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Abstract—User feedback on software products has been shown

to be useful for development and can be exceedingly abundant

online. Many approaches have been developed to elicit require-

ments in different ways from this large volume of feedback,

including the use of unsupervised clustering, underpinned by text

embeddings. Methods for embedding text can vary significantly

within the literature, highlighting the lack of a consensus as

to which approaches are best able to cluster user feedback into

requirements relevant groups. This work proposes a methodology

for comparing text embeddings of user feedback using existing

labelled datasets. Using 7 diverse datasets from the literature,

we apply this methodology to evaluate both established text

embedding techniques from the user feedback analysis literature

(including topic modelling and word embeddings) as well as text

embeddings from state of the art deep text embedding models.

Results demonstrate that text embeddings produced by state

of the art models, most notably the Universal Sentence En-

coder (USE), group feedback with similar requirements relevant

characteristics together better than other evaluated techniques

across all seven datasets. These results can help researchers select

appropriate embedding techniques when developing future un-

supervised clustering approaches within user feedback analysis.

I. INTRODUCTION

Explicit online user feedback of software products can be
found in many places including in app store reviews, social
media posts, and forum posts. Such feedback has been shown
to contain information that is useful for requirements engi-
neering (such as bug reports, feature requests, and other data)
on many platforms, including Tweets on Twitter [23], reviews
on app stores [11], [36], forum posts [47], subreddit posts
from Reddit [5], and reviews on Steam [34]. This feedback
can be potentially very high volume, with more than 4,000
app reviews being given to the Facebook app in a single day
on the Apple App Store [39].

Thus, efforts have been made to automate the anal-
ysis of this feedback, such that developers can effec-
tively harness key information for requirements engineer-
ing [23] [26] [16] [49] [21]. These efforts have generally
tended to come in two forms, classification and clustering.
While the vast majority of classification approaches rely
on supervised machine learning, clustering approaches vary
more in their methodology, with topic modelling and word
frequency-based traditional clustering both popular [33]. Such
techniques are underpinned by an embedding of text from
natural language into vectors, such that similarity, and thus
cluster membership, can be calculated [2]. However, there

have been no studies evaluating embedding approaches on
their ability to group user feedback by requirements-relevant
categories.

State-of-the-art deep learning-based text embedding tech-
niques (such as BERT [15] and USE [10]) have recently
been evaluated within the field of requirements engineering
for their use in matching similar requirements documents [14]
and in matching requirements documents to related source
code [35]. These models have not yet been employed for use
within publicly published user feedback analysis tools within
the literature, but their promise within adjacent fields such
as requirement documentation-software matching suggest their
adoption in the near future. However, many deep embedding
models exist, with there being more than 8,000 available
models on the Huggingface model repository at the time of
writing1.

Due to the widespread use of unsupervised clustering tech-
niques in distinguishing semantically separate feedback, there
is a clear need to understand which text embedding methods
are most appropriate to underpin this clustering.

This work was motivated by one overall research question:
Which text embedding methods are best able to group

similar user feedback together? In order to answer this,
we evaluate the ability of both state-of-the-art and established
techniques on their ability to match user feedback with re-
quirements related traits in an unsupervised way.

This work has two main contributions. Firstly, we propose
a novel approach for evaluating unsupervised text embeddings
by using an information retrieval (IR) ranking evaluation
approach on class-labelled user feedback datasets from the
literature. Secondly, we apply this methodology on 24 text
embedding methods, representing 4 broad categories of em-
bedding methods, to find which embedding is best able to
group user feedback on the basis of requirements related char-
acteristics. These results show that deep pre-trained embedding
models (particularly Google’s Universal Sentence Encoder)
out-perform all other evaluated methods of text embedding for
grouping user feedback, and thus shows that these deep models
are appropriate for use in future user feedback clustering tools.

II. RELATED WORK

This section details both the state of the art in user feedback
embedding methods and the use of deep model embeddings

1https://huggingface.co/models
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in the field of requirements engineering more broadly.

