is time series classification [21, 22], for which automated time series fea-
ture extraction is a prominent approach [10, 11]. The central idea of this approach is to
characterize the time series or functional data by a predefined library of feature extrac-
tion algorithms, which characterize the data with respect to their statistics, correlation
properties, stationarity, entropy, and nonlinear time series analysis. One of the outstand-
ing benefits of these approaches is that they map a set of ordered sequences with possibly
different sequence lengths into a well defined feature space.

The topic of time series language analysis was proposed by Kosmidis et al. [13], who
mapped text samples to sequences of word frequencies, which serve as time series. Other
types of mappings are rankings of word frequencies [23], word length sequences [24, 25],
or intervals between rarely occurring words [26]. These works took statistical measure-
ments from the time series representations of literature and characterised the writings
mathematically. These mathematical characteristics were found to be related to various
properties of written texts. Studies have applied these approaches to long literature such
as books and focused on a limited number of measurements from the language time se-
ries. Time series language analysis has not been applied to authorship attribution prob-
lems, neither has it been conceptualized as time series classification problem. However,
these past findings have shown the potential for this method to be applied in authorship
attribution problems, and the approach of automated time series feature extraction may
be combined with natural language processing to enrich the features to be extracted from
the texts. Hence, in this work, we are advancing the works in time series language analysis,
towards the engineering of functional language sequences, which can be combined with
automated times series feature extraction approaches and have the potential to extend the
field of feature engineering from textual data.

2.2 Authorship attribution
In 1887, Mendenhall [27] suggested simple measures such as average word length and
word length counts to distinguish different authors. Since then, a great variety of different
features and methods have been applied to authorship attribution problems [9]. Among
these methods, the majority are instance-based methods, for which each training test is
individually represented as a separate instance of authorial style [9].

An overview of authorship attribution problems discussed in the literature along with
the data sets used in these studies is given in Table 1. We summarize the language, text
style, average sample text length in words, number of samples, and number of classes of
the data set(s). It can be seen that the majority of these studies consider English text, many
use relatively short text samples (<1000 words), and most require a large number of sam-
ples [9]. However, there is a recent trend towards very short messages (e.g. 280 character
tweets, which is typically <50 words). Authorship attribution on very short texts is more
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Table 1 Overview of representative authorship attribution problems. References [15, 28–39] discuss
vector space models [9]

Paper Language Text style Average sample
text length
(words)

Number of
samples

Number of
classes

[15, 16, 40] English Federalist Papers 900 to 3500 85 3
[33] English Newspaper articles 89*** 112 50

714**** 14 50
[28] English Incriminating digital

documents
290 69 10

[29] Modern Greek Digital messages 1209 250 10
Newspaper articles 1007.5 400 20

[30] Modern Greek Greek Parliament 1590 341 5
Register 2871 127 5

1285 1005 5
[31] German Newspaper articles 438 1200 2*

480 550 2*
357 3233 2*

[32] English Digital messages 169 300 to 400 10
Chinese 807** 300 to 400 10

[34] English Book chapters N/A 1960 to 2450 15
[35] English Variate types from the

ad-hoc authorship
attribution contest

Hundreds to
thousands

7 to 38 3 to 13

[36] English Works of Shakespeare
and Fletcher

1000 100 2

[37] Belgian Newspaper articles 600 300 3
[38] Modern Greek Newspaper articles 866.8 200 10

1148.2 200 10
[39] English Novels written by

Bronte Sisters
1000 480 2
500 942 2
200 2232 2

[41] English Twitter, blog, review,
novel, and essay

127 to 7078 192 to 400 2*****

[42] English Works by
Shakespeare,
Christopher Marlowe,
and Elizabeth Cary

N/A 57 3

[43] Persian Books N/A 36 5
[44] English Books N/A 80 8

80 8
80 8

[45] English Books N/A 100 20
[46] English Books 20,000 100 10

*The target author and the other authors
**Chinese characters
***Sections of 500 characters
****Sections of 4000 characters
*****Either True of False on an authorship verification problem

difficult because they contain less information, and, therefore, less distinguishable features
can be extracted. Only one of the methods considered very short texts (<100 words) [33].
However, the proposed method was very computationally intensive and does not scale
well to large data sets.

Traditionally, natural language processing based methods are still the main stream used
in Authorship Attribution. In the authorship attribution competition held in 2018 under
the PAN challenge series,a 11 teams participated. Among these teams, the majority used
word n-grams and character n-grams as features to represent the texts, and the Support
Vector Machine (SVM) was the most popular machine learning model used [47]. However,
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beside the main stream, recent studies also show a rich variety of methods for extracting
meaningful features from texts. For example, Ding et al. [41] used unsupervised Neural
Network to dynamically learn stylometric features from the data set to outperform the
predictions made with statistic feature sets. Kernot et al. [42] looked into word seman-
tics that draw on personalities of the authors. Apart from these approaches on a variety of
different aspects, a branch of research on extracting features from complex network struc-
tures of words has also gained attention [43–46, 48, 49]. These studies represent texts as
complex graphs and extract features such as clustering coefficient, degree correlation, av-
erage of the out-degree, and so on [43]. These studies have also shown remarkable results
in authorship attribution problems. However, to our knowledge, time series classification
of language time series has not yet been applied in authorship attribution problems.

3 Functional language analysis
In this section, we introduce Functional Language Analysis, which combines Time Se-
ries Analysis with Natural Language Processing (NLP) methods and provides a systematic
approach for generating stylometric features from texts. The following section present a
consistent mathematical framework, which combines established methods for the gener-
ation of language time series with novel methods for the generation of functional language
sequences. The framework also models the systematic feature engineering based on ap-
proaches from time series classification, and develops a statistical testing methodology for
multi-classification problems.

3.1 Problem statement
In supervised machine learning problems for natural language processing of text data,
there is a collection of N documents D1, . . . , DN and associated labels y1, . . . , yN . Here, we
are interested in classification problems such that label yi ∈ C is one of C = |C| different
class labels. These documents and their associated labels form a set, D, of N training ex-
amples

D = {Di, yi}N
i=1 =

{
(D1, y1), . . . , (Di, yi), . . . , (DN , yN )

}
. (1)

Each document Di can be represented as a sequence of tokens

si = 〈τi,1, . . . , τi,j, . . . , τi,ni〉 (2)

with variable length ni. Tokens can be words, punctuation, or other meaningful units [50].
The tokens τi,j ∈A are elements of alphabet

A =
N⋃

i=1

ni⋃

j=1

{τi,j}, (3)

which comprises all A = |A| tokens of training set D. For reasons of simplicity, we consider
the generation of alphabet A as part of the machine learning model.

Let’s assume, we are inspecting a document D, which has an unknown class label
y ∈ C . We denote the probability that an unseen document D belongs to class c ∈ C
as P(y = c|D,D, M), which is conditional on the unseen document D, data set D, and
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machine-learning model M. The task of the authorship attribution problem is to estimate
the label ŷ ∈ C from an unseen document D as

ŷ = arg max
c∈C

P(y = c|D,D, M). (4)

The probability P is conditional on the training set D of input–output pairs (Eq. (1)),
because the removal of any input–output pair (Di, yi) from the training set would change
the probability P slightly. Similarly, any changes to the machine-learning model M, which
comprises tokenization, feature engineering, the chosen classification algorithm itself, and
its hyperparameters, will also change P(y = c|D,D, M). Following Dhar’s interpretation of
data science as the reproducible extraction of knowledge from data [51], we are seeking new
feature engineering approaches for text data, which are meaningful such that they have the
potential of providing new insights and improving predictions from machine learning.

3.2 Feature extraction from language time series
In contrast to classical bag-of-word models, we are concerned with designing the model
M such that not only n-grams but the order of tokens in the document’s sequence is taken
into account. For this purpose, we are considering a function

Z : A→R, (5)

which maps a token τi,j ∈ A to a real number zi,j = Z(τi,j) ∈ R. From the perspective of
probability theory, function Z is a random variable defined on sample space A, and one
of its most basic definitions is to count the number of characters of the respective token
[13]. However, we will discuss a range of different definitions for Z in Sect. 3.3 to Sect. 3.4.

This transformation allows us to represent each document Di as real-valued vector zi ∈
R

ni with

zi =
(
Z(τi,1), . . . , Z(τi,j), . . . , Z(τi,ni )

)
. (6)

Applying this transformation to all documents Di of training set D (Eq. (1)) creates a
new training set Dt with

Dt = {zi, yi}N
i=1. (7)

In order to map the variable length vectors zi ∈ R
ni into a well defined feature space, we

are assuming that each token τi,j of document Di has been consecutively emitted at time
tj < tj+1 with constant sampling rate (tj+1 – tj)–1 and has been measured by function Z(τi,j).
Under these assumptions, vectors z1, . . . , zN can be interpreted as language time series of
variable lengths n1, . . . , nN . Consequently, training set Dt describes a time series classi-
fication problem and we can apply established measures and algorithms from statistics,
signal processing, and time series analysis to characterize each time series zi [10, 12]. We
are formalizing this process by introducing k = 1, . . . , K different functions

Φk(zi) = φi,k with Φk : Rni →R and ni ∈N, (8)
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which project each language time series zi into a well-defined K-dimensional feature space
irrespectible of the variability of time series’ lengths N = {ni}N

i=1. Typical examples for
function Φk(zi) might be statistics like the mean

Φmean(zi) =
1
ni

ni∑

j=1

zi,j,

coefficients of linear models like trend

Φtrend(zi) = b̂i with b̂i, âi = arg min
bi ,ai

ni∑

j=1

(zi,j – ai – j × bi)2,

or features from signal processing like e.g. Fourier coefficients. The feature vector xi of
document Di is given by

xi =
(
Φ1(zi), . . . ,Φk(zi), . . . ,ΦK (zi)

)T

= (φi,1, . . . ,φi,k , . . . ,φi,K )T ∈R
K . (9)

Functions Φ1, . . . ,ΦK can be interpreted as random variables, if the corresponding sample
space

{
R

minN , . . . ,Rni , . . . ,RmaxN }

of event {observe language time series zi} takes the variability N of the time series lengths
into account.

Consequently, we are getting the following feature matrix for the N language time series
samples

Xφ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Φ1(z1) . . . Φk(z1) . . . ΦK (z1)
...

. . .
...

. . .
...

Φ1(zi) . . . Φk(zi) . . . ΦK (zi)
...

. . .
...

. . .
...

Φ1(zN ) . . . Φk(zN ) . . . ΦK (zN )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

φ1,1 . . . φ1,k . . . φ1,K
...

. . .
...

. . .
...

φi,1 . . . φi,k . . . φi,K
...

. . .
...

. . .
...

φN ,1 . . . φN ,k . . . φN ,K

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈R
N×K . (10)

The ith row of feature matrix X describes the language time series feature vector xi of
document Di, and column k comprises a specific time series feature φk = (φ1,k , . . .φN ,k)T

sampled from all language time series z1, . . . , zN respectively all documents D1, . . . , DN .
Therefore, each vector φk ∈R

N represents N realizations of random variable Φk .
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In contrast to classical bag-of-words models, feature matrix Xφ is not sparse. But due to
the automated time series feature extraction, the matrix contains features which are not
statistically significant for the classification problem at hand. Therefore, we are selecting
statistically significant features of matrix Xφ on the basis of univariate hypothesis testing
and controlled false discovery rate [11]. Specifically, we are testing the following hypothe-
ses

Hk
0 = {φk is irrelevant for predicting y},

Hk
1 = {φk is relevant for predicting y}.

(11)

For reasons of simplicity, we are assuming a binary classification problem with classes
yi ∈ C = {A, B}. Univariate hypothesis testing has been identified as a useful precursor to
other feature selection approaches, if the feature set comprises many irrelevant or many
relevant but colinear features [11].

In order to adapt the hypotheses Hk
0 and Hk

1 for our problem at hand, we are introducing
the conditional probability distribution fΦk (φk|y) of random variable Φk conditioned on
class y. For the classification problem at hand, we can state that feature Φk is irrelevant for
distinguishing classes A and B, if the corresponding conditional distributions fΦk (φk|y = A)
and fΦk (φk|y = B) are identical:

Hk
0 =

{
fΦk (φk|y = A) = fΦk (φk|y = B)

}
,

Hk
1 =

{
fΦk (φk|y = A) <st fΦk (φk|y = B) or

fΦk (φk|y = B) <st fΦk (φk|y = A)
}

,

(12)

where fΦk (φk|y = A) <st fΦk (φk|y = B) denotes that fΦk (φk|y = B) is stochastically larger than
fΦk (φk|y = A). For these tests, we are applying the Mann–Whitney–Wilcoxon test [52],
which assumes independence of the samples but does not make any assumptions on the
underlying distributions [53, 54]. Small p-values of the corresponding hypothesis tests
indicate a small probability that the respective feature is irrelevant for predicting the class
labels. If a p-value is smaller than significance level α, its null hypothesis is rejected and
the corresponding feature is selected for the classification problem to be learned. Due to
the fact that we are performing not 1 but K univariate hypothesis tests, we need to control
the False Discovery Rate (FDR) of this feature selection process.

