
A Systematic Mapping Study on Architectural Smells Detection

Haris Mumtaz, Paramvir Singh, and Kelly Blincoe

Abstract—The recognition of the need for high-quality software architecture is evident from the increasing trend in investigating
architectural smells. Detection of architectural smells is paramount because they can seep through to design and implementation
stages if left unidentified. Many architectural smells detection techniques and tools are proposed in the literature. The diversity in
the detection techniques and tools suggests the need for their collective analysis to identify interesting aspects for practice and open
research areas. To fulfill this, in this paper, we unify the knowledge about the detection of architectural smells through a systematic
mapping study. We report on the existing detection techniques and tools for architectural smells to identify their limitations. We
find there has been limited investigation of some architectural smells (e.g., micro-service smells); many architectural smells are not
detected by tools yet; and there are limited empirical validations of techniques and tools. Based on our findings, we suggest several
open research problems, including the need to 1) investigate undetected architectural smells (e.g., Java package smells), 2) improve
the coverage of architectural smell detection across architecture styles (e.g., service-oriented and cloud), and 3) perform empirical
validations of techniques and tools in industry across different languages and project domains.

Index Terms—Architectural smells, architectural debt, antipatterns, smell detection techniques, systematic mapping study

1 INTRODUCTION

Software architecture forms the foundation and defines the structural
and semantic composition of a software system [8]. A software system’s
architecture directly influences the software artifacts created in the
subsequent development stages (e.g., design and implementation) [32].
Therefore, it is paramount that the quality of software architecture is not
compromised. Still, it is common for the software architecture quality
to be degraded because of the adoption of certain design decisions. For
instance, a decision to create a centralized component that handles the
majority of the responsibilities can lead to modularization problems
in the architecture [46]. Such inappropriate decisions introduce “bad
smells” in the architecture, negatively impacting the architecture quality,
mainly maintainability [10, 41]. The term “smell” refers to a structural
problem in a software artifact. For instance, “code smells” refer to
structural problems in source code [25]. In the literature, the term
“smell” is interchangeably used with other terms, such as antipattern,
flaw, anomaly, etc. [P38,P39,P62,P73]. In the rest of this paper, we use
the term “smells” to refer the structural design problems in software
architecture. However, while describing the techniques and tools, for
consistency reason, we use the same terms (e.g., antipattern, flaw, etc.)
as mentioned in the papers.

Based on the scope and impact of bad smells, they are often classified
into three levels of granularity in the order: architecture (high-level),
design, and implementation (low-level) [42]. Smells at the implemen-
tation level refer to the structural problems in the low-level constructs
(functions or methods) such as Long Method, Long Parameter List,
etc. [25]. At the design-level, structural problems in the classes, such as
Missing Abstraction and Insufficient Modularization, are observed [46].
In contrast to implementation and design smells, the architecture level
smells indicate the structural problems in the components (which could
be groups of classes) and their interactions with other components.
Examples of architectural smells are God Component and Dense Struc-
ture [P3]. The scope of this paper is limited to the analysis of architec-
tural smells detection techniques and tools.

• H. Mumtaz and K. Blincoe are with the Department of Electrical, Computer,
and Software Engineering at the University of Auckland, New Zealand. P.
Singh is with the School of Computer Science at the University of Auckland,
New Zealand. E-mail: {hmum126}@aucklanduni.ac.nz,
{p.singh,k.blincoe}@auckland.ac.nz.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

The timely detection and eradication of architectural smells are es-
sential because, otherwise, the cost of fixing the repercussions later in
the software development life cycle is exceptionally high, especially
in large scale industrial projects [P58]. Over the past decade, several
techniques and tools have been developed to detect architectural smells.
These techniques and tools focus on various architectural styles (e.g.,
service, layered, etc.), architectural smells (e.g., dependency, perfor-
mance, etc.), and types of software (e.g., web, middleware, etc.). As a
specific example, Ouni et al. [P49] identified service-oriented smells
that impact the maintainability of web systems. Likewise, Sanctis et
al. [P13] detected performance smells in software architecture. The
techniques and tools are validated, mostly, in two ways (through empir-
ical studies and case studies) using a variety of data (from open source
projects and commercial projects). For instance, Velasco-Elizondo et
al. [P74] conducted an empirical validation of their detection technique
for model-view-controller (MVC) architectural smells on open source
web systems.

This demonstrates that the detection techniques and tools are diverse,
and a systematic and comprehensive analysis of the available techniques
and tools would help the research community learn about the interesting
aspects and limitations. Currently, the information about architectural
smells detection is spread across multiple literature databases, and to
the best of our knowledge, there is no literary evidence of systematic
gathering and discussion of such information.

To fill this gap, in this paper, we present a systematic mapping study
on the detection of architectural smells. The objective is to unify the
scattered knowledge about architectural smells detection techniques and
tools into one literary source to analyze what has been accomplished
in this area, highlight useful findings, and reflect on the limitations of
what is available. As expected from a mapping study, we also report on
publication trends of the architectural smells detection. To fulfill these
objectives, we formulate the following research questions:

• RQ1: What are the demographics of the published articles?
Goal – This RQ identifies when the articles are published; the
venues where research related to architectural smells detection
is published; and the origin type (academic or industry) of these
articles.

• RQ2: What detection techniques for architectural smells are pro-
posed in literature?
Goal – This RQ identifies and analyzes the architectural smells
detection techniques that have been proposed in the literature. We
investigate what types of architectural smells can currently be
detected; what architecture styles are handled by the techniques;
and how the techniques are evaluated.

This is a post-peer-review, pre-copyedit version of an article published in Journal of Systems and Software. The final
authenticated version is available online at: https://doi.org/10.1016/j.jss.2020.110885

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

• RQ3: What detection tools for architectural smells are proposed
and evaluated in literature?
Goal – This RQ identifies and analyzes the detection tools that
have been reported in the literature. The purpose of RQ3 is to
highlight the architecture smell detection tools that are available
to the software development community. Software tools make
detection techniques more accessible to software practitioners,
but not all detection techniques have supporting tools. Therefore,
we also analyze detection tools separate to detection techniques.
Similar to RQ2, we report on the architectural smells that tools
can detect. We also report on the validation, availability, and
language support of the detection tools.

• RQ4: What are the limitations of the reported detection techniques
and tools?
Goal – This RQ identifies limitations reported in the proposed
detection techniques and tools. The limitations are comprised
of the ones found in the literature and identified through the
collective analysis of the detection techniques and tools. Through
this RQ, we identify undetected architectural smells, understudied
architecture styles, and unexplored quality characteristics. This
RQ also reflects on the limitations in the evaluation processes of
the techniques and tools.

We present the systematic mapping process that defines our search
strategy, inclusion criteria, and exclusion criteria using the guidelines
of Petersen et al. [38, 39]. We developed a search string to retrieve
the literature relevant to our research questions. We applied the search
string to seven digital databases: Scopus, Web of Science, INSPEC,
ACM Digital Library, IEEEXplore, SpringerLink, and DBLP. As a
result, we retrieved 529 unique articles, which were reduced to 76
after applying the inclusion and exclusion criteria. We also performed
snowballing on the selected articles using the guidelines of Wohlin [51].
After snowballing, the final list of articles (85) was selected for analysis.
To analyze the gathered literature, we formalized an analysis frame-
work comprising of several factors related to techniques, tools, and
their validation. In addition, for an in-depth analysis, we matched the
architectural smells that are detected by techniques and tools with a list
of all architectural smells obtained from recent papers which catalog
currently known architectural smells [5, 13, 17, 26, 28, 31, 45, 47]. This
enabled us to identify known architectural smells that are not currently
detected by any techniques or tools.

The main contribution of this paper is the systematic unification of
the information about architectural smells detection (techniques and
tools) that is scattered across various digital databases and libraries. We
present a comprehensive analysis of architectural smells detection tech-
niques and tools with a focus on highlighting the interesting findings,
gaps, and limitations. We also discuss open research areas that need
exploration and investigation.

2 RELATED WORK

Before describing our study, we provide an overview of related system-
atic reviews and mapping studies.

De Paulo Sobrinho et al. [18] conducted a literature review to cover
five W’s: which, when, what, who, and where on bad smells in different
software artifacts (code, design, and architecture). They found that
some kinds of smells are studied more frequently than others (which);
that research in the area of bad smells is spread across time (when);
that findings, claims, and experimental setups vary among different
detection approaches (what); who the authors are that publish (continu-
ously or sporadically) in the research area related to bad smells (who);
and finally, which venues mostly publish the research about bad smells
(where). They reported on the investigation of various bad smells in
different software artifacts and at different granularity levels. Through
their intensive analysis, they presented future directions for research
in the area of bad smells. Compared to this study, they did not present
details on architectural smells techniques and tools.

There are some literature reviews and mapping studies on architec-
tural technical debt (ATD). Besker et al. [11,12] performed a systematic

literature review on ATD. Their focus was on the debt, interest, and
principle related to the effort and cost required to deal with ATD. They
also proposed a model to categorize the characteristics of ATD better.
Alves et al. [3] identified several indicators for detecting technical debt
in software architecture through a systematic mapping study. Ampat-
zoglou et al. [4] performed a systematic literature review to cover the
financial aspects of technical debt management. Li et al. [30] published
a mapping study on the management of technical debt. Verdecchia
et al. [50] applied a systematic mapping study to identify, classify,
and evaluate studies that identify ATD. They focused on analyzing the
publication trends, characteristics, and industry involvement in ATD
identification. Tom et al. [48] conducted a literature review to uncover
the nature of technical debt and its implications on the software devel-
opment process. Finally, the goal of Fernández-Sánchez et al. [22] was
to identify and analyze the key elements (related to the cost estimation
and decision making) for managing technical debt. Generally, ATD is
closely related to architectural smells, however, none of these studies
investigated architecture smell detection specifically.

In a systematic literature review, Sabir et al. [41] evaluated smell
detection techniques and their evolution within the scope of object-
oriented and service-oriented systems. They identified various com-
monalities and differences in the detection of bad smells in object-
oriented and service-oriented systems. They reported several key find-
ings, including some smells that receive less attention and a catalog of
service-oriented smells that require more investigation. Vale et al. [49]
presented a systematic literature review on the existence of bad smells
in the software product line (SPL). They concluded that research on
SPL-specific smells is an open area to explore, considering many limi-
tations and challenges discussed in the literature. They also provided
a catalog of code smells, architectural smells, and hybrid smells. The
systematic mapping study performed by Bandi et al. [6] studied the
empirical evaluations of techniques that investigate the effects of code
decay on software quality. They also included design and architectural
violations related to code decay and software quality. Although these
reviews reported interesting findings and limitations about architectural
smells detection, the scopes are limited to specific architectural styles
or domains.

There are also some reviews on the detection of design-level smells—
sub-optimal patterns in software design [43]. Mumtaz et al. [35] con-
ducted a literature survey to identify gaps in the detection techniques
for design smells. They analyzed the proposed techniques and ex-
perimental designs to locate limitations related to unexplored design
smells and experimental evaluations. They found a scarcity of detection
approaches for UML sequence diagrams and use cases. Similarly, Mis-
bhauddin and Alshayeb [34] provided a systematic review of existing
research in UML model refactoring. Alkharabsheh et al. [2] analyzed
the detection approaches for design smells using several comparison
factors. The comparison factors include smell type, detection tech-
niques, detection tools, validation, artifact type, and language support.
They also explored the relationship between the detected design smells
and quality attributes. There is also a systematic review that compared
bad smells detection tools in terms of bad smells coverage, language
support, and usability issues [21]. The scope of these reviews is limited
to design smells. However, the comparison factors are relevant for our
analysis.

Azadi et al. [P3] presented a review of architectural smells detection
tools. They identified the architectural smells detected by various tools
and presented a catalog of architectural smells. In their review, they
also reported three quality principles (modularity, hierarchy, and health
dependency structure) violated by the architectural smells. Furthermore,
they discussed the differences between the detection strategies used by
the tools to detect each smell. From a tool’s perspective, our work is
different from Azadi et al. [P3] in that we mainly focus on highlighting
the limitations by analyzing the detection tools. From our analysis, we
identified many architectural smells (e.g., performance-related smells)
that are not detected by currently available tools. We also provided
details of the validations of the detection tools and presented the limita-
tions related to the validation. In addition, we reflected on the language
support provided by the tools and discussed some issues related to

the language scalability. Furthermore, we discussed various ways the
limitations in the detection tools could be addressed. In addition to
detection tools, we also analyze other detection techniques (and their
limitations) which do not have associated tools.

To summarize, from the architecture point of view, the systematic
reviews related to software architecture either focus on financial aspects
or their scope is limited to a specific domain. The literature reviews
and mapping studies that focused on the financial aspects of technical
debt had research questions aimed at measuring and managing the
maintenance cost of the changes due to the existence of the technical
debt. Some literature reviews had scope limited to a specific domain or
paradigm, such as the reviews on the bad smells detection approaches
for object-oriented and service-oriented systems. There is also a sys-
tematic literature review that reported on the studies investigating only
those smells that belong to the software product line. To the best of
our knowledge, there is no systematic review or mapping study that
collectively covers both detection techniques and tools for architectural
smells. We fill this gap with a systematic mapping study, where we
analyze the detection techniques and tools with a broader scope of
architectural smells detection. The systematic reviews and mapping
studies at the design level used a variety of comparison factors (e.g.,
smell type, artifact type, domain, etc.) to evaluate the detection ap-
proaches. In our systematic mapping study, we also use similar analysis
factors to compare the architectural smells detection techniques and
tools.

3 SYSTEMATIC MAPPING PROCESS

In this paper, we followed the systematic mapping guidelines provided
by Petersen et al. [38,39]. The first author executed the systematic map-
ping process, however, the results were iteratively discussed between
the authors. Our mapping process contained three steps: planning,
execution, and analysis. At the planning stage, we identified research
questions and a mapping study protocol. The rationale of the mapping
protocol was to formulate a method to execute the mapping process.
In the execution phase, the searched literature was exposed to the in-
clusion and exclusion criteria to identify a set of articles for in-depth
analysis. Lastly, at the results analysis stage, the selected literature was
subjected to analysis to address the research questions. The systematic
mapping process is also depicted as a flow chart in Figure 1.

3.1 Mapping Protocol Overview
We used the following mapping protocol that was discussed and final-
ized between the authors:

• Search the databases and digital libraries from 1999 to 2019
inclusive using the search string (see Section 3.2)—retrieved 837
articles.

• Remove duplicates (automatically and manually) to obtain unique
articles (see Section 3.2)—resulted in 529 articles.

• Apply inclusion and exclusion criteria (see Section 3.3)—resulted
in 76 articles.

• Apply snowballing to 76 articles (see Section 3.4)—identified 27
new articles.

• Apply inclusion and exclusion criteria to 27 articles identified
through snowballing (see Section 3.4)—removed 18 articles.

• Extract data from the selected articles (85) that was needed to
answer our research questions.

3.2 Search Strategy
Searched databases – We searched the following databases and dig-
ital libraries because they are commonly used to extract computer
science and software engineering publications: Scopus, Web of Sci-
ence, INSPEC, ACM Digital Library, IEEEXplore, SpringerLink, and
DBLP [14]. We searched these databases and libraries to obtain infor-
mation related to the detection of architectural smells in October 2019.

Search string – We formulated the following search string to lo-
cate the related work: “software architectur*” AND (“smell*” OR

“antipattern*” OR “debt” OR “flaw*” OR “anomal*”). The included
search terms were derived based on our research questions. First, the
term “software architectur*” was included to get the literature confined
to software architecture. Then, to narrow the software architecture
literature to the papers discussing architectural smells, we included
the term “smell*”. We also considered different terms that are used in
the same context as smells in the literature. For instance, Sharma and
Spinellis [43] reported the use of the terms “smell” and “antipattern”
interchangeably by software engineering researchers and practitioners.
Similarly, other terms (“debt”, “flaw*”, and “anomal*”) were also used
in the same context as smells [P60, P73]. Therefore, we included these
terms in our search string. Moreover, our search string used conjunc-
tion and disjunction operators to combine multiple search terms into a
single search string. The specific search string used in each database is
shown in Table 1.

Search string validation – To see the effectiveness of our search
string, we performed a focused search analysis of the papers published
in the International Conference on Software Engineering (ICSE) from
2016 to 2019. The reason for performing this exercise was to gain
confidence in the search string. We chose ICSE because it is the
flagship software engineering conference. We selected the four ICSE
editions (2016–2019) because they are the most recent editions and
represent a reasonably sized set of papers for manual validation. We
manually looked at all the papers in these editions to shortlist the
relevant ones (for comparison later). By reading through the abstracts
and introductions of all papers from the proceedings of ICSE 2016–
2019, we identified 15 papers of interest. By applying the search string
within ICSE 2016–2019, we found 12 of the identified relevant papers
(80%). The search string missed three papers (20%), two from ICSE ’19
and one from ICSE ’18. Subsequently, we executed a snowballing
strategy on the 12 retrieved articles. As a result, we found the remaining
papers that were previously missed by our search string. To conclude,
80% (12 out of 15) of the articles were found through our search string,
and the remaining three papers were located through snowballing. Thus,
we were confident that the search string combined with a snowballing
strategy has good accuracy in finding the papers of interest.

Retrieved articles – We received 837 hits in total by applying the
search string in the databases mentioned earlier. The number of re-
trieved articles respective to each electronic database is shown in Ta-
ble 1. After removing the duplicated articles, the number of unique
articles was reduced to 529. These 529 articles were exposed to our
inclusion and exclusion criteria described in the next section.

3.3 Inclusion and Exclusion Criteria
We defined the inclusion and exclusion criteria to filter the set of
articles—from the unique retrieved articles (529)—that were relevant
to our research objectives and questions. The rationale of inclusion
criteria was to consider articles that substantially discuss architectural
smells detection. In contrast, the purpose of defining the exclusion cri-
teria was to discard articles containing information that is insufficient
for answering our research questions.

We used the following inclusion criteria:

• Articles that discuss the detection of architectural smells.

• Articles that describe techniques or tools aiming to detect archi-
tectural smells.

• Articles that are written in English.

• Articles that are published 1999 onwards because the term “bad
smell” was introduced in this year.

• We consider literature published in journals, conferences, books,
and workshops.

The exclusion criterion was iteratively modified during the exclusion
process. For instance, “briefings” was added to our exclusion criteria
when a briefing report was found during the snowballing process. The
list of final exclusion criteria is:

Table 1. Distribution of articles per electronic database

Database Search string Retrieved
Articles

Scopus “software architectur*” AND (“smell*” OR “antipattern*” OR “debt” OR “flaw*” OR “anomal*”) 115
Web of Science “software architectur*” AND (“smell*” OR “antipattern*” OR “debt” OR “flaw*” OR “anomal*”) 78
INSPEC “software architecture” AND (“smell*” OR “antipattern*” OR “debt” OR “flaw*” OR “anomal*”) 161
ACM Digital Library “software architecture” AND (“smell*” OR “antipattern*” OR “debt” OR “flaw*” OR “anomal*”) 78
IEEEXplore “software architectur*” AND (“smell*” OR “antipattern*” OR “debt” OR “flaw*” OR “anomal*”) 136
SpringerLink “software architectur*” AND (“smell*” OR “antipattern*” OR “debt” OR “flaw*” OR “anomal*”) 244
DBLP “software architectur*” (“smell*” | “antipattern*” | “debt” | “flaw*” | “anomal*”) 25

Total (includes duplication) 837
Total (unique articles) 529
Total (after inclusion and exclusion criteria) 76
Total (after snowballing) 85

• Articles that discuss software architecture and architectural smells
(not detection) in general.