A. Current requirements extraction methods for user feedback
Many approaches for extracting requirements from user

feedback have been developed in the literature. Examples
include tools such as SURF [16], CLAP [49], SIMBA [38],
and MERIT [21], as well as models without tools associated
with them, such as the deep classifier created by Stanik et
al. [45].

Approaches like SURF [16], CLAP [49], and the Stanik
et al. deep classifier [45] utilise classification approaches,
whereby feedback is classified as one or more categories.
These categories can be general (e.g., “bug”, “feature re-
quest”) or specific (e.g. “GUI”, “Security”). While SURF and
CLAP both translate text into features that a machine learning
classifier can interpret using word-frequency based methods
(namely n-gram extraction), the Stanik et al. classifier uses
pre-trained word embeddings based on fastText embedding
weights [28]. Classification allows developers to only have
to read the types of feedback that are of interest to them.
However, these supervised models often fail to generalise from
the data domain that they have been trained on to user feedback
from other platforms, such as from app reviews to forum
posts [47]. These models also only classify data into categories
on which they have already been trained.

A different approach to classification can be seen in the
SIMBA tool that was proposed by Oehri and Guzman [38].
SIMBA uses a word aligner from the literature [46] to rank
user feedback such that similar feedback is ranked higher
in order to aid developers in describing requirements (e.g.
showing all feedback that describes a specific bug or feature).
This ranking was done across four languages and four feed-
back platforms, evaluating reviews from Google Play Store
and the Apple App Store, Tweets, and Facebook comments.
This matching yielded high correlations of 0.78 and 0.79 to
labelled similarity oracles for monolingual and multilingual
datasets respectively, indicating its usefulness in matching
alike requirements across languages and platforms. While
this approach is useful for ranking a corpus against a single
query document, mutual distances need to be calculated for
all pairs of feedback for clustering approaches, and applying
the world aligner to all possible pairwise combinations would
be computationally intensive, making scaling to large datasets
challenging.

Other tools have been proposed that use unsupervised clus-
tering to break user feedback down into organically defined
groups of semantically linked information (e.g. CLAP [49]
and MERIT [21]). MERIT’s approach allows developers to
see the main themes of what their users are saying, as defined
by a few key pieces of feedback per theme, and their relative
changes over time. CLAP is designed to allow developers to go
beyond simple classification and see not only all their feedback
which is classed as a “bug” or “feature request”, but feedback
grouped into smaller clusters which describe individual bugs
or features. MERIT uses a bi-term topic modelling approach
to quantify user feedback, while CLAP employs an n-gram

word frequency-based approach to embed text before clus-
tering. These methods are unsupervised, meaning that they
do not require a labelled dataset for training, and so can
be used by developers in novel domains immediately. The
benefits of unsupervised techniques mean that a developer can
apply them anywhere without preparation or training data,
reducing the overhead of deployment. Both approaches rely
on text embeddings, which do not explicitly encode concepts
of feedback type (bug types, feature types, etc.) into them.
Little work exists in measuring which embedding technique
is thus most suitable for disambiguating various types of user
feedback available.

Indeed, there exists no consensus as to which unsupervised
technique is most appropriate for grouping user feedback, as
is evidenced by the sheer variety of clustering approaches
within the literature [33]. Due to the fact that the embedding
of text into machine readable values is pivotal to the success of
clustering techniques, we aim to determine which technique is
most appropriate for grouping user feedback, and whether the
techniques used within the literature can be improved upon.

B. Embeddings from deep text embedding models and their
use in requirement engineering

The state of the art in text embeddings in the field of NLP
are currently generated by transformer based pre-trained text
embedding models, as is evidenced by their dominance in
the Semantic Text Similarity Benchmark (STS-b)2. Included
in these are Sentence-BERT (SBERT) [43] and the Universal
Sentence Encoder (USE) [10]. While SBERT has been trained
to explicitly encode semantically similar texts close together,
USE has been trained on a variety of NLP tasks, such that
it is able to generate general text embeddings that would
be useful for many different applications. LaBSE [18] is a
cross-lingual embedding model based upon the BERT model,
and is trained to embed semantically similar texts in different
languages closely within embedding space.