This is done by applying the Benjamini–Hochberg–Yekutieli procedure for adjusting
the feature selection threshold α [55]. Let p1, . . . , pk , . . . , pK be the p-values obtained from
testing hypothesis H1

0 , . . . , Hk
0 , . . . , HK

0 (Eq. (12)). We are listing the p-values in ascending
order and denote the mth element of the sorted p-value sequence as p(m). Also, we are rear-
ranging the columns of feature matrix Xφ such that the mth column φ(m) of the rearranged
matrix corresponds to the mth element of the sorted p-value sequence. The procedure ad-
justs the feature selection threshold α and selects m features φ(1), . . . ,φ(m) of the original
feature matrix Xφ such that

Xα =
(

φ(m) : p(m) ≤ m
K

∑K
i=1

1
i

α

)

=
(

φk : pk ∈
{

p(m) : p(m) ≤ m
K

∑K
i=1

1
i

α

})
∈R

N×m. (13)
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Data: Language time series feature matrix Xφ (Eq. (10)) and corresponding target
vector y = (y1, . . . , yN )T ∈ CN with C = |C| > 2

Result: Relevant language time series features
for all class labels c ∈ C do

Define binary target vector yc = (1y1=c, . . . ,1yN =c)T;
for all time series features {φk}K

k=1 do
Compute p-value pc,k of null-hypothesis
Hc,k

0 = {φk is irrelevant for predicting binary label yc};
end

end
Define set of p-values P =

⋃
c∈C{pc,k}K

k=1;
Select features (Eq. (15)), which are statistically significant for all labels C ;

Algorithm 1: Pseudo-code for feature selection of multi-classification problem in lan-
guage time series analysis

In case of multi-classification problems with C = |C| different classes, we are partitioning
the feature selection into C binary classifications 1y=c with c ∈ C and compare the condi-
tional distributions fΦk (φk|y = c) and fΦk (φk|y �= c) by testing the hypotheses

Hk
0 =

{
fΦk (φk|y = c) = fΦk (φk|y �= c)

}
,

Hk
1 =

{
fΦk (φk|y = c) <st fΦk (φk|y �= c) or

fΦk (φk|y �= c) <st fΦk (φk|y = c)
}

.

(14)

As outlined in Algorithm 1, every feature φk is tested C times, once for every class label
c ∈ C . The p-values pc,k from all C × K hypothesis tests are sorted in ascending order as
sequence π . We denote the μth element of the sorted sequence as π(μ) and select only
those features φk from the original feature matrix Xφ , which have been selected by the
Benjamini–Hochberg–Yekutieli procedure for all class labels c ∈ C :

Xα =
(

φk : {pc,k}c∈C ⊆
{
π(μ) : π(μ) ≤ μ

C · K
∑C·K

i=1
1
i

α

})
. (15)

This process ensures that feature matrix Xα only contains features extracted from the lan-
guage time series that are statistically significant for the multi-classification problem at
hand, while preserving a predefined false discovery rate α. From the machine learning
perspective, this feature selection reduces the potential for overfitting.

Due to the fact that the feature extraction functions Φk(zi) are meaningful algorithms
from statistics, signal processing and time series analysis, we can seek a stylometric inter-
pretation of this features.

3.3 Engineering functional language sequences
The previous section introduced the random variable Z (Eq. (5)), which is a function map-
ping token τi,j at position j of document Di to a real number zi,j. This representation al-
lowed us to interpret document Di, specifically its token sequence si (Eq. (2)), as a lan-
guage time series zi ∈ R

ni (Eq. (6)). By applying time series feature extraction method-
ologies to the language time series data set Dt (Eq. (7)), we used the fact that the tokens,
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through the realizations of the random variable Z, are ordered with respect to their posi-
tion j ∈ [1, 2, . . . , ni] ⊂ Z in the corresponding document Di. This ordering is one of the key
elements for ensuring the interpretability of the extracted language time series features φk

comprised in feature matrix Xα . From the statistical point of view one might interpret the
language time series {zi}N

i=1 obtained from the documents as realizations of a functional
random variable [14].

Because other ordering dimensions, for example ranks, would imply other interpreta-
tions than language time series for the resulting functional random variable, we general-
ize our reference to these variables as functional language sequences. Engineering these
sequences from text data comprises three modelling decisions:

• How should the text be tokenized?
• How should the tokens be ordered?
• How should the tokens be quantified?

As outlined in Sect. 3.1, the tokenization of the documents generates the elements of al-
phabet A (Eq. (3)). However, other tokenizations like multiword expressions could also
be used [50]. Here, we describe five different approaches for mapping texts to functional
language sequences, which lead to the extraction of stylometric features via time series
feature extraction (Eq. (8)). First, we describe three different mappings for generating lan-
guage time series, which will be followed by two more generalized approaches.

The mappings for generating language time series are:
• Token length mapping [24, 56–59], which counts the number of characters of token τ

Z�(τ ) = |τ | (Sect. 4.2.1). (16)

• Token frequency mapping, which was introduced in [60], considers the frequency of
each token in the text.

Zf(τ ) =
N∑

i=1

ni∑

j=1

1τ=τi,j (Sect. 4.2.2). (17)

• Token rank mapping was introduced in [23]. Using our notation, the mapping can be
expressed as

Zr(τ ) = ν · 1τ[ν]=τ (Sect. 4.2.3) (18)

with rank ν indexing the νth most frequent token τ[ν] with respect to Z̄f(τ ) applied
to A.

Applying any of these mappings to the tokens (τi,1, . . . , τi,j, . . . , τi,ni ) of a specific document
Di generates a language time series, whose elements are ordered with respect to the re-
spective token position j as shown in Eq. (6).

However, choosing the token position j as the ordering dimension, which leads to the
interpretation of zi as a language time series [13], is just one possibility, so we also con-
ceptualize two other methods of mapping a document Di into a sequence of numbers:
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• Token length distribution y�,i = (Y�(Di, 1), . . . , Y�(Di, N�)) is ordered by token length
λ = 1, . . . , N� with

Y�(Di,λ) =
1
ni

ni∑

j=1

1λ=Z�(τi,j) (Sect. 4.2.4). (19)

• Token rank distribution yb,i = (Yb(Di, 1), . . . , Yb(Di, Nb)) is ordered by token frequency
rank ν = 1, . . . , Nb with τ[ν] being the νth most frequent token with respect to Zf(τ )
applied to alphabet A:

Yb(Di,ν) =
ni∑

j=1

1τ[ν]=τi,j (Sect. 4.2.5). (20)

The distributions y�,i ∈ R
N� and yb,i ∈R

Nb already convert every document Di into a well-
defined vector space and therefore could be used as feature vectors themselves. However,
due to the fact that these distributions are sequences, the time series feature extraction
introduced in Sect. 3.2 can be applied to these distributions as well.

3.4 Mapping methods overview
Among the five methods for generating functional language sequences, the token fre-
quency mapping (Eq. (17)), token rank mapping (Eq. (18)), and the token rank distribu-
tion (Eq. (20)) require data set dependent key-value mappings. For example, the token
frequency dictionary is used in both token frequency and token rank mappings. Besides,
the token length and the token rank distributions map text samples into fixed length func-
tional language sequences. Moreover, in order to use the token frequency mapping, the
token rank mapping and the token rank distribution, the words in the text samples are
stemmed.

Table 2 shows an overview of the methods used for generating the functional language
sequence. The rows are the five different functional language sequence mapping methods,
while the columns are different features of these functional language sequences mapping
methods used in our project. The “�” indicates a yes, and the “–” mark indicates a no.

4 Illustration and visualization of mapping methods
The two case studies, which have been selected for evaluating the presented feature engi-
neering approach, are very different in nature: The first one has not been discussed in the
authorship attribution literature before and features a balanced data set containing nearly

Table 2 Overview of the functional language sequence mapping methods. This table gives an
overview of the implementation details of the five mapping methods used

Requires data set
dependent key-value
mappings

Functional language
sequence has fixed
length

Words need to be
stemmed

Token Length Sequence – – –
Token Frequency Sequence � – �
Token Rank Sequence � – �
Token Length Distribution – � –
Token Rank Distribution � � �
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20,000 sentences from three authors, who are known for their spooky fiction (Sect. 4.1.1).
The second case study features the well-known Federalist Papers (Sect. 4.1.2), which is
intrinsically imbalanced and, in contrast to previous research, is evaluated with respect
to the sentence-wise authorship attribution problem. Section 4.1 describes both data sets.
The next section illustrates the functional language sequences (Sect. 4.2), and Sect. 4.3 in-
troduces discrimination maps for the exploratory analysis of the high-dimensional feature
space resulting from the stylometric features.

4.1 Case studies
4.1.1 The Spooky Books Data Set
For the first case study, we used the Spooky Books Data Set retrieved from the Kaggle
competition Spooky Author Identification [17]. The data set contains texts from spooky
novels of three famous authors: Edgar Allan Poe (EAP), HP Lovecraft (HPL) and Mary
Wollstonecraft Shelley (MWS), so both the genre and the topic of the documents have
been controlled. Each sample of the data set contains one sentence separated from the au-
thors’ books using CoreNLP’s MaxEnt sentence tokenizer. Each sample also contains an id
which is a unique identifier of the sentence’s author. The authors of the sentences are used
as the labels for the samples and their initials form the target class C = {EAP, HPL, MWS}
of the authorship attribution problem (Eq. (4)). Two CSV files containing the training data
and test data can be downloaded from Kaggle. The file named train.csv has 19,579
samples and corresponding labels. The file test.csv contains 8392 samples but no la-
bels. In this case study, we only used the training data set, because the class labels of the
test data are unknown.

The data set is unique, because it contains a large number of short samples. This char-
acteristic differentiates the data set from the majority of authorship attribution problems
discussed in the literature (Table 1). The majority (95%) of the sample texts in our data
set are shorter than or equal to 65 tokens (including words, numbers and punctuations),
and the average sample length is 30.4 tokens (Fig. 1). The labels are generally balanced

Figure 1 Distribution of the sample text lengths in the Spooky Books Data Set. Average = 30.4 tokens,
median = 26 tokens, 0.75 quantile = 38 tokens, 0.95 quantile = 65 tokens
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Table 3 Overview of the Spooky Books Data Set

Number of
samples

Total number of
tokens

Sample lengths (tokens)
Average Standard

deviation

EAP 7900 232,184 29.4 21.1
HPL 5635 173,979 30.9 15.3
MWS 6044 188,824 31.2 24.8

Overall 19,579 594,987 30.4 20.9

Table 4 Overview of the Federalist Papers Data Set

Number of
sentences

Total number of
tokens

Sample lengths (tokens)
Average Standard

deviation

Hamilton 3567 126,059 35.3 22.6
Madison 1195 43,449 36.4 23.9
Jay 225 9378 41.7 21.4

Overall 4987 178,886 35.9 22.9

(Table 3). There are 7900 samples labeled as EAP, 5635 labeled as HPL, and another 6044
samples labeled as MWS in the Spooky Books data set.

4.1.2 The Federalist Papers Data Set
In order to extend the evaluation of our approach from a rather new data set in the domain
of authorship attribution (Sect. 4.1.1) to a well-known and well-studied data set, we are
applying our methodology to the Federalist papers [15, 16, 40]. The Federalist Papers are a
series of 85 articles and essays written by Alexander Hamilton, James Madison, and John
Jay (Table 4), which were published between years 1787 and 1788. They are one of the
first and most well-studied authorship attribution corpus, making it a widely accepted
platform for testing and comparing various authorship attribution methods. We retrieved
the papers from Project Gutenberg [61]. The raw data contain some metadata including
the title, the place and date of publication as well as the known or assumed author(s) of
the paper. All metadata was removed before analysis, so that all articles begin with “To the
People of the State of New York”. The sentences in this corpus are slightly longer (Fig. 2)
compared with the Spooky Books Data Set (Fig. 1). Overall, 95% of the sentences from
papers with known authors comprise less or equal than 78 tokens (Fig. 2). As outlined in
Sect. 3.1, tokens can be words, punctuation, or other meaningful units [50].

4.2 Some examples of functional language sequences
To illustrate and explain the five mapping methods introduced in Sect. 3.3, we use a sen-
tence of Mary Shelley’s novel Frankenstein [62] as an example:b

“‘Let me go,’ he cried; ‘monster Ugly wretch You wish to eat me and tear me to pieces.”

Note, that this sentence is in the middle of a dialog, which is continued in the original text,
such that the left [“] and right quotation marks [”] had only been added for this quote, but
are not present in the following analysis.

4.2.1 Token length sequence (TLS)
Several papers have used similar methods to map texts into token length sequences [24,
56–59]. The token length sequence mapping method (Eq. (16)) involves a process where
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Figure 2 Distribution of the sample text lengths in the Federalist Papers Data Set for papers with known
authors. Average = 35.9 tokens, median = 32 tokens, 0.75 quantile = 47 tokens, 0.95 quantile = 78 tokens

a text sample is first split into tokens and the lengths of the tokens are calculated. The
positions of the tokens gained from the texts are used as the ordering index (time-axis)
while the lengths of the tokens are used as the values of the language time series.

In our study, the widely used NLTK’sword_tokenizemethod was chosen for splitting
the text samples into tokens [63]. For example, the sample text will be split into:

[ " ‘ Let " , ’me ’ , ’ go ’ , ’ , ’ , " ’ " , ’ he ’ , ’ c r i e d ’ , ’ ; ’ ,
" ’ monster " , ’ Ugly ’ , ’ wretch ’ , ’ You ’ , ’ wish ’ , ’ to ’ ,
’ ea t ’ , ’me ’ , ’ and ’ , ’ t e a r ’ , ’me ’ , ’ to ’ , ’ p i e c e s ’ ,
’ . ’ ]

The example language time series generated from the sample text using token length
sequence method is shown in Fig. 3(a).

