
Received: 2 September 2019 Revised: 14 May 2020 Accepted: 1 June 2020

DOI: 10.1002/spe.2874

R E S E A R C H A R T I C L E

“The Canary in the Coal Mine...” A cautionary tale from the
decline of SourceForge

Damian Andrew Tamburri1 Kelly Blincoe2 Fabio Palomba3 Rick Kazman4

1Jheronimus Academy of Data Science -
Data and Engineering Lab,
Hertogenbosch, the Netherlands
2Department of Electrical, Computer, and
Software Engineering, University of
Auckland, Auckland, New Zealand
3Department of Computer Science,
University of Salerno, Fisciano, Italy
4Department Information Technology
Management, University of Hawaii,
Honolulu, Hawaii, USA

Correspondence
Damian Andrew Tamburri, Jheronimus
Academy of Data Science,
’s-Hertogenbosch, the Netherlands.
Email: d.a.tamburri@tue.nl

Funding information
H2020 European Institute of Innovation
and Technology, Grant/Award Numbers:
825040, 825480

Summary
Forges are online collaborative platforms to support the development of dis-
tributed open source software. While once mighty keepers of open source vital-
ity, software forges are rapidly becoming less and less relevant. For example, of
the top 10 forges in 2011, only one survives today—SourceForge—the biggest
of them all, but its numbers are dropping and its community is tenuous at
best. Through mixed-methods research, this article chronicles and analyze the
software practice and experiences of the project’s history—in particular its archi-
tectural and community/organizational decisions. We discovered a number of
suboptimal social and architectural decisions and circumstances that, may have
led to SourceForge’s demise. In addition, we found evidence suggesting that
the impact of such decisions could have been monitored, reduced, and possibly
avoided altogether. The use of sociotechnical insights needs to become a basic
set of design and software/organization monitoring principles that tell a cau-
tionary tale on what to measure and what not to do in the context of large-scale
software forge and community design and management.

K E Y W O R D S

automated architecture analysis, community analysis, forge design, software failure

1 INTRODUCTION

Over the years the open source software movement has contributed to a dramatic reduction of software costs and release
times, while increasing general quality.1 At the same time, the way in which open source software is built has changed
radically, from the domain of just a few, to an enormous economic force. Now entire open source software ecosystems
have become subject of flourishing research and practice.2,3 However, one of the phenomena that played a role in this
change is the failure of software forges. A software forge provides a platform for hosting software projects and usually
offer code hosting and bug tracking. While many software forges existed in 2011, only one seems to still be in existence:
SourceForge.1SourceForge was the biggest of all forges by count of projects, commits, and participants, but these
numbers have dramatically declined in recent years.

1Link: http://sourceforge.net/. Note that other more timely platforms like Github provide additional collaboration tools and enable various social
network analyses. They are, therefore, more advanced than classical forges; this is the reason why we do not consider them as forges.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2020 The Authors. Software: Practice and Experience published by John Wiley & Sons, Ltd.

1930 wileyonlinelibrary.com/journal/spe Softw: Pract Exper. 2020;50:1930–1951.

https://orcid.org/0000-0003-1230-8961
http://sourceforge.net/
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2874&domain=pdf&date_stamp=2020-07-14


TAMBURRI et al. 1931

In this study, we aim to understand the shape and indicators on the Canary in the Coal Mine, namely, we examine
potential early indicators of trouble in SourceForge using mixed-methods empirical software engineering research.4
To do this, we adopted a mixed-method research approach, by (1) conducting interviews to learn about team members’
perceptions on the project and community health during the duration of the project and (2) analyzing 9 years of commit
activity and 4 years of issue reports and mailing lists. Our analysis subjects are SourceForge itself, and its supporting
software infrastructure.

Members of the original team perceived various social and technical issues that contributed to the decline of
SourceForge. Paired to that, in the quantitative analysis, we also observed a lack of organizational stability in
SourceForge. This instability occurred at the same time as an increasing number of changes to the code base that
resulted in huge increases of technical debt whose introduction may be due to the lack of communications/coordination
among the contributors. Thus, a variety of social and technical factors contributed to the downfall of SourceForge and
its supporting infrastructure.

Structure of the article. Section 2 describes the research setting and overviews the research methodology adopted
to address the posed research questions. Section 3 reports our cautionary tale on SourceForge and Allura and its
supporting infrastructure. In Section 4, we discuss the key findings and lessons learned from our study, while Section 5
summarizes the possible threats to the validity of the study and how we mitigated them. Section 6 discusses the related
literature on the topic; finally, Section 7 concludes the article.

2 METHODOLOGY

2.1 Research setting

This study investigates SourceForge and its supporting software infrastructure, the Apache Allura.2SourceForge
was created by VA Software and was first launched in 1999. It was one of the first to offer free code hosting for open
source software projects, a revolutionary service at the time. It offered free access to concurrent versioning system, a bug
tracker, and mailing lists to open source projects. For many years, it was the biggest open source software development
and collaboration website.5,6

In 2009, SourceForge initiated the Apache Allura platform. Allura is “an Open Source, extensible, web-based
platform that provides integrated software tools for collaborative software development.7” Allura provides an integrated
issue tracker, built-in discussion forums, a code repository, and more. It was submitted to the Apache Incubator in 2012
and became a Top-Level Project in 2014.7 Originally, the project stems from the codebase that sustained developer tools
for SourceForge (in PHP) and was redesigned using leaner programming languages and frameworks such as Python.
Although it is best known as being the platform behind SourceForge, Allura also powers several software-intensive
platforms such as the Open Source Projects Europe 3, the DLR German Aerospace Center 4, and DARPA’s
VehicleForge.5

2.2 Research problems and questions

In this study, we aim to understand how sociotechnical factors contributed to the decline and downfall of SourceForge.
We do this by considering the team member perceptions around the decline of SourceForge and examining the social
and technical structures of the Apache Allura software community, which is responsible for the development of
SourceForge. We formulate three research questions:

• RQ1. What were the perceptions of the SourceForge team on the project and its community health?
• RQ2. Is there evidence of problems in the community and technical structures of SourceForge?
• RQ3. Is there evidence of architectural problems in SourceForge?

2https://allura.apache.org/
3https://opensourceprojects.eu/
4http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/
5https://cps-vo.org/group/avm/vehicleforge

https://allura.apache.org/
https://opensourceprojects.eu/
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid%201010002/


1932 TAMBURRI et al.

F I G U R E 1 High-level representation of the developer social network
structure we used for community smell detection showing both communication
and collaboration graphs [Colour figure can be viewed at
wileyonlinelibrary.com]

To answer RQ1, we interviewed members of the SourceForge team to learn about their perceptions on the project
and community health during the duration of the project 6. To answer RQ2, we analyzed 9 years of commit activity of the
SourceForge/Allura project to identify the evolution of the source code and its structure. We also analyzed the last 4
years worth of data describing its community and organizational structure. To answer RQ3 we analyzed the architecture
of eight versions of Apache Allura, focusing on its decoupling level (DL) and its architectural flaws.

2.3 Interview data

We interviewed four members of the SourceForge team. Our participants covered 25 years of SourceForge his-
tory. The participants were SourceForge developers, managers and analysts. Participants included junior (<2 years
experience), senior (3-5 years experience), and expert (6+ years experience) members, in terms of SourceForge exper-
tise. Our participants had varied backgrounds including business informatics, software operations, software engineering,
management, and digital IT marketing (Figure 1).

2.4 Contribution and communication data

The Apache Allura software repository was mined in its entirety by using the CodeFace tool.8 We elicited
all 4 years worth of data for Allura about: (i) file change quantities and commit statistics; (ii) total quantity
of changes over time; (iii) commit-message sizes and page-ranking of contents. A total of 8902 commits were
analyzed. Finally, in terms of communication data, we scraped Allura issue-tracking and mailing lists, comput-
ing 3-month community structure snapshots from both sources and for all the 4 years of data currently avail-
able for Allura.7A total of 32 community sociograms9 were generated, visualized, and analyzed using time-series
analysis.