The usefulness of these models stems from their architecture
and their pre-training. The transformer [48] based architecture
means that these models can interpret a piece of text as not
just a bag of words, but as a bi-directional sequence of words,
giving these models the ability to capture more intricate details
from a given piece of text. Pre-training on masses of text
means that these models also contain a modelling of language
which manifests itself within the embedding.

Recent studies within the field of requirements engineering
have evaluated some deep embedding models. Araujo et al.
evaluated the word frequency bag-of-words (BOW) and term
frequency inverse document frequency (TF-IDF) text embed-
ding techniques against several deep pre-trained embedding
models including BERT on their performance as inputs into
a supervised machine learning classification model [6]. This
evaluation was done on a labelled dataset of app reviews from
Maalej et al. [36]. They found that classification F1 scores

2https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-
benchmark



were higher when using embeddings from deep pre-trained
embedding models as input to a classifier compared to the
word frequency embeddings.

Abbas et al. investigated the ability of several unsupervised
text embedding techniques including TF-IDF and BERT to
determine similarity between requirements documentation and
source code [1]. This research found that TF-IDF had the
best performance in linking similar requirements to source
code. Lin et al. also investigated the ability of BERT mod-
els to link requirements documentation to source code, but
trained several models on this linking task instead of using
unsupervised embeddings [35]. Das et al. investigated the
ability of several supervised and unsupervised deep embedding
models, including USE and BERT, on their ability to match
similar requirements documents [14]. Out of the results of the
unsupervised models reported in this work, the USE model
was found to work best.

While these models have been evaluated on general NLP
benchmarks, supervised user feedback classification, and unsu-
pervised requirements documentation matching, an evaluation
of these models for the purposes of unsupervised user feedback
clustering has not been carried out. This work seeks to
compare the previously established approaches for embedding
user feedback to these state-of-the-art text embeddings in order
to identify which techniques are most effective at collecting
user feedback into requirements relevant groups.

III. METHOD

In order to evaluate which text embedding methods are
most appropriate for use in user feedback analysis tools,
seven datasets from the literature were used to evaluate both
established and state-of-the-art text embedding techniques.
The following sections detail the datasets used for evaluation,
how the evaluation was done, what embedding methods were
tested, what the distance metrics used in the evaluation were,
and the baselines from which embedding performance was
measured.

A. Datasets

Seven class labelled datasets from the literature were used
to evaluate text embeddings. These datasets were taken from
the works of Chen et al. [11], Guzman et al. [22], Maleej
et al. [36], Ciurumelea et al. [13], Scalabrino et al. [44],
Williams et al. [50], and Tizard et al. [47]. These datasets
were chosen due to their public availability, as well as their
diversity in feedback platforms (online user feedback from
Apple App Store, Google Play Store, Twitter, and forum
posts are all included), number of apps, and label set. This
heterogeneity between datasets, in both the type of feedback
and the linguistic character of the feedback they contain, was
prioritised in order to evaluate the ability of the embeddings
to distinguish between multiple different types of feedback
in multiple contexts. Thus, these heterogeneous datasets can
help determine if a suitable embedding method can be applied
across different contexts.

Feedback was considered on an app-level for these datasets,
meaning that all feedback on one app from a dataset was
embedded, and these embeddings were analysed in relation
to each other. These datasets were also cleaned for evaluation.
Apps with less than or equal to 10 pieces of feedback were
excluded so as to focus on measuring the performance of
embeddings on apps with large amounts of feedback - where
manual reading of all feedback is less feasible. Apps were
also only included if they contained feedback with different
labels (i.e. all feedback for a given app did not have the
same label) so as to evaluate embedding techniques’ ability
to group distinct feedback. By applying these constraints on
the datasets, 10 apps (40 pieces of feedback) were excluded
from the Ciurumelea et al. dataset [13], 458 apps (973 pieces
of feedback) from the Maalej et al. dataset [36], and 1 app
(5 pieces of feedback) from the Scalabrino at al. dataset [44].
There was no feedback excluded from the other 4 datasets.