• Articles that define architectural smells or present only a catalog
of architectural smells. Although such papers [5, 13, 17, 26,
28, 31, 45, 47] were excluded, we did use them to identify the
architectural smells (including their aliases) that are detected by
the techniques and tools and those smells that are not detected
yet.

• Articles that only consider architectural refactoring, not architec-
ture smell detection.

• Literature available in the form of interviews, news, posters, tuto-
rials, and lectures.

• Articles that present proposed work, such as visionary reports,
proposals, briefings, etc.

• Articles whose full text is not available.

The initial search in the digital databases was restricted to TAK
(Title, Abstract, and Keywords). The titles and abstracts of the retrieved
articles were reviewed to apply the inclusion and exclusion criteria. In
some cases, where the relevance of the article was unclear from the
titles and abstracts, we also read the introductions of the articles. After
applying the inclusion and exclusion criteria to the articles (529), the
number of articles was reduced to 76 (as shown in Table 1). These 76
articles became the candidates for the snowballing strategy described
in the next section.

3.4 Snowballing
We used the guidelines of Wohlin [51] to perform snowball sampling
to search the relevant literature that might have been missed by our
search string. We performed one iteration of forward and backward
snowballing. By applying this snowballing strategy to the selected 76
articles, we identified 27 new articles. Similar to the articles (retrieved
by our search string), the newly found 27 articles were also subjected to
our inclusion and exclusion criteria. After the inclusion and exclusion
criteria were applied, an additional nine articles were added to the pool
of 76 articles making the final set of papers in this study 85 articles
(also shown in Table 1).

4 ANALYSIS FRAMEWORK

After obtaining the desired literature sources, we extracted the key
factors related to the detection of architectural smells. In this section,
we describe the factors constituting our analysis framework. The factors
were extracted according to the guidelines provided by Petersen et
al. [38, 39] and driven by our research questions. The first author
extracted the data from the 85 primary papers. To ensure descriptive
validity, the other two authors also independently extracted the data

Literature
Databases

Retrieved
Articles (837)

Apply search string
Start Unique

Articles (529)
Remove duplication

Filtered
Articles (76)

Apply inclusion and
exclusion criteriaArticles for

Analysis (85)
After snowballing

End

Fig. 1. Systematic Mapping Process

from just over 15% of the primary papers. The disagreements (and
perceptual differences in the observations) in the data extraction were
then discussed among all the authors to reach a common ground on
how the data should be extracted and processed. Once all three authors
agreed on a common extraction and classification scheme, the first
author extracted the data from the rest (85%) of the primary papers.

The analysis framework was developed by considering both the con-
tent of the papers and our research questions. To analyze the detection
techniques and tools, some key factors needed to be identified (e.g.,
what kind of architectural smells are detected; what types of detection
techniques are proposed). To have a comprehensive set of factors, we
considered factors that have been used in prior studies to analyze the
detection of design smells [2, 35] and bad smells detection tools [21].
For the factors that are related to the evaluation of techniques, we
also sought guidance from Jedlitschka et al. [27]. They reported some
essential elements for an experimental setup in software engineering,
which we also adopted with some variations (also used in [2, 21, 35]).
Moreover, to see the prominent publication venues and involvement
of industry in the detection of architectural smells, we also considered
some demographics-related factors as a part of our analysis. Conse-
quently, in our analysis framework, we divided the factors (with some
overlap) into three categories: demographics-related (RQ1), technique-
related (RQ2), and tool-related (RQ3). The analysis framework is
depicted (with examples) in Figure 2. The category-wise explanation of
the factors is provided in the rest of this section. Note that the “types”
mentioned in each analysis factor were extracted from the primary
papers. In the case of tool-related factors, where information is missing
in the papers, we also extracted data from the official webpages of the
tools.

Demographics-related factors – We used the following
demographics-related factors to address our RQ1:

• Publication years – How many articles are published in each
year.
Types – 2010 to 2019.

• Publication venue – The venues in which the literature related
to architectural smells detection is published.
Types – Journal, conference, and workshop.

Demographics
(RQ1)

• Publication years (e.g., number of articles in 2010, 2011, etc.)
• Publication venues (e.g., journals, conferences, etc.)
• Origin of publications (e.g., academic or industry)

Detection
Techniques

(RQ2)

• Technique type (e.g., graph-based, search-based, etc.)
• Architecture style (e.g., layered, middleware, etc.)
• Quality characteristic (e.g., maintainability, performance, etc.)
• Architectural smells (e.g., dependency smells, etc.)
• Validation type (e.g., empirical and case study)
• Project type (e.g., open source, commercial, etc.)
• Project domain (e.g., web, software product line, etc.)
• Project language (e.g., Java, C++, etc.)
• Evaluation measure (e.g., precision, recall, etc.)

Detection
Tools (RQ3)

• Architectural smells (e.g., dependency smells, etc.)
• Technique type (e.g., graph-based, visualization, etc.)
• Validation type (e.g., empirical and case study)
• Tool availability (e.g., open source and commercial)
• Language support (e.g., Java, C#, etc.)

Fig. 2. Analysis framework factors with examples

• Origin of publications – The affiliation of the authors who pub-
lished the articles related to architectural smells detection.
Types – Academic and industry.

Technique-related factors – To answer RQ2, we formulated the
following factors:

• Technique type – The foremost information that we looked at
was the technique types presented in the related corpus. The
main idea was to first identify what techniques were employed
for detection and then formulate a classification to categorize the
detection techniques. For instance, if a technique used a graphical
representation to locate undesired dependencies between compo-
nents of the architecture [P27], we classified the technique under
the graph-based approach. To find such information, we read
through the proposed technique sections of the articles.
Types – Rules-based, graph-based, design structure matrix,
model-driven, code smells analysis, reverse engineering and
history-based, search-based, visualization, and others.

• Architecture style – The literature investigated different architec-
ture styles while detecting the smells. For instance, some articles
detected architectural smells for MVC architecture [P26]. To
collect such information, we scanned for the architecture styles in
the articles.
Types – Service-oriented architecture, Model-View-Controller,
layered, component, cloud, client-server, C-language architecture,
Java EE architecture, Android architecture, and aspect-oriented
architecture.

• Quality characteristic – The literature investigated some archi-
tectural quality characteristics. We map the articles to quality
characteristics based on two criteria. First, if a primary paper
specifically investigated a quality characteristic. Second, if the
primary paper linked the detected architectural smells with a spe-
cific quality characteristic. For instance, many articles detected
those architectural smells that impact the maintainability aspects
of software systems. We used the quality characteristics chart
specified in the ISO Standard (ISO25010) quality model [1].
Types – Maintainability, performance, and security.

• Architectural smells – The articles focused on detecting a variety
of architectural smells making smells another paramount element
of our analysis framework.
Types – Service-oriented, performance, dependency, package,
MVC-related, component, and other smells. The architectural
smells that fall into these categories are listed in Table 14. There
is no existing study that presents a comprehensive classification

of architectural smells, and that is not the goal of this study
since we are analyzing only the subset of architectural smells that
are currently detected by techniques or tools. Therefore, in our
mapping study, we discuss the architectural smells in the same
way they are presented in the primary papers. For example, if a
primary paper says that they have detected dependency smells, we
classify the smells detected by that technique in the “dependency”
category. The description of each smell is provided in Appendix A.
Mostly, we extracted the description of smells from the catalog
papers, however if the definition of a smell is not provided in
the catalog paper, we cited one of the primary papers where that
description is available.

Since validation holds the key to see the applicability of a detection
technique, we also examined if and how the techniques were validated.
We noticed that, in many primary papers, “validation” and “evaluation”
are used in the same context, therefore, we also use these terms in-
terchangeably throughout this paper. Jedlitschka et al. [27] discussed
several essential ingredients of an experimental setup, such as evalua-
tion variables, subjects, data, etc. We used these ingredients as guidance
to analyze the evaluation data (project type, project domain, and project
language) and evaluation measure. The factors are described as follows:

• Validation type – We looked whether the technique was validated
and, if so, the validation type. We found all studies were empiri-
cal in nature. Ideally, we would have categorized the validations
using the five types of empirical studies reported by Easterbrook
et al. (controlled experiments, case studies, survey, ethnographies,
and action research) [19]. However, the primary papers did not
report their validation type at this level of detail. Instead, the
primary papers mentioned only case studies and empirical studies
as the evaluation methods for the detection approaches. While a
case study is a type of an empirical study [19], we report these
two validation types separately since these are the two terms used
by the primary papers. Usually, a case study allows an in-depth
examination of a particular case (single project/system/product),
whereas an empirical study gives a more generalized understand-
ing by considering multiple software systems at the same time in
the evaluation process [19]. Still, the borderline between these
types of evaluation is generally blurred [40], and hence we rely
on the terminologies used in the primary papers to classify them.
Types – Empirical study and case study.

• Project type – The validations were performed with different
types of projects.
Types – Open source, commercial, and student project.

• Project domain – The projects also belonged to different soft-
ware domains. Note that the “domain” here is software specific,
such as application software (e.g., web application) or system
software (e.g., driver).
Types – Software product line, web application, integration sys-
tem, service-based systems, android system, distributed system,
middleware, parser, and driver.

• Project language – The investigated software projects were de-
veloped in different programming languages.
Types – Java, C#, C++, C, AspectJ, PHP, and Python.

• Evaluation measure – The articles measured variables to ana-
lyze the effectiveness of the detection techniques.
Types – Precision, recall, correlation, causality, regression, ex-
ecution (detection or computation) time, robustness, semantic
similarity, ranking measure, decoupling level, propagation cost,
maintenance cost, response time, throughput, utilization, debt
history, and architects’ and developers’ feedback.

Tool-related factors – For detection tools (RQ3), we extracted the
associated architectural smells, the associated technique type, the val-
idation type, tool availability, and language support. These factors

0

2

4

6

8

10

12

14

16

18

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f a
rt

ic
le

s

Conference Journal Workshop

Fig. 3. Year-wise distribution of the articles

were also used in a comparative study to analyze bad smells detection
tools [21]. For architectural smells, technique type, and validation
type, we used the same framework as described above for detection
techniques. The two additional tool-specific factors are described as
follows:

• Tool availability – We searched in which form the architectural
smells detection tools are available. If no information regarding
tool availability was provided in the paper, we looked for the
official webpage of the tool to obtain this information.
Types – Open source, commercial, and not available.

• Language support – It was also important to note what program-
ming languages are supported by the tool. The rationale was to
see the coverage of the tool in terms of the development languages.
Once again, if this information was not available in the paper, we
located it from the official webpage of the tool.
Types – Java, C++, C, C#, Python, .Net, PHP, JavaScript, Type-
Script, Go, Swift, COBOL, Apex, Kotlin, Ruby, Scala, HTML,
CSS, ABAP, Flex, Objective-C, SQL, VB, XML, Ada, Fortran,
JOVIAL, Assembly, F#, JSP, R, Erlang, Unix Scripts, and Pascal.

5 ARCHITECTURAL SMELLS DETECTION

This section answers our research questions by examining the demo-
graphics of the published literature on architectural smells detection
(RQ1), presenting and discussing the detection techniques (RQ2) and
tools (RQ3), and reflecting on the gaps and limitations of the detec-
tion techniques and tools (RQ4). The main findings of our RQs are
summarized in Figure 12.

5.1 Demographics (RQ1)
RQ1 – What are the demographics of the published articles?

When – Figure 3 shows the distribution of publications each year
(until 2019). There could be more articles published in 2019 that were
not indexed because we executed our search in October 2019. Figure 3
shows an overall trend of an increasing number of publications over the
years except in 2013 and 2017. A subtle spike was observed in 2014,
which resulted from one research group releasing multiple papers in
that year.

Where – In Table 2, we list the venues that published the articles re-
lated to architectural smells detection. It can be seen that the articles are
scattered across many venues; however, some venues tend to publish
more on architectural smells detection. For instance, the dedicated con-
ferences on software architecture and technical debt recorded the most
publications. The conference with the most number of articles (6) is the
European Conference on Software Architecture. In terms of journals,
Information and Software Technology indexed the most articles (3).

Origin – We also looked at the affiliations of the researchers who
are active in studying architectural smells detection. We looked at
the affiliations of the authors and whether they are from academia
or industry. We saw that all of the active researchers have academic
affiliations; however, some of them have collaborated with software

companies. For instance, Reimanis et al. [P58] applied a detection
technique in a company’s software to analyze its architectural quality.
We did not find any article that was solely produced by industry.

5.2 Detection Techniques (RQ2)
RQ2 – What detection techniques for architectural smells are proposed
in literature?

Several architectural smells detection techniques have been proposed
in the literature. The goal of RQ2 is to analyze the detection techniques,
therefore, we present and discuss the techniques in terms of the analysis
framework (formulated in Section 4).

To address RQ2, we present the architectural smells detection tech-
niques in terms of nine categories, identified from the “technique type”
factor of our analysis framework during the data extraction and clas-
sification process. The nine categories are: rules-based, graph-based,
design structure matrix, model-driven, code smells analysis, reverse
engineering and history-based, search-based, visualization, and others.
Analysing the detection techniques based on their technique type allows
identification of the key gaps, limitations, and possible future research
directions. For instance, knowing which technique types have limited
evaluation would open areas for future work.

In this section, we describe all the detection techniques in terms
of these nine technique types. Inside each technique type, we also
discuss the other technique-related factors (architecture style, smells
detected, quality characteristic, architectural smells, and validation-
related factors) to collectively analyze all the related techniques. The
articles that belong to the nine categories are listed in Figure 4. Note
that, in Figure 4, some primary references appear in two categories,
for instance, [P49] appears in both rules-based and search-based cate-
gories. In such hybrid approaches, we found that the main techniques
were using rules (metrics and thresholds) only to supplement them.
Therefore, we describe the hybrid approaches in their main technique
section. For instance, in [P49], rules were only supplementing the
search-based technique, therefore, it is described in the search-based
section. In all hybrid approaches, we found one dominating technique
type and one supplementing (i.e., rules with metrics and thresholds).
In one case, we also noticed that a technique visualized a dependency
graph to identify smells, but since the technique allowed the interactive
exploration of smells, we consider it in the “visualization” category
rather than the “graph-based” category [P4]. Detailed supplementary
material1 is available, which shows the mapping of each paper to the
different categories. The supplemental material also shows how each
paper in our dataset was categorized according to all factors in our
analysis framework.

5.2.1 Rules-based
The rules-based approach is the most commonly applied strategy to
detect smells in software architecture. 13 of the 85 (15.29%) papers pro-
posed a rule-based approach. Rules-based approaches take advantage
of: 1) metrics and their thresholds (rules), and 2) pre-defined frame-
works, heuristics, or guidelines to detect structural problems in the
software artifacts. In this section, we describe rules-based approaches
that focused on detecting architectural smells.

Description of Existing Rules-based Techniques – Many rules-
based techniques applied pre-defined frameworks and patterns to detect
architectural smells [P24, P37, P42, P50, P53–P55, P74]. These tech-
niques used architectural guidelines and compliance checking to create
frameworks for specifying and detecting architectural smells. In addi-
tion, these techniques studied a variety of software architectures, for
instance, one technique detected smells in MVC [P74] and some in
service architecture [P42, P50, P55].

We also found a couple of techniques that used product metrics to
detect architectural smells [P33, P64]. Both of these techniques an-
alyzed the possibility of whether modularity metrics could be used
as indicators of architectural technical debt. One of these two tech-
niques measured modularity metrics to identify modularity violations
at the package-level [P64]. The other technique detected dependency

1http://doi.org/10.5281/zenodo.4013146

Table 2. Publication venues

Venue Number of articles

European Conference on Software Architecture (ECSA) 6
International Conference on Technical Debt (ICTD) 5
International Conference on Software Engineering (ICSE) 5
International Conference on Service-Oriented Computing (ICSOC) 5
EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) 4
International Workshop on Managing Technical Debt (MTD) 4
Information and Software Technology (IST) 3
International Conference on Software Architecture (ICSA) 3
Working IEEE/IFIP Conference on Software Architecture (WICSA) 3
ACM SIGSOFT Conference on Quality of Software Architectures (QoSA) 2
Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS) 2
IEEE Transactions on Software Engineering (TSE) 2
International Conference on Automated Software Engineering 2
Science of Computer Programming (SCP) 2
International Conference on Web Services (ICWS) 2
Journal of Systems and Software (JSS) 1
IEEE Transactions on Services Computing (TSC) 1
IEEE Working Conference on Reverse Engineering (WCRE) 1
IEEE Working Conference on Software Visualization (VISSOFT) 1
International Conference on Software Architecture Workshops (2017 ICSAW—Tool papers) 1
International Conference on Software Architecture Companion (2019 ICSA-C—QUDOS/CSE) 1
International Workshop on Bringing Architectural Design Thinking into Developers Daily Activities (BRIDGE) 1
International Conference on Engineering of Complex Computer Systems (ICECCS) 1
Software and Systems Modeling (SoSyM) 1
International Working Conference on Source Code Analysis and Manipulation (SCAM) 1
Australasian Computer Science Conference (ACSC) 1
International Conference on Software Maintenance and Evolution (ICSME) 1
ACM Symposium on Applied Computing (SAC) 1
IEICE Transaction on Information and Systems (TIS) 1
European Conference on Software Maintenance and Reengineering (CSMR) 1
Journal of Software Engineering Research and Development (JSERD) 1
Brazilian Symposium on Software Engineering (SBES) 1
Conference on Genetic and Evolutionary Computation (GECCO) 1
International Journal of Cooperative Information Systems (IJCIS) 1
International Symposium on Empirical Software Engineering and Measurement 1
International Conference on Software Engineering and Formal Methods (SEFM) 1
International Conference on Cloud Computing Technology and Science (CloudCom) 1
International Conference on Software Analysis, Evolution and Re-engineering (SANER) 1
Hawaii International Conference on System Sciences (HICSS) 1
Computer Software and Applications Conference (COMPSAC) 1
International Journal of Computer Theory and Engineering (IJCTE) 1
ACM SIGSOFT Software Engineering Notes (SEN) 1
International Conference on Software Process Improvement (CIMPS) 1
International Conference on Mobile Software Engineering and Systems (MOBILESoft) 1
Institute for System Programming (ISP) 1
Asia-Pacific Symposium on Internetware (INTERNETWARE) 1
Belgium-Netherlands Software Evolution Workshop (BENEVOL) 1

[P14,P18,P29,P32,P36,P40,P51,P59,
P66,P69,P70]

Others

Visualization

[P25,P48,P49,P57,P80,P81]
Search-based

[P2,P75,P78,P82]

Reverse Engineering and History-based

Code smells analysis

[P11] [P1,P9,P10,P12,P13,P62,P71,P85]
Model-driven

[P7,P28,P38,P39,P41,P43,P65,P83]
Design Structure Matrix

[P26,P27,P67,P73]
Graph-based

Rules-based

[P24,P33,P37,
P42,P44,P50,
P52,P53,P54,
P55,P64,P74,

P84]

[P15,P16,P30,P56,P68]

[P31,P34,P46,P47,P61] [P35,P63,P76,P77]

[P72] [P4,P6,P17]

Fig. 4. Categorization of the architectural smells detection techniques

0%

20%

40%

60%

80%

100%

Ru
le

s-
ba

se
d

Gr
ap

h-
ba

se
d

De
sig

n
St

ru
ct

ur
e

M
at

rix

M
od

el
-d

riv
en

Co
de

 S
m

el
ls

An
al

ys
is

Re
ve

rs
e

En
gi

ne
er

in
g

an
d

Hi
st

or
y-

ba
se

d

Se
ar

ch
-b

as
ed

Vi
su

al
iza

tio
n

Empirical Case study No Validation

Fig. 5. Validation type used in the detection techniques

0%
20%
40%
60%
80%

100%

Ru
le

s-
ba

se
d

Gr
ap

h-
ba

se
d

De
sig

n
St

ru
ct

ur
e

M
at

rix

M
od

el
-d

riv
en

Co
de

 S
m

el
ls

An
al

ys
is

Re
ve

rs
e

En
gi

ne
er

in
g

an
d

Hi
st

or
y-

ba
se

d

Se
ar

ch
-b

as
ed

Vi
su

al
iza

tio
n

Open Source Commercial

No Validation Open Source & Commercial

Student Project

Fig. 6. Project type used in the validation of detection techniques

smells that were involved in increasing the complexity of the Java
packages [P33].