A discussion of the analyses conducted on the above data is contained in the respective results sections for each
research question (see Sections 3.1, 3.2, and 3.3).

2.5 Operationalization and data mining

To attain our results, we exploited previous work in community analysis and sociotechnical measurement
of software development networks.10,11 Both works report, respectively, on the operationalization and reap-
plication of community smells and other relevant sociotechnical metrics (see table 4 from Palomba et al11)
for the qualities of software processes and products. Furthermore, both works reflect extensions to the
well-known CodeFace tool, a Siemens tool for application lifecycle intelligence originally introduced by Joblin
et al.8 More specifically, the following operationalization is used in the scope of this work (tailored from
Palomba et al10,11).

6interviewees kindly asked to share interviews selectively and therefore, interview transcripts are available upon written request.
7As an example, Allura mailing lists are available here: http://mail-archives.apache.org/mod_mbox/allura-dev/

http://wileyonlinelibrary.com
http://mail%2010archives.apache.org/mod_mbox/allura%2010dev/


TAMBURRI et al. 1933

Starting from the developer networks built by CodeFace, we detect instances of smells according to the formaliza-
tion below. For all of them, a premise is needed:

More precisely, for communication we mean the relation by which two or more developers communicate with each other
through any channel: for example, a communication link between two developers is established in case they reply to the
same discussion within a mailing list or they comment on the same issue in the issue tracker. As for collaboration, we
mean the relation for which two or more developers have worked on the same source code elements. This is established
by considering the change history of a project, looking for cases where two or more developers have modified the same
code entities.

2.5.1 Organizational silo effect

The organizational silo effect occurs when the developers break into isolated subcommunities with little or no coordi-
nation between the subcommunities.12,13 That is, there are two subteams that cannot properly communicate with each
other. In the communication graph this manifests itself as two (relatively isolated) subgraphs with just one or two people
connecting them. With the occurrence of organizational silo effects, social debt manifests as decaying communication
across subcommunities and consequent negative effects on developers’ situational awareness14 as well as degradation
of projects’ sociotechnical congruence.12,15 In addition, according to recent findings,12 the organizational silo effect may
lead to tunnel-vision, since participants may focus their cooperation and communication solely on other members of
their narrow subcommunity rather than on the broader community. Finally, community members belonging to an orga-
nizational silo may exhibit egotistical behavior leading to unsanctioned architectural decisions16 as well as defiance of
the decisions of others.12

For the sake of precision, we capture the organizational silo effect at the finest grain possible, that is, that of collabo-
ration dyads: pairs of cocommitting developers. An example is shown in Figure 2. Here, the organizational silo effect is
reflected on developer “1,” who does not communicate with developer “2” even though “1” is collaborating with “2.” Con-
versely, developer “2” is communicating with (at least) one other developer, “3,” who belongs to a subcommunity other
than “1.” Considering the example proposed in Figure 1, an operationalization of the identification pattern for the orga-
nizational silo effect has two steps. In the first step, the identification mechanism compares the collaboration network
(bottom half of Figure 1) with its communication counterpart (top half of Figure 1). Then it verifies that the developer
identified by the letter A is present in the collaboration network, that is, A commits to files cocommitted by others, but is
not present in the communication developer social network (DSN) reflecting those files.

2.5.2 Lone wolf effect

The lone wolf community smell reflects circumstances in which communication may indeed be present but insufficiently
addressing project needs.12,13 The result is developer free-riding and unsanctioned architectural decisions that cause nasty

F I G U R E 2 Organizational silo effect community smell identification
pattern [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


1934 TAMBURRI et al.

F I G U R E 3 Lone wolf community smell identification pattern [Colour figure can
be viewed at wileyonlinelibrary.com]

ripple effects such as code duplication and churn.14 Thus, we define the set of lone wolf pairs L as the set of collaborators
that do not directly or indirectly communicate with each others.

The identification pattern for the lone wolf smell is based on the detection of development collaborations between
two community members that have intermittent communication counterparts or feature communication by means of an
external “intruder,” that is, not involved in the collaboration. A simple example is given in Figure 3. In this example two
developers, “1” and “2,” are collaborating on some code, but they are not connected by any communication link other
than developer “3,” who is not cocommitting on a shared file. In this case, either developer “1” or developer “2” (or both)
can develop a lone wolf community smell.

This smell reflects the presence of possible side effects generated by the organizational silo such as communication
decay or negative influence on developer awareness and heavy sociotechnical congruence degradation. Our conjecture is
that the occurrence of the organizational silo effect is not negative per se. But when that occurrence is compounded by
the occurrence of lone wolves, extra attention must be paid to avoid negative consequences such as delays and unman-
ageable social debt. The lone wolf smell reflects dyads of cocommitting (collaborating) software developers who exhibit
uncooperative behavior and mistrust by not appropriately communicating.

2.5.3 Black cloud effect

The black cloud effect leads to negative social interactions within a software development community featuring: (i) com-
munity members’ inability to cover knowledge and experience gaps between two different software products developed
within the same software community;12 (ii) lack of periodic and official opportunities to share and exchange knowledge
between all community members.12,13 Whenever these two circumstances occur together, they can generate a “black
cloud” of misinformation (eg, confusing, delayed, or unnecessary communication that generates communication over-
load) within the community. The main consequence of the black cloud effect is to obfuscate project vision, compromising
progress.12,13 The occurrence of this community smell can be generated or worsened by several sociotechnical triggers:

• absence of ad hoc protocols for knowledge sharing;
• lack of boundary spanners;
• presence of inefficient communication filtering protocols.

Moreover, the black cloud effect smell is associated with several other side effects such as: lowering of trust between
developers, information obfuscation, as well as inception of the organizational silo effect, due to the rise of egoistic
behavior. The identification pattern for the black cloud effect smell reflects subcommunities that in subsequent release
windows do not communicate, with the exception of two community members (ie, boundary spanners in social-network
jargon17), one belonging to each subcommunity. The detection of the black cloud instances starts with the identification
of vertex clusters as already implemented in CodeFace. More specifically, let P= {p1,… ,pk} be a mutually exclusive and

http://wileyonlinelibrary.com


TAMBURRI et al. 1935

F I G U R E 4 Black cloud effect community smell, an identification pattern
[Colour figure can be viewed at wileyonlinelibrary.com]

completely exhaustive partition of V m induced by the clustering algorithm. From the partition, black cloud is the set of
pairs of developers C that connect otherwise isolated subcommunities.

The smell manifests if the above condition holds for at least two consecutive organizational time-windows (fixed to
3-month intervals, in the case of CodeFace4Smells). An example is presented in Figure 4. Here, the occurrence of black
clouds reflects two developers, “3” and “4,” who are the lone boundary spanners across two different subcommunities
and over time—at least two subsequent analysis windows (3 months, in our case).

Detecting black clouds requires eliciting the communication network and applying known community detection
algorithms18 to identify subcommunity structures and boundary spanners across them. For example, see Figure 1 where
two subcommunities (previously specified) can be detected by considering the density of communication links.

2.5.4 Bottleneck effect

The Bottleneck community smell is characterized by the occurrence of the following suboptimal characteristics within
a software development community: (i) proposed changes within every software development phase require an extraor-
dinary quantity of time to be implemented;12 (ii) time waste;13 (iii) hidden or counterintuitive information (and broker)
locations;12 (iv) highly formal or complex organizational structure;12 (v) highly regularized procedures.12,13

The fundamental side-effect generated by this community smell is a massive delay that characterizes key organi-
zational processes within the community such as decision-making, due to personnel unavailability or communication
overload. The identification pattern of this smell is based on the detection of unique knowledge and information brokers
in different subcommunities.