Post-cleaning metrics and information for each of these
datasets can be seen in Table I.

B. Embeddings

The types of text embeddings that were evaluated can be
broadly collected into 4 groups: topic modelling, averaged
word embeddings, word frequency embeddings, and pre-
trained text embedding model embeddings. These groups
of embeddings were chosen due to their use within the
user feedback literature as unsupervised text embeddings
(topic modelling, averaged word embeddings, word frequency
embeddings), or due to their proven ability in matching
similarity of other requirements related text (pre-trained deep
model embeddings) [1] [14].

Topic modelling embeddings are generated by applying the
entire corpus of feedback for one app to the model to generate
topic distributions for the app. Topic models are trained on an
unlabelled text corpus, where they separate words or n-grams
into a given number of topics using term co-occurrence in
such a way that terms that often co-occur are more likely to
share the same topic. Therefore, every topic is characterised
by its probability distribution over terms within the corpus,
and thus so too are documents characterised over topics by
their constituent terms. We use these probability distributions
as the encoding for a given piece of feedback.

The three topic modelling approaches that were tested were
LDA [9], BTM [51] and Gibbs sampling algorithm for a
Dirichlet Mixture Model (GSDMM) [52]. LDA was chosen
due to its abundance within the literature [24] [26] [37] [31],
BTM was chosen due to its proven good performance in
modelling shorter text which user feedback often is [23] [12],
and GSDMM was chosen due to its good performance and
taxonomic difference in kind as a short text modeller compared
to BTM [42]. These models were also chosen due to their
simple implementations in Python, from the Gensim3, Biterm4

3https://radimrehurek.com/gensim/
4https://github.com/markoarnauto/biterm



TABLE I
DETAILS OF THE SEVEN CLASS-LABELLED USER FEEDBACK DATASETS USED FOR EVALUATING TEXT EMBEDDING METHODS

Source Feedback platform
Number

of apps
Label set

Dataset

size

A Chen et al.[11] Google Play Store reviews 4 Informative, Non-informative 11,340

B Ciurumlelea et al.[13] Google Play Store reviews 17 Resources, Usage, Compatibility,
Pricing, Protection, Other 1,538

C Guzman et al.[24] Google Play Store reviews 7
Bug report, Noise, Usage scenario, Praise,
Complaint, Feature shortcoming,
Feature strength, User request

4,401

D Maalej et al.[36] Google Play Store reviews,
Apple App Store reviews 24 Bug, Feature, User experience, Rating 488

E Scalabrino et al.[44] Google Play Store reviews 13 Feature, Performance, Usability, Security,
Energy, Bug 702

F Tizard et al.[47] Forum posts

3 (2
apps,
3
forums)

User setup, Question on application,
Requesting more information,
Feature request, Non-informative,
Malfunction confirmation,
Question on background,
Help seeking, Attempted solution,
Application usage, Praise for application,
Acknowledgement of problem resolution,
Agreeing with the feature request,
Agreeing with the problem,
Limitation confirmation,
Application guidance,
Dispraise for application,
Apparent bug, Other

3,654

G Williams et al.[50] Twitter posts 10 Feature, Bug, Other 3,654

and GSDMM5 packages for LDA, BTM, and GSDMM respec-
tively.

To create the topic models, three configurations were used
for the topic number hyperparameter, 5 topics, 13 topics,
and 50 topics. The 5 and 50 parameters were chosen as an
order of magnitude difference between each other, while
13 was chosen due to the findings by Gao et al. that that
configuration was most suitable for the BTM model on app
review data [21]. Other hyperparameters (e.g. ↵ and �) were
all set to their default from their Python implementation.