The findings from the rules-based techniques in terms of the analysis
factors are described as follows:

• Architecture style – We observed that approximately 60% of
the rules-based techniques focused on service-oriented architec-
ture [P42, P44, P50, P52–P55, P84]. We found only one technique
that focused on MVC archiecture [P74].

• Quality characteristic – The rules-based techniques focused
on a variety of quality aspects, such as modularity [P37, P64],
maintainability [P33,P42,P44,P50,P53–P55,P74,P84], complex-
ity [P33, P52], and evolvability [P42, P44, P50, P52–P55, P84].

• Smells detected – The architectural smells detected by rules-
based approaches are presented in Table 3. Because of the at-
tention on the service-oriented architecture, the detected smells
were service-based, prominently, Multi-service, Chatty Service,
Nano-service, Data Service, and Ambiguous Service. The tech-
nique that studied MVC architecture investigated MVC-related
smells [P74]. A few rules-based approaches also detected depen-
dency and modularity smells in the architecture [P33, P37, P64].
These techniques focused on package-level smells, however, the
specific smells that can be detected were not described in the
papers. Note that the package-level smells refer to smells in Java
packages, which is semantically similar to namespaces in other
languages (e.g., C#).

• Validation – All but one of the techniques were validated. Ap-
proximately 60% of the techniques with validation were evaluated
empirically, while the rest were validated through case studies
(see Figure 5). Open source systems were mainly used in the
validations of the rules-based techniques (see Figure 6), particu-
larly, in the cases, where service-oriented smells were detected.
The validation studies mainly measured precision and recall of
the proposed approaches as indicators of the effectiveness of the
techniques. For the techniques that used product metrics, one
measured correlation [P33] and the other technique measured
both correlation and regression [P64]. In many techniques, in
addition to measuring recall or precision, performance of their
detection was also measured in terms of execution/computation
time [P24, P44, P53, P55, P74]. In another technique, robustness,
accuracy (recall and precision), execution time, and detection
time were computed as performance indicators [P52].

Rules common in other technique types – We also noticed that
rules-based approaches (specifically metrics and thresholds) were com-

monly used in combination with other technique types [P25–P27,
P48, P49, P57, P72, P80, P81]. For instance, graph-based techniques
(e.g. [P26, P27]), search-based techniques (e.g. [P25, P48, P49, P57,
P80, P81]), a model-driven technique ([P11]), and a visualization tech-
nique ([P72]) incorporate some rules in the detection techniques. For
all of these, rules are used only to supplement the main technique type,
so these are described and analyzed later in the relevant technique type.

Table 3. Architectural smells detected by rules-based approaches

ID Architectural smells

[P24] Cyclic Dependencies, Factory Pattern Violations, Layering
Violations, other user-defined pattern violation

[P33] Dependency smells* (package-level)
[P37] Dependency smells* with respect to complexity and modularity
[P42,P55] Multi-service, Tiny Service, Sand Pile, Chatty Service, Knot

Service, Nobody Home, Duplicated Service, Bottleneck Ser-
vice, Service Chain, Data Service

[P44] Multi-service, Tiny Service, Chatty Service, Knot Service,
Bottleneck Service, Service Chain

[P50] Multi-service, Tiny Service, Duplicated Service, Bottleneck
Service

[P52] Breaking Self-descriptiveness, Forgetting Hypermedia, Ignor-
ing Caching, Ignoring MIME Types, Ignoring Status Code,
Misusing Cookies, Tunneling through GET, Tunneling through
POST

[P53] Ambiguous Name, Bloated Service, Multi-service, Tiny Ser-
vice, Nobody Home, Crudy Interface, Crudy URI, Sand Pile,
Chatty Web Service, Forgetting Hypermedia, Ignoring MIME
Types

[P54] Ambiguous Name, Chatty Web Service, Crudy Interface, Data
Web Service, Duplicated Web Service, Fine-grained Web Ser-
vice, God Object Web Service, Low Cohesive Operations (in
the same portType), Maybe it’s not RPC, Redundant PortTypes

[P64] Modularity violations* (package-level)
[P74] Model, view, and controller using each other’s

data/functionalities
[P84] God Object

*specific smells not mentioned in the paper

5.2.2 Graph-based
Graph-based approaches depict entities or components of a system as
nodes, and the relationships are represented through edges. Graph-
based techniques are extensively used to detect architectural smells
because it is intuitive to represent problematic relationships between
the entities of the software architecture in graphical form. In this
section, we present graph-based approaches (9 of 85—10.58%) that
were employed to detect architectural smells.

Description of Existing Graph-based Techniques – Graph-based
techniques have been used to predict architectural smells [P15,P56,P68].
Two of these techniques used semantic information to predict the archi-
tectural smells [P15,P56]. For instance, Diaz-Pace et al. [P15] explored
the use of social network analysis to extract architecture information
useful to predict the undesired dependencies in the future versions
of Java projects. The predictions were mainly based on identifying
problematic links (that represent dependency smells) between the com-
ponents (represented as nodes in the graph) of the architecture. For
instance, a node (component) involved in many links (many depen-
dencies) with other nodes might create modularization issues in the
architecture. Such links between nodes of a graph represent undesired
dependencies that should be removed to have a better maintainable
architecture. Another technique analyzed relationships between archi-
tectural smells using a dependency graph to see if a smell can indicate
the presence of other smells [P30]. We also observed a graph-based
approach that not only detects architectural smells, but also suggests
appropriate refactorings for the detected smells [P16].

Some of the graph-based techniques used a combination of graph-
based and rule-based techniques to identify architectural smells [P26,

P27, P67, P73]. Some apply rules or constraints to the graphical rep-
resentation of the software architecture [P26, P27, P73]. Others com-
bine product metrics with dependency graphs to detect architectural
smells [P67].

The findings from the graph-based techniques in terms of the analysis
factors are described as follows:

• Architecture style – Mostly, the architecture style is generic
for the graph-based techniques, however, a couple of techniques
focused on MVC architecture [P26, P27], and one focused on the
software architecture in C-language environment [P67].

• Quality characteristic – The focus of graph-based techniques
(approximately 67%) was mainly on maintainability quality [P26,
P27, P30, P56, P67, P68]. One technique focused on modular-
ization aspects—a sub-characteristic of maintainability—of the
software architecture [P16] and another on security aspects [P73].

• Smells detected – A variety of architectural smells were de-
tected through graph-based approaches, for instance, dependency-
related smells (e.g., Cyclic, Unstable, Hub-like, etc.) [P15, P26,
P27,P30,P67,P68], responsibility violations (e.g., Scattered Func-
tionality, Feature Concentration, etc.) [P26, P27, P56], and secu-
rity flaws (e.g. Information Disclosure and Information Tam-
pering) [P73]. One technique detected the architectural smells
at three abstraction levels: module (package), file, and function
using graphs [P67]. Architectural smells detected by graph-based
approaches are listed in Table 4.

• Validation – The techniques were evaluated empirically mainly
with open source projects (see Figure 5 and Figure 6). All evalua-
tions used projects developed in Java, except in one case [P67],
where the evaluation was performed using projects written in
C. The effectiveness of the proposed graph-based approaches
was measured using recall and precision, except in four papers,
where two computed semantic similarity [P15,P56]; one measured
different constraints (e.g., provenance, transitivity, reachability,
etc.) [P73]; and one computed multiple correlations [P67].

Table 4. Architectural smells detected by graph-based approaches

ID Architectural smells

[P15] Cyclic Dependencies, Hub-like Dependencies
[P16] Abstraction without Decoupling, Subtype Knowledge, Degen-

erated Inheritance, Cycles between Namespaces
[P26,P27] Responsibility violations (Separation of Concerns), Depen-

dency violations (Unauthorized dependency)
[P30] Concern Overload, Cyclic Dependency, Link Overload, Un-

used Interface, Sloppy Delegation, Co-change Coupling
[P56] Scattered Functionality, Feature Concentration
[P67] Large File, Hub-like Dependencies, Message Chain, Shotgun

Surgery, Cyclic Dependencies, Inappropriate Intimacy, Feature
Envy, Long Parameter List

[P68] Cyclic Dependencies, Unstable Dependencies, Hub-like De-
pendencies

[P73] Security flaws (Information Disclosure, Information Tamper-
ing)

5.2.3 Design Structure Matrix (DSM)
A design structure matrix is a mechanism commonly used to design,
develop, understand, and manage complex system [20]. It is a two-
dimensional matrix that represents the structural relationships in the
software. DSMs are widely employed to detect architectural smells
because the matrix can represent complex architectural components
and their relationships.

Description of Existing DSM Techniques – Many approaches (8
of 85—9.41%) have been developed that use a DSM to represent soft-
ware architecture data to locate clusters and patterns that represent

architectural smells [P7, P28, P38, P39, P41, P43, P65, P83]. For in-
stance, one technique created a coupling probability matrix based on
the design structure matrix idea to identify four types of architectural
flaws [P83]. Undesired coupling between components of the architec-
ture was linked to dependency-related smells. Similarly, in two DSM
techniques [P28, P65], authors extracted data from software architec-
ture and depicted it using DSM to identify file clusters that participated
in architectural smells. Similarly, some approaches defined patterns
and antipatterns based on design rule theory using architectural knowl-
edge [P7, P38, P39]. In these techniques, the complex software archi-
tecture was split into smaller components, patterns, etc. and depicted
using the design rule space method.

The findings from the DSM techniques in terms of the analysis
factors are described as follows:

• Architecture style – None of the DSM techniques studied a
specific architecture style, except one [P83] in which component
architecture was studied. The rest were all applicable to generic
architecture styles.

• Quality characteristic – We noticed that only the maintainability
of the software architecture was assessed through design structure
matrix.

• Smells detected – Architectural smells, such as Unstable Inter-
face, Package Cycles, Unhealthy Inheritance, Clique, and Module
Dependency, were mostly identified by structuring the architec-
tural components and entities into a design structure matrix. All
the DSM techniques supported the detection of Unstable Inter-
face. In one technique, component-level smells (Hub, Anchor
Submission, and Anchor Dominant) were identified [P83]. The
architectural smells detected by DSM approaches are listed in
Table 5.

• Validation – Both empirical and case studies were conducted
with mainly commercial projects (see Figure 5 and Figure 6). The
projects used to evaluate the techniques were implemented in
different development languages. Nearly 38% of the approaches
used Java [P28, P38, P39] or C# [P7, P41, P65], while 25% (
[P7, P41]) selected C and C++ projects for validation. In several
techniques, the maintenance cost of the architecture was evaluated
by considering change frequency, change churn, bug frequency,
and bug churn [P7, P38, P39, P41, P65, P83]. The effectiveness
of some techniques was also measured using recall [P7, P28,
P38, P65] and one through precision [P28]. In one study, the
evaluation measured the decoupling level and propagation cost of
a system [P43].

Table 5. Architectural smells detected by DSM approaches

ID Architectural smells

[P7] Unstable Interface, Modularity Violation, Improper Inheritance,
Cross-module Cycle, Cross-package Cycle

[P28] Unstable Interface, Implicit Cross-module Dependency, Unhealthy
Inheritance Hierarchy

[P38] Unstable Interface, Implicit Cross-module Dependency, Unhealthy
Inheritance Hierarchy, Cross-module Cycle, Cross-package Cycle

[P39] Unstable Interface, Modularity Violations, Unhealthy Inheritance
Hierarchy, Crossing, Clique, Package Cycle

[P41] Unstable Interface, Modularity Violation, Unhealthy Inheritance,
Cyclic Dependency, Package Cycle, Crossing

[P43] Clique, Package Cycle, Improper Inheritance, Modularity Viola-
tion, Crossing, Unstable Interface

[P65] Unstable Interface, Implicit Cross-module Dependency, Unhealthy
Inheritance Hierarchy, Clique, Package Cycle

[P83] Hub, Anchor Submission, Anchor Dominant, Modularity Violation

5.2.4 Model-driven
In model-driven methods, the structure and behavior of the systems
are represented using abstractions and modeling [33]. Model-driven
approaches are common to detect architectural smells because, through
modeling, abstractions can be created that generate structures to analyze
software architecture. 9 of the 85 (10.58%) papers implemented model-
driven approaches.

Description of Existing Model-driven Techniques – Many model-
driven approaches took advantage of model transformation mechanisms
to detect architectural smells [P1, P9–P13, P71]. For instance, in two
approaches the model transformation was achieved using intermediate
XML representations [P10, P11]. The detection of smells was accom-
plished by assigning logical predicates in the XML representations.
Similarly, a couple of techniques used a stochastic process to model
performance-aware components in software architecture [P9, P13]. A
model-driven technique detected anomalies related to communication
within and among the components of the architecture [P62]. In another
approach, a meta-model for a Java EE application was created. In the
meta-model, they used Query/View/Transformation language to state
the process of antipatterns detection [P85].

The findings from the model-driven techniques in terms of the anal-
ysis factors are described as follows:

• Architecture style – Mostly, model-driven approaches did not
focus on specific architectural styles, except for a few tech-
niques where the techniques focused on micro-services [P1], Java
EE [P85], and component [P62] architectures.

• Quality characteristic – Approximately 67% of the approaches
measured the impact of architectural smells on the performance
of software architecture [P1, P9–P11, P13, P71]. There were also
two methods that looked into maintainability aspects of software
architecture [P12, P85].

• Smells detected – Most of the techniques measured and detected
performance smells [P1, P9–P11, P13, P71]. The prominently
detected smells were Blob, Unbalanced Processing, One-lane
Bridge, Traffic Jam, and Ramp. The architectural smells detected
by model-driven techniques are presented in Table 6.

• Validation – From the validation perspective, case studies were
performed with commercial and open source systems (see Fig-
ure 5 and Figure 6). The project domains in half of the techniques
were not specified [P9, P13, P71], whereas the other half used
web-based systems [P1, P10, P11]. In the case where a technique
studied service architecture, the investigated projects were devel-
oped in REST [P1]. For Java EE architecture, Java projects were
used [P85]. Where the performance of the architecture was evalu-
ated, response time, throughput, and utilization were measured.
In some instances, recall was computed as an evaluation measure
for the proposed techniques [P12, P62, P85].

5.2.5 Code Smells Analysis
Some of the proposed techniques (9 of 85—10.58%) analyzed code
smells to identify architectural smells. The main idea of these methods
is to see how source code smells can be used to detect smells in the
software architecture.

Description of Existing Code Smells Analysis Techniques – Sev-
eral detection techniques used the knowledge of code smells to locate
architectural smells [P31,P34,P35,P46,P47,P61,P63,P76,P77]. These
techniques mainly looked at the correlation between code smells and
architectural smells. In other words, the proposed techniques analyzed
whether code smells in a software system could indicate smells in
the corresponding architecture of that system. For example, a class
shows the lack of modularization if it has a greater number of lines of
code—represents a large class smell. This large class could indicate
the modularization issues (e.g., Blob or God Object, etc.) in the re-
lated architecture of the system. Note that identifying the correlation
between code and architectural smells may not be exactly the detection

Table 6. Architectural smells detected by model-driven approaches

ID Architectural smells

[P1] Pipe and Filter, One-lane Bridge
[P9] Blob, Unbalanced Processing, One-lane Bridge, Excessive Dy-

namic Allocation, Traffic Jam, Ramp
[P10] Unbalanced Processing (Concurrent Processing Systems), Cir-

cuitous Treasure Hunt, Ramp
[P11] Blob, Unbalanced Processing, Circuitous Treasure Hunt, Empty

Semi-trucks, Tower of Babel, One-lane Bridge, Traffic Jam,
Excessive Dynamic Allocation, Ramp, More is Less

[P12] Unhealthy Inheritance, Cross-module Cycles, Package Cycles
[P13] Blob, Extensive Processing, One-lane Bridge, Excessive Dy-

namic Allocation, Traffic Jam, Ramp, Pipe and Filter
[P62] Anomalies within and among components (communication-

related)
[P71] Blob, Unbalanced Processing, Circuitous Treasure Hunt, Empty

Semi-trucks, One-lane Bridge, Traffic Jam
[P85] Fine-grained Web Service, Multi-service, Tiny Service, Ignoring

Reality, Too Much Code, Embedded Navigation Information,
Accessing Entity Directly, Fine-grained Remote Calls, Transpar-
ent Facade, Session A-plenty, Stifle, Database Connection Hog,
Performance Afterthoughts

of architectural smells, but the correlation, if identified, can be used
to predict the presence of architectural smells based on the analysis of
code smells. As a specific instance, a technique used static code anal-
ysis and cloud information to predict the appearance of performance
smells if a system is migrated to the cloud architecture [P61]. Approxi-
mately half of the code smells analysis techniques also employed code
smells metrics which were relevant to the identification of architectural
smells [P31, P34, P46, P47, P61]. For instance, in [P61], the authors
used five code-level metrics (related to size and complexity) to detect
“Blob” smell, which corresponds to the lack of modularization in the
architecture. One paper also investigated the self-admitted technical
debt left by the developers in the source code to identify some archi-
tectural divergences related to dependency smells [P63]. This paper
did not directly use the code smells to detect architectural smells but
used the technical debt information stated (by the developers) in the
comments of the source code.