In our attempt to define an automatic identification pattern for this community smell we focused on the analy-
sis of project communication networks. We considered the six key factors around Bottleneck as reflecting the presence,
within a project organizational structure, of a unique boundary spanner across several different subcommunities (ie,
more than 2). The social-network analysis concept of unique boundary spanner17 has, in fact, a remarkable sim-
ilarity to Bottleneck. A unique boundary spanner interposes him/herself into every formal interaction across two
or more subcommunities and if the organizational structure of the project is complex and characterized by highly
formal procedures, it will not be possible to incept parallel information channels between other members of the
subcommunities.

To further elaborate on the definition of this community smell, let consider the example proposed in Figure 5. As
shown, detecting Bottleneck requires the identification of community members who are the only members of their sub-
community that communicate with (at least) two other subcommunities. Therefore, assuming a communication link was
present between developer “A” and “B,” then developer “B” is the pivot of Bottleneck.

2.6 CodeFace4Smells extension

From the perspective of the CodeFace tool, a community is operationalized as a densely connected set of nodes within
the community group (ie, the members that make up a development community) which is sparsely connected to all other

http://wileyonlinelibrary.com


1936 TAMBURRI et al.

F I G U R E 5 Bottleneck community smell [Colour figure can be viewed at
wileyonlinelibrary.com]

nodes in the network. To identify and properly characterize the community structure, the CodeFace tool enacts two
community detection strategies, defined as follows, paraphrasing from Joblin et al:8

1. Function—To recover a community structure, CodeFace uses a heuristic for identifying when two developers are
engaged in a coordinated effort using a fine-grained heuristic based on code structure, where developers are considered
to be coordinated when they actually contribute code to a common function block. Furthermore, CodeFace uses the
commits’ timestamp for identifying the appropriate directions of the edges in the recovered community structure.

2. Committer-Author—In this method, the tool uses tags to identify relationships between all people that contributed
to a common commit, including authors, reviewers, and testers. For example, sign-off tags are self-reported
acknowledgments of participation on a commit, therefore the tag-based networks undoubtedly capture real-world
collaboration.8

3. Community-Verification—to verify the recovered community structure, CodeFace uses a random null-model to com-
pute the probability of observing the identified community in an equivalent class of null-model graphs that lack a
community structure. The tool generates the null-model using a standard approach called the configuration model
for random graphs, where nodes are joined uniformly at random under the constraint that the degree distribution is
identical to the observed graph.19

To the above heuristics, we add a systematic implementation of the operationalization provided in the previous
section, to allow for automated detection of community smells at the same time as CodeFace operates community struc-
ture recovery. The output of the tool is represented by a CSV file containing the community smell instances identified over
a social structure representation known as a DSN, a notation previously used for bug prediction and error-proneness.20,21

3 ANALYSIS OF THE RESULTS

3.1 Perceptions of team members

To address RQ1, we interviewed four key forge managers, designers, developers, and operators who, together, cover the
entire 25 year history of the forge. We supplemented this data through the analysis of blogs and news articles that doc-
umented the history of SourgeForge. This supplementary data was used to obtain specific details of events described by
the participants (eg, to identify the details of a change in ownership). In cases where details were obtained from news
articles or blogs, they are referenced.

3.1.1 Research methods

We performed semistructured interviews. The goal was to understand their perspectives on project and community
health. Each interview lasted about 1 hour. The interviews were transcribed by an independent third-party. Thematic
content analysis was used to analyze the interview transcripts.22

http://wileyonlinelibrary.com


TAMBURRI et al. 1937

3.1.2 Results for RQ1

Early Success. We asked the interviewees what factors they perceived to have led to the early success of SourceForge.
The interviewees described three main factors:

• Emerging Need. SourceForge addressed an emerging need. Offering free code hosting when SourgeForge launched
in 1999 was revolutionary. One participant said “we wanted like 1000 projects in the first year, and we had 1000 projects
in the first month.” By 2007, there were more than 150 000 users and over 1.5 million projects.23 Thus, SourceForge
grew much larger and faster than expected.

• First To Move. Similarly, SourceForge was the first to offer free and versioned code-hosting. As the demand for this
service grew, SourceForge’s popularity exploded. This can largely be attributed to the fact that they were the only
ones offering this service in the beginning.

• Skunkwork Team. Interviewees also suggested that the Skunkworks nature of SourceForge contributed to its
aggressive expansion of popularity. Skunkwork teams are a small group of people who work on a project in an uncon-
ventional way; the group’s purpose is to develop solutions quickly with minimal management constraints. In the case
of SourceForge, there was no direction from management on what should be developed. The project itself happened
by happenstance. The team of four developers were given the goal of generating online traffic. The developers came
up with the idea of creating what would eventually become SourceForge because of their passion for open source
software and their belief that it would attract traffic. New features originated within the team. One participant said
“we did the development of SourceForge on SourceForge. So as we needed a feature ourselves we would write it.”
Thus, the team had significant freedom in deciding what to develop.

The early success of SourceForge was not seen to be related to the technical competitiveness of the project, but
rather being the first to fill an emerging need.

Eventual Downfall. We also asked the interviewees about the project and team health throughout the project and what
(if anything) they would have done differently. We identified several factors that interviewees believe eventually led to
the downfall of SourceForge:

• Not Considering ROI. Due to the Skunkwork nature of the project, the team paid little attention to how much money
was being spent or how much money was coming in. One participant said “it was never part of the plan to make money.”
However, after the company went public, interviewees described an emerging need to track the return-on-investment
(ROI) that the forge was producing (if any). For example, one of the interviewees mentioned that “[...] a lot of hardware
was coming in and nothing was coming out, so people in the high places started to ask questions.” Another interviewee
said “once we were public and now we had responsibilities to shareholders and things like that, people obviously started
wanting to know where all this money was being dumped into, and wanted to know how we were going to return on
investment and things like that. And so 6, 8 months later is when we started actually getting pressure from executives
to figure out how we were going to make money.”

• Deceit. Due to the push to increase ROI, in July 2013, SourceForge introduced a new program, called DevShare.
This program bundled third-party software with project downloads, following the model of the widely known CNET
download network.8

DevShare was conceived as a way for open source software projects to monetize their efforts while still keep-
ing the software open source and free. The ad revenue would be shared with the projects.24 The developers thought
that enabling ways for the OSS projects to make money was a good goal, but the way DevShare was implemented
was too dishonest, putting ROI over trustworthiness. One participant said, “SourceForge has been trying to help
projects to sustain what they were doing with dubious initiative like Devshare. Might have been a good thing if
that was run the right way. As a matter of fact today projects still need money and they don’t have the solve
for that.”

While DevShare was an opt-in service, some projects complained that SourceForge bundled third-party adware
in their downloads without their consent.25 Ads were added to project download pages with fake download buttons
to trick users into clicking on the ad. Often, clicking on these ads resulted in the download of adware. At this time,

8http://cnet.com/

http://cnet.com/


1938 TAMBURRI et al.

many projects announced they were abandoning SourceForge, citing DevShare as one of the main reasons. The GNU
image processor (GIMP) was the first big project to announce it was leaving in November 2013.25

• Two-Masters Syndrome. Part of the reason DevShare was implemented was driven by some of the bigger OSS projects
using SourceForge at the time. Many large projects called SourceForge home, including VLC media player and
GIMP. At this point, there were plenty of competitors providing source-code hosting, and SourceForge wanted to
keep the projects. One participant said “We had a lot of bigger projects on the site, and then we had lots and lots of
little projects right. So the bigger projects, they wanted some kind of revenue sharing. We started catering to the really
big projects and trying to implement enough of the little features that the smaller projects wanted to stay as well.”

The two-masters syndrome26 is a partially unknown organizational effect27 where the team needs to work to satisfy
two “masters” while making money out of both, but both end up having a conflicting agenda that creates an impasse.