4.2.2 Token frequency sequence (TFS)
Deng et al. [60] used a similar word frequency functional language sequence mapping
method to map a text into probabilities for each word in the text to appear. Different
from their approach, which only considered words, our study chooses a different tokeniza-
tion and considers words and punctuations as tokens. However, the mapping function
(Eq. (17)) is independent from the tokenization.

The token frequency mapping method requires a token frequency dictionary to be first
built from the training data set. To build the dictionary, all texts in the training data set
are first split into tokens. Then all unique tokens are used as the keys, and the numbers of
occurrences of these tokens are used as the values of the token frequency dictionary. After
the dictionary is built, texts can be mapped into a token frequency functional language
sequence. To map a text sample into a language time series, the sample is first split into
tokens using the same splitting function. Then the positions of the tokens gained from the
text sample are used as the x-axis, and the corresponding numbers of occurrences of the
tokens in the token frequency dictionary become the values of the functional language
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Figure 3 An overview of the five functional language sequences mapped from the sample text (p. 13) by five
different functional language sequence mapping methods

sequence. If there is any token not found in the token frequency dictionary, a zero value
is assigned to the token.

In this project, we again used NLTK’s word_tokenize method to split the sample.
After which, all tokens split from the sample were stemmed using PorterStemmer. We did
not convert capital letters into lowercase. As an example, the sample text can be split into
the following units:

[ " ‘ Let " , ’me ’ , ’ go ’ , ’ , ’ , " ’ " , ’ he ’ , ’ c r i ’ , ’ ; ’ ,
" ‘ monster " , ’ Ugl i ’ , ’ wretch ’ , ’ You ’ , ’ wish ’ , ’ to ’ ,
’ ea t ’ , ’me ’ , ’ and ’ , ’ t e a r ’ , ’me ’ , ’ to ’ , ’ p iec ’ , ’ . ’ ]

A small part of the token frequency dictionary built from the full Spooky Books Data
Set is shown below:
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{ ’ Thi ’ : 448 , ’ p r o c e s s ’ : 30 , ’ , ’ : 38220 , ’ howev ’ : 347 ,
’ a f f o r d ’ : 88 , ’me ’ : 2982 , ’ no ’ : 1522 , ’ mean ’ : 291 ,
’ of ’ : 20871 , ’ a s c e r t a i n ’ : 36 , ’ the ’ : 33334 ,
’ dimens ’ : 30 , ’my ’ : 5045 , ’ dungeon ’ : 13 , ’ ; ’ : 5159 ,
. . . }

The token frequency sequence mapped from the sample text using the dictionary above
is shown in Fig. 3(b).

4.2.3 Token rank sequence (TRS)
Montemurro and Pury introduced the token rank mapping [23], which in our notation is
modeled by Eq. (18). Similar to the token frequency mapping method, the token rank map-
ping requires that a token frequency dictionary is built first. In a second step, a token rank
dictionary is compiled from the token frequency dictionary. The token rank dictionary is
built by ranking the tokens based on their numbers of occurrences. The tokens with the
same number of occurrences will be given an arbitrary rank in their rank interval. The text
samples are then split and mapped into a functional language sequence in the same way
as in the token frequency mapping method, but using the token rank dictionary instead of
the token frequency dictionary. Any tokens that are not in the token rank dictionary will
be given the next rank after the lowest rank in the dictionary.

The methods used for splitting the text samples and building the token frequency dic-
tionary are identical to the ones in the token frequency mapping method. Here is a small
part of the token rank dictionary built from the full Spooky Books Data Set:

{ ’ Thi ’ : 139 , ’ p r o c e s s ’ : 1910 , ’ , ’ : 1 , ’ howev ’ : 176 ,
’ a f f o r d ’ : 740 , ’me ’ : 23 , ’ no ’ : 43 , ’ mean ’ : 215 ,
’ of ’ : 3 , ’ a s c e r t a i n ’ : 1698 , ’ the ’ : 2 , ’ dimens ’ :
1911 , ’my ’ : 14 , ’ dungeon ’ : 3474 , ’ ; ’ : 1 3 , }

The token rank functional language sequence mapped from the sample text using the
dictionary above is shown in Fig. 3(c).

4.2.4 Token length distribution (TLD)
The token length distribution y�,i = (Y�(Di, 1), . . . , Y�(Di, N�)) uses mapping Y� (Eq. (19))
and the tokenization as the token length sequence (Sect. 4.2.1). The lengths of the tokens
are calculated using mapping Z�(τ ) (Eq. (16)). After which, a range of lengths are selected
to form the x-axis of the functional language sequence. The maximal token length con-
sidered in this study is N� = 14. The number of tokens of each different length in the text
is calculated, and the results calculated are used as the values of the functional language
sequence, which is ordered with respect to token lengths. The token length distribution
generated from the sample text is shown in Fig. 3(d).

4.2.5 Token rank distribution (TRD)
Mapping a documents to token rank distributions requires the building of a token fre-
quency dictionary similar to the one described for the token frequency mapping method
(Sect. 4.2.2). However, the tokenization excludes any punctuation. Then, the rank indices
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of the Nb most occuring words are used to form the x-axis of the functional language se-
quence and the corresponding values are the number of occurrences of the words in the
text sample (Eq. (20)). In the following case study, Nb = 1000 has been used.

In this project, we used the CountVectorizer implementation of scikit-learn (sklearn)
[64] to build the functional language sequence, because the process used in CountVector-
izer matches with the process we used in the word count vector mapping method. More-
over, we used the default analyser of CountVectorizer (CountVectorizer().build_
analyzer()) to split the texts such that all words with two or more alphanumeric char-
acters were selected from the texts, these words were then further stemmed by Porter-
Stemmer. We also adjusted the max_features parameter of CountVectorizer to Nb =
1000 so that the top 1000 words with the highest number of occurrences were used as the
x-axis of the functional language sequence.

The sample text can be split and stemmed into the following units:

[ ’ l e t ’ , ’me ’ , ’ go ’ , ’ he ’ , ’ c r i ’ , ’ monster ’ , ’ u g l i ’ ,
’ wretch ’ , ’ you ’ , ’ wish ’ , ’ to ’ , ’ ea t ’ , ’me ’ , ’ and ’ ,
’ t e a r ’ , ’me ’ , ’ to ’ , ’ p iec ’ ]

The 1000 most frequent words selected by CountVectorizer from the full Spooky
Books Data Set is too large to be shown here. Hence, the first 50 words (in alphabetical
order) is shown below instead:

[ ’ ab l ’ , ’ about ’ , ’ abov ’ , ’ absenc ’ , ’ a b s o l u t ’ ,
’ accompani ’ , ’ accompl ish ’ , ’ account ’ , ’ a c r o s s ’ ,
’ ac t ’ , ’ a c t i o n ’ , ’ a c t u a l ’ , ’ ad ’ , ’ admir ’ , ’ admit ’ ,
’ a dr ia n ’ , ’ advanc ’ , ’ a f f e c t ’ , ’ a f f o r d ’ , ’ a f t e r ’ ,
’ a f t e r w a r d ’ , ’ aga in ’ , ’ a g a i n s t ’ , ’ age ’ , ’ a g i t ’ ,
’ ago ’ , ’ agoni ’ , ’ a i r ’ , ’ a l a ’ , ’ a l i v ’ , ’ a l l ’ ,
’ a l low ’ , ’ a lmost ’ , ’ a lon ’ , ’ a long ’ , ’ a l r e a d i ’ ,
’ a l s o ’ , ’ a l t e r ’ , ’ a l though ’ , ’ a l t o g e t h ’ , ’ a lway ’ ,
’ am ’ , ’ among ’ , ’ an ’ , ’ a n c i e n t ’ , ’ and ’ , ’ ange l ’ ,
’ angl ’ , ’ ani ’ , ’ anim ’ ]

The functional language sequence mapped from the sample text using token rank dis-
tribution method is shown in Fig. 3e.

4.3 Discrimination maps
Visualizing high-dimensional data sets is always challenging, especially if some kind of
visual evidence is sought that the extracted features are not only spurious correlations but
contain some discriminating power for a specific machine learning problem at hand. In
order to visualize the discriminating power of language time series features for the studied
authorship attribution problem, we present a visualization technique, which transforms a
high-dimensional feature space into a set of colour figures. The central idea is that every
target class is represented by a primary colour and the more separated the colours are in
the figures, the better the features discriminate the different classes (Fig. 4).

For rendering the figures, we first mapped the Spooky books data set (Sect. 4.1.1) into all
five different functional language sequences as described in Sect. 3.3 and extracted time
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Figure 4 Discrimination maps for the first three principle components derived from statistically significant
language time series features. The principle components were calculated from all 19,579 sentences. The
figures also indicate the location of two example sentences: Sample id13843 (white cross symbol) was written
by MWS (cf. p. 13). Sample id15671 (white plus symbol) was written by HPL (cf. p. 19). Both symbols are
located in the same bin in panel (c)

series features for all groups of functional language sequences. Then, we combined the
time series features and selected all statistically significant features from the combined
feature set (Algorithm 1). The selected features were scaled using sklearn’s Standard-
Scalar and used Principle Component Analysis (PCA) to reduce the dimension of the
feature space to three. For each principle component, we discretized the values into 20
quantiles, such that their marginal distributions are uniform on the interval [0, 1] [65].
Combining the bins of the first principle component and the bins of the second principle
component into a joint distribution, we computed for each of the 400 bins the percent-
ages of samples for each author and every bin. This results to three 20× 20-matrices (heat
maps) of author-specific sample ratios, which were combined into a colour figure using the
red layer for EAP, the green layer for MWS, and the blue layer for HPL (Fig. 4(a)). The same
procedure was repeated for the first and third principle component (Fig. 4(b)), as well as
the second and third principle component (Fig. 4(c)). The separation of the three primary
colors demonstrates that the extracted features indeed capture differences between the
three authors.
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On these discrimination maps, we located two samples: One is the example text used in
Sect. 4.2 written by MWS (white cross symbol) and the other one is a sentence from HPL
(white plus symbol):

The rabble were in terror, for upon an evil tenement had fallen a red death beyond
the foulest previous crime of the neighbourhood.

The sample from HPL is located in bins that are typical for both EAP and HPL and, there-
fore, are coloured in shades of purple. However, the HPL example of Fig. 4(c) is located in a
bin that is dominated by red indicating that the respective sentence resembles similarities
with texts from EAP. The samples from MWS have a strong resemblance with EAP and
HPL and are is located in reddish bins in Figs. 4(a), (c). However, a slightly stronger green
shade is visible in 4(a), which identifies the sample as having an indistinguishable style.

For the exploratory analysis of the Federalist Papers, we selected all papers with known
authors, splitted each paper into sentences (Table 4) and identified the language time series
features, which are relevant for discriminating the three authors (Sect. 3). These 251 statis-
tically significant features were plotted as discrimination maps in Fig. 5. In these maps, red
pixels represent stylometric features, which are characteristic for sentences from Hamil-
ton. Green pixels represent stylometric features, which are characteristic for sentences
from Madison, and blue pixels represent stylometric features, which are representative
for sentences from Jay. Due to the fact, that sentences of Jay are underrepresented in the
data set (Table 4), only a few pixel in Fig. 5(c) are purple or blue. Although the discrimi-
nation maps show distinct regions, which are associated with Madison (greenish pixels),
the colour red dominates the maps, because Hamilton contributes nearly thrice as many
sentences as Madison (Table 4).

5 Evaluation: methodology
In Sect. 3, we proposed our Functional Language Analysis method and its five associated
methods to map text to a language time series, which can be applied to very short texts.
Here, we describe the evaluation of our method with respect to its feasibility and perfor-
mance for improving established NLP approaches in authorship attribution applications.
The workflow for evaluating our research question is outlined in Sect. 5.1, which is fol-
lowed by descriptions of the performance evaluation (Sect. 5.2) and the hybrid classifier
(Sect. 5.3). Results of the evaluation for the balanced and imbalanced data sets as well as
the corresponding NLP baseline models are presented in Sect. 6 and Sect. 7, respectively.

5.1 Evaluation procedure
As described in Sect. 3, we implemented five mapping methods for functional language
sequences. The workflow for analysing our research question performs a 10-fold cross-
validation (Fig. 6), which means that the sequences based on frequencies or ranks have
to be generated for every fold from scratch. For example, the token frequency sequence
requires a token frequency dictionary to be produced based on the training data set, thus
the token frequency sequences were mapped individually for each of the 10 folds, with a
different token frequency dictionary built from the training data set for each fold.

Using these functional language sequences, we extract time series features using the ma-
chine learning library tsfresh [12] in version 0.11.0. The functional language sequences
were converted into a pandas [66] DataFrame in a format that can be used in ts-
fresh’s extract_features function. We used tsfresh’s extract_features method
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Figure 5 Discrimination maps for the first three principle components derived from 251 language time series
features of the Federalist Papers with known authors. The features have been identified as being statistically
significant for discriminating the authors. The principle components were calculated from all 4987 sentences.
The legend in panel (d) shows the colour coding of the pixels. Black pixels indicate bins without any samples

to extract all comprehensive features from all functional language sequences. The im-
pute_function parameter of extract_featuresmethod was set toimpute, such
that missing values (NaN) were replaced by the median of the respective feature and in-
finite values (infs) were replaced by minimal or maximal values depending on the sign.
The default_fc_parameters was set to ComprehensiveFCParameters, such
that 794 different time series features were extracted from each of the functional language
sequences.