The findings from the code smells analysis techniques in terms of
the analysis factors are described as follows:

• Architecture style – Code smells analysis techniques inves-
tigated different architectural styles. Approximately, 78% (
[P34, P35, P46, P47, P63, P76, P77]) and 67% ([P34, P35, P46,
P47, P76, P77]) of the studies examined layered and MVC archi-
tectures, respectively. We also found one technique for each of
the following architectures: cloud [P61], aspect-oriented (aspec-
tual) [P35], and client-server [P47].

• Quality characteristic – The techniques measured different qual-
ity characteristics (e.g., maintainability [P34, P35, P46, P47, P76,
P77], consistency [P31], and performance [P61]).

• Smells detected – Since the techniques mainly studied MVC
and layered architectures, the architectural smells were mostly
specific to these two architectures. In cloud architecture, perfor-
mance smells (Empty Semi-trucks, Circuitous Treasure Hunt, and
Blob) were detected [P61]. In one technique, inconsistent classes
and components in the architecture were explored [P31]. The
architectural smells detected through code smells analysis are
listed in Table 7.

• Validation – It can be seen from Figure 5 that the techniques
were validated using empirical studies and case studies. Most
(67%—see Figure 6) were conducted with open source Java
projects [P31, P34, P46, P63, P76, P77]. Only one study used
projects developed in C++, C#, and AspectJ languages for the

validation [P34]. Most studies (67%) were validated using
projects from the software product line, web, and middleware
domains [P34, P35, P46, P47, P76, P77]. The effectiveness of the
approaches was mostly measured using correlation, precision,
and recall.

Table 7. Architectural smells detected by code smells analysis ap-
proaches

ID Architectural smells

[P31] Inconsistent Classes/Components
[P34,P35] Ambiguous Interface, Extraneous Connector, Connector Envy,

Scattered Functionality, Concern Overload
[P46] Ambiguous Interface, Concern Overload, Connector Envy,

Cyclic Dependency, Scattered Functionality, Unused Interface
[P47] Ambiguous Interface, Connector Envy, Concern Overload,

Cyclic Dependency, Extraneous Connector, Scattered Func-
tionality, Unused Interface, Architectural Violation

[P61] Empty Semi-trucks, Circuitous Treasure Hunt, Blob
[P63] Dependency smells (specific smells not mentioned)
[P76,P77] Ambiguous Interface, Concern Overload, Connector Envy,

Cyclic Dependency, Scattered Functionality, Unused Interface,
Package-level Feature Envy, Package-level Dispersed Coupling

5.2.6 Reverse Engineering and History-based
Reverse engineering is a process to deduce design and architectural
features from the developed software systems to learn about the pro-
duction procedures involved in their initial development [15]. History
data analysis is also a way to understand the patterns and changes in
the software systems. In this section, we describe approaches (4 of
85—4.7%) that explored historical data and reverse-engineered the
artifacts to detect architectural smells.

Description of Existing Reverse Engineering and History-based
Techniques – In the literature, we found a few techniques based on
historical data or reverse engineering of the software artifacts [P2, P75,
P78, P82]. Some techniques used reverse engineering mechanisms and
historical data analysis to cluster the data elements to identify archi-
tectural smells [P75, P78, P82]. These techniques used architectural
guidelines and compliance checking to identify clusters with problem-
atic dependencies and connections. These problematic clusters were
identified as architectural smells. One techniques used only historical
data to predict architectural smells [P2]. In this approach, the authors
used a link-prediction strategy where dependency information from
the previous versions of the software was used to predict architectural
issues in the proceeding versions.

The findings from the reverse engineering and history-based tech-
niques in terms of the analysis factors are described as follows:

• Architecture style – These techniques focused on generalized ar-
chitectural style, with an exception, where Verdecchia et al. [P75]
focused on the Android architecture.

• Quality characteristic – All the techniques focused specifically
on maintainability [P2, P75, P78, P82].

• Smells detected – Mostly, dependency-related architectural
smells (e.g., Cyclic Dependency, Unstable Dependency, Hub-like
Dependency, etc.) were identified by either reverse-engineering
or extracting historical data from the systems [P2, P82]. How-
ever, in one technique, communication-related smells were identi-
fied [P78]. The detected smells by each approach are presented
in Table 8.

• Validation – Half of the approaches were not validated. The
two approaches where validations were performed; one [P82]
performed an empirical study (using open source and commercial
systems) and the other [P78] conducted a case study (with open

source projects) (see Figure 5). Both validations were performed
using open source systems (see Figure 6). Precision [P78] and
debt history [P82] were used as evaluation measures.

Table 8. Architectural smells detected by reverse engineering and history-
based approaches

ID Architectural smells

[P2] Unstable Dependency, Cyclic Dependency, Hub-like Dependency,
Implicit Cross-package Dependency

[P75] Android Architecture Violations
[P78] Interface Violation, Undercover Transfer Object, Non-transfer

Objects Communication, Unauthorized Call
[P82] Dependency smells (specific smells not mentioned)

5.2.7 Search-based
Search-based methods in software engineering formulate problems as
computational search problems that can be solved with a metaheuristic
approach [16]. A few approaches (6 of 85—7.05%) employed search-
based techniques to detect architectural smells.

Description of Existing Search-based Techniques – We found
that all the search-based approaches were developed in combination
with rules [P25, P48, P49, P57, P80, P81]. The approaches mainly
employed genetic programming, for instance, in [P49], the approach
implemented an algorithm to optimize the detection solution by using
the crossover and mutation operations of the genetic programming.
Their solution was composed of detection rules based on the real ex-
amples of smells in web services. The rules were formulated using
product metrics and thresholds, and each rule represented an instance
of a smell in the architecture.

The findings from the search-based techniques in terms of the analy-
sis factors are described as follows:

• Architecture style and quality characteristic – We observed
that 100% of the search-based techniques focused on service-
oriented architecture and maintainability quality characteristic.

• Smells detected – The techniques investigated a variety of
service-oriented smells, such as Multi-service, Chatty Service,
Data Service, etc. The architectural smells detected by each
search-based technique are listed in Table 9.

• Validation – All of the search-based techniques were empirically
validated using web-based systems (see Figure 5). In addition, in
Figure 6, it can be seen that four out of the five (80%) techniques
were evaluated with commercial projects. One [P49] used open
source projects in the evaluation. The effectiveness of all of the
search-based techniques was measured using precision and recall.

Table 9. Architectural smells detected by search-based approaches

ID Architectural smells

[P25, P49,
P80, P81]

Chatty Web Service, Crudy Interface, Data Web Service, Fine-
grained Web Service, God Object Web Service, Maybe it’s not
RPC, Redundant PortTypes, Ambiguous Web Service

[P48,P57] Mutli-service, Nano-service, Chatty Service, Data Service,
Ambiguous Service

5.2.8 Visualization
Only a few methods (4 of 85—4.7%) employed visualization strategies
to detect architectural smells. Visualization techniques can aid in
the understanding of large software systems with multivariate and
multidimensional data [36, 37].

Description of Existing Visualization Techniques – Visualization
techniques were not the commonly used techniques to detect architec-
tural smells. Only four techniques used visualization [P4, P6, P17, P72].
In one of the studies [P72], a visualization technique was used in combi-
nation with detection rules (product metrics and thresholds) to identify
architectural smells automatically. Others propose visualizations that
enable developers or architects to manually identify architectural smells
as they can use the interactive functionalities to explore the architec-
ture [P4, P6, P17].

The findings from the visualization techniques in terms of the analy-
sis factors are described as follows:

• Architecture style and quality characteristic – All the visu-
alization techniques focused on generalized architectural style.
In terms of quality characteristic, half ([P17, P72]) of the ap-
proaches focused on performance, while one considered main-
tainability [P4].

• Smells detected – Half of the techniques detected dependency-
related architectural smells [P4, P6], and the other half identified
performance smells [P17, P72]. The architectural smells detected
by the visualization techniques are presented in Table 10.

• Validation – From the validation perspective, the visualization
techniques were evaluated only through case studies (see Fig-
ure 5) and mostly (50%) with commercial projects (see Figure 6).
Evaluation measures related to performance (utilization, through-
put, and response time) were computed in [P72]. In the other
performance-oriented approach, efficiency and maintenance cost
were measured [P17]. In the remaining two techniques [P4, P6],
the authors measured recall to express the effectiveness.

Table 10. Architectural smells detected by visualization approaches

ID Architectural smells

[P4] Cyclic Dependencies, Subtype Knowledge
[P6] Dependency smells (specific smells not mentioned)
[P17] Misplaced Component
[P72] Blob, Unbalanced Processing, Circuitous Treasure Hunt, Empty

Semi-trucks, One-lane Bridge, Traffic Jam

5.2.9 Others
In this section, we briefly describe the techniques (11 of 85—12.94%)
that do not fit in the above categories. In other words, a technique
whose foundation is not based on any of the categories described above
is placed into this “Others” category.

Fontana et al. [P18] proposed an approach to identify architectural
technical debt using architecture decisions and change scenarios. Tam-
burri et al. [P66] found the correlation of community smells with archi-
tectural smells in sub-optimal modularization structures. The main idea
was to use community smells as indicators of smells in the architecture.
Martini et al. [P36] used questionnaire and interviews to collect the
detection procedure adopted by the software practitioners. They found
that practitioners used the combination of tool and their knowledge
of architecture to identify architectural technical debt. De Toledo et
al. [P14] performed a qualitative analysis of documents and interviews
to identify technical debt in the communication layer of a micro-service
system. For instance, they identified too many point-to-point connec-
tions between micro-services (i.e., Chatty Micro-service), creating a
high volume of connections passing through the communication layer.

Sanchez et al. [P59] presented an approach for specifying and identi-
fying architectural smells as constraints using the Archery architectural
description language. Mo et al. [P40] transformed architectural models
into an augmented constraint network to identify dependency relations
related to architectural decay. Trubiani et al. [P70] executed load testing
using a profiler tool to obtain performance hotspots, which are related
to the specifications of the performance antipatterns. Palma et al. [P51]

quantified the impact of service antipatterns on the maintenance effort
in service-based systems. They performed multiple statistical tests
to identify relationships between change-proneness/code churn and
antipatterns. Tripathi et al. [P69] identified and presented wrong prac-
tices in the antipattern template of service-oriented architecture. Le et
al. [P29] proposed a framework to detect architectural smells based on
their symptoms with the help of architecture recovery and analysis.

Since the approaches described in the ”Others” category are distinc-
tive in nature, we are not describing their commonalities and differ-
ences as we did in the technique sections above. However, we found
some commonalities between these techniques, for instance, some tech-
niques detected dependency smells [P18, P29, P32, P36]; a few MVC
smells [P29, P40, P59]; and some identified smells in service-oriented
architecture [P14, P51, P69].

5.3 Detection Tools (RQ3)

RQ3 – What detection tools for architectural smells are proposed and
evaluated in literature?

This section addresses RQ3 by describing the architectural smell
detection tools reported in the literature (12 of 85—14.11%). The
descriptions of tools are presented in a similar manner using a subset
of the categories developed for detection techniques. We used only a
subset because we adopted only those categories employed by the tools.
Similar to detection techniques, the detailed supplementary material1
is also available for detection tools.

Graph-based – Fontana et al. [P20] introduced an open source
tool named Arcan that detects architectural smells in Java projects.
The tool uses abstraction knowledge of the project to identify
dependencies—including problematic architectural dependencies—
between the project’s elements. Later, Biaggi et al. [P5] improved
the scalability of Arcan by adding the functionality to handle projects
compiled in C and C++ languages. Fontana et al. [P19] evaluated the
Arcan tool to see if architectural smells detected by Arcan are actually
perceived as architectural issues. Fontana et al. [P23] also reported their
experience of employing two detection tools (Sonargraph and Struc-
ture101) to identify architectural erosion in the open source systems.
In another report, Fontana et al. [P22] presented their experience report
on three architectural smells detection tools (Sonargraph, SonarQube,
and inFusion). Von Zitzewitz [P79] described the architecture, working,
and application of the Sonargraph tool. The tool allowed software
architects to describe the architectural blueprint using a customized
domain specific language (DSL). Once the DSL was defined, the ar-
chitecture quality was automatically checked and enforced during the
development process.

Azadi et al. [P3] illustrated the key differences in the detection
techniques exploited by the existing detection tools (AI Reviewer, AR-
CADE, Arcan, Designite, Hotspot Detector (no longer available as a
standalone tool—now integrated into DV8 suite), Massey Architecture
Explorer (no longer available), Sonargraph, STAN, and Structure101).
They showed which and how the architectural smells were detected
by these tools. For instance, in the case of Hub-like Dependency,
the supported tools (ARCADE, AI Reviewer, Arcan, and Designite)
employed graphs in different ways. AI Reviewer detected Hub-like
Dependencies by focusing on the ingoing and outgoing dependencies of
concrete classes (non-abstract) in the dependency graph; Arcan focused
on abstraction and unbalanced (ingoing and outgoing) dependencies
in the graph; Designite relied on fan-in and fan-out metrics to iden-
tify Hub-like Dependencies using the dependency graph; and finally,
ARCADE detected this smell by comparing the ingoing and outgoing
dependencies with the aggregated dependencies in the graph. Similarly,
for each supported architectural smell, the authors demonstrated the
different detection strategies of the tools. In a similar manner, Fontana
et al. [P21] explained how the technical debt indexes are computed in
five different detection tools (CAST, inFusion, Sonargraph, SonarQube,
and Structure101). They also demonstrated the different detection
mechanisms used by these detection tools. We also observed that the
most commonly employed detection tools were Arcan, Sonargraph,
SonarQube, and Structure101.

Visualization – Sharma [P60] presented Designite—a quality as-
sessment tool—that identifies several architectural smells. Designite
also provides information about the root cause of the smells to assist
the developers in refactoring. Cai and Kazman [P8] presented a tool
suite, named DV8, that provides maintainability assessment using two
metrics (decoupling level and propagation cost); detection of six archi-
tectural smells (Unstable Interface, Modularity Violations, Unhealthy
Inheritance Hierarchy, Crossing, Clique, and Package Cycle); and quan-
tification of maintenance cost. They showed that, by using DV8 suite
metrics and visualization, they were able to automatically detect archi-
tectural smells and express the maintenance difficulties in the projects.
The suite also calculated the maintenance cost of the files affected by
the architectural smells.

History-based – Reimanis et al. [P58] measured and predicted the
architecture quality of a system by using the structural information of
that system. The structural information was in the form of product
metrics about historical changes in the structure of the system’s archi-
tecture. The structural information (metrics) were fed to CLIO (an
architectural degradation detection tool) [52] to automatically identify
dependencies between the components of a commercial system. The
main contribution of CLIO was the automated detection of smells in
the commercial system developed in, previously not supported, C++
language.

Rules-based – Nayrolles et al. [P45] presented an open source
service-oriented antipatterns detection tool, SODA, to automatically
detect antipatterns in service-based systems. They identified several
service-related architectural smells.

The findings from the tool papers in terms of the related analysis
factors are described as follows:

• Smells detected – The detected architectural smells reported in
the tool papers are summarized in Table 11. Note that the archi-
tectural smells that can be detected by each tool is not mentioned
on the official webpages of the tools; therefore, we relied on the
smells reported in the tool papers. We noticed that identifying
dependency smells was common among the detection tools. For
instance, problematic dependencies, such as Cyclic, Unstable,
Hub-like, Implicit Cross-module, etc. were common among the
majority of the tools. On the other hand, only one tool (SODA)
detects service-oriented smells.

• Technique type – Since it is easier to depict and analyze depen-
dencies using graphs, the most common technique type employed
by the tools was graph-based (almost 67%) [P3,P5,P19–P23,P79].
One tool, SODA [P45], handled the service-oriented architectural
smells by implementing rules. Designite [P60] and DV8 [P8]
used the combination of visualization and rules to identify archi-
tectural smells automatically. Another tool, CLIO [P58], took
advantage of historical information to detect architectural smells.

• Validation – Only Arcan was empirically validated (see Figure 7).
In the rest of the tool papers, the evaluations were performed using
case studies (4 out of 12 papers) or no validation was conducted (5
out of 12 papers).

• Tool availability – We found that the detection tools are avail-
able as a mix of open source and commercial products. For
instance, Arcan is fully open source; Structure101 is commercial;
Sonargraph and SonarQube are available as open source (limited
functionality) and commercial. In Table 12 and Figure 8, we show
the distribution of tools available as open source, commercial,
both, and not available. Out of 15, three are open source, six are
commercial, and three are available both as open source and com-
mercial. Three tools (inFusion, Hotspot Detector, and Massey
Architecture Explorer) are no longer available.

• Language support – Language coverage is also spread to have
maximum language support. Some tools, like DV8, SonarQube,
and CAST, manage a long list of development languages, includ-
ing C, C++, Java, C#, Python, PHP, .Net, and many more (see

Table 11. Mapping of detected architectural smells to tools as reported in the primary papers.

Architectural smell A
rc

an

So
na

rg
ra

ph

St
ru

ct
ur

e1
01

C
LI

O

D
es

ig
ni

te

D
V

8

So
na

rQ
ub

e

in
Fu

si
on

A
IR

ev
ie

w
er

A
R

C
A

D
E

H
ot

sp
ot

D
et

ec
to

r

M
as

se
y

A
rc

hi
te

ct
ur

e
Ex

pl
or

er

ST
A

N

C
A

ST

SO
D

A

Multi-service – – – – – – – – – – – – – – 3

Tiny Service – – – – – – – – – – – – – – 3

Sand Pile – – – – – – – – – – – – – – 3

Chatty Service – – – – – – – – – – – – – – 3

Knot Service – – – – – – – – – – – – – – 3

Nobody Home – – – – – – – – – – – – – – 3

Duplicated Service – – – – – – – – – – – – – – 3

Bottleneck Service – – – – – – – – – – – – – – 3

Service Chain – – – – – – – – – – – – – – 3

Data Service – – – – – – – – – – – – – – 3

Bloated Service – – – – – – – – – – – – – – 3

Unstable Dependency 3 3 3 – 3 – – 3 3 3 3 3 3 – –
Hub-like Dependency 3 3 3 – – – – – 3 3 3 3 3 – –
Cyclic Dependency 3 3 3 – 3 – 3 3 3 3 3 3 3 – –
Implicit Cross-module Dependency – – – – – – – – 3 3 3 3 3 – –
Package Cycles – 3 3 – – 3 – – – – – – – – –
Biggest Package Cycle Group – 3 3 – – – – – – – – – – – –
Ambiguous Interface – – – – 3 – – – 3 3 3 3 3 – –
Unstable Interface – – – – – 3 – – – – – – – – –
Unused Interface – – – – – – – – – 3 – – – – –
Unhealthy Inheritance Hierarchy – – – – – 3 – – – – – – – – –
Cyclic Hierarchy – – – – – – – – 3 3 3 3 3 – –
Multipath Hierarchy – – – – – – – – 3 3 3 3 3 – –
Abstraction without Decoupling – – – – – – – – 3 3 3 3 3 – –
Unutilized Abstraction – – – – – – – – 3 3 3 3 3 – –
Modularity Violations – – – 3 – 3 – – – – – – – – –
God Component – – – – 3 – – – 3 3 3 3 3 – –
Feature Concentration – – – – 3 – – – – – – – – – –
Scattered Functionality – – – – 3 – – – 3 3 3 3 3 – –
Dense Structure – – – – 3 – – – – – – – – – –
Crossing – – – – – 3 – – – – – – – – –
Clique – – – – – 3 – – – – – – – – –
SAP Breaker – – – – – – – 3 – – – – – – –
Multiple Architecture Violations 3 – – – – – – – 3 3 3 3 3 – –
Specification–implementation Violation 3 – – – – – – – – – – – – – –
Sloppy Delegation – – – – – – – – – 3 – – – – –
Co-change Coupling – – – – – – – – – 3 – – – – –
Separation of Concerns – – – – – – – – – 3 – – – – –
Concern Overload – – – – – – – – – 3 – – – – –
Link Overload – – – – – – – – – 3 – – – – –

Table 13), whereas a few (e.g., Designite) provide only limited
language support. Most of the supported languages are the com-
piled languages because there is no overhead of translating the
programs into native code at run-time. Only a few interpreted
languages (e.g., JavaScript, Python, etc.) are supported by the
detection tools. The distribution of language support in terms
of development languages is shown in Table 13. It is evident
that Java has the most support, while other popular languages
(e.g., C++ and C) also have favorable inclusion. However, some
development languages (e.g., .Net, Python, and PHP) receive a
little attention.