• Organizational instability and disconnect between management/developers.SourceForge changed owner-
ship many times. One participant said “every 18 months we’ll have a new owner and a new set of managers. At one
point in time we all got together for beers and wrote them down, and it was almost every 18 months on the dot.”
With these changes in ownership, there were also changes in direction and a disconnect between management and
the development team. A participant complained that “by 2008 we had already actually changed hands of who owned
us and what we had been doing two or three times, that the new people that had come in and acquired us, they didn’t
care about the open source ethos, they didn’t care about anything except for making money back.”

DevShare was introduced after one of the changes of ownership without much consideration for the opinions of the
developers, causing many to leave the team. One participant said “Because the company was sold one of the many times
it was. But it was sold at that time, so changing hands, the new owners decided to try to give a spin using the Devshare
program among other things. So this is not a team decision, it wasn’t a team decision, it was of course a company deci-
sion. So the idea was, let’s try to do this and see if that might help, but if you talk about the developer team, some of them
decided to move on and went to join other initiatives. So not everyone decided to stay at SourceForge at that time.”

• Skeleton Crew. There were very few core contributors to the SourceForge project. One interviewee said “there
was three main developers and the manager type that was also a developer but working part time. We needed
more people, and we just couldn’t get people. We needed more hands.” The unexpected popularity and growth of
SourceForge coupled with the need to serve two masters with conflicting agendas, meant that the small skeleton
crew was insufficient.

• Blinded by Technical Debt. The small skeleton crew was further complicated by the grassroots start of the project. At
the time when GitHub was released, the SourceForge team was in the midst of a complete refactoring and redesign-
ing of their code base. One participant said, “A little bit before that, 2008 or whatever, we had started rewriting the entire
site, trying to pay down the almost decade of technical debt that we’d accumulated.” This effort prevented the team
from fully noticing the disruptive change that was occurring in the software landscape with the advent of collaborative
development tools.

• Missed Paradigm Shift. Meanwhile, new collaborative, highly distributed software development, hosting, and ver-
sioning tools were disrupting the market. Interviewees stated they believed these were fads and did not consider
modernizing SourceForge to keep up to date with this paradigm shift. This was likely the result of having an over-
worked, skeleton crew who did not have time to really step back and look at the changing landscape. One interviewee
said, “I don’t think we quite got the importance of, you know, of the social element … we were still in very much a
sort of dot com 1.0 framework of content producers and content consumers being very distinct populations.”

The quality of service went down and projects started moving away. The exodus of projects was facilitated by
the advent of GitHub, which was launched in 2008. GitHub, a competing code hosting website, differed from
SourceForge as it was built on top of git, a distributed version control system. GitHub also offered many collabo-
ration features. In June 2011, ReadWriteWeb reported that GitHub had surpassed SourceForge in total number of
commits for the period January to May 2011.

There were many factors that seem to have contributed to the downfall of SourceForge. Yet, all of the factors seem
to be connected in various ways. Figure 6 offers a chronicle of the SourceForge story. The figure plots participation
(number of users shown by the continuous line) and size (total lines of code (LoC) added shown by the dotted line) over
time. The participation and size numbers were obtained from the SourceForge research data archive.23 The figure also
highlights the major external events that pertained to SourceForge (top part) as well as the internal reorganizations
(bottom part) where we highlight the reorganization start and finish (forked-line arrow from the bottom). The figure



TAMBURRI et al. 1939

F I G U R E 6 A chronicle of SourceForge using participation (#people, continuous line) and size (total #LoC added, dotted line) over
time. Indications of a declining Forge are observable earlier than the DevShare incident and coincided with many developers leaving;
downfall (abrupt drops of both people and projects) manifests 2 years later

clearly illustrates a decline in the population and size starting in 2011. In 2013, after the introduction of DevShare, we wit-
ness the downfall of SourceForge. By downfall, we mean an abrupt, steady, and continuing loss of people and projects.

3.2 Community and technical structures of SourceForge

To address RQ2, we studied the evolution of Apache Allura from both social and technical perspectives.

3.2.1 Finding evidence of social and technical debt

From a sociotechnical perspective, we sought out the most established indicators of social debt,12,16 namely, (1) sociotech-
nical incongruences, or breaks in sociotechnical congruence28 as well as (2) the presence of suboptimal patterns in the
community structure, or community smells.29 Specifically, in this study we considered three of the community smells
defined by Tamburri et al:12 organizational silo effect, lone-wolf effect, and bottleneck or “Radio-silence” effect, which
was previously defined.

Furthermore, in addition to the previously defined community smells, we considered two well-established measure-
ments for sociotechnical issues, namely:

1. Smelly Quitters. This ratio reflects the number of people who were part of a community smell for two subsequent
time windows and left the community for the remaining time windows in the available range of data.30

2. Sociotechnical Congruence. Paraphrased from previous work31 as “the state in which a software development orga-
nization harbors sufficient coordination capabilities to meet the coordination demands of the technical products under



1940 TAMBURRI et al.

development” and operationalized in this study as the number of development collaborations that do communicate
over the total number of collaboration links present in the collaboration network.

Along with community-related information, we also collected technical data. In the first instance, we studied how the
quantity and sizes of file changes applied by developers vary during the evolution of Allura. Second, we extracted data
related to technical debt. In particular, we considered two different sources of information:

1. Code smells. These represent suboptimal design or implementation solutions applied by contributors during the
evolution of the project.32 While the most-known code smell detectors only work for Java programs,33 we needed
an automatic tool able to identify design issues in Python. For this reason, we employed the detector proposed by
Chen et al,34 which can identify 10 different smell types—including both traditional code smells (eg, Large Class
and Long Method32) and Python-specific ones (eg, Long Ternary Conditional Expression34). We relied on the original
implementation of the tool made available by the authors. It is important to note that this detector is the only one
currently supporting the detection of Python smells; its accuracy has been reported to be high (average precision of
98%), being therefore suitable for our purpose.

2. Self-admitted technical debt (SATD). Potdar and Shihab35 defined SATD as a practice that developers use to admit
the existence of temporary design solutions (at any level, from requirement to code debt) that should be fixed. To
identify SATD, we exploited regular expressions to match inside comments the 62 patterns defined by Potdar and
Shihab.35 This list includes a set of keywords that are likely to indicate the presence of a SATD (eg, fixme, this is a hack,
and so on), and has been defined by manually analyzing more than 100 000 code comments.35

3.2.2 Results for RQ2

Results of our sociotechnical data synthesis and analyses are reported in Figures 7 to 10. In the following, we first report
on the evolution of number of developers as well as community smells in the considered period; furthermore, we describe
how additional sociotechnical factors such as the sociotechnical congruence and the smelly quitter ratio evolved in the
same period.

First, Figure 7 outlines the numbers pertaining to core (ie, contributing to both communication and committing) and
periphery contributors (ie, contributing to communications only) to the Apache Allura project. The figure shows a
heavy fluctuation of all contributor types across our data sample, with a standard deviation of 4.6 developers per every
3-month snapshot, meaning that the community acquired and lost an average of four to five developers around every
considered snapshot.

Furthermore, Figure 8 outlines the progression of the reported numbers of community smells in project Apache
Allura—the figure also highlights in the gray area to the left-hand side, the period we denoted with downfall on Figure 6.

F I G U R E 7 Numbers of developers for Apache Allura—highlighted is the period we denoted with downfall



TAMBURRI et al. 1941

F I G U R E 8 Numbers of community smells for Apache Allura—highlighted is the period we denoted with downfall

The figure highlights a coincidental drop of community smells (deviation of −60%) all along the entire period of down-
fall. The growth of smells begins again between late 2014 and mid-2015, precisely around the corporate acquisition of
SourceForge/Allura by yet another external company, the well-known videogame giant GameStop, in this case. The
figure also shows an almost identical drop (standard deviation is 0,5) of the number of community smells coincidentally
to a final acquisition by SourceForge/Allura between the end of 2015 and mid 2016 by its current owner, private
company BIZX.