Averaged word embeddings were generated by calculating
word embedding for each word in a given piece of feedback
and averaging these together to get a single embedding for
every piece of feedback. The word embeddings used were
GloVe [40] (both the 6 billion token and 840 billion token
variants), ExtVec [29], a modified version of word2vec from
Levy & Goldberg [30], and the unsupervised smoothed
inverse frequency (USIF) method from Kawin Ethayarajh
[17]. GloVe, ExtVec, and Levy & Goldberg’s word2vec were
chosen due to their large vocabulary size (roughly 400,000,
250,000, and 175,000 words, respectively), their adoption
within the NLP literature [3] [7] [25], and their availability
in the SentenceTransformers Python package6. USIF was
selected due to its relatively high performance on semantic
similarity tasks and due to the fact that it does not need
hyperparamater tuning to function, thus making it suitable for
unsupervised embedding [17].

5https://github.com/rwalk/gsdmm
6https://www.sbert.net/

The word frequency embeddings tested were bag-
of-words (BOW) and term frequency inverse document
frequency (TF-IDF) [27] due to their use within the
requirements elicitation literature [49] [4] [8]. Approaches
that both kept and removed stop words [19] from the text
were tested, using the English stop-word list from the NLTK
package7. With the stop words removed model, a uni- and bi-
gram model was also tested for both BOW and TF-IDF, with a
minimum term frequency for words within the corpus set at 2.

Pre-trained deep model embeddings were generated
from three different text embedding models, SBERT, USE,
and LaBSE. These models were chosen due to their wide use
within the literature [32] [41], and their high performance
on the Semantic Text Similarity Benchmark. Moreover, USE
was shown to be good at classifying similar requirements
documents [14]. LaBSE was included due to the fact that
it is trained to semantically embed text cross-lingually
for over 100 languages, thus adding to the diversity in
pre-training regimes of deep models tested. Two variants
of SBERT available from SentenceTransformers were used,
nli-bert-large (S-BERT) and nli-roberta-large (S-RoBERTa),
as well as the SentenceTransformers implentation of LaBSE.
The large version of USE available on the Tensorflow Hub8

was used.

A random baseline was used to contextualise the per-
formance of the above embedding techniques. This random

7https://www.nltk.org/
8https://tfhub.dev/google/universal-sentence-encoder-large/5



embedding was an array of 50 dimensional vectors of random
numbers between 0 and 1 for each piece of feedback generated
by the NumPy random package9.

C. Distance Metrics

Due to the variety in the types of output from the embedding
models, different distance metrics were used to compare
semantic relatedness from the outputs. For the pre-trained
embedding models and averaged word embedding models, the
cosine distance of their outputs was used in the similarity
ranking calculation, while the Jensen-Shannon distance was
used for topic models and word frequency methods, which
were found to give the highest MRR and mean NDCG scores
for each method. Because cosine similarity was used to train
some of the pre-trained embedding models (such as LaBSE
and S-BERT), it matches with intuition that this distance
metric is appropriate for the pre-trained models. Moreover,
as topic models output a probability distribution over topics
for each document, it is again intuitive that measuring distance
between two distributions with the Jensen-Shannon metric (a
metric for expressing the distance between two probability
distributions) is the best performing. The Jensen Shannon
distance has been used in user feedback literature in the past
by Gao et al. [20], but to compare term distributions over
topics, instead of topic distributions over documents.

D. Evaluation approach

Following the approaches of Lin et al. [35], we treated
this similarity matching problem as an information retrieval
(IR) task. For each piece of feedback, we hold that feedback
as a query and every other piece of feedback as possible
documents to match with this query. We considered the
“document” feedback a match if it shared a label with the
query feedback, where the labels are taken from the seven
ground truth evaluation datasets.

To evaluate each embedding method, we employed the
standard metrics of mean reciprocal rank (MRR) and the
mean of the normalised discounted cumulative gain (NDCG)
metrics. MRR is calculated by ranking all feedback in relation
to one piece of query feedback, fi. All feedback except fi
are ranked from 1 to N � 1 for a dataset with N pieces of
feedback, based on the distance of their embeddings to fi, with
the closest feedback being ranked highest. Then, the rank of
the first piece of feedback in the rankings to share at least one
class label (e.g. “bug”, “feature request”) with fi is found. This
ranking is defined as FirstRanki, and its reciprocal is then
calculated. This process is repeated for every piece of feedback
and the mean of these values is the MRR score. This value
has a maximum at 1, which represents perfect ranking. The
equation for MRR can be seen in Equation 1.