With these time series features and out-of-sample predictions from established NLP
baseline methods, we evaluated the performance improvement from adding the proposed
stylometric features. An abstraction of our evaluation procedure is shown in Fig. 6.

5.2 Performance metric
We used 10-fold cross validation for evaluating our models. For this purpose, we sam-
pled the ten training-test splits using sklearn’s StratifiedKFold cross validator. The
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Figure 6 Evaluation procedure. The procedure involves retrieving the data set, creation of (fold-specific)
functional language sequences, extracting, and selecting relevant time series features, obtaining NLP
predictions, and identifying the best combination of time series features and NLP predictions

shuffle option of the validator was set to true, and the random state was fixed to guaran-
tee reproducible results. For each fold, the transformers and classifiers were trained using
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90% of the data set, and predictions and evaluations were done on the remaining 10% of
the data.

Logarithmic loss (log loss) was used to evaluate the predictions, and we used sklearn’s
log_loss implementation. The log loss of the jth training-test fold is given by

loglossj = –
1
Nj

Nj∑

i=1

∑

c∈C
1yi=c log P(c|Di,Dj, M) (21)

with 1yi=c = 1 if document Di has label c and 0 otherwise. In the formula, Nj is the number
of samples in the jth test fold. The set C = {EAP, HPL, MWS} represents the class labels,
log is the natural logarithm, and P(c|Di,Dj, M) is the estimated probability that document
Di has class label c after training algorithm M on training fold Dj.

5.3 The hybrid classifier
In order to design a hybrid classifier, which combines predicted class probabilities from
the NLP baseline model with language time series features, we are using XGboost [67].
The XGBClassifier is configured via its Python API as follows:

• The objective parameter is set to multi:softprobe in order to enable XGBoost to
perform multiclass classification. Therefore, the classifier uses a softmax objective and
returns predicted probability for all class labels.

• The random number seed is set to 0 in order to guarantee reproducability of results.
The evaluation results are reported in the following sections.

6 Sentence-wise authorship attribution for the Spooky Books Data Set
The following sections describe the bag-of words (Sect. 6.1.1) and n-gram models
(Sect. 6.1.2), which are the basis for evaluating the sentence-wise classification perfor-
mance of the NLP baseline (Sect. 6.2) for the Spooky Books data set (Sect. 4.1.1). The
evaluation of the different language sequence mappings on the performance of the NLP
baseline is discussed in Sect. 6.3), which is followed by the analysis of selected stylometric
features (Sect. 6.4).

6.1 NLP models for the Spooky Books Data Set
6.1.1 Bag-of-words models
In a traditional bag-of-words model, the order of words in the documents are ignored.
Instead, each text is treated as a set (or bag) of independent words along with the number
of occurrences of these words. In authorship attribution problems, usually an overall bag
of words for the training data set is obtained by unifying the bag-of-words representations
of each text sample in the data set. Then, the final bag-of-words representation for each
text sample is a feature vector of word counts comprising all the words of the training
set. The bag-of-words representations of the texts is a sparse matrix, which can be fed
into various machine learning models to mine useful information. Two machine learning
models operating on bag-of-words representations are widely used: Multinomial Naive
Bayes (Multinomial NB) and Support Vector Machines (SVM). Therefore, we took both
classifier into consideration and tested their performance on the Spooky Books data set.

For Multinomial NB, we first used sklearn’s CountVectorizer to transform the text
samples into a matrix of token counts. Each text sample is first split into a list of words
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using the default word analyser of CountVectorizer; the stop-words (from NLTK’s
corpus) are excluded from the list, and each word in the list is stemmed using Porter-
Stemmer. The word counts were calculated from these preprocessed words. Next, we
used sklearn’s MultinomialNB and GridSearchCV implementations to fine tune the
alpha parameter with the scoring parameter being set to neg_log_loss. The eval-
uated values ranged from 0.1 to 1 with a step size of 0.1. The training of CountVector-
izer and MultinomialNB, along with the parameter tuning on MultinomialNB were
all done on the training data set in each fold.

For SVM, the texts were preprocessed in the same way as for the Multinomial NB classi-
fier. However, instead of using CountVectorizer, we used a composite weight of term
frequency and inverse document frequency (TF-IDF) as implemented by TfidfVec-

torizer for generating the feature matrix, because it improved the prediction perfor-
mance significantly. We used sklearn’s SVC implementation and wrapped it using Cali-
bratedClassifierCV. Due to the high time cost of training the classifiers and making
predictions, we did not perform parameter tuning. Apart from setting the random state
every other parameter was kept as default.

6.1.2 N-grams models
The n-grams representation is an extension of the bag-of-words representation. Instead
of transforming texts into bags of independent words, the n-grams representation trans-
forms texts into a set, whose elements are consecutive word or character combinations
(n-grams). Using character n-grams as an example, “gr” is a 2-gram and “gram” is a 4-
gram that can be extracted from the word “n-grams”. As discussed in Sect. 2, n-grams
models are still the most widely used state-of-art methods used in authorship attribution
and provide overall good and stable results, for example, in the 2018 PAN-challenge [47].
We reviewed the methods applied by the teams that participated in the challenge, espe-
cially the one proposed by the winning group [68], and evaluated their promising n-gram
character and n-gram word models.

The combinations and the critical parameter settings for the character n-grams method
are summarized in Table 5. A grid search was performed using 10-fold cross-validation
on the Spooky Books data set (Sect. 4) to select the best model variants and associated hy-
perparameters. For representing the texts as character n-grams and vectorizing each text
sample, we used sklearn’s implementation of the TF-IDF vectorizer and count vectorizer
and set the analyzer to be “char”. The start of the n-gram range varied from 1 to 5 while the
end of the n-gram range was fixed at 5. The minimal term frequency, which the vectorizer
will not ignore, was evaluated at 0.05, 0.1, and 0.5 of the highest frequency found in the
corpus. The maximum term frequency was set to 1.0, such that there wasn’t any limita-
tion with respect to the highest term frequency. Specifically, for the TF-IDF vectorizer, the
sublinear TF scaling and smoothing idf weights settings were set either to True or to False,
while the normalization method was selected from either L1 or L2. After vectorizing the
text samples, either a MaxAbsScaler was applied or no scaling was performed before the
feature vectors were fed to the classifier.

Logistic regression was used by the winning group in the 2018 PAN-challenge and pro-
vided good results [68], hence, it was chosen to be evaluated. On the other hand, SVM
was widely used together with n-grams and often provides outstanding results, therefore,
SVM was also chosen. The logistic regression implementation from sklearn was used with



Tang et al. EPJ Data Science            (2020) 9:26 Page 24 of 59

Table 5 Parametrization of character n-grams models. Optimal settings are typeset in bold

Process Module Parameters Values

Represent Character n-grams N-gram range Start = (1 to 5)–End = 5
Minimum term frequency [0.05, 0.1, 0.5]
Maximum term frequency 1.0 (no limit)

Vectorize TF-IDF vectorizer TF Normal, sublinear
IDF Normal, smoothed
Normalization L1, L2

Count vectorizer All set to default

Scaling MaxAbsScaler All set to default
No scaler N/A

Classifier Logistic regression All set to default
Linear SVM All set to default

Table 6 Parametrization of word n-grams models. Optimal settings are typeset in bold

Process Module Parameters Values

Preprocessing Text preprocessing Remove stopwords and stem words
None N/A

Represent Word n-grams N-gram range Start = (1 to 3)–End = 3
Minimum term frequency 1 (Use all terms)
Maximum term frequency 1.0 (no limit)

Vectorize TF-IDF vectorizer TF Normal, sublinear
IDF Normal, smoothed
Normalization L1, L2

Count vectorizer All set to default

Scaling MaxAbsScaler All set to default
No scaler N/A

Classifier Logistic regression All set to default
Linear SVM All set to default

all default hyper-parameter settings being kept. The only exception was the random state,
which was fixed in order to guarantee reproducability.

After tuning the variants and hyperparameters of the models, the best character n-grams
model was identified as the combination of a TF-IDF vectorizer and a linear SVM classi-
fier without any feature scaling. The TF-IDF vectorizer had the following parameter set-
tings: an n-gram range of 1 to 5, a minimum term frequency of 0.05, sublinear tf scaling,
smoothed idf weighting, and normalization set to L2. The chosen model variants and hy-
perparameters are highlighted in Table 5.

The word n-grams models were similar to the ones for character n-grams, except that
a text preprocessing step was considered (Table 6). The optional text preprocessing re-
moved all stopwords from the texts and stemmed all words using the PorterStemmer
implementation from NLTK [63]. The start of the n-gram range was selected from 1 to
3 and the end of the range was fixed to 3. In addition, the minimum term frequency was
fixed to 1, which means that all terms were used. The SVC classifier was wrapped by Cal-
ibratedClassifierCV and the random states of both SVC and probability calibration
were fixed.

The best word n-gram model did not preprocess the texts and used the TF-IDF vector-
izer and the SVM without any scaling of feature vectors. The best n-gram range for the
vectorizer was 1 to 3 with the sublinear tf scaling turned off. The chosen modules and
parameters are highlighted in Table 6.



Tang et al. EPJ Data Science            (2020) 9:26 Page 25 of 59

Figure 7 Comparison of performance scores from bag-of-words models (Sect. 6.1.1) and n-grams models
(Sect. 6.1.2). The Multinomial NB model has been chosen as NLP baseline

6.2 The NLP baseline for the Spooky Books Data Set
The bag-of-words methods (Sect. 6.1.1) and its n-gram extensions (Sect. 6.1.2) achieved
mean log loss scores between 0.4 and 0.8 with Multinomial NB giving significantly better
predictions than the others (Fig. 7). Therefore, bag-of-words with Multinomial NB was
chosen as the baseline NLP method used in the rest of the study.

6.3 Performance of sentence-wise authorship attribution for the Spooky Books
Data Set

To evaluate which combinations of the time series features can improve the predictions of
the NLP baseline, we conducted five cross-validations, each of which combined the pre-
dicted probabilities (3 features) from the Multinomial NB classifier with language time se-
ries features from one specific language sequence mapping method (794 features). Feature
selection from these 797 features as defined by Eq. (15) retrieved the predicted probabil-
ities from the NLP baseline model for every fold. On average, 30 statistically significant
language time series features were selected from the token length sequence, 62 were se-
lected from the token frequency sequence, 89 were selected from the token rank sequence,
32 were selected from the token length distribution, and 161 were selected from the token
rank distribution.

We fitted the hybrid classifier (Sect. 5.3) on the selected features of the training data
set and predicted the labels of the corresponding test set. The evaluation results of the
NLP baseline model alone and those of the NLP predictions with one extra time series
features group added are visualized as box plots in Fig. 8. The figure clearly shows that the
classification performance improves significantly if features from any functional language
mapping are added.
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Figure 8 Box plots of the evaluation results for NLP predictions (Multinomial NB) alone and with one extra
time series features group added

To test the statistical significance of the improvements and select the functional lan-
guage mapping that provides the best overall improvement, we used the Bayesian variant
of a t-test [69] and Wilcoxon signed-rank test [70]. For the t-test with Bayesian inference,
we used PyMC3 [71] in version 3.6 and followed an example from PyMC3’s documenta-
tion [72]. For the Wilcoxon signed-rank test, Scipy’s implementation [73] was used.

In the Wilcoxon signed rank test, the p-values for all comparisons between the base-
line NLP predictions with the predictions from each model with one time series features
group added are all equal to 0.005062, which suggests that the differences observed are all
significant.

The posterior distributions of the differences of means between log loss values from
the NLP predictions alone and from the predictions using language time series features
are shown in Fig. 9. For all five language sequences, the posterior distributions are well
separated from zero with a probability of at least 99.9% that the difference of means is
larger than zero. We also identified that time series features from the token frequency
sequence and the token rank sequence provide the best improvements of classification
performance.

To analyze if time series features from two or more language sequences would improve
the classification even further, we used the predictions obtained from the NLP baseline
and features from the token frequency sequences as the new baseline.

On the top of this new baseline, we added the features from the remaining time series
features groups with each group considered separately. The resulting classification per-
formance of the hybrid classifier is shown in Fig. 10. The differences between the groups
are now small and there appear to be only slight decreases in log loss scores or even no
difference. From the posterior distributions shown in Fig. 11, we can see that zero is al-
ways within the 95% credible intervals and is usually close to the middle of the distribution,
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Figure 9 Posterior distributions of the differences of means between log loss values of NLP predictions alone
and those with one time series features group combined. The black horizontal bar is the 95% credible intervals

which suggests that adding one extra time series feature group did not improve the predic-
tion further. The token rank distribution group appeared to add some extra information
and improved classification slightly. However, there is only a 71.4% chance that the differ-
ence of means is larger than zero. The stacking procedure was then stopped because no
improvement could be gained by adding features from an additional language sequence.