Finally, Figure 10 plots results for the smelly quitter ratio across Apache Allura. The figure shows a recurrent pattern
clearly appearing twice (see the grayed-out areas on the figure, degree of isomorphism >80%) in the project’s community
structure and, not surprisingly, once again coinciding with the two subsequent organizational rewirings in the respective
periods.

Furthermore, while organizational change is inevitable, most organizations do not track it. Tracking emerging metrics
such as the number of community smells or the ratio of “smelly” quitters offers a reliable and fine-grained (eg, see
Figure 10) perspective over the effects and manifestations of organizational rewiring.

The recurrence of a drop in smelly quitters likely indicates a recurring turmoil coinciding with the organizational
rewiring taking place around the forge. The recurrence of the above patterns is reflected partly on sociotechnical congru-
ence (see Figure 9) and even more clearly in the smelly quitters ratio (see Figure 10). In particular, Figure 9 shows steadily
increasing congruence values throughout 2014 and late 2015, when a blatant drop in sociotechnical congruence happens
around Apache Allura, at the time of the acquisition by BIZX. This suggests a misalignment between the organiza-
tional structure of developers and operators with respect to the acquisition by BIZX; the drop likely indicates the turnover
surrounding this acquisition.

From a technical perspective, we analyzed the (i) quantity and sizes for code changes applied and (ii) code smells
and SATD detected on Apache Allura over the entire analysis time-window running from early 2014 until late 2016,
extracting essential code quality metrics to control code quality as well. Figures 11 to 14outline the achieved findings.

In particular, we observed that the sociotechnical observations made in Sec. 3.2.2 recur. For example, in coincidence
to the same organizational rewiring scenarios, code-changes are localized (eg, the top-right plot from Figure 11 high-
lights an series of changes focused on five to seven files), the difference-in-size range is almost constant (bottom-left plot
on Figure 11, range fluctuates around 100 lines) and the code-commit tags disappear after the first two periods of our
analysis while the size of commit messages is almost constant and quite considerable, between 50 and 100 words—this
evidence seems to denote a constantly changing code-base around an organization that disconcerts the use of typical
Apache projects’ coordination practices such as commit-tagging.



1942 TAMBURRI et al.

F I G U R E 9 Sociotechnical congruence for Apache Allura—highlighted is the period we denoted with downfall

F I G U R E 10 Smelly quitter ratio for Apache Allura—highlighted is the period we denoted with downfall

Similarly, Figure 12 provides another confirmation of our organizational turmoil observations as reflected on the tech-
nical artifacts. In particular, all highest plot “peaks” in the top-most and second plot on Figure 12, reflect time-ranges
coinciding with the aforementioned organizational turmoil. Even more importantly, in coincidence with the last organi-
zational acquisition, a massive campaign of code-changes was initiated, as if the forge system needed again to undergo
major redesign.

Furthermore, Figures 13 and 14 are perfectly in line with the results discussed so far. Indeed, we observe that during
the time period referred as downfall in Figure 1 both code smells and SATD tended to decrease, while their numbers
increase once the organizational structure of Allura became unstable. It is important to remark that, despite the



TAMBURRI et al. 1943

F I G U R E 11 Apache Allura change sizes (Y -axis) per commit (X-axis) [Colour figure can be viewed at wileyonlinelibrary.com]

absolute number of code smells and technical debt is not that high (eg, at most, we observed 23 Large Class instances),
it may still substantially contribute to the drift of the design of a software system, possibly compromising the overall
quality—as demonstrated by previous work in the field.36,37 The observations above are especially true when considering
the joint fluctuation between community smells and three particular code smell types, that is, Large Class, Long Method,
and Long Parameter List. This close relation is confirmed from a statistical point of view: specifically, we applied the
Granger causality test38 to determine whether one time series (ie, the introduction/removal of community smells) is use-
ful in forecasting another (ie, the introduction/removal of code smells). In other words, we tested whether the presence of
a community smell ci can be used to “predict” the presence of a code smell csi. Note that we used the Granger test instead
of association rule discovery39 because we are interested in assessing the statistical significance of the temporal relation
between community and code smells, rather than of just their cooccurrences. As a result, we found that relation between
community smells and the large class, long method, and long parameter list is significant (all the 𝜌−values are <0.001).

3.3 Architectural decisions of SourceForge

To address RQ3 we analyzed the software architecture of eight releases of the Apache Allura project covering a
4 year time-span, from early 2014 to early 2018. These were releases: 1.1.0, 1.2.0, 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0,
and 1.8.1.

http://wileyonlinelibrary.com


1944 TAMBURRI et al.

F I G U R E 12 Apache Allura change quantity over time [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 Numbers of code smells for Apache Allura; an evident peak reflects the frantic refactoring connected to the period in
which the decline started, a clear indication of technical turmoil and haphazard technical debt generation—highlighted is the period we
denoted with downfall

3.3.1 Research methods

We analyzed the software architecture of each of these releases. Or, more precisely, we analyzed the module structure of
each of these releases using a commercial version of the Titan tool suite40 called DV8.9This tool suite allowed us to reverse
engineer each release of Allura, and perform two analyses:

• measure the DL of the module structure of each release;41

• measure the architectural flaws in the module and package structure of each release;41

Each of these measures has been shown to be highly correlated with maintenance effort and bugginess.41

9https://www.archdia.net/

http://wileyonlinelibrary.com


TAMBURRI et al. 1945

F I G U R E 14 Numbers of SATD items for Apache Allura; the conflict between the SATD and the smells reported indicates an extent
of failure reticence, people cannot admit the frantic refactoring is not helping but only making things worse—highlighted is the period we
denoted with downfall. SATD, self-admitted technical debt

3.3.2 Results for RQ3

The DL scores of all eight releases are shown in Table 1. There are two points to note about these scores:

• The scores are uniformly low. These DL scores place Apache Allura in the bottom 10th percentile of all projects
analyzed in Reference 41, where 129 projects, both commercial and open source, were measured.

• The DL scores are relatively stable over time, decreasing slightly from release 1.2.0 to 1.8.1. This suggests that the team
was not attempting to address any of the architecture debt42 that had accumulated.

DL is a measure of how (de)coupled the system’s source code files are. A low measure suggests a highly coupled
system, one that is likely to be difficult to understand, debug, and modify. But this is just a single number. To understand
these low DL scores more precisely we analyzed the architectural flaws (also known as “hotspots”) in each of the Apache
Allura releases. These flaws have been shown, in several studies,41,43 to be very strongly correlated with bugs, changes,
and churn across a wide variety of projects.

T A B L E 1 DL scores from eight releases of Apache Allura Release Date DL score

1.1.0 1/2014 32%

1.2.0 12/2014 34.6%

1.3.0 6/2015 34.6%

1.4.0 4/2016 33.8%

1.5.0 8/2016 33.7%

1.6.0 12/2016 33.5%

1.7.0 3/2017 33.5%

1.8.1 3/2018 33.5%

Abbreviation: DL, decoupling level.



1946 TAMBURRI et al.

Release UnhInt Clique ModVio PkgCyc

1.1.0 11 5 186 17

1.2.0 13 6 232 17

1.3.0 13 6 238 18

1.4.0 13 4 254 17

1.5.0 13 4 254 18

1.6.0 13 4 256 18

1.7.0 13 4 253 17

1.8.1 13 4 250 18

T A B L E 2 Architectural flaws in eight releases of Apache
Allura

F I G U R E 15 Apache Allura activity, in commits per month, 2014 to 2018—picture was extracted via OpenHub [Colour figure can be
viewed at wileyonlinelibrary.com]

The rationale behind performing this analysis is that we wanted to measure the flaws over time. This would help us
understand whether the developers were attempting to pay down the architecture debt, by removing at least some of the
architectural flaws.