MRR =
1

N

NX

i=1

1

FirstRanki
(1)

9https://numpy.org/doc/stable/reference/random/index.html

Similarly, NDCG also ranks all feedback based on embed-
ding distance relative to fi. Firstly, the discounted cumulative
gain (DCG) is calculated for fi by the sum of gains for each
ranked piece of feedback within the ranking (Equation 2).
The gain for a piece of feedback at rank j in relation to fi
is calculated using relj , which is 1 if this feedback shares
labels with fi, and 0 otherwise. This gain is then the fraction
of 2relj�1

log2(j+1) , which effectively scores similar feedback with a
high ranking highly, and dissimilar feedback as 0. The ideal
DCG (IDCG) is calculated by calculating the DCG if the
feedback was ranked perfectly (i.e. all feedback that share
labels with fi are ranked higher than those that do not), as can
be seen in Equation 3. Finally, the NDCG is the ratio of the
DCG to IDCG, which served to give a normalised measure
with a maximum at 1, representing perfect ranking. This is
then calculated for all feedback, before taking the mean of
these values as the mean NDCG (Equation 4).

DCGi =
piX

j=1

2relj � 1

log2(j + 1)
(2)

IDCGi =

pideal
iX

k=1

2relk � 1

log2(k + 1)
(3)

MeanNDCG =
1

N

NX

i=1

DCGi

IDCGi
(4)

These metrics were calculated for all feedback within one
app within each dataset. Since each dataset has varying num-
bers of apps, and each app has a varying number of pieces of
feedback, these metrics were averaged across all apps within
a dataset, and these averages are reported.

IV. EVALUATION

The MRR and mean NDCG over the seven evaluation
datasets can be seen in Table II and Table III, respectively.
Table II shows that the MRR of the four deep text embed-
ding models evaluated are on average higher than all other
embedding methods in the evaluation, while table III shows
that the NDCG of these models is also higher than all other
approaches. We can see that deep embedding models perform
better at grouping user feedback into requirement relevant
groups over all datasets compared to established techniques
based on averaged word embeddings, word frequency meth-
ods, and topic modelling. Overall, we can see that USE
performs best on the largest number of datasets (4 out of
7) across both metrics. Of particular note is this model’s
performance across datasets of user feedback from varied
platforms. USE has the highest MRR for 3 of the 5 app
review datasets, is in the top three for the other 2 review
datasets. It also has the highest MRR for the Twitter user
feedback dataset, and is second highest for the forum user
feedback dataset. Similarly for NDCG, USE performs best
on the Twitter and forum user feedback datasets, and is in
the top three for all other datasets. In summary, USE is best



TABLE II
MRR OF ALL EMBEDDING MODELS OVER ALL EVALUATION DATASETS. BOLDED VALUES ARE THE HIGHEST BETWEEN EMBEDDING METHODS ON THE

GIVEN DATASET. DATASET LETTERS REFER TO DATASETS FROM: A - CHEN ET AL. (2014) [11], B - CIURUMLELEA ET AL. (2017) [13], C - GUZMAN ET
AL. (2014) [24], D - MAALEJ ET AL. (2016) [36], E - SCALABRINO ET AL. (2017) [44], F - TIZARD ET AL. (2019) [47], G - WILLIAMS ET AL.

(2017) [50]

Dataset

Model type A B C D E F G Mean

USE Deep model 0.941 0.897 0.865 0.872 0.831 0.665 0.817 0.841

S-RoBERTa Deep model 0.919 0.892 0.859 0.888 0.787 0.642 0.782 0.824
S-BERT Deep model 0.910 0.889 0.847 0.885 0.781 0.636 0.770 0.817

LaBSE Deep model 0.920 0.899 0.828 0.853 0.772 0.674 0.764 0.816
TF-IDF Word frequency 0.902 0.879 0.783 0.823 0.779 0.601 0.758 0.789