6.4 Stylometric features of the Spooky Books Data Set
To understand what kind of stylometric features have been extracted from the functional
language sequences, we describe two of the most relevant features. These feature have
been identified because they returned the lowest overall p-values from the set of statis-
tically significant features (Sect. 3.2). Due to the consistent naming scheme of the time
series features [12], each stylometric feature can be interpreted. The feature names are
formed from the following pattern:

[ k ind ] __ [ c a l c u l a t o r ] __ [ parameterA ] _ [ valueA ] __ [ parameterB ] _ [ va lueB ]

The feature name starts by referencing the name (kind) of the respective functional lan-
guage sequence from which the feature has been extracted. This part of the feature name
is retrieved from the column names of the input data.c It is followed by the identifier of
the algorithm (calculator), which had been used for computing the feature and a list of
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Figure 10 Box plots of the evaluation results of the third iteration, for the baseline (NLP combined with token
frequency sequence) and with one extra time series features group added

Figure 11 Posterior distributions of the differences of means between log loss values after considering the
features from a second functional language sequence

key-value pairs, which have been used for configuring the feature calculator. The follow-
ing subsections describe two typical stylometric features, which have been extracted from
token frequency sequences (Sect. 6.4.1) and token rank sequence (Sect. 6.4.2).

6.4.1 Token frequency sequence: expected change between less frequent tokens
As outlined in the previous section, the time series features of token frequency sequences
significantly improve the classification performance of the hybrid classifier. The following
stylometric feature has a maximal p-value of 2.5 · 10–36 (cf. Eq. (15)) and is named
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T F S _ _ c h a n g e _ q u a n t i l e s _ _ f _ a g g _ " mean " _ _ i s a b s _ T r ue _ _ q h_ 0 . 6 _ _ q l _ 0 . 0

The feature name starts with the abbreviation TFS, which indicates that the feature has
been computed from Token Frequency Sequences. The function change_quantiles has
been used for calculating the feature. The respective algorithm can be looked up from the
online documentation of tsfresh.d This feature quantifies the mean (f_agg_"mean") ab-
solute (isabs_True) difference between consecutive token frequencies, which are smaller
than the 60th percentile (qh_0.6) and larger than the 0th percentile (ql_0.0). Both per-
centiles are computed for every TFS individually, such that the 0th percentile is equivalent
to the minimum token frequency of the respective sequence. In the following descriptions,
we refer to this feature as Quantile-Abs-Changes. This stylometric feature is quite inter-
esting, because it combines a global characteristic (token frequency) with text sample spe-
cific characteristics (percentiles). A large feature value indicates that common words with
about average token frequency are likely to appear next to uncommon words (small to-
ken frequency). A small feature value indicates that words from the same token frequency
range are likely to appear next to words from the same range, if the most frequent tokens
are excluded from this analysis.

The conditional distributions for the log-transformed feature Quantile-Abs-Changes
appear to be normally distributed, as shown in Fig. 12. However, the equality of variance
assumption is not met. Therefore, instead of using a standard t-test or one-way ANOVA,
we used Bayesian inference to evaluate the differences between the three groups [69]. The
results are shown in Fig. 13. They give strong evidence that the log-transformed Quantile-
Abs-Changes from HPL has a smaller mean but larger standard deviation compared to
EAP and MWS (upper and lower rows in Fig. 13). Furthermore, there is a 94.5% chance
that the mean of the log-transformed Quantile-Abs-Changes for EAP is smaller compared
to the mean of MWS, but the standard deviation of EAP’s log-transformed Quantile-Abs-
Changes is larger than MWS’s standard deviation (middle row in Fig. 13).

In order to relate this rather abstract stylometric feature to some examples, we com-
puted the medians of feature Quantile-Abs-Changes for HPL and MWS and identified
one example for each of the authors. The log-transformed median of feature Quantile-

Figure 12 Exploratory analysis of stylometric feature Quantile-Abs-Changes of TFS. Distribution plots of the
log-transformed feature are shown for authors EAP (blue), HPL (red) and MWS (green)
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Figure 13 Posterior distributions and 95% credible intervals of differences for log-transformed feature
Quantile-Abs-Changes. Left column: difference of means. Right column: difference of standard deviations. Top
row: EAP vs HPL. Middle row: EAP vs MWS. Lower row: HPL vs MWS. The 95% credible intervals are shown as
black horizontal lines

Abs-Changes for HPL was 6.33 and the median for MWS was 6.76. The corresponding
text samples were id15671 from HPL and id11418 from MWS.

The text sample id15671 from HPL has already been quoted on p. 13. Its token sequence
is as follows:

[ ’ The ’ , ’ r a b b l ’ , ’ were ’ , ’ in ’ , ’ t e r r o r ’ , ’ , ’ , ’ f o r ’ ,
’ upon ’ , ’ an ’ , ’ e v i l ’ , ’ tenement ’ , ’ had ’ , ’ f a l l e n ’ , ’ a ’ ,
’ red ’ , ’ death ’ , ’ beyond ’ , ’ the ’ , ’ f o u l e s t ’ , ’ prev iou ’ ,
’ crime ’ , ’ of ’ , ’ the ’ , ’ neighbourhood ’ , ’ . ’ ]

The corresponding log-transformed TFS along with its 60% percentile at 7.59 are shown
in Fig. 14(a).

After removing all token frequencies above the 60th percentile (red line in Fig. 14(a)),
only values at positions 2, 5, 8–11, 13, 15–17, 19–21, and 24 are left. The corresponding
tokens are ‘rabbl’, ‘terror’; ‘upon’, ‘an’, ‘evil’, ‘tenement’, ‘fallen’, ‘red’, ‘death’, ‘beyond’, ‘foulest’,
‘previou’, ‘crime’, and ‘neighbourhood’. Most of the stop words and all of the punctuation
are excluded by this selection. However, the change_quantiles feature calculator only con-
siders consecutive values within the respective percentile range, such that only tokens at
positions
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Figure 14 Examples of log-transformed token frequency sequences for HPL and MWS obtained from the
respective medians of stylometric feature Quantile-Abs-Changes. The red horizontal lines indicate the
(log-transformed) 60% percentiles, which are 7.59 for id15671 (a) and 7.85 for id11418 (b)

8–11 [‘upon’, ‘an’, ‘evil ’, ‘tenement’],
15–17 [‘red’, ‘death’, ‘beyond’], and
19–21 [‘foulest ’, ‘previou’, ‘crime’]

are considered for calculating the mean absolute difference of token frequencies. This
example demonstrates that the change_quantiles features basically consider meaningful
2-grams and quantifies their relation with respect to the difference of their token frequen-
cies.

In comparison, the text sample id11418 from MWS and the tokens split from it is shown
below. The log-transformed TFS and the 60th percentile cut-off at 7.849 are shown in
Fig. 14(b):

I saw his eyes humid also as he took both my hands in his; and sitting down near me,
he said: “This is a sad deed to which you would lead me, dearest friend, and your woe
must indeed be deep that could fill you with these unhappy thoughts.

[ ’ I ’ , ’ saw ’ , ’ hi ’ , ’ eye ’ , ’ humid ’ , ’ a l s o ’ , ’ as ’ , ’ he ’ ,
’ took ’ , ’ both ’ , ’my ’ , ’ hand ’ , ’ in ’ , ’ hi ’ , ’ ; ’ , ’ and ’ ,
’ s i t ’ , ’ down ’ , ’ near ’ , ’me ’ , ’ , ’ , ’ he ’ , ’ s a i d ’ , ’ : ’ ,
’ " ’ , ’ Thi ’ , ’ i s ’ , ’ a ’ , ’ sad ’ , ’ deed ’ , ’ to ’ , ’ which ’ ,
’ you ’ , ’ would ’ , ’ l ead ’ , ’me ’ , ’ , ’ , ’ d e a r e s t ’ , ’ f r i e n d ’ ,
’ , ’ , ’ and ’ , ’ your ’ , ’ woe ’ , ’ must ’ , ’ inde ’ , ’ be ’ ,
’ deep ’ , ’ t h a t ’ , ’ could ’ , ’ f i l l ’ , ’ you ’ , ’ with ’ ,
’ t h ese ’ , ’ unhappi ’ , ’ thought ’ , ’ . ’ ]

For sample id11418, the tokens, which are considered for computing the frequency dif-
ferences of consecutive tokens, are located at positions

4–6 [‘eye’, ‘humid’, ‘also’],
9–10 [‘took’, ‘both’],
17–19 [‘sit’, ‘down’, ‘near’],
23–26 [‘said’, ‘:’, ‘“’, ‘Thi’, ‘is’],
29–30 [‘sad’, ‘deed’],
33–35 [‘you’, ‘would’, ‘lead’],
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38–39 [‘dearest’, ‘friend’],
42–47 [‘your’, ‘woe’, ‘must’, ‘inde’, ‘be’, ‘deep’],
49–51 [‘could’, ‘fill’, ‘you’], and
54–55 [‘these’, ‘unhappi’, ‘thought’].
The 60th percentile cut-off is larger compared to the previous example such that a larger

portion of stop words and punctuation has been considered for estimating the mean fre-
quency differences of 2-grams. These stopwords become local peaks and increase the
value of the Quantile-Abs-Changes feature by providing larger differences of token fre-
quencies.

6.4.2 Token rank sequence: median
As outlined in Sect. 6.3, the time series features of token rank sequences (TRS) significantly
improve the classification performance of the hybrid classifier. The following stylometric
feature has a maximal p-value of 3.44 · 10–34 (cf. Eq. (15)) and is simply named:

TRS__median

The respective feature calculator computes a standard statistic, namely the median rank of
the respective token rank sequence. After log-transforming the feature, the author specific
distributions appear to be normally distributed (Fig. 15).

The differences between the author specific distributions of stylometric feature Median-
Token-Rank was analyzed using Bayesian inference [69]. The results are shown in Fig. 16.
They suggest a significant difference between class HPL and the other two classes. Token
rank sequences originating from HPL tend to have higher medians, which indicates that
HPL prefers to use less frequent words in his writings compared to EAP and MWS. On
the other hand, MWS seems to have a very consistent writing style with respect to the
Median-Token-Rank, because the standard deviation for MWS is much smaller than the
standard deviations of EAP and HPL.

The median of the log-transformed stylometric feature Median-Token-Rank for HPL
is 4.407. The corresponding sample, which has been chosen for visualization is id22946.

Figure 15 Exploratory analysis of stylometric featureMedian-Token-Rank. Distribution plots of the
log-transformed feature are shown for authors EAP (blue), HPL (red), and MWS (green)
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Figure 16 Posterior distributions and 95% credible intervals of differences for log-transformed feature
Median-Token-Rank. Left column: difference of means. Right column: difference of standard deviations. Top
row: EAP vs HPL. Middle row: EAP vs MWS. Lower row: HPL vs MWS. The 95% credible intervals are shown as a
black horizontal line

The original text and the tokens are shown below. The corresponding TRS is shown in
Fig. 17(a).

But it made men dream, and so they knew enough to keep away.

[ ’ But ’ , ’ i t ’ , ’ made ’ , ’ men ’ , ’ dream ’ , ’ , ’ , ’ and ’ , ’ so ’ ,
’ they ’ , ’ knew ’ , ’ enough ’ , ’ to ’ , ’ keep ’ , ’ away ’ , ’ . ’ ]

In comparison, the median of the log-transformed stylometric feature Median-Token-
Rank for MWS is 4.025 and the sample chosen is id08079. The text and tokens of the
corresponding sample are quoted below. Its TRS is visualized in Fig. 17(b).

But while I endured punishment and pain in their defence with the spirit of an hero,
I claimed as my reward their praise and obedience.

[ ’ But ’ , ’ whi le ’ , ’ I ’ , ’ endur ’ , ’ punish ’ , ’ and ’ , ’ pain ’ ,
’ in ’ , ’ t h e i r ’ , ’ defenc ’ , ’ with ’ , ’ the ’ , ’ s p i r i t ’ , ’ of ’ ,
’ an ’ , ’ hero ’ , ’ , ’ , ’ I ’ , ’ c la im ’ , ’ as ’ , ’my ’ , ’ reward ’ ,
’ t h e i r ’ , ’ p r a i s ’ , ’ and ’ , ’ obedi ’ , ’ . ’ ]
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Figure 17 Token rank sequence examples for HPL and MWS. (a) Sample id22946 written by HPL. (b) Sample
id08079 written by MWS. The red horizontal lines indicate the log-transformed median of the respective TRS.
The value is 4.41 for id22946 and 4.03 for id08079

TRS have previously been used for investigating long-range correlations [23]. The anal-
ysis presented in this section, as well as the features listed in Sect. A.3, demonstrate that
systematic time series feature extraction from TRS has the potential for retrieving dis-
criminative characteristics for large collections of short texts.

6.4.3 Token rank distribution: Fourier coefficients
The features extracted from token frequency sequences (TFS) and token rank sequences
(TRS) both improve the NLP baseline for the analyzed authorship attribution problem
(Sect. 6.3). This is somewhat expected due to the inherent relationship between token fre-
quencies and token ranks. Both of these sequences are ordered by token position. This
is different to the Token Rank Distribution (TRD), which is ordered by rank (Eq. (20)).
From the stylometric point of view it is interesting to note that the systematic feature
engineering from TRD discovers a very different type of features, namely Fourier coeffi-
cients. These are characteristics obtained by approximating a signal by sums of simpler
trigonometric functions.