As for the DL analysis, the results are summarized in Table 2. In this table, we report on the number of instances of
four flaw types: Unhealthy Inheritance (UnhInt), Cliques (Clique), Modularity Violations (ModVio), and Package Cycles
(PkgCyc). These flaw types are described in Reference 41. As can be seen from the table, number of flaws in this project
is large and it remains stable or even increases slightly from release to release. This suggests that the architecture had a
heavy load of debt and that this debt was not being addressed. As such it was increasing slightly with each subsequent
release, making the project harder to maintain and evolve.

This observation is consistent with the recorded activity, in terms of commits, on the Allura project over the
studied time-frame. Over this time-frame commit activity dropped precipitously, as shown in Figure 15, taken from
openhub.com. In January 2014 there were 140 commits per month. By January 2018 there were just 28 commits per
month. While we cannot claim a causal relation here, this change in activity is consistent with our expectations.

4 DISCUSSION AND IMPLICATIONS

We identified a variety of both social and factors that contributed to the decline and downfall of SourceForge. These
factors were both internal and external. SourceForge’s early success was because they were the first to fill a need. At
the time, their skunkwork team was a benefit and enabled them to identify and fill a gap in the market quickly. How-
ever, as the popularity of SourceForge grew, the skunkworks team was no longer advantageous. The team tried to
serve two masters (small projects and large projects) with different and, at times, conflicting needs. The skeleton crew
introduced more and more technical debt as they tried to meet the needs of all of their stakeholders quickly. While
they focused on dealing with technical debt and continued to try to satisfy the needs of their stakeholders, they missed
a large paradigm shift that was occurring—the movement to distributed version control systems and more collabo-
rative development tools. GitHub’s growth became exponential while the SourceForge team largely dismissed it as
a fad.

http://wileyonlinelibrary.com


TAMBURRI et al. 1947

Meanwhile, SourceForge changed ownership several times, and a disconnect between the development and man-
agement started to cause major problems. Management focused on ROI; SourceForge was expensive to run and did not
have a plan to bring in revenue. This led to the introduction of DevShare, but since management did not understand the
open source ethos and the development team was not included in management decisions, DevShare was a major failure.
It prioritized ROI over trust and bundled adware with project downloads. Many projects started leaving SourceForge,
citing DevShare as a main reason.

Through analysis of the social and technical structures of the project, we also observed a lack of organizational stability
and technical and architectural debt. There is substantial indication of community smells presence in the organizational
structure around SourceForge, indicating intense organizational turmoil and lack of stability;44 at the same time the
architecture of Allura is reportedly highly coupled, replete with flaws. The team around the forge never attempted to pay
down this architecture debt, presumably too focused on paying back the more basic, code-level, and SATD.

There are several lessons that can be learned from this cautionary tale. Here, we highlight lesson for other software
projects and directions for future research.

Advice: Determine business plan early. One of the key factors that contributed to the major exodus of projects was
DevShare. While the deceitful nature of its implementation is largely to blame, it also illustrates how important it is for
a software project to identify its ROI strategy early. DevShare was an effort to increase ROI since the original project did
not have a plan.

Advice: Management and development teams must be aligned. Another contributing factor to the downfall was
the misalignment between management and the development team. The developers clearly indicated that they were not
involved in key decisions, despite having more expertise in the domain. This disconnect caused an already small team to
lose valuable talent, but also caused poor decisions that did not align with the ethos of the community their product served.
The aforementioned condition is a known phenomenon in organizations and social networks research often referred to
as “two-masters syndrome”,45,46 which could itself be a community smell which was not previously manifested nor for-
malized in software engineering research and practice and may deserve further attention at least to support collaborative
and computer supported cooperative work in the scope of software production and operation platforms such as GitHub.

Advice: Be careful of changing paradigms. There were many reasons for the missed paradigm shift, particularly
they had an overworked, skeleton crew who were blinded by technical debt. Yet, one important aspect to discuss is the
expertise of the team. The developers of SourceForge were designing and developing software for a domain in their own
area of expertise—software development. They were very comfortable with centralized version control systems and did
not appreciate the importance of incorporating collaboration into software development tools. This high level of domain
expertise, in a way, hindered their ability to appreciate the change that was happening since they were very likely consid-
ering their own needs as a software developer. Given the small size of their own team, collaborative tools may not have
seemed important.

Software projects should be careful to continue to assess the landscape in which they operate. Diverse teams can help
ensure different perspectives about changing landscapes are considered.

Future research: More comprehensive project and community health metrics are needed. Our evidence
showed that SourceForge suffered from a variety of social and technical problems. We cannot claim that additional
project and community health tracking would have prevented the downfall of SourceForge, but we do observe that
using some of the community smells and technical and architectural debt metrics we examined in this study would have
revealed problems. Potentially if some of the problems had been revealed earlier, the fate of SourceForge would have
been different. Future research should develop tools that enable the tracking of more fine-grained metrics related to the
community, the code, and the architecture.

Turnover (eg, as measured by its earlier manifestations such as the Bus-Factor47) and smelly quitters are the only
two quantities that we investigated which exhibit variability both at the microstructure (single or small-world network
interactions) and at the macro-structure level. The only apparent exception to the turnover and smelly quitters variability
in the organizational structure of the forge under study is in the very beginning of our sample of observations, namely,
the period between early 2014 and mid-2015, where the deviation for both drops by half a point—this period coincides
almost identically to the downfall time range from the timeline reported in Figure 6. The coincidence could indicate that
Forge designers and managers detected the negative trend, trying to pick up the disaster scenario caused by DevShare and
sought external collaboration as well as increasing the number of paid maintainers. On the other hand, the indication in
question could have been aided by automated-tracking of turnover and smelly quitters11 emerging from organizational
tracking. Further research should be invested in these factors to correctly establish the feasibility of the aforementioned metrics
in this context.



1948 TAMBURRI et al.

There is also an intrinsic relationship between the social, technical, and architectural factors. Thus, additional com-
prehensive metrics should be developed beyond the existing measures like sociotechnical congruence. While some initial
work on this has been carried out,11 more research is needed on the relation between social and technical debt as well as on
the methods for assisting developers in reducing the joint issues coming from such relation. Some communities are already
forming to develop additional health metrics, for example, the CHAOSS initiative10 or the SECOhealth FNRS interna-
tional project11. Future efforts should develop tools that enable comprehensive analysis of project and community health
that consider the relationships between the social, technical, and architectural components of a project.

Future research: Analysis of failures and Retrospectives. While there has been some recent work that studies
the failure of software projects (described in Section 6), additional investigations are needed to understand more deeply
the reasons for failure of declines of software projects. Additional case studies could be performed to add to the evidence
collected here.

5 THREATS TO VALIDITY

Like any study of comparable magnitude and scale, this study is affected by several threats to validity. In what follows we
outline the major ones in our study design and execution.

Internal and Sampling Validity. Internal validity refers to the internal consistency and structural integrity of
the empirical research design. We focused our study on Apache Allura and SourceForge individually, operating a
mixed-methods research approach also adopting several observer, data, and sample triangulation strategies (eg, an addi-
tional set of our study of the Forge features an interview dataset whose coding was executed twice and K𝛼 evaluated) being
adopted. This notwithstanding, there are up to 90 factors from the state-of-the-art in organizations research48 that may
still be affecting our findings and results. In addition, the quantities and effect sizes of the factors themselves were not
addressed in this study. Stemming from this limitation, we are planning further study of our target subjects in follow-up
quantitative and qualitative research over the projects hosted on SourceForge or further interested parties involved
with the forge (eg, developers for those projects) that may confirm the validity of this work.

External Validity. External validity is the degree to which results from a study may be generalized to other contexts.
One threat to external validity is the small size of our interviewee pool—just four project members were interviewed.
While four is a small number of interviewees, they represent a large percentage of the core developer team, and so we
believe that their opinions are likely to be accurate representations of the project. Furthermore, our analysis considered
only one organization, SourceForge, so may not generalize to other projects. Future studies should investigate if the
social and technical factors we identified also contribute to the downfall of other software projects.