3

4

5

Empirical (only Arcan) Case study No Validation

N
um

be
r o

f v
al

id
at

io
ns

Fig. 7. Validation type in detection tools

Table 12. Tool availability

Tool Open source Commercial

Arcan 3 –
Sonargraph 3 3

Structure101 – 3

CLIO – 3

Designite 3 3

DV8 – 3

SonarQube 3 3

AI Reviewer – 3

ARCADE 3 –
STAN – 3

CAST – 3

SODA 3 –

3

6

3 3

Open source Commercial Both Not available

N
um

be
r o

f t
oo

ls

Fig. 8. Availability of detection tools

5.4 Limitations of Detection Techniques and Tools (RQ4)
This section presents a discussion of the limitations of architectural
smells detection techniques and tools reported in the literature and iden-
tified through the cumulative analysis of the detection techniques (RQ2)
and tools (RQ3).

In Table 14, we show, for each architecture smell, whether existing
techniques and tools can detect it. The number (in bracket in Table 14)
represents the frequency of research articles in which a detection tech-
nique each smell is described. We observed some interesting patterns
from Table 14. We found that across all technique categories, service-
oriented and performance-related architectural smells were the most
widely supported. It can also be seen that service-oriented smells
are mainly detected by employing rules-based and search-based ap-
proaches, whereas performance-related smells were mostly identified
through model-driven techniques. We also observed that the archi-
tectural smells that encapsulate dependency issues can be identified
through almost all of the technique types. For instance, Cyclic Depen-
dency is detected through rules-based, graph-based, design structure
matrix, code smells analysis, history-based, and visualization tech-
niques.

In the rest of this section, we discuss the limitations of architecture
smell detection techniques and tools, as identified through this mapping
study. These include limitations that are derived through the collective
mapping of data extracted from the studies, as well as, the ones that are
directly reported by study authors.

Undetected Smells – Table 14 shows that there are many smells that
are not detected by existing techniques and tools. The undetected smells
belong to package, services (including micro-services), MVC, and
other architectural-level smells. Although service-oriented smells (e.g.,
Multi, Tiny, Knot, Data, etc.) are widely studied, there are still many
service-specific smells, such as Golden Hammer, Silver Bullet, Brain
Controller, etc. that are not detected yet. Some service smells which
are not currently detected at a more granular level (micro-services), for
instance, Shared Libraries and Shared Persistency. We also saw that the
package-related smells received limited attention, and there are several
package smells (e.g., Package Instability, Package abstractness, etc.)
that need detection. Furthermore, we found a few undetected smells
that belong to MVC architecture, for instance, Brain Controller and
Brain Repository. Also, some of the abstraction (e.g., Missing and
Incomplete), encapsulation (e.g., Leaky and Missing), and hierarchy
(e.g., Unnecessary and Speculative) specific smells are not subjected
to any investigation. System-level smells (Too Many Subsystems, No
Subsystems, and Overgeneralized Subsystems), in Table 14, represent
problems with size and generalization in the system’s architecture.

We also observed the limited coverage of architectural smells in
detection tools. As shown in Table 14, the detection tools mostly pro-
vide support for dependency-related and service-specific architectural
smells. In the case of other types of architectural smells, tool support is
still lacking. The primary papers also pointed out the need to integrate
the detection approaches with tools [P49] and improve the scalability
of tools in terms of detected smells [P38].

Increasing support for the currently unsupported architectural smells
will be challenging. Some of the primary papers reported that not all
architectural smells are equally easy to detect because some smells
required additional information (e.g., evolution history data [P38]).
Therefore, when such information is not available for specific smells in
certain datasets, it is challenging to detect them [P38]. Moreover, we
noticed that static analysis techniques are commonly applied to detect
the architectural smells, but the semantic analysis is rarely employed.
We argue that semantic analysis techniques could pave ways to detect
those architectural smells that encapsulate semantic information. Fu-
ture research can continue to study ways to improve support across
difficult to detect architectural smells. In addition, increased industry
collaboration can also be beneficial to increase the data availability.

Lack of Adequate Quantification of Architectural Smells – We
saw that many rules-based approaches were employed to detect archi-
tectural smells. However, identifying an appropriate set of metrics and
their thresholds is a challenge [P30, P38, P48, P49]. For instance, Ouni
et al. [P49] identified thresholds by conducting experiments based on

Table 13. Language support provided by detection tools

Tool Ja
va

C
++

C C
#

Py
th

on

.N
et

PH
P

Ja
va

Sc
rip

t

Ty
pe

Sc
rip

t

G
o

Sw
ift

C
O

B
O

L

A
pe

x

K
ot

lin

R
ub

y

Sc
al

a

H
TM

L

C
SS

A
BA

P

Fl
ex

O
bj

ec
tiv

e-
C

SQ
L

V
B

X
M

L

A
da

Fo
rtr

an

JO
V

IA
L

A
ss

em
bl

y

F# JS
P

R Er
la

ng

U
ni

x
Sc

rip
ts

Pa
sc

al

Arcan 3 3 3 –
Sonargraph 3 3 3 3 3 –
Structure101 3 3 3 – 3 3 – 3

CLIO 3 3 –
Designite 3 – – 3 –
DV8 3 3 3 3 3 3 3 3 3 – – 3 – – – – 3 3 – – 3 3 3 3 3 3 3 3 – – – – – 3

SonarQube 3 – – – – – – – – – –
AI Reviewer – 3 3 –
ARCADE 3 –
STAN 3 –
CAST 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 – 3 3 3 3 3 3 – 3 3 3 3 3 3 3

SODA 3 –

trial-and-error, which meant that the proper configuration of thresholds
was required. This implies there is a lack of adequate quantification of
architectural smells.

Lack of Broader Focus on Quality Characteristics – Identifying
the maintainability issues of the software systems was the main focus
of many of the existing techniques (see Figure 9). Note that this figure
excludes articles where the focus was only on architecture quality in
general and a specific quality characteristic is not mentioned. The
second most investigated quality characteristic was performance. Fur-
thermore, we found only one technique that supported the security
smells of the software architecture (see Figure 9). Other quality char-
acteristics, such as usability, reliability, portability, etc. are not the
focus of any detection technique or tool, urging the need to broaden the
focus to detect architectural smells that impact a wider range of quality
characteristics.

Lack of Inclusiveness of Architecture Styles – We observed that
some architectural styles undergo more examination, for instance,
service-oriented architecture was studied the most—19 research ar-
ticles (see Figure 10). Note that this figure excludes the articles that
did not mention a specific architecture style. It can also be seen that
MVC and layered architectures received reasonable investigation, but
some architectural styles, such as component and cloud, have limited
detection support. It is known that smells can reside in software archi-
tectures regardless of the architectural style, meaning that all styles of
architecture should receive a fair analysis.

Insufficiency of Empirical Validations – In terms of validation,
we observed an even blend of empirical and case studies to evaluate the
effectiveness of the techniques. The detection tools (except Arcan) have
not been empirically validated—the majority of the tools are evaluated
through case studies or not validated (also shown in Figure 7). We
found that the validations were performed using a limited number of
software projects, which also corresponds to the limitation reported
by the primary papers [P30, P38]. This suggests a need to have more
empirical validations.

While the use of commercial and open source systems was also
evenly distributed across the validations, software projects included
in the validations are biased towards a small set of programming lan-
guages, such as Java, C#, and C++, which reduces the practical ap-
plicability of the techniques and tools in projects that employ other
programming languages. Figure 11 illustrates the languages used to
validate the techniques. The primary papers also urged the need to
include different architectures, domains, and languages to improve
generalization [P30, P38].

Limited Language Support – Following on from this, in addition
to have limited languages in the projects involved in the validations of
the techniques and tools, the tools themselves support only a limited
set of languages. Table 13 shows the languages supported by each

tool. Java is supported by the most tools, while only a few tools
support .Net and PHP. In recent years, Python has become a popular
development language among the software community, but we see only
a few tools that support Python projects. It is important to note that
language scalability can impact the usefulness and adoption of the tools,
particularly as languages evolve, the detection tools will need to be
updated to accommodate these changes.

Limited Involvement of Industry – We also noticed a scarcity
of empirical studies that involve architects and developers from the
software industry. Only a small percentage of studies performed a qual-
itative analysis of feedback obtained from developers using interviews
and questionnaires [P14, P36]. To encourage industry adoption of the
detection techniques and tools, more studies should look to include
software practitioners in the validation.

Additionally, in RQ1, we found no academic and industrial col-
laborations in authorship of the detection technique and tool papers.
However, some of the studies were validated using large scale industrial
systems. Still, there is room to increase collaboration with industry in
this research area. The limitations of some of the primary papers indi-
cated that the lack of industry collaboration impact construct validity.
These papers expressed concerns that developers might disagree with
the selected examples of the architectural smells as the best candidates
for architectural problems because of their understanding and exper-
tise [P48, P49]. Further validation with industry can alleviate these
threats.

Other Limitations – We also found some limitations (reported in
the primary papers) that were not identified by our collective analysis of
the techniques and tools. Some papers reported potential threats to con-
clusion validity based on the statistical analysis. For instance, in [P30],
the authors noted that most of their results had statistical significance,
but that some exceptional cases required further investigation. From
an internal validity point of view, the most common threat reported in
the primary paper was related to the appropriate selection of evaluation
measures (e.g., [P38, P49]).

6 DISCUSSION

In this section, first, we discuss the implications of the findings from
the analysis of the detection techniques and tools. Later, we reflect on
the significance of the open challenges (discussed in Section 5.4) and
highlight possible directions for future research.

6.1 Implications of Findings
Focus on dependency smells – We observed that detecting depen-
dency smells is common among the majority of the techniques. One
potential reason for this could be that it is relatively easy to depict
dependencies using graph structures or visualizations [P4]. In addi-
tion, usually, dependency smells are connected with coupling issues

Table 14. Technique and tool detection as per architectural smell (undetected are in bold). The number represents the frequency of research articles

Sm
el

lc
at

eg
or

y

Architectural smell R
ul

es
-b

as
ed

G
ra

ph
-b

as
ed

D
es

ig
n

st
ru

ct
ur

e
m

at
rix

M
od

el
-d

riv
en

C
od

e
sm

el
ls

an
al

ys
is

R
ev

er
se

en
gg

.&
hi

st
or

y

Se
ar

ch
-b

as
ed

V
is

ua
liz

at
io

n

O
th

er
s

To
ol

Architectural smell R
ul

es
-b

as
ed

G
ra

ph
-b

as
ed

D
es

ig
n

st
ru

ct
ur

e
m

at
rix

M
od

el
-d

riv
en

C
od

e
sm

el
ls

an
al

ys
is

R
ev

er
se

en
gg

.&
hi

st
or

y

Se
ar

ch
-b

as
ed

V
is

ua
liz

at
io

n

O
th

er
s

To
ol

Se
rv

ic
e

Low Cohesive Operations (1) – – – – – – – – – Multi-service (5) – – (1) – – – – (1) 3

Tiny/Nano/Fine-grained Service (7) – – (1) – – (5) – (1) 3 Chatty Service (6) – – – – – (5) – (1) 3

Knot Service (3) – – – – – – – (1) 3 Bottleneck Service (4) – – – – – – – (1) 3

Service Chain (3) – – – – – – – (1) 3 Sand Pile (3) – – – – – – – – 3

Nobody Home (3) – – – – – – – (1) 3 Duplicated Service (3) – – – – – – – – 3

Data Service (2) – – – – – (2) – – 3 Ambiguous Name (2) – – – – – – – – –
Maybe it’s not RPC (2) – – – – – (3) – – – Redundant PortTypes (2) – – – – – (3) – – –
Bloated Service (1) – – – – – – – (1) 3 Forgetting Hypermedia (2) – – – – – – – – –
Crudy Interface (3) – – – – – (3) – – – Ignoring MIME Types (2) – – – – – – – – –
Crudy URI (1) – – – – – – – – – Ignoring Caching (1) – – – – – – – – –
Pipe and Filter – – – (1) – – – – – – Golden Hammer – – – – – – – – – –
API Versioning – – – – – – – – – – Silver Bullet – – – – – – – – – –
ESB Usage – – – – – – – – – – Hard-coded Endpoints – – – – – – – – – –
Micro-service Greedy – – – – – – – – – – Not Having an API Gateway – – – – – – – – – –
Shared Libraries – – – – – – – – – – Shared Persistency – – – – – – – – – –
Too Many Standards – – – – – – – – – – Wrong Cuts – – – – – – – – – –
Overstandardized SOA – – – – – – – – – – Nothing New – – – – – – – – – –
Big Bang – – – – – – – – – – Incomplete Service – – – – – – – – – –
No Legacy – – – – – – – – – – Shiny Nickel – – – – – – – – – –

Pe
rf

or
m

an
ce

Excessive Dynamic Allocation – – – (3) – – – – – – Ramp – – – (4) – – – – – –
Tower of Babel – – – (1) – – – – (1) – More is Less – – – (1) – – – – – –
One-lane Bridge – – – (5) – – – (1) – – Unbalanced Processing – – – (4) – – – (1) – –
Traffic Jam – – – (5) – – – (1) – – Circuitous Treasure Hunt – – – (3) (1) – – (1) (1) –
Empty Semi-trucks – – – (2) (1) – – (1) – – Extensive Processing – – – (1) – – – – (1) –

D
ep

en
de

nc
y Unauthorized Dependency – (2) – – – – – – – – Unstable Dependency – – – – – (1) – – (2) 3

Hub-like Dependency – (3) – – – (1) – – (2) 3 Cyclic Dependency (1) (3) (1) – (4) (1) – (1) (3) 3

Implicit Cross-module Depen-
dency

– – (3) – – – – – (1) 3 Cycles between Namespaces – (1) – – – – – – – –

Pa
ck

ag
e

Package Cycle – – (6) (1) – – – – – 3 Clique – – (3) – – – – – – 3

Too Small Package – – – – – – – – – – Unused Package – – – – – – – – – –
Unclear Package Name – – – – – – – – – – Package Instability – – – – – – – – – –
Package Abstractness – – – – – – – – – – Unbalanced Package Hierarchy – – – – – – – – – –

M
V

C

Sloppy Delegation – (1) – – – – – – (1) 3 Co-change Coupling – (1) – – – – – – (1) 3

Separation of Concerns – (2) – – – – – – – 3 Concern Overload – (1) – – (6) – – – (3) 3

Scattered Functionality – (1) – – (4) – – – (3) 3 Feature Concentration – (1) – – – – – – – –
Link Overload – (1) – – – – – – (1) 3 Connector Envy – – – – (6) – – – (2) –
Fat Repository – – – – – – – – – – Promiscuous Controller – – – – – – – – – –
Brain Controller – – – – – – – – – – Meddling Service – – – – – – – – – –
Brain Repository – – – – – – – – – – Laborious Repository Method – – – – – – – – – –

C
om

po
ne

nt Anchor Submission – – (1) – – – – – – – Anchor Dominant – – (1) – – – – – – –
Non-transfer Communication – – – – – (1) – – – – Unauthorized Call – – – – – (1) – – – –
Undercover Transfer Object – – – – – (1) – – – – Subtype Knowledge – (1) – – – – – 3 – –
Abstraction without Decoupling – (1) – – – – – – – 3 Blob/God Object (3) – – (4) (1) – (3) (1) (1) –

O
th

er
sm

el
ls

Unhealthy Inheritance – – (5) (1) – – – – – 3 Improper Inheritance – – (2) – – – – – – –
Unstable Interface – – (7) – – – – – – 3 Unused Interface – (1) – – (4) – – – (1) 3

Ambiguous Interface – – – – (6) – – – (1) 3 Interface Violation – – – – – (1) – – – –
Degenerated Inheritance – (1) – – – – – – – – Modularity Violations (1) – (5) – – – – – (1) 3

Misplaced Component – – – – – – – (1) – – Security Flaws – (1) – – – – – – – –
Incomplete Abstraction – – – – – – – – – – Missing Abstraction – – – – – – – – – –
Missing Encapsulation – – – – – – – – – – Leaky Encapsulation – – – – – – – – – –
Speculative Hierarchy – – – – – – – – – – Unnecessary Hierarchy – – – – – – – – – –
Too Many Subsystems – – – – – – – – – – Overgeneralized Subsystems – – – – – – – – – –
No Subsystems –

48

10

1

Maintainability Performance Security

N
um

be
r o

f a
rt

ic
le

s

Fig. 9. Frequency of the quality characteristics investigated by the detec-
tion techniques

19

9
8

2 2
1 1 1 1 1

N
um

be
r o

f a
rt

ic
le

s

Fig. 10. Frequency of the architecture styles investigated by the detection
techniques

24

6 6 5

1 1 1

Java C# C++ C AspectJ PHP Python

N
um

be
r o

f v
al

id
at

io
ns

Fig. 11. Development languages of the projects used for validations

in the architecture, which is related to maintainability. Since we have
seen that, in most of the primary papers, researchers are interested in
maintainability of software systems (see Figure 9), this could also be a
reason for detecting dependency smells, since these can have serious
impacts on maintainability. Finally, in terms of practical relevance,
the software industry is mostly interested in reducing the maintenance
cost [7]. We know that dependency smells hinder the maintainability
characteristic of a system [P2], therefore, it is more relevant for the
software industry to detect them. This argument is also supported by
the smell coverage provided by detection tools. Most of the detection
tools can detect common dependency smells. This could be because of
industry demand, which would lead to higher tool adoption.