Exploring the ten most significant features from TRD (Sect. A.5) reveals that six of these
features are Fourier coefficients with p-values between 2.756 ·10–25 and 2.277 ·10–15. The
conditional distributions of feature

T R D _ _ f f t _ c o e f f i c i e n t _ _ c o e f f _ 8 4 _ _ a t t r _ " imag "

are shown in Fig. 18. This feature formally represents the phase of an oscillation with 8.4
cycles/(100 token ranks). While it is not obvious what the stylometric interpretation of
this feature is, the comparison of author specific distributions shows significant differ-
ences between the conditional means of EAP and the other authors (Fig. 19). The analysis
also reveals that for MWS the standard deviation of this feature is larger compared to
the standard deviations observed from EAP and HPL. This basically means that features
values larger than 10 strongly indicate the authorship of MWS.

6.4.4 Other stylometric features
There are many more statistically significant features left to be analyzed. Even with the
conservative feature selection process outlined in Sect. 3.2, there are still between 30 to 160
statistically significant features from each of the different functional language sequences.
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Figure 18 Distribution plot of feature “Fourier_Coefficients” from classes EAP, HPL and MWS

Figure 19 Posterior distributions and 95% credible intervals of differences for exemplary Fourier coefficient
feature. Left column: difference of means. Right column: difference of standard deviations. Top row: EAP vs
HPL. Middle row: EAP vs MWS. Lower row: HPL vs MWS. The 95% credible intervals are shown as a black
horizontal line

These numbers have been obtained from combining one feature group with the baseline
NLP predictions and selecting relevant features. The appendix (Sect. A) summarizes the
top ten features extracted for each of the functional language sequences. It lists the feature
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Figure 20 Exploratory analysis of features with non-trivial distributions. (a) Log-transformed feature
TLD__change_quantiles__f_agg_“mean”__isabs_False__qh_0.6__ql_0.2 extracted from token length
distributions. (b) Log-transformed feature TLS__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_20
extracted from token length sequences

name as returned by tsfresh [12], together with the a short description and the maximum
p-value from the three hypothesis tests (Algorithm 1).

Some of the statistically significant features feature bimodal or mixed distributions, as
shown in Fig. 20. Given the strict feature selection process, these features would be actually
relevant for authorship attribution of our case study.

7 Sentence-wise authorship attribution for Hamilton’s and Madison’s papers
We also applied our methodology to the Federalist papers [15, 16, 40], a well-known and
well-studied data set in the domain of authorship attribution. In contrast to previous re-
search using this data set, which aimed at attributing complete papers to specific authors,
we use our proposed time-series classification approach to attribute individual sentences
to their authors.

We focus our analysis on the authorship attribution problem of sentences from Hamil-
ton and Madison because it is well known that the writings from Hamilton and Madison
are common in many ways while different from Jay’s writing [16], and Jay’s articles pro-
vided only 4.5% of the sentences from papers with known authors (Table 4). We exclude
any papers with shared or disputed authorship. There are a total of 65 papers that meet
these criteria, 14 papers (1195 sentences) were written by Madison and 51 papers (3567
sentences) were written by Hamilton (Table 4), which makes the data set an imbalanced
one.

The evaluation of the proposed feature engineering approach differs from the one pre-
sented in Sect. 6 due to several reasons:

1. A promising classification algorithm for the paper-wise authorship attribution
problem has already been reported [16], and we want to compare our feature
engineering approach against this baseline for the sentence-wise classification
problem.

2. The sentence-wise classification problem for Hamilton’s and Madison’s papers is
imbalanced.

3. The cross-validation needs to take into account that the author’s might change their
style between papers.
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For the selected 65 papers, we set up a paper-wise, 10 times repeated 10-fold cross-
validation. The split of training and test data sets in each fold was stratified so that the
proportions of classes in the training and test sets are kept the same. The random seed
for the generation of the folds was fixed in order to keep the results reproducible. Because
our focus was on short texts, the respective papers were split into sentences using the
sent_tokenize method from NLTK [63]. The classification was done at the sentence
level and log loss was used to evaluate the prediction performances for each fold.

7.1 NLP models for the sentence-wise authorship attribution of Hamilton’s and
Madison’s papers

For this case study, we adapted a strong NLP method that was reported by Jockers and Wit-
ten [16] to be 100 percent accurate on the Federalist papers with known authors for the
paper-wise classification problem. Jockers and Witten used a bag-of-word model for vec-
torizing the papers and deployed a Nearest Shrunken Centroid (NSC) classifier [74, 75].
This NLP NSC method [16] included both word one-gram and two-grams for its bag-of-
words model and performed two versions of feature selections on the word grams—the
raw version (light feature selection) and preprocess version (heavy feature selection) [16].
In the raw version, a feature (word one-gram or two-grams) is selected only if it occurred
in the writings of each author in the data set at least once. The preprocess version builds
on the raw and adds a restriction that the selected features must have a minimum relative
frequency of 0.05% across the complete corpus. The feature selection was intended to be
used to exclude context specific words from the texts, to prevent these words from skew-
ing the attribution by subject over style. The selected features were used to vectorize the
texts and the vectors were then processed by the NSC method to perform classification.
We replicated Jockers’ and Witten’s work [16] for the paper-wise classification problem
and confirmed their results, that the NSC method is able to classify 70 individual articles
written by Hamilton, Madison and Jay with zero classification error. Our implementa-
tion of the algorithm used implementations from the Python package sklearn. To be
specific, we used the CountVectorizer for the text vectorization and the Nearest-
Centroids classifier as an equivalent to NSC.

For the sentence-wise classification problem, we chose both the bag-of-words with
Multinomial NB method, which was selected as the baseline for the Spooky Books Data
Set (Sect. 6.2), and the NSC method as baseline methods. During analysis, we replicated
the ideas of feature selection and the inclusion of two-grams from the NLP NSC method,
and implemented multiple versions of the NLP MNB method, including the original ver-
sion used in the Spooky Books Case Study. However, for the sentence-wise classification
problem, the NearestCentroids classifier was extended in order to provide probabil-
ity estimates from discriminant scores as outlined by Tibshirani et al. [75, p. 108], while
taking sample priors into account. Since discriminant scores might have extremely large
values for test samples, we have modified the approach from Tibshirani et al. [75, p. 108]
by performing a quantile transformation on the discriminant scores and fitting a logis-
tic regression model on the transformed scores. The configuration of the NSC model is
summarized in Table 7.
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Table 7 Parametrization of NSC Model. Optimal settings are typeset in bold

Process Module Parameters Values

Preprocessing None N/A
Raw (light preprocessing) Remove words not appearing in all authors’ writings
Preprocess (heavy
preprocessing)

Remove words not appearing in all authors’ writings and
with a relative frequency less than 0.05 percent

Representation Word n-grams N-gram range Start = 1–End = 2
Minimum term frequency 1 (use all terms)
Maximum term frequency 1.0 (no limit)

Vectorize Count vectorizer All set to default

Classifier Nearest Shrunken
Centroids (NSC)

Shrink threshold Tuned by GridSearchCV using
a 10-fold cross-validation

7.2 NLP baseline for the sentence-wise authorship attribution problem of
Hamilton’s and Madison’s papers

Using the 10-times 10-fold cross-validation framework, we computed the NLP MNB
method and the NLP NSC method on individual sentences and evaluated the predictions
using log loss. The version of NLP NSC method which performed the best was the pre-
process one. An average log loss score of 0.559 was obtained from the 100 test folds in the
cross-validation framework. On the other hand, the NLP MNB method with the prepro-
cess feature selection adapted from the NLP NSC method achieved the best results. Note,
that either including two-grams or not did not alter the performance of the method. The
average log loss scored obtained by NLP MNB was 0.542.

7.3 Performance of sentence-wise authorship attribution for Hamilton’s and
Madison’s papers

Due to a low computation time efficiency, the Token Rank Distribution time series map-
ping method was excluded from the analysis on the Federalist papers, while the other four
methods (defined in Sect. 3.3) were used together. Inspired by the feature selection method
used in Jockers’ and Witten’s work [16], we performed two versions of text preprocessing
before mapping the sentences into time series: light and heavy, corresponding to the raw
and preprocess versions used in the NLP NSC method. A no-preprocessing version was
also examined together with the two versions with text preprocessing. With either the
preprocessed texts or original texts, we mapped the sentences into time series using the
four different time series mapping methods, extracted all time series features from all four
groups and selected statistically relevant features from the combined time series features
for each fold in the cross-validation framework. Before the time series features were fed
into the classifier, an optional extra PCA transformation step was performed. When the
PCA transformation was applied, the time series features were first scaled using a Stan-
dardScaler, and then transformed using PCA into the first three principle components.

The time series features were classified using either NearestCentroids or XGBoost clas-
sifier, and the resulting performances on the test folds were similar. However, the differ-
ences in training and test scores in NearestCentroids’ predictions were smaller than in
XGBoost’s predictions, and the lowest average test log loss score was obtained using Near-
estCentroids, with the time series features extracted from light preprocessed texts (with
no PCA transformation). Hence, the lowest average log loss score obtained from the above
version, noted as the TS NSC method (light preprocessing) was considered to be repre-
senting the highest performance from the language time series method alone, which was
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Figure 21 Distributions of the test log loss scores obtained from Time Series Method (TS NSC light
preprocessing), NLP NSC method and NLP MNB method alone

0.548. The test scores from the 100 folds using the TS NSC method (light preprocessing),
the NLP NSC method and the NLP MNB method were shown as boxplots in Fig. 21.

The different variations of time series features were combined with the best NLP NSC
and NLP MNB probability predictions. These different versions of combinations were
classified using either NearestCentroids or XGBoost and evaluated independently. When
NLP NSC predictions were combined with the PCA transformed time series features ex-
tracted from light preprocessed texts, the combination achieved the best results among all
variations of combinations using NLP NSC predictions. The resulting average log loss test
score on the 100 folds was 0.539. The NLP MNB predictions performed best when com-
bined with the time series features extracted from original texts (without PCA transforma-
tion), and achieved an average log loss test score of 0.534. The scores from the combined
methods are presented using boxplots together with the individual methods in Fig. 22.

The posterior distributions of the differences of means were computed for the following
pairs:

• Time Series Method Alone vs NLP NSC Method Alone (Fig. 23(a)),
• NLP MNB Method Alone vs Time Series Method Alone (Fig. 23(b)),
• NLP MNB Method Alone vs NLP NSC Method Alone (Fig. 23(c)),
• NLP MNB Combined with Time Series Features vs NLP MNB Method Alone

(Fig. 23(d)),
• and NLP NSC Combined with Time Series Features vs NLP NSC Method Alone

(Fig. 23(e)).
Although the p-values for the Wilcoxon Signed Rank Tests on the above pairs were all
significantly smaller than 0.05, it is shown on the posterior distributions of the differences
of means that zeros were all within the 95% credible intervals (Fig. 23). However, there is a
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Figure 22 Distributions of the test log loss scores obtained from Time Series Method (TS NSC light
preprocessing) and NLP Methods alone, and from the combined methods

95.1% chance that the combination of language time series features with the NSC method
improved the mean log loss (Fig. 23(e)).

The scores are also summarized in a critical difference diagram created using the sc-
mamp R library [76], with a significance level of 0.05, as shown in Fig. 24. Die diagram
shows that the differences between NLP MNB, NLP MNB combined with time series fea-
tures, and NLP NSC combined with time series features are not statistically significant,
while the NLP NSC method clearly improved from being combined with time series fea-
tures.

7.4 Stylometric features of Hamilton’s and Madison’s papers
From the time series features selected in the Federalist Papers case study, we found that
at the sentence level, token length features dominated the most statistically significant
time series features. In the top ten most relevant features selected, two were token length
sequence time series features and eight were token length distribution time series features.
The top ten most relevant features are summarized in Appendix B.

7.4.1 Token length sequence: mean and non-linearity
The top two most significant features are

TLS__c3__lag_1

with a p-value of 9.181 · 10–27, and
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Figure 23 Posterior distributions and 95% credible intervals of differences for log loss scores from different
methods. (a) Time Series Method Alone vs NLP NSC Method Alone. (b) NLP MNB Method Alone vs Time Series
Method Alone. (c) NLP MNB Method Alone vs NLP NSC Method Alone. (d) NLP MNB Combined with Time
Series Features vs NLP MNB Method Alone. (e) NLP NSC Combined with Time Series Features vs NLP NSC
Method Alone

Figure 24 Critical Difference Diagram for negative test log loss scores obtained from Time Series Method (TS
NSC light preprocessing) and NLP Methods alone, and from the combined methods

TLS__mean

with a p-value of 1.581 · 10–24. In this section, we will show that both features describe
the differences in the mean token length between sentences, and the TLS__c3__lag_1
feature also captures some variances in non-linearity of the token length sequence time
series.
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Figure 25 Normalized distribution plot of mean token lengths for sentences Hamilton and Madison

Figure 26 Posterior distributions and 95% credible intervals of differences for the “mean” feature. Left is the
difference of group means, and right is the difference of group standard deviations

The TLS__mean feature is easy to understand. It calculates the mean token length for
every token length sequence. The histograms for the distributions of the feature from both
Hamilton and Madison are shown in Fig. 25. Due to the imbalance in sample sizes between
the two classes, both histograms are normalized.