Conclusion Validity. Conclusion validity represents the degree to which conclusions about the relationship among
variables are reasonable. In the scope of the discussions of our results we made sure to minimize possible interpretations,
designing the study with reference to known hypotheses. In addition, our conclusions were drawn from statistical anal-
ysis of our dataset and analysis of the source code of the eight Allura releases we could get grips onto. Further data
triangulation might improve conclusion validity.

6 RELATED WORK

While the majority of research on OSS projects has focused on their successes, a number of articles have investigated
reasons for their failure. For example, Coelho and Valente49 report on the results of a survey of 104 developers of failed
(deprecated) GitHub projects. As a result of this survey they provide 9 reasons for failure, such as: “usurped by com-
petitor” (27 projects), “project is obsolete” (20 projects), or “lack of time of the main contributor” (18 projects). Khondhu
et al50 analyzed a set of SourceForge projects and classified them into “active,” “dormant,” and “inactive.” They then
analyzed the “maintainability index” (MI)51 of the code form a sample of each of those sets of projects. Their results, how-
ever, were inconclusive; there was not clear trend in the MI between the different sets of projects, and the sample sizes
were not large. Lee et al52 conducted a study where they identified “five determinants of OSS success and the relation-
ships among them through a literature review of previous IS success models.” These factors were: Software quality, OSS

10https://chaoss.community/
11https://secohealth.github.io/

https://chaoss.community/
https://secohealth.github.io/


TAMBURRI et al. 1949

use, Community service quality, User satisfaction, and Individual net benefits. Their key finding was that “usage of OSS
is predominantly determined by user satisfaction and software quality.”

There has also been a substantial literature on software project failures: while this research did not specifically focus on
OSS projects, a complete overview is available in Reference 53. A number of previous works have investigated factors likely
to influence the success/failures of software projects. For instance, Capiluppi et al54 investigated four dimensions, that is,
(i) community of developers, (ii) community of users, (iii) modularity and documentation, and (iv) software evolution,
of 406 projects coming from a deprecated open source repository called FreshMeat. They found that most of the projects
(57%) have one or two developers and that only a few of them (15%) can be considered active. Tourani et al55 investigate
the impact of codes of conduct in open source projects, finding that they aim at providing a safe and inclusive community
to avoid community-related issues. Ye and Kishida56 conducted a study on the motivations leading developers to engage
open source development, finding that learning is the major reason that motivates people to start contributing to open
source projects. However, when this need is not satisfied, contributors tend to quit the project, possibly creating critical
issues for its success. As a matter of fact, Avelino et al57 found that the survival of popular GitHub projects heavily depend
on one or two developers.

7 CONCLUSIONS

This article tells the cautionary tale of the downfall of Allura/SourceForge. We identified both internal and external
causes, both social and technical in nature. We also found evidence of sociotechnical and architectural problems in project
archives. Project and community health metrics could have been used to predict and understand the downfall by track-
ing its early manifestations. The team reported to be aware of the technical debt in the project, yet this was insufficient to
maintain the health of the project. Community managers should also measure and manage the mutual impacts of techni-
cal and social debt. Furthermore, our analysis suggests that a combination of managerial and technical flaws doomed this
project: architectural flaws, power-distance, and measurable management mishaps eventually led to the forge’s demise.
Practitioners and maintainers of other software projects can benefit from this cautionary tale, for example, as indications
of what not to do, in the scope of their community and architecture management infrastructure.

ACKNOWLEDGEMENTS
This research is partially supported by the European Commission grant no. 825480 (H2020), SODALITE, and by the grant
no. 825040 (H2020), RADON; finally, by grant ANPCyT PICT-1725-2017. Palomba gratefully acknowledges the support
of the Swiss National Science Foundation through the SNF Project No. PZ00P2_186090 (TED).

ORCID
Damian Andrew Tamburri https://orcid.org/0000-0003-1230-8961

REFERENCES
1. Fitzgerald B, Feller J. A further investigation of open source software: community, co-ordination, code quality and security issues. Inf

Syst J. 2002;12(1):3-6.
2. Mens T, Claes M, Grosjean P. Ecos: ecological studies of open source software ecosystems. Paper presented at: Proceedings of the

2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE);
2014:403-406; IEEE.

3. Liu Y, Stroulia E, Erdogmus H. Understanding the open-source software development process: a case study with CVSChecker. Paper
presented at: Proceedings of the Intlernational Conference on Open Source Systems; 2005:154-161.

4. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering: An Introduction. Norwell,
MA: Kluwer Academic Publishers; 2000.

5. Xu J, Christley S, Madey G. Application of social network analysis to the study of open source software. The Economics of Open Source
Software Development. Amsterdam, Netherlands: Elsevier B.V.; 2006:247-269.

6. David PA, Rullani F. Dynamics of innovation in an open source collaboration environment: lurking, laboring, and launching floss projects
on sourceforge. Ind Corporat Change. 2008;17(4):647-710.

7. The Apache Software Foundation Blog The apache software foundation announces apache allura as a top-level project; 2014. https://
tinyurl.com/qjq848y.

8. Joblin M, Mauerer W, Apel S, Siegmund J, Riehle D. From developer networks to verified communities: A fine-grained approach. In:
Bertolino A, Canfora G, Elbaum SG, eds. ICSE. Vol 1. Washington, D.C.: IEEE Computer Society; 2015:563-573.

https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0003-1230-8961
https://tinyurl.com/qjq848y
https://tinyurl.com/qjq848y


1950 TAMBURRI et al.

9. Hogan B, Carrasco JA, Wellman B. Visualizing personal networks: working with participant-aided sociograms. Field Methods.
2007;19(2):116-144.

10. Tamburri DAA, Palomba F, Kazman R. Exploring community smells in open-source: an automated approach. IEEE Trans Softw Eng.
2019;1–1. in press

11. Palomba F, Tamburri DA, Fontana FA, Oliveto R, Zaidman A, Serebrenik A. Beyond technical aspects: how do community smells influence
the intensity of code smells. IEEE Trans Softw Eng. 2018.

12. Damian Andrew Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. Social debt in software engineering: insights from
industry. J Internet Serv Appl, 6(1):10:1–10:17, 2015.

13. Damian A. Tamburri, Patricia Lago, and Hans van Vliet. Uncovering latent social communities in software development. IEEE Softw,
30(1):29 –36, jan.-feb. 2013.

14. Huang Q, Liu H, Zhong X. The impact of transactive memory systems on team performance. IT People. 2013;26(2):191-212.
15. Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia, and Rocco Oliveto. Smells like teen spirit: Improving bug

prediction performance using the intensity of code smells. InICSME, pages 244–255. Washington D.C.: IEEE Computer Society, 2016.
16. Tamburri DA, Di Nitto E. When software architecture leads to social debt. In: Bass L, Lago P, Kruchten P, eds. WICSA. Washington D.C.:

IEEE Computer Society; 2015:61-64.
17. Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications. Number 8 in Structural Analysis in the Social

Sciences. 1st. Cambridge, MA: Cambridge University Press; 1994.
18. Newman MEJ. Fast algorithm for detecting community structure in networks. Phys Rev E. 2003;69:66–133.
19. Gkantsidis C, Mihail M, Zegura EW. The markov chain simulation method for generating connected power law random graphs. In: Ladner

RE, ed. ALENEX . Washington D.C.: SIAM; 2003:16-25.
20. Pinzger M, Nagappan N, Murphy B. Can developer social networks predict failures? Paper presented at: Proceedings of the 16th ACM