Many search-based techniques for service-oriented smells – We
also noticed that most of the service-oriented smells are detected
through search-based techniques. This could be driven by the scale
and diversity of the data, as search-based techniques are suitable for
large and diverse datasets [P49]. For example, search-based techniques
use the architectural smells data (metrics and their thresholds) in many
software systems to optimize the detection [P48, P49]. It is also note-
worthy that large-scale web services were used in the evaluations of the
search-based techniques, further illustrating their ability to work with
large-scale and diverse data.

Focus on maintainability quality – In terms of quality character-
istics, maintainability is the focus in the majority of the detection
techniques. This could be because of the innate relationship between
smells and the maintainability of a software [9]. Another reason could
be the desire to reduce the development costs associated with software
maintenance. However, other software qualities like performance and
security can be impacted by architectural smells, and these qualities
have received much less attention in this research area.

Diversity in the detection techniques – One important finding is
the lack of diversity in the detection techniques. Comparably, code
smells analysis techniques are more diverse in terms of the investigated
architecture styles (MVC, layered, and cloud). Additionally, they are
also more diverse in the project domains (SPL, web, and middleware).
These diversities in code smells analysis techniques make them more ap-
plicable to a wider range of projects. We observed that some techniques
(e.g., DSM, search-based, and visualization) employed commercial sys-
tems and used multiple languages in their evaluations, which make them
more scalable and generalizable. However, many architectural smells
detection tools and methods (e.g., rules-based, graph-based, and code
smells analysis) have less evidence of scalability and generalizability
in the literature.

6.2 Open Challenges and Future Research Directions
Many smells still need detection – From the limitations, we found
several architectural smells that are not detected by existing techniques
or tools. The coverage of architectural smells in tools is even more lim-
ited, which can be a road-blocker for them to be employed in software
industry. The undetected smells vary in terms of their granularity level.
For instance, in object-oriented architecture, the undetectable smells
exist at the class-level, package-level, interface-level, etc. The smells at
these different granularity levels are inter-related. For example, Pack-
age Instability (a package-level smell) can raise coupling issues that
affect communication between classes (a class-level smell). This sug-
gests the need for equal attention regardless of their level because a
smell at one level can affect (i.e., introducing another smell) the design
structure of the other level.

We have seen a variety of undetected architectural smells , but how
they should be prioritized depends on various aspects, such as impact
on quality characteristics, complexity of refactoring, etc. Software or-
ganizations may have different quality goals; for instance, some focus
on maintainability and some on security. Therefore, they prioritize the
smells according to their quality goals. In the literature, the papers that
describe the currently undetected architectural smells have reflected on
the software quality problems which can appear if the smells are left
undetected. For instance, Taibi and Lenarduzzi [47] explained that the
“Hard-coded Endpoints” smell can introduce issues in a micro-services
environment. If micro-services are connected with Hard-coded End-

• Trend of investigating architectural
smells started in 2010.

•Maximum number of studies
appears in 2018 and 2019.

•Most articles are published in
conferences.

•Conferences on software
architecture, technical debt, and
ICSE index many articles on
architectural smells detection.

•All the active SE researchers have
academic affiliations.

•Rules-based techniques are
mostly employed.

•Almost all the technique types
investigate dependency-related
smells.

•Maintainability is the main quality
attribute studied across all
technique types.

•Mostly the Java-based projects are
used for evaluations.

• Tools mostly detect dependency-
related smells.

•Graph-based techniques are
mainly employed in tools.

•Only one tool (SODA) detects
service-oriented smells.

•Only one tool (Arcan) is
empirically validated.

•Mainly Java projects are
supported by tools, followed by
C++ and C.

•Many architectural smells still
need investigation.

• Lack of broader focus on quality
attributes and architecture styles.

• Limited involvement of developers
in the evaluation process.

•Academic and industrial
collaboration needs to be
increased.

• Limited language support
provided by detection tools.

•Open source tools with full
functionalities are limited.

RQ1
Demographics

RQ2
Detection Techniques

RQ4
Limitations

RQ3
Detection Tools

Fig. 12. Main findings of our RQs

points, it is problematic to change their locations, resulting in slowing
down the maintainability process of software applications. As another
instance, Package Instability can also impact maintainability because
of high dependency between packages—the changes in one package
for changes in another package. Similarly, in many papers, researchers
have identified several quality characteristics (e.g., modularity, evolv-
ability, modifiability, etc.) that could be impacted by the architectural
smells [5,13,17,26,28,31,45,47]. Therefore, in most cases, the priority
of detecting a particular smell lies in its severity and degree of impact
on different software quality characteristics, and how important those
quality characteristics are to software organizations. Another impor-
tant aspect to prioritize the smells is based on the level of complexity
involved in their refactorings. The complexity of the required refac-
toring is considered because if refactoring involves cumbersome tasks,
more resources would be required to remove the smell. Future research
should consider these impacts when prioritizing the smells to study for
new detection methods and tools.

Conduct experiments to quantify undetected smells – We found
that it was a challenge to adequately quantify and measure architectural
smells. Some studies employed the metrics for code smells to deter-
mine their relations with architectural technical debt [24, 29]. A major
drawback of entirely relying on code metrics is losing the semantics
of architectural smells. To avoid losing the semantic information of
architecture, other methods, such as statistical analysis of software
data (e.g., size, complexity, etc.) [23] and ROC (Receiver Operating
Characteristic) curves [44] can be adopted for identifying thresholds
for architecture data. Therefore, we believe future studies should focus
on identifying appropriate thresholds and metrics that can be used to
quantify architectural smells better.

Measure the impact on a broader set of quality characteristics –
Maintainability was the most commonly studied quality characteristic
when considering architecture smell detection. It can give insight into
the effort and resources required to fix the problems resulting from
the smells. The second most investigated quality characteristic was
performance. However, the detection techniques that consider other
quality characteristics (e.g., security) are limited. We believe that it
is important to understand the impact of architectural smells on other
quality characteristics, since all are important for producing high quality
software. For example, even if software is maintainable, if it has large
security problems, it would not be considered high-quality software.

In addition, it is paramount to individually investigate the sub-
characteristics of a quality characteristic. For instance, in maintainabil-
ity, we observed that modularity and modifiability were focused during
detection but sub-characteristics like testability or reusability were not
given any attention. Future work could investigate ways to measure
these quality sub-characteristics in the detection methods. This would
require examining the relationship between different smells and sub-
characteristics (e.g., reusability). The relationship could be established

by performing empirical analysis of the impact of architectural smells
on a particular quality characteristic. The advantage of such analysis is
that it would allow the tool developers to focus on a particular set of
architectural smells that impact a specific type of quality characteristic.

Investigate the quality of other popular architectural styles – We
observed that some architectural styles undergo more examination, for
instance, service-oriented architecture. It is likely due to the popularity
of using service-oriented architecture in recent years. However, archi-
tectural styles, such as component and cloud, are barely explored. The
current spread of cloud technology and the shift of many technologies
to the cloud environment suggest the significance of investigating the
quality of cloud architecture. Future work could focus on understudied
architectural styles to improve detection techniques across a broader
range of architectures.

Enhance the diversity in empirical validations – Validation is the
key to show the applicability of an approach, and the data is a vital
ingredient in the validation process. In the existing approaches and
tools we first noticed the lack of diversity in the empirical evalua-
tions, for instance, less validations with a broader set of programming
languages. This can bring many challenges because of the different
styles and practices offered by the development languages, thus, not
all detection techniques and tools will be able to be easily applied to
additional programming languages. However, to ensure high-quality
architecture across a wide range of software systems, future research
must investigate ways to expand the detection techniques and tools (and
their evaluation) across a wider range of programming languages. We
suggest to include those development languages that are also common
in software development. For instance, although .Net and PHP are pop-
ular development languages, we noticed that only a few tools support
.Net and PHP projects. Similarly, the Python language is also supported
by only a handful of tools. Future work can focus on improving the
existing tools with an enhanced set of supported languages.

Need more scalable techniques and tools – In addition to support-
ing a wider range of programming languages, detection techniques and
tools need to be empirically evaluated using realistic data to ensure
scalability. For instance, in our results, we noticed that tools (except
one) were either validated with case studies (33%) or not evaluated at
all (42%). It is interesting to see that some tools (DV8, sonarQube,
and CAST) can work with many programming languages, but there is
scarcity of empirical evidence in the literature regarding their effective-
ness. This shows the need to improve the scalability of the detection
methods with more empirical evaluations and with industrial projects.
Future studies should look to use industrial-scale commercial projects
in the evaluation process of detection techniques and tools.

Involve software developers in evaluations - In the evaluation of
detection techniques and tools, we found only a few studies that per-
formed a qualitative analysis of feedback obtained from developers.
We argue that there is no replacement of including software developers

in the process of evaluating the detection techniques. The input of
developers in the evaluation processes of architectural smells would
enhance the applicability in real-world scenarios.

Need a shift to academic–industrial collaborations – Related to
the need to evaluate techniques and tools with industrial-scale data and
a need for greater involvement of software practitioners in evaluations,
we noticed that all the detection techniques and tools originated from
academics in terms of authorship. Increasing academic and industrial
collaboration in the creation of architecture techniques and tools can
help to minimize the gap between research and practice and encour-
age better adoption of the proposed techniques and tools by software
practitioners.

7 THREATS TO VALIDITY

In this section, we present threats to validity based on the guidelines
provided by Petersen et al. [39].

Descriptive Validity – Descriptive validity refers to the accurate and
objective description of observations. To reduce this threat, we recorded
the data (article ID, article title, publication year, publication venue,
and analysis factors) in a tabular representation. Article ID, article title,
publication year, source (digital libraries), and publication venue were
automatically recorded from the searched databases, whereas analysis
factors were extracted by objectively analyzing the selected articles. In
addition, the second and third authors of this paper also independently
performed the data extraction process on a subset (just over 15%) of
the primary papers. Any disagreements were resolved through iterative
discussions between all authors. After these discussions and agreements
were reached on how data should be extracted and categorised, the
data was extracted from the remaining 85% of the primary papers.
We also distinguished the technique and tool articles to support the
recording of the data and extraction process. All of the detailed data
and classifications for each paper are provided in our supplementary
material1.

Theoretical Validity – Theoretical validity refers to our ability to
capture intended data, keeping into consideration the biases and se-
lection of subjects. The theoretical validity threats in our systematic
mapping study were mainly originating from the incompleteness of
the searched literature domain, inaccuracy in the gathered data, and
inaccuracy in the data synthesis process.

The completeness of the literature domain depends on the electronic
databases, search string, and inclusion and exclusion criteria. Due
to a high number of electronic databases, it is not feasible to search
through every available electronic database. Therefore, in this mapping
study, we search seven well-known databases (Scopus, Web of Science,
INSPEC, ACM Digital Library, IEEEXplore, SpringerLink, and DBLP)
of software engineering and computer science literature.

Another limitation comes from the search string (used to retrieve the
related articles) because relevant publications could be omitted by it.
We confined our search string to the keywords that are the most relevant
to architectural smells detection. The number of keywords with the
use of appropriate logical operators in the search string could increase
the number of retrieved articles, but then this might also result in a
substantial number of irrelevant publications. To reduce the threat that
our search string was missing relevant articles, we validated our search
string by performing a focused search analysis of the papers published
in International Conference on Software Engineering (ICSE) from 2016
to 2019. Using our search string and snowballing, we were able to find
all articles from this small validation set. While we cannot guarantee
that we identified every relevant paper, this gives us confidence that our
dataset includes many articles of interest.

Some limitations could also be imposed by our inclusion and exclu-
sion criteria because ill-designed or incomplete inclusion and exclusion
criteria could result in an incorrect selection of articles. To mitigate
this threat, we iteratively modified the exclusion criteria during the
selection process to ensure that no relevant articles were discarded and
irrelevant articles were not included.

The analysis of the selected articles was performed in terms of
various factors in the analysis framework. We designed the analysis
framework to cover the main aspects of the detection techniques and

tools to answer our research questions. We do not claim this analysis
framework to be complete. Additional factors could be introduced
to improve the comprehensiveness of the analysis process. However,
the data we extracted has provided answers to our research questions
and helped us identify many interesting findings when considering the
research literature as a whole.

Finally, a threat is connected to the biases of the author, who was
executing the extraction and classification process. This threat was miti-
gated by regular discussions about the data extraction and classification
performed by the author with other authors of this mapping study.

Interpretive validity – This refers to the conclusions drawn based
on the given data. A researcher’s biases could be a threat in interpreting
the data. For instance, a researcher with experience in conducting case
studies might misinterpret the results from other types of validations.
This threat was mitigated by multiple rounds of discussions between
authors on the conclusions drawn from our mapping study.

Repeatability – This refers to providing sufficient information about
the research process to ensure the experiments could be repeated. We
strived to ensure repeatability by providing detailed reporting of our
mapping process and providing all of the detailed classifications for
each article as supplementary material. We also used existing guidelines
for conducting systemic mapping studies in software engineering to
strengthen the repeatability.

8 CONCLUSION

In this paper, we performed a systematic mapping study of architec-
tural smells detection techniques and tools. From the analysis of the
related literature, we highlighted some key findings. We observed that
service-oriented, performance-related, and dependency-originated ar-
chitectural smells are widely detected. We also observed that there are
still many architectural smells related to packages and services that
are not detected by existing techniques and tools. Moreover, some of
the architectural smells that are related to quality principles (such as
abstraction, encapsulation, and hierarchy) lack detection techniques and
tools. We also noticed the scarcity of empirical evaluations of detection
techniques and tools, especially with large scale industrial projects.
The selection of software projects for evaluation is also leaned towards
programming languages, such as Java, C, C++, and C#, suggesting the
need to include other development languages as well.

Based on our findings, we suggested some future research directions.
We emphasize having a more in-depth analysis of architectural smells at
different granularity levels, such as investigating the package instability
and its impact on the communication between classes. Similarly, we
suggest looking at the abstraction properties of the interfaces to under-
stand the impact on the overall architecture of the software. Another
promising future research direction is the identification of software
metrics and their thresholds for the currently undetected architectural
smells. Furthermore, accurate mapping of metrics to quality charac-
teristics can open many ways in which quality characteristics can be
measured and evaluated. We also suggest the inclusion of architectural
styles that are currently adopted in industrial projects, such as cloud,
micro-services, etc. Another future work could be conducting empirical
validations with real-world projects covering a broader set of projects
belonging to different domains and development languages. Lastly, for
all the potential research directions mentioned in this study, we recom-
mend focusing on the applicability and usefulness for the viewpoint of
the software development industry.

REFERENCES

[1] Software product quality model ISO/IEC 25010. https://iso25000.com/
index.php/en/iso-25000-standards/iso-25010. Last Accessed: 2020-04-
22.

[2] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada. Software design
smell detection: A systematic mapping study. Software Quality Journal,
27(3):1069–1148, 2019. doi: 10.1007/s11219-018-9424-8

[3] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola, F. Shull, and
C. Seaman. Identification and management of technical debt: A systematic
mapping study. Information and Software Technology, 70:100–121, 2016.
doi: 10.1016/j.infsof.2015.10.008

[4] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou.
The financial aspect of managing technical debt: A systematic literature
review. Information and Software Technology, 64:52–73, 2015. doi: 10.
1016/j.infsof.2015.04.001

[5] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen.
Code smells for Model-View-Controller architectures. Empirical Software
Engineering, 23(4):2121–2157, 2018. doi: 10.1007/s10664-017-9540-2

[6] A. Bandi, B. J. Williams, and E. B. Allen. Empirical evidence of code
decay: A systematic mapping study. In 20th Working Conference on
Reverse Engineering, pp. 341–350. IEEE, 2013. doi: 10.1109/WCRE.2013.
6671309

[7] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Software com-
plexity and maintenance costs. Communications of the ACM, 36(11):81–95,
1993. doi: 10.1145/163359.163375

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 2003.

[9] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An
experimental investigation on the innate relationship between quality and
refactoring. Journal of Systems and Software, 107:1–14, 2015. doi: 10.
1016/j.jss.2015.05.024

[10] I. M. Bertran. Detecting architecturally-relevant code smells in evolving
software systems. In Proceedings of the 33rd International Conference on
Software Engineering, pp. 1090–1093. IEEE, 2011. doi: 10.1145/1985793.
1986003

[11] T. Besker, A. Martini, and J. Bosch. A systematic literature review and
a unified model of ATD. In 42th EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 189–197. IEEE, 2016. doi: 10
.1109/SEAA.2016.42

[12] T. Besker, A. Martini, and J. Bosch. Managing architectural technical debt:
A unified model and systematic literature review. Journal of Systems and
Software, 135:1–16, 2018. doi: 10.1016/j.jss.2017.09.025

[13] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and A. Zim-
mermann. Towards a collaborative repository for the documentation of
service-based antipatterns and bad smells. In Proceedings of the IEEE
International Conference on Software Architecture Companion, pp. 95–101.
IEEE, 2019. doi: 10.1109/ICSA-C.2019.00025

[14] A. Cavacini. What is the best database for computer science journal
articles? Scientometrics, 102(3):2059–2071, 2015. doi: 10.1007/s11192
-014-1506-1

[15] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery:
A taxonomy. IEEE software, 7(1):13–17, 1990. doi: 10.1109/52.43044

[16] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, et al. Reformulating
software engineering as a search problem. IEE Proceedings - Software,
150(3):161–175, 2003. doi: 10.1049/ip-sen:20030559

[17] H. S. de Andrade, E. Almeida, and I. Crnkovic. Architectural bad smells
in software product lines: An exploratory study. In Proceeding of the 11th
Working IEEE/IFIP Conference on Software Architecture, pp. 1–6. ACM,
2014. doi: 10.1145/2578128.2578237

[18] E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia. A
systematic literature review on bad smells 5W’s: Which, When, What,
Who, Where. IEEE Transactions on Software Engineering, 2018. doi: 10.
1109/TSE.2018.2880977

[19] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting em-
pirical methods for software engineering research. In Guide to Advanced
Empirical Software Engineering, pp. 285–311. Springer, 2008. doi: 10.
1007/978-1-84800-044-5 11

[20] S. D. Eppinger and T. R. Browning. Design Structure Matrix Methods and
Applications. MIT press, 2012.

[21] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. A review-
based comparative study of bad smell detection tools. In Proceedings of the
20th International Conference on Evaluation and Assessment in Software
Engineering, pp. 1–12, 2016. doi: 10.1145/2915970.2915984

[22] C. Fernández-Sánchez, J. Garbajosa, A. Yagüe, and J. Perez. Identification
and analysis of the elements required to manage technical debt by means of
a systematic mapping study. Journal of Systems and Software, 124:22–38,
2017. doi: 10.1016/j.jss.2016.10.018

[23] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida. Identifying thresholds for object-oriented software metrics. Jour-
nal of Systems and Software, 85(2):244–257, 2012. doi: 10.1016/j.jss.2011.
05.044

[24] F. A. Fontana, V. Ferme, and M. Zanoni. Towards assessing software
architecture quality by exploiting code smell relations. In Proceedings of

the 2nd International Workshop on Software Architecture and Metrics, pp.
1–7. IEEE Press, 2015. doi: 10.1109/SAM.2015.8

[25] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 2018.