The mean features of samples from Madison in average exceed the ones from Hamil-
ton, suggesting that Madison’s sample sentences tend to have longer tokens than Hamil-
ton’s sample sentences on average. The posterior distribution of the differences of means
between the two distributions is well separated from zero (Fig. 26(a)), while the poste-
rior distribution of the differences of standard deviations indicates a 94% chance that the
standard deviation of Madison’s mean token lengths is larger than Hamilton’s mean token
lengths (Fig. 26(b)).

The feature TLS__c3__lag_1 deploys a non-linearity measurement proposed in [77]:

1
ni – 2l

ni–2l∑

j=1

zi,j+2l · zi,j+l · zi,j, (22)

where ni is the number of tokens of the ith token length sequence, l is the lag parameter,
which is 1 for the TLS__c3__lag_1 feature, and zi,j is the jth token length of sample i.
With l = 1, the c3 measurement is effectively calculating the expected value of the product
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Figure 27 Distribution plot of feature “c3__lag_1” of token length sequence time series from classes
Hamilton and Madison (normalized by sample sizes and log-transformed)

Figure 28 Distribution plot of the normalized-by-mean feature “c3__lag_1” of token length sequence time
series from classes Hamilton and Madison (normalized by sample sizes and log-transformed)

of three consecutive points in the token length sequence. The distributions of the feature
extracted from samples from both classes show that the Madison class tends to have higher
c3 measurements, as shown in Fig. 27. The distributions are both normalized to compen-
sate for the imbalance of sample sizes between the two classes and are log-transformed.

Although the c3 function was proposed to measure the non-linearity of the time series,
from the equation we can easily find that the measurement could be affected by the mean
value of the time series. A higher mean would result in a higher c3 measurement. There-
fore, to remove the effect of the differences in the mean token lengths between sentences,
we normalized each token length sequence by its mean and extracted the c3 feature again.
The resulting distributions are plotted in Fig. 28, where the differences between the two
distributions are barely visible, suggesting that the majority of the variances in the c3 fea-
ture can be explained by the differences in the mean feature of both classes. However,
analyzing the posterior distributions of the differences of means for the normalized c3



Tang et al. EPJ Data Science            (2020) 9:26 Page 44 of 59

Figure 29 Posterior distributions and 95% credible intervals of differences for the normalized-by-mean
“c3__lag_1” feature. Left is the difference of group means, and right is the difference of group standard
deviations

values, we found that the differences of means are still significant, where only 0.9% of the
posterior distribution landed beyond zero, as shown in Fig. 29.

7.4.2 Token length distribution: intercept and slope of linear trend
In the top ten most statistically significant time series features, there are

T L D _ _ l i n e a r _ t r e n d _ _ a t t r _ " i n t e r c e p t "

at the 3rd position, with a p-value of 3.591 · 10–24, and

T L D _ _ l i n e a r _ t r e n d _ _ a t t r _ " s l o p e "

at the 6th position, with a p-value of 6.720 · 10–24. Both of these measure a specific attri-
bution of a linear least-squares regression fitted on the values of the given token length
distribution, versus the sequence from zero to the length of the sequence minus one.

A linear least-squares regression fitted on a token length distribution not only captures
the differences of the mean token lengths of the sentences, but it is also dependent on
the distribution as a whole and can describe how steep the distribution is. Because the
token length distribution calculates frequencies of token lengths that are normalized to
the number of tokens in the sentences, steepness can be described by both the inter-
cept and the slope of the linear model, which are the TLD__linear_trend__attr_
"intercept" and TLD__linear_trend__attr_"slope" features, respectively.
From the plots in Fig. 30 and Fig. 31, it is clear that the intercepts calculated from length
distributions of class Madison tend to be lower and the slopes tend to have higher values
(less negative) than the corresponding values calculated from time series of class Hamil-
ton. The differences in the average intercept and slope values of the fitted linear least-
squares regression suggests that the token length distribution from the Madison class
tend to be less “steep”, which further suggests that the lengths of the tokens in the sen-
tences written by Madison tend to be less concentrated in lower values but more in higher
values, compared to the ones from Hamilton’s writings. This finding is also supported by
the fact that Madison’s writings tend to have a higher mean token length than Hamilton’s
writings.
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Figure 30 Distribution plot of the feature “linear_trend__attr_‘intercept’” of token length sequence time
series from classes Hamilton and Madison (normalized by sample sizes)

Figure 31 Distribution plot of the feature “linear_trend__attr_‘slope’” of token length sequence time series
from classes Hamilton and Madison (normalized by sample sizes)

8 Discussion
In this section, we first answer our research question by considering the results from our
two case studies. We then discuss the limitations of our study and describe our repository
which makes the implementation of our approach openly available.

8.1 Answer to our research question
RQ: Can time series analysis be combined with existing natural language processing meth-
ods to improve accuracy of text analysis for the authorship attribution problem?

In the Spooky Books Case Study, the results show that the systematic extraction of time
series features from functional language sequences improves the predictions of a base-
line NLP method for an exemplary authorship attribution problem (Fig. 8). The baseline
NLP method was chosen to be a Multinomial-Naive-Bayes model, which outperformed
three other established NLP models (Fig. 7). The presented feature engineering method-
ology generates novel types of stylometric features (Sect. 6.4), which show characteristic
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differences between authors (Figs. 13, 16, 19). These extracted stylometric features can be
used to visualize the resemblance of writing styles between different authors for individual
sentences (Fig. 4).

On the other hand, in the Federalist Papers case study, the combination of the time series
features extracted from the functional language sequences showed only minor improve-
ments of the overall performance when combined with a strong benchmark NLP method.
These performance improvements were not statistically significant. However, when com-
bined with an established NLP method, which is known for its excellent performance on
the paper-wise authorship attribution problem, we observed a 95.1% chance that the sug-
gested feature engineering approach improved the overall performance (Fig. 23), such that
it become comparable to the group of best performing algorithms (Fig. 24).

Overall, on the case studies performed on two data sets presented in this work, the time
series features extracted from the functional language sequences either provided extra
information to effectively improve the baseline NLP methods, or achieved the same level
of performance as the competing NLP methods.

8.2 Limitations
There exist a few limitations in our evaluation, to be specific, there are limitations on the
data sets, and also limitations on the baseline NLP methods.

Firstly, our case studies focused specifically on authorship attribution problems with
very short text samples and relatively large numbers of samples. In the Spooky Books data
set, the text samples are individual sentences split from books of the same genre—spooky
novels - written by three authors. In the Federalist Papers data set, the text samples are sen-
tences from the famous Federalist Papers written by Hamilton and Madison—who were
the potential writers of the twelve disputed Federalist Papers and share many similari-
ties in their writings. To the best of our knowledge, authorship attribution tasks on sen-
tence level text samples have not been discussed in the literature. The two case studies
have shown the strength of the proposed language time series enhanced authorship attri-
bution method on two data sets with very short text samples and share the same genre
or topic. However, there remains further studies on how the proposed method will per-
form on other authorship attribution problems with longer texts, more candidate authors,
cross-genre texts, other forms of documents such as messages or tweets, or even on other
authorship analysis problems including authorship verification and authorship profiling.

Secondly, due to the lack of literature on authorship attribution methods working with
very short text samples, there is no guarantee that the selected baseline NLP methods in
the two case studies were the most suitable and state-of-art methods for the selected data
sets. Instead, the selected NLP methods were the best or the most widely used ones we
could find for the case studies. In the Spooky Books case study, we selected and experi-
mented with five advanced NLP methods as baselines, from which one was rejected due
to requirements on computational performance. In the Federalist Papers case study, we
directly compared the proposed method with the NSC method (Sect. 7.2), which success-
fully classified the known authors for the Federalist Papers with zero classification error
for the paper-wise authorship attribution problem. However, these results were obtained
at an article level, which contains much more tokens per text sample than that at a sen-
tence level. The best NLP method observed in the Spooky Books case study was also added
to the comparison in the Federalist Papers case study, and the method outperformed the
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NSC method (Fig. 23). It is possible that there are more suitable or advanced methods that
could have been used as baselines in this study that we have missed. However, we have
shown that our proposed method is able to improve the predictions over these selected
baselines.

The presented feature engineering approach has a large space to be further explored
and improved. E.g., our results are not as competitive as the results, which were achieved
by the winning teams of Kaggle’s Spooky Author Identification competition. However, as
the information about the methods used by the winning teams are not publicly accessi-
ble; we are not able to systematically compare our approach with theirs. Another possible
improvement could be achieved by combining our feature selection approach with other
established feature selection approaches, which basically would form a second tier of fea-
ture selection.

Due to limited time, we have only studied five basic mapping methods for generating
functional language sequence, which mainly extended the existing literature on language
time series analysis. There also exists a wide range of other methods we have not im-
plemented. As an example, part-of-speech (POS) tagging is a common transformation
method used in text analysis and contains stylometric features of the texts. A text can be
transformed into a continuous sequence of POS tags, which gives a wide berth for func-
tional language sequences to be constructed using different mapping methods. Similarly,
there are also existing text preprocessing and transformation methods that can be used in
developing functional language sequence mapping methods.

Given these limitations, there remain many aspects of our approach to be further ex-
plored but due to limited time and scope for this study, we were not able to include these
aspects into this single work. This opens up many avenues for future work including ap-
plying our methods to additional data sets, comparing our methods to other baselines,
expanding our feature selection approach, and developing additional mapping methods.

8.3 Open implementation of our methods
To enable other researchers to use and experiment with different methods on different
data sets and to explore more properties of this approach, we published our implementa-
tion of our approach in a GitHub repositorye under the MIT license. This will enable other
researchers to replicate our results and potentially apply our approach to other authorship
attribution problems.

9 Conclusion
We have introduced a consistent mathematical framework, which combines established
methods for the generation of language time series with methods for the generation of
functional language sequences. The framework also models the systematic feature engi-
neering based on approaches from time series classification, which includes a statistical
testing methodology for multi-classification problems. In total, 3970 novel stylometric
features have been evaluated with respect to their ability to improve the authorship attri-
bution problem of our case studies.

The main contribution of this paper is a novel feature extraction approach for natu-
ral language text that combines methods from Times Series Classification, Functional
Data Analysis, and automated Time Series feature extraction with existing Natural Lan-
guage Processing techniques. We call this approach Functional Language Analysis. This
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approach enables complete sentences to be considered when extracting features from nat-
ural text.

Applying our Functional Language Analysis approach to the sentence-wise authorship
attribution problem has demonstrated that it is able to extract statistically significant fea-
tures, which can improve existing techniques for analyzing natural text. Further, for au-
thorship attribution, a novel visualization technique is introduced which allows differ-
ences and commonalities of stylometric features in natural text to be easily viewed. In
summary, this research opens the door to an exciting new line of research which merges
two distinct fields of machine learning.

Appendix A: Most relevant features extracted from each mapping method for
the Spooky Books Data Set

The following section summarizes ten of the most relevant time series features, which
have been extracted from the functional language sequences discussed in Sect. 3.3. The
reported p-value is the maximum of the three hypothesis tests (Algorithm 1) conducted
for every feature in the course of the feature selection (Eq. (15)). Due to the univariate
hypothesis testing and the similarities in generating the sequences, many of the reported
features are colinear.

A.1 Exemplary features from token length sequences (TLS)
A.1.1 Aggregated linear trend

Maximal p-value 6.524 · 10–21

Feature name TLS__agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"intercept "
Description The minimal intercept of linear regression models, which were fitted to

chunks of 10 time series values.

A.1.2 Quantile
Maximal p-value 6.650 · 10–21

Feature name TLS__quantile__q_0.1
Description The value at the 10th percentile.

A.1.3 Nonlinearity
Maximal p-value 3.340 · 10–20

Feature name TLS__c3__lag_1
Description A measurement of nonlinearity [77] with a lag value of 1.

A.1.4 Aggregated linear trend
Maximal p-value 2.255 · 10–19

Feature name TLS__agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"stderr"
Description The minimal standard error of linear regression models, which were fitted

to chunks of 10 time series values.

A.1.5 Aggregated linear trend
Maximal p-value 6.393 · 10–17

Feature name TLS__agg_linear_trend__f_agg_"min"__chunk_len_5__attr_" intercept "
Description The minimal intercept of linear regression models, which were fitted to

chunks of 5 time series values.
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A.1.6 Median
Maximal p-value 3.447 · 10–11

Feature name TLS__median
Description The median of the time series values.

A.1.7 Mean
Maximal p-value 1.369 · 10–09

Feature name TLS__mean
Description The mean of the time series values.

A.1.8 Change quantiles
Maximal p-value 1.548 · 10–09

Feature name TLS__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8
Description The variance of absolute differences between consecutive time series val-

ues, which are larger than the 80th percentile.

A.1.9 Change quantiles
Maximal p-value 1.570 · 10–09

Feature name TLS__change_quantiles__f_agg_"var"__isabs_False__qh_1 .0__ql_0.8
Description The variance of differences between consecutive time series values, which

are larger than the 80th percentile.

A.1.10 Change quantiles
Maximal p-value 4.119 · 10–09

Feature name TLS__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0
Description The mean differences between consecutive time series values, which are

smaller than the 60th percentile.

A.2 Exemplary features from token frequency sequences (TFS)
A.2.1 Change quantiles

Maximal p-value 2.502 · 10–36

Feature name TFS__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0
Description The mean absolute differences between consecutive time series values,

which are smaller than the 60th percentile.