Sigsoft International Symposium on Foundations of Software Engineering FSE ’08; 2008.
21. Bird C, Nagappan N, Gall HC, Murphy B, Devanbu PT. Putting it all together: using socio-technical networks to predict failures. Paper

presented at: Proceedings of the ISSRE; 2009:109-119; IEEE Computer Society.
22. Braun V, Clarke V. Using thematic analysis in psychology. Qualitat Res Psychol. 2006;3(2):77-101.
23. Van Antwerp M, Madey G. Advances in the sourceforge research data archive. Paper presented at: Proceedings of the Workshop on Public

Data about Software Development (WoPDaSD) at the 4th International Conference on Open Source Systems; 2008; Milan, Italy.
24. Galoppini R. Today we offer devshare (beta), a sustainable way to fund open source software; 2013. https://sourceforge.net/blog/today-

we-offer-devshare-beta-a-sustainable-way-to-fund-open-source-software/.
25. Prokoudine A. Anatomy of sourceforge/gimp controversy; 2015. http://libregraphicsworld.org/blog/entry/anatomy-of-sourceforge-gimp-

controversy.
26. Hoos F, Messier W, Smith J, Tandy P. The effects of serving two masters and using the internal audit function as a management training

ground on internal auditors’ objectivity; 2014.
27. Crandall D, Cosley D, Huttenlocher D, Kleinberg J, Suri S. Feedback effects between similarity and social influence in online communities.

Paper presented at: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08;
2008; 160-168, New York, NY, ACM.

28. Cataldo M, Herbsleb JD, Carley KM. Socio-technical congruence: a framework for assessing the impact of technical and work dependencies
on software development productivity. In: Rombach HD, Elbaum SG, Münch J, eds. ESEM. New York, NY: ACM; 2008:2-11.

29. Tamburri DA, Kazman R, Fahimi H. The architect’s role in community shepherding. IEEE Softw. 2016;33(6):70-79.
30. Magnoni S. An approach to measure community smells in software development communities; 2016.
31. Valetto G, Helander M, Ehrlich K, Chulani S, Wegman M, Williams C. Using software repositories to investigate socio-technical congru-

ence in development projects. Paper presented at: Proceedings of the International Workshop on, Mining Software Repositories 0:25; 2007;
IEEE Computer Society, Los Alamitos, CA. https://doi.org/10.1109/MSR.2007.33.

32. Fowler M. Refactoring: Improving the Design of Existing Code. Boston, MA: Addison-Wesley Longman Publishing Co.Inc; 1999.
33. Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E. A review-based comparative study of bad smell detection tools. Paper presented

at: Proceeding of the International Conference on Evaluation and Assessment in Software Engineering, EASE ’16; 2016:18:1-18:12; ACM,
New York, NY.

34. Chen Z, Chen L, Ma W, Xu B. Detecting code smells in python programs: Paper presented at: Proceeding of the Software Analysis, Testing
and Evolution (SATE), International Conference; 2016:18-23; IEEE.

35. Potdar A, Shihab E. An exploratory study on self-admitted technical debt. Paper presented at: Proceeding of the Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference; 2014:91-100; IEEE.

36. Chatzigeorgiou A, Manakos A. Investigating the evolution of bad smells in object-oriented code. Paper presented at: Proceeding of the
2010 7th International Conference on the Quality of Information and Communications Technology; 2010:106-115; IEEE.

37. Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A. On the diffuseness and the impact on maintainability of code smells:
a large scale empirical investigation. Emp Softw Eng. 2017;23:1-34.

38. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometr J Econometr Soc.
1969;11:424-438.

39. Agrawal R, Srikant R. Mining sequential patterns. Paper presented at: Proceeding of the Data Engineering, 1995. Proceedings of the 11th
International Conference; 1995:3-14; IEEE.

https://sourceforge.net/blog/today%2010we%2010offer%2010devshare%2010beta%2010a%2010sustainable%2010way%2010to%2010fund%2010open%2010source%2010software/
https://sourceforge.net/blog/today%2010we%2010offer%2010devshare%2010beta%2010a%2010sustainable%2010way%2010to%2010fund%2010open%2010source%2010software/
http://libregraphicsworld.org/blog/entry/anatomy%2010of%2010sourceforge%2010gimp%2010controversy
http://libregraphicsworld.org/blog/entry/anatomy%2010of%2010sourceforge%2010gimp%2010controversy
https://doi.org/10.1109/MSR.2007.33


TAMBURRI et al. 1951

40. Cai Y, Xiao L, Kazman R. Design rule spaces: a new form of architecture insightPaper presented at: Proceedings of the 38th International
Conference on Software Engineering; 2014.

41. Mo R, Cai Y, Kazman R, Lu X. Hotspot patterns: the formal definition and automatic detection of architecture smells. Paper presented at:
Proceeding of the 15th International Conference on Software Architecture; May 2015.

42. Xiao L, Cai Y, Kazman R, Mo R, Feng Q. Identifying and quantifying architectural debt. Paper presented at: Proceeding of the 38th
International Conference on Software Engineering; 2016.

43. Feng Q, Kazman R, Cai Y, Mo R, Xiao L. An architecture-centric approach to security analysis. Paper presented at: Proceeding of the
Proceedings of the 15th International Conference on Software Architecture; May 2016.

44. Lehman MM, Perry DE, Ramil JF. On Evidence Supporting the Feast Hypothesis and the Laws of Software Evolution. Washington D.C.: IEEE
Press; 1998.

45. Kock N, Avison DE, Baskerville RL, Myers MD, Wood-Harper AT. Is action research: can we serve two masters? (panel session). In: De P,
DeGross JI, eds. ICIS. Atlanta, Georgia: Association for Information Systems; 1999:582-585.

46. Dutta R, Levine DK, Modica S. Damned if you do and damned if you don’t: two masters. J Econom Theory. 2018;177:101-125.
47. Cosentino V, Izquierdo JLC, Cabot J. Assessing the bus factor of git repositories. SANER. Washington D.C.: IEEE Computer Society;

2015:499-503.
48. Tamburri DA, Lago P, van Vliet H. Organizational social structures for software engineering. ACM Comput Surv. 2013;46(1):3:1-3:35.
49. Coelho J, Valente MT. Why modern open source projects fail. Paper presented at: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering; 2017:186-196; ACM.
50. Khondhu J, Capiluppi A, Stol KJ. Is it all lost? a study of inactive open source projects. Paper presented at: Proceeding of the IFIP

International Conference on Open Source Systems; 2013:61-79; Springer.
51. Oman P, Hagemeister J. Metrics for assessing a software system’s maintainability. Paper presented at: Proceeding of the 1992 Conference

on Software Maintenance; 1992:337-344; IEEE.
52. Lee S-YT, Kim H-W, Gupta S. Measuring open source software success. Omega. 2009;37(2):426-438.
53. Humphrey WS. Why big software projects fail: the 12 key questions; 2005.
54. Capiluppi A, Lago P, Morisio M. Characteristics of open source projects. Paper presented at: Proceeding of the 7th European Conference

on Software Maintenance and Reengineering; vol 2003, 2003:317-327; IEEE.
55. Tourani P, Adams B, Serebrenik A. Code of conduct in open source projectsPaper presented at: Proceeding of the 2017 IEEE 24th

International Conference on Software Analysis, Evolution and Reengineering (SANER); 2017:24-33; IEEE.
56. Ye Y, Kishida K. Toward an understanding of the motivation open source software developers. Paper presented at: Proceedings of the 25th

International Conference on Software Engineering; 2003:419-429; IEEE Computer Society.
57. Avelino G, Passos L, Hora A, Valente MT. A novel approach for estimating truck factors.Paper presented at: Proceeding of the 2016 IEEE

24th International Conference on Program Comprehension (ICPC); 2016:1-10; IEEE.

How to cite this article: Tamburri DA, Blincoe K, Palomba F, Kazman R. “The Canary in the Coal Mine...” A
cautionary tale from the decline of SourceForge. Softw Pract Exper. 2020;50:1930–1951.
https://doi.org/10.1002/spe.2874