[26] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Toward a cat-
alogue of architectural bad smells. In Proceeding of the International
Conference on the Quality of Software Architectures, pp. 146–162. Springer,
2009. doi: 10.1007/978-3-642-02351-4 10

[27] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in
software engineering. In Guide to advanced empirical software engineering,
pp. 201–228. Springer, 2008. doi: 10.1007/978-1-84800-044-5 8

[28] J. Král and M. Žemlicka. Popular SOA antipatterns. In Proceeding of
the Computation World: Future Computing, Service Computation, Cog-
nitive, Adaptive, Content, Patterns, pp. 271–276. IEEE, 2009. doi: 10.
1109/ComputationWorld.2009.80

[29] J. Lenhard, M. Blom, and S. Herold. Exploring the suitability of source
code metrics for indicating architectural inconsistencies. Software Quality
Journal, 27(1):241–274, 2019. doi: 10.1007/s11219-018-9404-z

[30] Z. Li, P. Avgeriou, and P. Liang. A systematic mapping study on technical
debt and its management. Journal of Systems and Software, 101:193–220,
2015. doi: 10.1016/j.jss.2014.12.027

[31] M. Lippert and S. Roock. Refactoring in Large Software Projects: Per-
forming Complex Restructurings Successfully. John Wiley & Sons, 2006.

[32] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif. Quality charac-
teristics for software architecture. Journal of Object Technology, 2(2):133–
150, 2003. doi: 10.5381/jot.2003.2.2.a2

[33] F. Miranda and C. Abreu. Handbook of Research on Computational
Simulation and Modeling in Engineering. Engineering Science Reference,
2016.

[34] M. Misbhauddin and M. Alshayeb. UML model refactoring: A systematic
literature review. Empirical Software Engineering, 20(1):206–251, 2015.
doi: 10.1007/s10664-013-9283-7

[35] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi. A survey on UML
model smells detection techniques for software refactoring. Journal of
Software: Evolution and Process, 31(3):e2154, 2019. doi: 10.1002/smr.
2154

[36] H. Mumtaz, F. Beck, and D. Weiskopf. Detecting bad smells in software
systems with linked multivariate visualizations. In Proceedings of the IEEE
Working Conference on Software Visualization, pp. 12–20. IEEE, 2018. doi:
10.1109/VISSOFT.2018.00010

[37] H. Mumtaz, S. Latif, F. Beck, and D. Weiskopf. Exploranative code quality
documents. IEEE Transactions on Visualization and Computer Graphics,
26(1):1129–1139, 2019. doi: 10.1109/TVCG.2019.2934669

[38] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping
studies in software engineering. In Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, pp.
1–10, 2008. doi: 10.14236/ewic/EASE2008.8

[39] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for conducting
systematic mapping studies in software engineering: An update. Informa-
tion and Software Technology, 64:1–18, 2015. doi: 10.1016/j.infsof.2015.
03.007

[40] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering,
14(2):131, 2009. doi: 10.1007/s10664-008-9102-8

[41] F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, and N. Moha. A sys-
tematic literature review on the detection of smells and their evolution
in object-oriented and service-oriented systems. Software: Practice and
Experience, 49(1):3–39, 2019. doi: 10.1002/spe.2639

[42] T. Sharma, P. Singh, and D. Spinellis. An empirical investigation on the
relationship between design and architecture smells. Empirical Software
Engineering, 2020. doi: 10.1007/s10664-020-09847-2

[43] T. Sharma and D. Spinellis. A survey on software smells. Journal of
Systems and Software, 138:158–173, 2018. doi: 10.1016/j.jss.2017.12.034

[44] R. Shatnawi, W. Li, J. Swain, and T. Newman. Finding software metrics
threshold values using ROC curves. Journal of Software Maintenance and
Evolution: Research and Practice, 22(1):1–16, 2010. doi: 10.1002/smr.404

[45] C. U. Smith and L. G. Williams. Software performance antipatterns. In
Proceedings of the 2nd International Workshop on Software and Perfor-
mance, pp. 127–136, 2000. doi: 10.1145/350391.350420

[46] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for soft-
ware design smells. ACM SIGSOFT Software Engineering Notes, 40, 2015.
doi: 10.1016/C2013-0-23413-9

[47] D. Taibi and V. Lenarduzzi. On the definition of microservice bad smells.

IEEE Software, 35(3):56–62, 2018. doi: 10.1109/MS.2018.2141031
[48] E. Tom, A. Aurum, and R. Vidgen. An exploration of technical debt.

Journal of Systems and Software, 86(6):1498–1516, 2013. doi: 10.1016/j.
jss.2012.12.052

[49] G. Vale, E. Figueiredo, R. Abı́lio, and H. Costa. Bad smells in software
product lines: A systematic review. In 8th Brazilian Symposium on Software
Components, Architectures and Reuse, pp. 84–94. IEEE, 2014. doi: 10.
1109/SBCARS.2014.21

[50] R. Verdecchia, I. Malavolta, and P. Lago. Architectural technical debt
identification: The research landscape. In Proceedings of the IEEE/ACM
International Conference on Technical Debt, pp. 11–20. IEEE/ACM, 2018.
doi: 10.1145/3194164.3194176

[51] C. Wohlin. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, p. 38.
Citeseer, 2014. doi: 10.1145/2601248.2601268

[52] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting software modularity
violations. In Proceedings of the 33rd International Conference on Software
Engineering, pp. 411–420, 2011. doi: 10.1145/1985793.1985850

PRIMARY REFERENCES

[P1] D. Arcelli, V. Cortellessa, D. Di Pompeo, R. Eramo, and M. Tucci. Ex-
ploiting architecture/runtime model-driven traceability for performance
improvement. In Proceedings of the IEEE International Conference on
Software Architecture, pp. 81–90. IEEE, 2019. doi: 10.1109/ICSA.2019.
00017

[P2] F. Arcelli Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda. A study
on architectural smells prediction. In EUROMICRO Conference Series
on Software Engineering and Advanced Applications, 2019. doi: 10.
1109/SEAA.2019.00057

[P3] U. Azadi, F. A. Fontana, and D. Taibi. Architectural smells detected
by tools: A catalogue proposal. In Proceedings of the International
Conference on Technical Debt. IEEE, 2019. doi: 10.1109/TechDebt.
2019.00027

[P4] D. Baum, J. Dietrich, C. Anslow, and R. Müller. Visualizing design
erosion: How big balls of mud are made. In Proceedings of the IEEE
Working Conference on Software Visualization, pp. 122–126. IEEE, 2018.
doi: 10.1109/VISSOFT.2018.00022

[P5] A. Biaggi, F. A. Fontana, and R. Roveda. An architectural smells detec-
tion tool for C and C++ projects. In Proceedings of the 44th EUROMI-
CRO Conference on Software Engineering and Advanced Applications,
pp. 417–420. IEEE, 2018. doi: 10.1109/SEAA.2018.00074

[P6] J. Brondum and L. Zhu. Visualising architectural dependencies. In
Proceedings of the 3rd International Workshop on Managing Technical
Debt, pp. 7–14. IEEE Press, 2012. doi: 10.1109/MTD.2012.6226003

[P7] Y. Cai and R. Kazman. Software architecture health monitor. In Proceed-
ings of the 1st International Workshop on Bringing Architectural Design
Thinking into Developers’ Daily Activities, pp. 18–21. ACM, New York,
NY, USA, 2016. doi: 10.1145/2896935.2896940

[P8] Y. Cai and R. Kazman. DV8: Automated architecture analysis tool suites.
In Proceedings of the 2nd International Conference on Technical Debt,
pp. 53–54. IEEE Press, 2019. doi: 10.1109/TechDebt.2019.00015

[P9] V. Cortellessa, M. De Sanctis, A. Di Marco, and C. Trubiani. Enabling
performance antipatterns to arise from an ADL-based software archi-
tecture. In Proceedings of the Joint Working IEEE/IFIP Conference
on Software Architecture and European Conference on Software Archi-
tecture, pp. 310–314. IEEE, 2012. doi: 10.1109/WICSA-ECSA.212.
51

[P10] V. Cortellessa, A. Di Marco, and C. Trubiani. Performance antipatterns
as logical predicates. In Proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer Systems, pp. 146–156.
IEEE, 2010. doi: 10.1109/ICECCS.2010.44

[P11] V. Cortellessa, A. Di Marco, and C. Trubiani. An approach for modeling
and detecting software performance antipatterns based on first-order
logics. Software & Systems Modeling, 13(1):391–432, 2014. doi: 10.
1007/s10270-012-0246-z

[P12] W. Czabanski, M. Bruntink, and P. Martin. Actionable measurements-
improving the actionability of architecture level software quality vi-
olations. In Proceedings of the 17th Belgium-Netherlands Software
Evolution Workshop, pp. 51–55, 2018.

[P13] M. De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco, and M. Flam-
minj. A model-driven approach to catch performance antipatterns in

ADL specifications. Information and Software Technology, 83:35–54,
2017. doi: 10.1016/j.infsof.2016.11.008

[P14] S. S. de Toledo, A. Martini, A. Przybyszewska, and D. I. Sjøberg. Archi-
tectural technical debt in microservices: A case study in a large company.
In Proceedings of the IEEE/ACM International Conference on Technical
Debt, pp. 78–87. IEEE, 2019. doi: 10.1109/TechDebt.2019.00026

[P15] J. A. Dı́az-Pace, A. Tommasel, and D. Godoy. Towards anticipation of
architectural smells using link prediction techniques. In Proceedings
of the IEEE 18th International Working Conference on Source Code
Analysis and Manipulation, pp. 62–71. IEEE, 2018. doi: 10.1109/SCAM
.2018.00015

[P16] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah. On the
existence of high-impact refactoring opportunities in programs. In Pro-
ceedings of the 35th Australasian Computer Science Conference, vol.
122, pp. 37–48. Australian Computer Society, Inc., 2012.

[P17] U. Eliasson, A. Martini, R. Kaufmann, and S. Odeh. Identifying and
visualizing architectural debt and its efficiency interest in the automotive
domain: A case study. In Proceedings of the IEEE 7th International
Workshop on Managing Technical Debt, pp. 33–40. IEEE, 2015. doi: 10.
1109/MTD.2015.7332622

[P18] F. A. Fontana, I. Pigazzini, C. Raibulet, S. Basciano, and R. Roveda.
PageRank and criticality of architectural smells. In Proceedings of the
13th European Conference on Software Architecture, vol. 2, pp. 197–204.
ACM, 2019. doi: 10.1145/3344948.3344982

[P19] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and
E. Di Nitto. Arcan: A tool for architectural smells detection. In Pro-
ceedings of the IEEE International Conference on Software Architecture
Workshops, pp. 282–285. IEEE, 2017. doi: 10.1109/ICSAW.2017.16

[P20] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni. Automatic
detection of instability architectural smells. In Proceedings of the IEEE
International Conference on Software Maintenance and Evolution, pp.
433–437. IEEE, 2016. doi: 10.1109/ICSME.2016.33

[P21] F. A. Fontana, R. Roveda, and M. Zanoni. Technical debt indexes
provided by tools: A preliminary discussion. In Proceedings of the IEEE
8th International Workshop on Managing Technical Debt, pp. 28–31.
IEEE, 2016. doi: 10.1109/MTD.2016.11

[P22] F. A. Fontana, R. Roveda, and M. Zanoni. Tool support for evaluating
architectural debt of an existing system: An experience report. In Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing, pp.
1347–1349. ACM, 2016. doi: 10.1145/2851613.2851963

[P23] F. A. Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla. An
experience report on detecting and repairing software architecture erosion.
In Proceedings of the 13th Working IEEE/IFIP Conference on Software
Architecture, pp. 21–30. IEEE, 2016. doi: 10.1109/WICSA.2016.37

[P24] M. Goldstein and I. Segall. Automatic and continuous software architec-
ture validation. In Proceedings of the IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, pp. 59–68. IEEE, 2015. doi:
10.1109/ICSE.2015.135

[P25] T. Hassouna. Detection of web service refactoring opportunities. Master’s
thesis, University of Michigan-Dearborn, 2017. doi: 2027.42/136611

[P26] S. Hayashi, F. Minami, and M. Saeki. Inference-based detection of archi-
tectural violations in MVC2. In Proceedings of the 12th International
Conference on Software Technologies, pp. 394–401, 2017.

[P27] S. Hayashi, F. Minami, and M. Saeki. Detecting architectural violations
using responsibility and dependency constraints of components. IEICE
Transaction on Information and Systems, 101(7):1780–1789, 2018. doi:
10.1587/transinf.2017KBP0023

[P28] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka. A case study in locating the architectural roots of
technical debt. In Proceedings of the IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, pp. 179–188. IEEE, 2015.
doi: 10.1109/ICSE.2015.146

[P29] D. Le, D. Link, Y. Zhao, A. Shahbazian, C. Mattmann, and N. Med-
vidovic. Toward a classification framework for software architectural
smells. Technical Report, 2017.

[P30] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical
study of architectural decay in open-source software. In Proceedings of
the IEEE International Conference on Software Architecture, pp. 176–
17609. IEEE, 2018. doi: 10.1109/ICSA.2018.00027

[P31] J. Lenhard, M. M. Hassan, M. Blom, and S. Herold. Are code smell
detection tools suitable for detecting architecture degradation? In Pro-
ceedings of the 11th European Conference on Software Architecture, pp.
138–144. ACM, 2017. doi: 10.1145/3129790.3129808

[P32] Z. Li, P. Liang, and P. Avgeriou. Architectural technical debt identifica-
tion based on architecture decisions and change scenarios. In Proceedings
of the 12th Working IEEE/IFIP Conference on Software Architecture, pp.
65–74. IEEE, 2015. doi: 10.1109/WICSA.2015.19

[P33] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou. An em-
pirical investigation of modularity metrics for indicating architectural
technical debt. In Proceedings of the 10th International ACM SIGSOFT
Conference on Quality of Software Architectures, pp. 119–128. ACM,
2014. doi: 10.1145/2602576.2602581

[P34] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa. On
the relevance of code anomalies for identifying architecture degradation
symptoms. In Proceedings of the 16th European Conference on Software
Maintenance and Reengineering, pp. 277–286. IEEE, 2012. doi: 10.
1109/CSMR.2012.35

[P35] I. Macia, A. Garcia, A. von Staa, J. Garcia, and N. Medvidovic. On the
impact of aspect-oriented code smells on architecture modularity: An
exploratory study. In Proceedings of the 5th Brazilian Symposium on
Software Components, Architectures and Reuse, pp. 41–50. IEEE, 2011.
doi: 10.1109/SBCARS.2011.18

[P36] A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda. Identifying and
prioritizing architectural debt through architectural smells: A case study
in a large software company. In Proceedings of the European Conference
on Software Architecture, pp. 320–335. Springer, 2018. doi: 10.1007/
978-3-030-00761-4 21

[P37] A. Martini, E. Sikander, and N. Madlani. A semi-automated framework
for the identification and estimation of architectural technical debt: A
comparative case-study on the modularization of a software component.
Information and Software Technology, 93:264–279, 2018. doi: 10.1016/j.
infsof.2017.08.005

[P38] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The formal
definition and automatic detection of architecture smells. In Proceedings
of the 12th Working IEEE/IFIP Conference on Software Architecture, pp.
51–60. IEEE, 2015. doi: 10.1109/WICSA.2015.12

[P39] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. Architecture anti-
patterns: Automatically detectable violations of design principles. IEEE
Transactions on Software Engineering, 2019. doi: 10.1109/TSE.2019.
2910856

[P40] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic. Mapping architectural
decay instances to dependency models. In Proceedings of the 4th Inter-
national Workshop on Managing Technical Debt, pp. 39–46. IEEE Press,
2013. doi: 10.1109/MTD.2013.6608677

[P41] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele.
Experiences applying automated architecture analysis tool suites. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 779–789. ACM, 2018. doi: 10.1145/3238147.
3240467

[P42] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc,
B. Baudry, and J.-M. Jézéquel. Specification and detection of SOA
antipatterns. In Proceedings of the International Conference on Service-
Oriented Computing, pp. 1–16. Springer, 2012. doi: 10.1007/978-3-642
-34321-6 1

[P43] M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng, C. Carlson, and
F. Chew. A longitudinal study of identifying and paying down archi-
tecture debt. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, pp. 171–180.
IEEE Press, 2019. doi: 10.1109/ICSE-SEIP.2019.00026

[P44] M. Nayrolles, N. Moha, and P. Valtchev. Improving SOA antipatterns
detection in service based systems by mining execution traces. In Pro-
ceedings of the 20th Working Conference on Reverse Engineering, pp.
321–330. IEEE, 2013. doi: 10.1109/WCRE.2013.6671307

[P45] M. Nayrolles, F. Palma, N. Moha, and Y.-G. Guéhéneuc. SODA: A tool
support for the detection of SOA antipatterns. In International Confer-
ence on Service-Oriented Computing, pp. 451–455. Springer, 2012. doi:
10.1007/978-3-642-37804-1 51

[P46] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. V. Staa.
On the relationship of code-anomaly agglomerations and architectural
problems. Journal of Software Engineering Research and Development,
3(1):11, 2015. doi: 10.1186/s40411-015-0025-y

[P47] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. von Staa.
When code-anomaly agglomerations represent architectural problems?
An exploratory study. In Proceedings of the Brazilian Symposium on
Software Engineering, pp. 91–100. IEEE, 2014. doi: 10.1109/SBES.
2014.18

[P48] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue. Web service
antipatterns detection using genetic programming. In Proceedings of
the Annual Conference on Genetic and Evolutionary Computation, pp.
1351–1358. ACM, 2015. doi: 10.1145/2739480.2754724

[P49] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide. Search-based web
service antipatterns detection. IEEE Transactions on Services Computing,
10(4):603–617, 2015. doi: 10.1109/TSC.2015.2502595

[P50] F. Palma. Detection of SOA antipatterns. In Proceedings of the In-
ternational Conference on Service-Oriented Computing, pp. 412–418.
Springer, 2012. doi: 10.1007/978-3-642-37804-1 43

[P51] F. Palma, L. An, F. Khomh, N. Moha, and Y.-G. Guéhéneuc. Investigating
the change-proneness of service patterns and antipatterns. In Proceedings
of the IEEE 7th International Conference on Service-Oriented Computing
and Applications, pp. 1–8. IEEE, 2014. doi: 10.1109/SOCA.2014.43

[P52] F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc. Detection of REST
patterns and antipatterns: A heuristics-based approach. In Proceedings
of the International Conference on Service-Oriented Computing, pp.
230–244. Springer, 2014. doi: 10.1007/978-3-662-45391-9 16