A.2.2 Quantile
Maximal p-value 1.734 · 10–34

Feature name TFS__quantile__q_0.3
Description The value at the 30th percentile.

A.2.3 Median
Maximal p-value 3.440 · 10–34

Feature name TFS__median
Description The median of all values in the time series.
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A.2.4 Quantile
Maximal p-value 5.097 · 10–31

Feature name TFS__quantile__q_0.4
Description The value at the 40th percentile.

A.2.5 Last maximum
Maximal p-value 2.519 · 10–23

Feature name TFS__last_location_of_maximum
Description The relative last location of the maximum value of the time series.

A.2.6 Variance
Maximal p-value 1.066 · 10–19

Feature name TFS__variance
Description The variane of all values in the time series.

A.2.7 Standard deviation
Maximal p-value 1.066 · 10–19

Feature name TFS__standard_deviation
Description The standard deviation of all values in the time series.

A.2.8 Aggregated linear trend
Maximal p-value 1.706 · 10–19

Feature name TFS__agg_linear_trend__f_agg_"var"__chunk_len_10__attr_" intercept "
Description The variance of intercepts, which were obtained from linear regression

models being fitted to chunks of 10 time series values.

A.2.9 Ratio beyond r sigma
Maximal p-value 6.935 · 10–19

Feature name TFS__ratio_beyond_r_sigma__r_1.5
Description The ratio of values that are more than 1.5 · std(x) away from the mean of x

where x is the target time series.

A.2.10 Quantile
Maximal p-value 1.010 · 10–18

Feature name TFS__quantile__q_0.2
Description The value at the 20th percentile.

A.3 Exemplary features from token rank sequences (TRS)
A.3.1 Median

Maximal p-value 1.463 · 10–34

Feature name TRS__median
Description The median of all values in the time series.

A.3.2 Quantile
Maximal p-value 2.376 · 10–34

Feature name TRS__quantile__q_0.6
Description The value at the 60th percentile.
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A.3.3 Wavelet coefficient
Maximal p-value 5.044 · 10–33

Feature name TRS__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_20
Description The 0 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 20.

A.3.4 Wavelet coefficient
Maximal p-value 5.319 · 10–29

Feature name TRS__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_20
Description The 1 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 20.

A.3.5 Change quantiles
Maximal p-value 2.878 · 10–27

Feature name TRS__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2
Description The variance of differences between consecutive TRS values, if the respec-

tive TRS values were larger than the 20th percentile and smaller than the 80th per-
centile.

A.3.6 Change quantiles
Maximal p-value 3.540 · 10–27

Feature name TRS__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4
Description The variance of absolute differences between consecutive TRS values, if the

respective TRS values were larger than the 40th percentile and smaller than the 80th
percentile.

A.3.7 Change quantiles
Maximal p-value 2.062 · 10–26

Feature name TRS__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0
Description The variance of the absolute consecutive changes inside a corridor between

0th and 60th percentile.

A.3.8 Change quantiles
Maximal p-value 2.709 · 10–25

Feature name TRS__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2
Description The variance of the absolute consecutive changes inside a corridor between

20th and 80th percentile.

A.3.9 Change quantiles
Maximal p-value 1.812 · 10–24

Feature name TRS__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6
Description The variance of the consecutive changes inside a corridor between 60th

and 100th percentile.

A.3.10 Change quantiles
Maximal p-value 2.009 · 10–24
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Feature name TRS__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0
Description The average of the absolute consecutive changes inside a corridor between

0th and 60th percentile.

A.4 Exemplary features from token length distributions (TLD)
A.4.1 Index of mass quantile

Maximal p-value 1.311 · 10–19

Feature name TLD__index_mass_quantile__q_0.1
Description The relative index where 10% of the mass of the time series lie behind.

A.4.2 Change quantiles
Maximal p-value 5.621 · 10–15

Feature name TLD__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4
Description The average of the consecutive changes inside a corridor between 40th and

100th percentile.

A.4.3 Change quantiles
Maximal p-value 5.020 · 10–14

Feature name TLD__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2
Description The average of the consecutive changes inside a corridor between 20th and

100th percentile.

A.4.4 Energy ratio by chunks
Maximal p-value 1.678 · 10–13

Feature name TLD__energy_ratio_by_chunks__num_segments_10__segment_focus_0
Description The sum of squares of values in the first chunk out of 10, as a ratio with the

value over the whole time series.

A.4.5 Change quantiles
Maximal p-value 2.644 · 10–13

Feature name TLD__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0
Description The average of the consecutive changes inside a corridor between 0th and

100th percentile.

A.4.6 Mean change
Maximal p-value 2.644 · 10–13

Feature name TLD__mean_change
Description The mean over the differences between subsequent time series values.

A.4.7 Wavelet coefficient
Maximal p-value 5.597 · 10–12

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_20
Description The 8 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 20.
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A.4.8 FFT coefficient
Maximal p-value 1.649 · 10–11

Feature name TLD__fft_coefficient__coeff_2__attr_ "angle "
Description The angle of the 2nd Fourier coefficient of the one-dimensional discrete

Fourier Transform.

A.4.9 FFT coefficient
Maximal p-value 2.197 · 10–11

Feature name TLD__fft_coefficient__coeff_2__attr_ " real "
Description The real part of the 2nd Fourier coefficient of the one-dimensional discrete

Fourier Transform.

A.4.10 Wavelet coefficient
Maximal p-value 4.276 · 10–10

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_20
Description The 10 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 20.

A.5 Exemplary features from token range distributions (TRD)
A.5.1 FFT coefficient

Maximal p-value 2.756 · 10–25

Feature name TRD__fft_coefficient__coeff_84__attr_ "imag"
Description The imaginary part of the 84th Fourier coefficient of the one-dimensional

discrete Fourier Transform.

A.5.2 FFT coefficient
Maximal p-value 1.895 · 10–24

Feature name TRD__fft_coefficient__coeff_21__attr_ "imag"
Description The imaginary part of the 21st Fourier coefficient of the one-dimensional

discrete Fourier Transform.

A.5.3 FFT coefficient
Maximal p-value 4.802 · 10–22

Feature name TRD__fft_coefficient__coeff_14__attr_ "imag"
Description The imaginary part of the 14th Fourier coefficient of the one-dimensional

discrete Fourier Transform.

A.5.4 FFT coefficient
Maximal p-value 1.064 · 10–18

Feature name TRD__fft_coefficient__coeff_92__attr_ "imag"
Description The imaginary part of the 92nd Fourier coefficient of the one-dimensional

discrete Fourier Transform.

A.5.5 Aggregated linear trend
Maximal p-value 5.872 · 10–16

Feature name TRD__agg_linear_trend__f_agg_"max"__chunk_len_50__attr_"intercept"
Description The maximal intercept of linear regression models, which were fitted to

chunks of 10 time series values.
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A.5.6 FFT coefficient
Maximal p-value 6.450 · 10–16

Feature name TRD__fft_coefficient__coeff_8__attr_ "imag"
Description The imaginary part of the 8th Fourier coefficient of the one-dimensional

discrete Fourier Transform.

A.5.7 Number of peaks
Maximal p-value 1.638 · 10–15

Feature name TRD__number_peaks__n_3
Description The number of peaks of at least support 3 in the time series.

A.5.8 FFT coefficient
Maximal p-value 2.277 · 10–15

Feature name TRD__fft_coefficient__coeff_65__attr_ " real "
Description The real part of the 65th Fourier coefficient of the one-dimensional discrete

Fourier Transform.

A.5.9 Ratio beyond r sigma
Maximal p-value 4.396 · 10–15

Feature name TRD__ratio_beyond_r_sigma__r_2.5
Description The ratio of values that are more than 2.5 · std(x) away from the mean of

the individual sequence.

A.5.10 Approximate entropy
Maximal p-value 4.775 · 10–15

Feature name TRD__approximate_entropy__m_2__r_0.9
Description The approximate entropy calculated with a length 2 of compared run of

data and a 0.9 filtering level.

Appendix B: Most relevant features extracted from the Federalist Papers
Data Set

The following section summarizes the top ten most relevant time series features extracted
from the Federalist Papers Data Set, using four functional language sequences mapping
methods discussed in Sect. 3.3, including token length sequence, token frequency se-
quence, token rank sequence and token length distribution. The classification task was
binary, hence the p-values of the hypothesis tests are equal for both classes and are re-
ported in this section.

B.1 C3
Method Token length sequence
p-value 9.181 · 10–27

Feature name TLS__c3__lag_1
Description A measurement of nonlinearity [77] with a lag value of 1.
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B.2 Mean
Method Token length sequence
p-value 1.581 · 10–24

Feature name TLS__mean
Description The mean of all values in the time series.

B.3 Linear trend
Method Token length distribution
p-value 3.591 · 10–24

Feature name TLD__linear_trend__attr_" intercept "
Description The intercept of a linear least-squares regression fit on values of the time

series versus the sequence from 0 to length of the time series minus one.

B.4 Wavelet coefficient
Method Token length distribution
p-value 5.211 · 10–24

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_20
Description The 12 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 20.

B.5 Wavelet coefficient
Method Token length distribution
p-value 6.689 · 10–24

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_10
Description The 0 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 10.

B.6 Linear trend
Method Token length distribution
p-value 6.720 · 10–24

Feature name TLD__linear_trend__attr_"slope "
Description The slope of a linear least-squares regression fit on values of the time series

versus the sequence from 0 to length of the time series minus one.

B.7 Wavelet coefficient
Method Token length distribution
p-value 2.196 · 10–23

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_10
Description The 12 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 10.

B.8 Wavelet coefficient
Method Token length distribution
p-value 4.470 · 10–23

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_5
Description The 2 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 5.
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B.9 Wavelet coefficient
Method Token length distribution
p-value 1.860 · 10–22

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_5
Description The 1 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 5.

B.10 Wavelet coefficient
Method Token length distribution
p-value 1.245 · 10–21

Feature name TLD__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_10
Description The 11 coefficient for the Continuous wavelet transform for the Ricker

wavelet with a width parameter of 10.
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Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR,
Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Contributors (2020) SciPy 1.0: Fundamental algorithms for
scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

74. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene
expression. Proc Natl Acad Sci USA 99(10):6567–6572.

https://doi.org/10.1007/978-1-4612-5256-6
https://doi.org/10.1162/coli_a_00325
https://doi.org/10.1145/2500499
https://doi.org/10.1214/09-SS051
http://www.gutenberg.org/ebooks/1404
http://www.gutenberg.org/files/84/84-h/84-h.htm
http://www.nltk.org/book
https://doi.org/10.1007/978-981-13-0872-7_15
https://docs.pymc.io/notebooks/BEST.html
https://doi.org/10.1038/s41592-019-0686-2


Tang et al. EPJ Data Science            (2020) 9:26 Page 59 of 59

75. Tibshirani R, Hastie T, Narasimhan B, Chu G (2003) Class prediction by nearest shrunken centroids, with applications
to DNA microarrays. Stat Sci 18(1):104–117

76. Calvo B, Santafe G (2015) scmamp: statistical comparison of multiple algorithms in multiple problems. R J (accepted
for publication)

77. Schreiber T, Schmitz A (1997) Discrimination power of measures for nonlinearity in a time series. Phys Rev E
55(5):5443–5447


	Enriching feature engineering for short text samples by language time series analysis
	Abstract
	Keywords

	Introduction
	Related work
	Functional data analysis and time series classiﬁcation
	Authorship attribution

	Functional language analysis
	Problem statement
	Feature extraction from language time series
	Engineering functional language sequences
	Mapping methods overview

	Illustration and visualization of mapping methods
	Case studies
	The Spooky Books Data Set
	The Federalist Papers Data Set

	Some examples of functional language sequences
	Token length sequence (TLS)
	Token frequency sequence (TFS)
	Token rank sequence (TRS)
	Token length distribution (TLD)
	Token rank distribution (TRD)

	Discrimination maps

	Evaluation: methodology
	Evaluation procedure
	Performance metric
	The hybrid classiﬁer

	Sentence-wise authorship attribution for the Spooky Books Data Set
	NLP models for the Spooky Books Data Set
	Bag-of-words models
	N-grams models

	The NLP baseline for the Spooky Books Data Set
	Performance of sentence-wise authorship attribution for the Spooky Books Data Set
	Stylometric features of the Spooky Books Data Set
	Token frequency sequence: expected change between less frequent tokens
	Token rank sequence: median
	Token rank distribution: Fourier coefﬁcients
	Other stylometric features


	Sentence-wise authorship attribution for Hamilton's and Madison's papers
	NLP models for the sentence-wise authorship attribution of Hamilton's and Madison's papers
	NLP baseline for the sentence-wise authorship attribution problem of Hamilton's and Madison's papers
	Performance of sentence-wise authorship attribution for Hamilton's and Madison's papers
	Stylometric features of Hamilton's and Madison's papers
	Token length sequence: mean and non-linearity
	Token length distribution: intercept and slope of linear trend


	Discussion
	Answer to our research question
	Limitations
	Open implementation of our methods

	Conclusion
	Appendix A: Most relevant features extracted from each mapping method for the Spooky Books Data Set
	Appendix B: Most relevant features extracted from the Federalist Papers Data Set
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Endnotes
	Publisher's Note
	References