[P53] F. Palma, N. Moha, and Y.-G. Guéhéneuc. UniDoSA: The unified spec-
ification and detection of service antipatterns. IEEE Transactions on
Software Engineering, 2018. doi: 10.1109/TSE.2018.2819180

[P54] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc. Specification
and detection of SOA antipatterns in web services. In Proceedings of
the European Conference on Software Architecture, pp. 58–73. Springer,
2014. doi: 10.1007/978-3-319-09970-5 6

[P55] F. Palma, M. Nayrolles, N. Moha, Y.-G. Guéhéneuc, B. Baudry, and
J.-M. Jézéquel. SOA antipatterns: An approach for their specification
and detection. International Journal of Cooperative Information Systems,
22(04):1341004, 2013. doi: 10.1142/S0218843013410049

[P56] I. Pigazzini. Automatic detection of architectural bad smells through
semantic representation of code. In Proceedings of the 13th European
Conference on Software Architecture, vol. 2, pp. 59–62. ACM, 2019. doi:
10.1145/3344948.3344951

[P57] V. Pismag and J. Kelly. Prediction of web service antipatterns using
machine learning. Master’s thesis, University of Michigan-Dearborn,
2017. doi: 2027.42/136193

[P58] D. Reimanis, C. Izurieta, R. Luhr, L. Xiao, Y. Cai, and G. Rudy. A repli-
cation case study to measure the architectural quality of a commercial
system. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, p. 31. ACM, 2014.
doi: 10.1145/2652524.2652581

[P59] A. Sanchez, L. S. Barbosa, and A. Madeira. Modelling and verifying
smell-free architectures with the archery language. In Proceedings of the
International Conference on Software Engineering and Formal Methods,
pp. 147–163. Springer, 2014. doi: 10.1007/978-3-319-15201-1 10

[P60] T. Sharma. How deep is the mud: Fathoming architecture technical
debt using designite. In Proceedings of the IEEE/ACM International
Conference on Technical Debt, pp. 59–60. IEEE, 2019. doi: 10.1109/
TechDebt.2019.00018

[P61] V. S. Sharma and S. Anwer. Detecting performance antipatterns before
migrating to the cloud. In Proceedings of the IEEE 5th International
Conference on Cloud Computing Technology and Science, vol. 1, pp.
148–151. IEEE, 2013. doi: 10.1109/CloudCom.2013.166

[P62] M. E. Shin, Y. Xu, F. Paniagua, and J. H. An. Detection of anomalies in
software architecture with connectors. Science of Computer Program-
ming, 61(1):16–26, 2006. doi: 10.1016/j.scico.2005.11.002

[P63] G. Sierra, A. Tahmid, E. Shihab, and N. Tsantalis. Is self-admitted tech-
nical debt a good indicator of architectural divergences? In Proceedings
of the 26th International Conference on Software Analysis, Evolution
and Re-engineering, pp. 534–543. IEEE, 2019. doi: 10.1109/SANER.
2019.8667999

[P64] P. Skiada, A. Ampatzoglou, E.-M. Arvanitou, A. Chatzigeorgiou, and
I. Stamelos. Exploring the relationship between software modularity and
technical debt. In Proceedings of the 44th EUROMICRO Conference on
Software Engineering and Advanced Applications, pp. 404–407. IEEE,
2018. doi: 10.1109/SEAA.2018.00072

[P65] W. Snipes, S. Karlekar, and R. Mo. A case study of the effects of
architecture debt on software evolution effort. In Proceedings of the
44th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 400–403. IEEE, 2018. doi: 10.1109/SEAA.2018.00071

[P66] D. Tamburri, R. Kazman, and W.-J. Van Den Heuvel. Splicing community
and software architecture smells in agile teams: An industrial study. In
Proceedings of the 52nd Hawaii International Conference on System

Sciences, 2019. doi: 10.24251/HICSS.2019.843
[P67] D. Tiwari, H. Washizaki, Y. Fukazawa, T. Fukuoka, J. Tamaki,

N. Hosotani, and M. Kohama. Metrics driven architectural analysis
using dependency graphs for C language projects. In Proceedings of
the IEEE 43rd Annual Computer Software and Applications Conference,
vol. 1, pp. 117–122. IEEE, 2019. doi: 10.1109/COMPSAC.2019.00025

[P68] A. Tommasel. Applying social network analysis techniques to architec-
tural smell prediction. In Proceedings of the International Conference
on Software Architecture Companion, pp. 254–261. IEEE, 2019. doi: 10.
1109/ICSA-C.2019.00053

[P69] D. Tripathi, U. Suman, M. Ingle, and S. Tanwani. Towards introducing
and implementation of SOA design antipatterns. International Journal of
Computer Theory and Engineering, 6(1):20, 2014. doi: 10.7763/IJCTE.
2014.V6.829

[P70] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche. Ex-
ploiting load testing and profiling for performance antipattern detection.
Information and Software Technology, 95:329–345, 2018. doi: 10.1016/j.
infsof.2017.11.016

[P71] C. Trubiani and A. Koziolek. Detection and solution of software per-
formance antipatterns in palladio architectural models. ACM SIGSOFT
Software Engineering Notes, 36(5):36–36, 2011. doi: 10.1145/1958746.
1958755

[P72] C. Trubiani, A. Koziolek, V. Cortellessa, and R. Reussner. Guilt-based
handling of software performance antipatterns in palladio architectural
models. Journal of Systems and Software, 95:141–165, 2014. doi: 10.
1016/j.jss.2014.03.081

[P73] R. Vanciu and M. Abi-Antoun. Finding architectural flaws using con-
straints. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering, pp. 334–344. IEEE, 2013. doi: 10.
1109/ASE.2013.6693092

[P74] P. Velasco-Elizondo, L. Castañeda-Calvillo, A. Garcı́a-Fernandez, and
S. Vazquez-Reyes. Towards detecting MVC architectural smells. In Pro-
ceedings of the International Conference on Software Process Improve-
ment, pp. 251–260. Springer, 2017. doi: 10.1007/978-3-319-69341-5 23

[P75] R. Verdecchia. Identifying architectural technical debt in android ap-
plications through automated compliance checking. In Proceedings of
the 5th International Conference on Mobile Software Engineering and
Systems, pp. 35–36. ACM, 2018. doi: 10.1145/3197231.3198442

[P76] S. Vidal, E. Guimaraes, W. Oizumi, A. Garcia, A. D. Pace, and C. Mar-
cos. Identifying architectural problems through prioritization of code
smells. In Proceedings of the 10th Brazilian Symposium on Software
Components, Architectures and Reuse, pp. 41–50. IEEE, 2016. doi: 10.
1109/SBCARS.2016.11

[P77] S. Vidal, W. Oizumi, A. Garcia, A. D. Pace, and C. Marcos. Ranking ar-
chitecturally critical agglomerations of code smells. Science of Computer
Programming, 182:64–85, 2019. doi: 10.1016/j.scico.2019.07.003

[P78] M. von Detten and S. Becker. Combining clustering and pattern detection
for the re-engineering of component-based software systems. In Proceed-
ings of the Joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT
symposium–ISARCS on Quality of Software Architectures–QoSA and
Architecting Critical Systems–ISARCS, pp. 23–32. ACM, 2011. doi: 10.
1145/2000259.2000265

[P79] A. von Zitzewitz. Mitigating technical and architectural debt with sonar-
graph: Using static analysis to enforce architectural constraints. In
Proceedings of the 2nd International Conference on Technical Debt, pp.
66–67. IEEE Press, 2019. doi: 10.1109/TechDebt.2019.00022

[P80] H. Wang, M. Kessentini, T. Hassouna, and A. Ouni. On the value
of quality of service attributes for detecting bad design practices. In
Proceedings of the IEEE International Conference on Web Services, pp.
341–348. IEEE, 2017. doi: 10.1109/ICWS.2017.126

[P81] H. Wang, A. Ouni, M. Kessentini, B. Maxim, and W. I. Grosky. Iden-
tification of web service refactoring opportunities as a multi-objective
problem. In Proceedings of the IEEE International Conference on Web
Services, pp. 586–593. IEEE, 2016. doi: 10.1109/ICWS.2016.81

[P82] L. Xiao. Quantifying architectural debts. In Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp.
1030–1033. ACM, New York, NY, USA, 2015. doi: 10.1145/2786805.
2803194

[P83] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In Proceedings of the 38th IEEE/ACM
International Conference on Software Engineering, pp. 488–498. ACM,
2016. doi: 10.1145/2884781.2884822

[P84] A. Yugov. Approach to anti-pattern detection in service-oriented software

systems. In Proceedings of the Institute for System Programming, 28(2),
2016. doi: 10.15514/ISPRAS-2016-28(2)-5

[P85] L. Zhang, Y. Sun, H. Song, W. Wang, and G. Huang. Detecting anti-
patterns in java EE runtime system model. In Proceedings of the 4th
Asia-Pacific Symposium on Internetware, p. 21. ACM, 2012. doi: 10.
1145/2430475.2430496

A DESCRIPTION OF ARCHITECTURAL SMELLS

Architectural smell Description
Abstraction without decoupling This smell occurs where a client class uses a service represented as an abstract type, but also a concrete

implementation of this service, represented as a non-abstract subtype of the abstract type [P3].
Ambiguous interface This smell occurs when an abstraction (interface) is over-engineered by adding methods intended to

accommodate potential future requirements but never used [17].
Ambiguous name This smell occurs when developers use ambiguous or meaningless names for interfaces [13].
Anchor submission This smell occurs when each file structurally depends on the anchor file, but each member historically

dominates the anchor [P83].
Anchor dominant This smell occurs when each file structurally depends on the anchor file, and the anchor file historically

dominates each member file [P83].
API versioning This smell occurs when APIs are not semantically versioned [47].
Architecture violation This smell occurs when an intended architecture is different from its actual implementation [P3].
Big bang This smell occurs when an entire system is built at once [28].
Bottleneck service This smell occurs when a service is highly used (high incoming and outgoing coupling) by other services [13].
Bloated service This smell occurs when a service becomes a blob with one large interface and/or lots of parameters [P53].
Blob or God object/component This smell occurs when a component implements an excessive number of concerns [P3].
Brain controller This smell occurs when controllers have too much flow control [5].
Brain repository This smell occurs when a complex logic is developed in the repository [5].
Circuitous treasure hunt This smell occurs when an object looks in several places to find the information that it needs [P11].
Chatty service This smell occurs when a service has a high number of connections with other services [13].
Clique This smell occurs when a group of files are tightly coupled by dependency cycles [P65].
Co-change coupling This smell occurs when changes to a component require changes in another component [P30].
Concern overload This smell occurs when a component implements an excessive number of concerns [P3].
Connector envy This smell occurs when components cover too much functionality with respect to connections [17].
Crudy interface This smell occurs when services show an RPC-like behavior by declaring CRUD-type operations [13].
Crudy URI This smell occurs when crudy verbs (e.g., create, read, update, or delete) are used in the APIs [P53].
Cyclic dependency This smell occurs when two or more architecture components depend on each other directly or indirectly [P3].
Cyclic hierarchy This smell occurs when a direct referencing of a subtype from a supertype is created [P3].
Cycles between namespaces This smell occurs when two or more namespaces depend on each other directly or indirectly [P3].
Data service This smell occurs when a service has only accessor operations (getters and setters) [13].
Degenerated inheritance This smell occurs when there are multiple inheritance paths connecting subtypes with their supertypes or a

concrete class with their abstractions (abstract classes or interfaces) [P3].
Dense structure This smell occurs when an abstraction or a concrete class has (outgoing and ingoing) dependencies with a

large number of other abstractions or concrete classes [P3].
Duplicated service This smell occurs when a set of highly similar services exists [13].
Empty semi-trucks This smell occurs when an excessive number of requests is required to perform a task [P11].
ESB usage This smell occurs when micro-services communicate via an ESB (enterprise service bus)—it adds complexi-

ties for registering and de-registering services on it [47].
Excessive dynamic allocation This smell occurs when an application unnecessarily creates and destroys large numbers of objects during

its execution [P11].
Extensive processing This smell occurs when extensive processing impedes overall response time [P11].
Fat repository This smell occurs when a repository is managing too many entities [5].
Feature concentration This smell occurs when different functionalities are implemented in a single design construct [17].
Forgetting hypermedia This smell occurs when there is a lack of hypermedia (i.e., not linking resources) [P53].
Golden hammer This smell occurs when familiar technologies are used as solutions to every problem [47].
Hard-coded endpoints This smell occurs when micro-services are connected with hard-coded endpoints, making the change in

their locations problematic [47].
Hub-like dependency This smell occurs when an abstraction or a concrete class has (outgoing and ingoing) dependencies with a

large number of other abstractions or concrete classes [P3].
Ignoring MIME types This smell occurs when resources do not support multiple formats (e.g., XML, JSON, etc.) [P53].
Ignoring Caching This smell occurs when developers avoid to implement the caching capability in the web applications [P52].
Implicit cross-module depen-
dency

This smell occurs when two or more architecture components depend on each other directly or indirectly [P3].

Improper inheritance This smell occurs when a parent class depends on its derived class or where a client depends on both the
parent and derived classes [P7].

Incomplete service This smell occurs when the client is given the responsibility to complete the service [47].
Incomplete abstraction This smell occurs when an abstraction does not support interrelated methods completely [46].

Continued on next page

Continued from previous page
Architectural smell Description
Interface violation This smell occurs when components in an architecture communicate without their interfaces [P78].
Knot service This smell occurs when a set of very low cohesive services are tightly coupled [13].
Laborious repository method This smell occurs when a repository method has multiple database actions [5].
Leaky encapsulation This smell occurs when a class leaks implementation details because of its public implementation [46].
Link overload This smell occurs when an abstraction or a concrete class has (outgoing and ingoing) dependencies with a

large number of other abstractions or concrete classes [P3].
Low cohesive operations This smell occurs when developers place very low cohesive operations (not semantically related) in a single

portType [47].
Maybe its not RPC This smell occurs when a service mainly provides CRUD-type (create, read, update, and delete) opera-

tions [13].
Meddling service This smell occurs when services directly query the database [5].
Micro-service greedy This smell generates an explosion of the number of micro-services composing a system [47].
Missing abstraction This smell occurs when clumps of data are used instead of creating classes or interfaces [46].
Missing encapsulation This smell occurs when classes are not encapsulated [46].
Misplaced component This smell occurs when an architecture component is placed somewhere else other than the one it was

intended for, resulting in undesired dependencies [P17].
More is less This smell occurs when a system spends more time thrashing than accomplishing real work because there

are too many processes relative to available resources [P11].
Modularity violation This smell occurs when an architecture violates the modularity principles [P83].
Multi-service This smell occurs when a service implements a multitude of methods related to different abstractions [13].
Multipath hierarchy This smell occurs when there are multiple inheritance paths connecting subtypes with their supertypes or a

concrete class with their abstractions [P3].
Not having an API gateway This smell occurs when service-consumers communicate directly with each micro-service [47].
Nobody home This smell occurs when a service is defined but never used [13].
Non-transfer communication This smell occurs when communication between components is not accomplished using transfer ob-

jects [P83].
Nothing new This smell occurs when inappropriate practices in object-oriented practices are attempted to apply in

service-oriented [28].
No legacy This smell occurs when a service provides limited standardized support of data types and interactions [47].
No subsystems This smell occurs when a system has no subsystems [31].
One-lane bridge This smell occurs when only one or a few processes can be executed concurrently [P11].
Overgeneralized subsystems This smell occurs when the generalization of the subsystems is overdone [31].
Overstandardized SOA This smell occurs when all aspects and dimensions of SOA are overstandardized [28].
Package cycle This smell occurs when two or more packages depend on each other directly or indirectly [P3].
Package instability This smell occurs when a package has many dependencies that frequently changes with other packages [P38].
Package abstractness This smell occurs when a package has unnecessary or missing abstraction [46].
Pipe and filter This smell occurs when the slowest filter in the architecture results in low throughput [P11].
Promiscuous controller This smell occurs when controllers are offering too many actions [5].
Redundant portTypes This smell occurs when multiple portTypes are duplicated with a similar set of operations [13].
Sand pile This smell occurs when a service is composed of multiple smaller services sharing common data [13].
Scattered functionality This smell occurs when a high-level concern is realized across multiple components [17].
Security flaws This smell occurs when critical information is disclosed or tampered, when confidentiality and integrity are

not ensured in the architecture [P73].
Separation of concerns This smell occurs when the responsibilities of the components of an architecture are not appropriately

separated [P27].
Service Chain This smell occurs when consecutive service invocations happen [13].
Shared libraries This smell occurs when shared libraries between different micro-services are used [47].
Shared persistency This smell occurs when different micro-services access the same relational database, reducing the service

independence [47].
Shiny nickel This smell occurs due to inflexibility to incorporate new technologies within service architecture [47].
Silver bullet This smell occurs when unknown technologies are implemented where they are not required [47].
Sloppy delegation This smell occurs when a component delegates the functionality to other components, which should be

performed internally by that component [P30].
Speculative hierarchy This smell occurs when a hierarchy is created speculatively [46].
Subtype knowledge This smell occurs when a direct referencing of a subtype from a supertype is created [P3].
Tiny/nano/fine-grained service This smell occurs when a service has only a few operations [13].
Ramp This smell occurs when processing time increases as the system is used [P11].

Continued on next page

Continued from previous page
Architectural smell Description
Too many standards This smell occurs when different development languages, protocols, frameworks are used in micro-

services [47].
Too small package This smell occurs when a package has only one or two classes [31].
Too many subsystems This smell occurs when a system consists of many subsystems [31].
Tower of babel This smell occurs when processes excessively convert, parse, and translate internal data into a common

exchange format [P11].
Traffic jam This smell occurs when one problem causes a backlog of jobs [P11].
Unbalanced processing This smell occurs when processing cannot make use of available processors [P11].
Unauthorized dependency This smell occurs when an unauthorized dependency exists between the components [P27].
Unstable dependency This smell occurs when a component depends on other components that are less stable than itself [P3].
Unused package This smell occurs when a package is no longer in use [31].
Unclear package name This smell occurs when developers use ambiguous or meaningless names for packages [31].
Unbalanced package hierarchy This smell occurs when the package structure is unbalanced [31].
Unauthorized call This smell occurs when a calling component is not connected to the called component [P83].
Undercover transfer object This smell occurs when transfer objects serve as data containers for the communication between compo-

nents [P78].
Unhealthy inheritance hierarchy This smell occurs when a direct referencing of a subtype from a supertype is created [P3].
Unstable interface This smell occurs when an interface depends on other interfaces that are less stable than itself [P3].
Unused interface This smell occurs when an abstraction (interface) is over-engineered by adding methods intended to

accommodate potential future requirements but never used [17].
Unutilized abstraction This smell occurs when a direct referencing of a concrete class is created, instead of referencing one of its

supertypes, from an abstract class [P3].
Unnecessary hierarchy This smell occurs when the inheritance hierarchy is unnecessarily created [46].
Wrong cuts This smell occurs when micro-services are split based on technical layers instead of business capabilities [47].