USIF Word embeddings 0.905 0.886 0.816 0.838 0.758 0.582 0.727 0.787
BOW Word frequency 0.889 0.878 0.770 0.812 0.780 0.594 0.740 0.780

GloVe (840B, 300D) Word embeddings 0.891 0.873 0.807 0.834 0.758 0.582 0.713 0.780
GloVe (6B, 300D) Word embeddings 0.891 0.879 0.808 0.818 0.773 0.556 0.710 0.776

TF-IDF (Stopwords removed) Word frequency 0.895 0.865 0.758 0.812 0.788 0.561 0.742 0.775
Komninos Word embeddings 0.892 0.887 0.812 0.799 0.758 0.559 0.715 0.775

1,2-gram TF-IDF (Stopwords removed) Word frequency 0.889 0.869 0.758 0.825 0.757 0.574 0.744 0.774
1,2-gram BOW (Stopwords removed) Word frequency 0.882 0.868 0.747 0.824 0.767 0.560 0.732 0.769

Levy Word embeddings 0.890 0.876 0.815 0.785 0.749 0.563 0.706 0.769
BOW (Stopwords removed) Word frequency 0.887 0.863 0.738 0.814 0.779 0.549 0.729 0.766

Biterm (T=50) Topic modelling 0.857 0.835 0.722 0.817 0.741 0.487 0.679 0.734
GSDMM (T=50) Topic modelling 0.861 0.803 0.736 0.766 0.736 0.497 0.686 0.726
GSDMM (T=13) Topic modelling 0.863 0.791 0.749 0.777 0.743 0.472 0.679 0.725

GSDMM (T=5) Topic modelling 0.850 0.823 0.735 0.796 0.696 0.451 0.675 0.718
Biterm (T=13) Topic modelling 0.842 0.840 0.705 0.808 0.701 0.456 0.652 0.715

Biterm (T=5) Topic modelling 0.818 0.815 0.652 0.789 0.688 0.450 0.626 0.691
LDA (T=50) Topic modelling 0.793 0.798 0.632 0.753 0.664 0.449 0.642 0.676

LDA (T=5) Topic modelling 0.787 0.786 0.642 0.785 0.634 0.439 0.632 0.672
LDA (T=13) Topic modelling 0.796 0.764 0.640 0.771 0.636 0.426 0.609 0.663

Random baseline Random 0.730 0.753 0.555 0.774 0.636 0.354 0.590 0.627

able to group requirements-relevant user feedback from the
test datasets out of all embedding methods evaluated.

LaBSE also performs best on two datasets for the MRR
ranking metric, and is fourth on average for both metrics. S-
RoBERTA performs best on 1 dataset for MRR, and three for
NDCG, and is overall second in the average ranking for both.
More broadly, we can see that the deep models perform better
across all datasets compared to other methods, with all four
deep embedding models tested making up the top four of the
embedding techniques on average for both MRR and NDCG
metrics.

In comparison, the word frequency embedding TF-IDF and
the word embedding-based USIF methods are the next best
text embeddings in our evaluation. With the results from deep
models excluded, TF-IDF performed best on 3 out of 7 datasets
for MRR and 2 out of 7 for NDCG, while USIF also performed
best on 3 out of 7 datasets for MRR and 2 out of 7 for NDCG.

In contrast, the topic modelling methods of GSDMM, BTM,
and LDA underperform these methods. Overall, we can see
that topic modelling approaches that are suited to shorter text
(such as the Biterm model and GSDMM) perform better over
both metrics for all datasets compared to the LDA model.

V. DISCUSSION

A. Reflection on results
As can be seen from section IV, deep text embedding

models are better at embedding feedback from our test datasets
into groups that are relevant to requirements compared to other

evaluated techniques. Therefore, these embedding methods
stand to aid many of the future tools for extracting requirement
information from user feedback, or improve on existing tools
that already leverage text embeddings, such as CLAP[49]. Of
particular note is the superior performance across a wide range
of heterogeneous datasets. This result suggests that deep neural
networks such as USE are an effective embedding method for
user feedback from multiple sources, and so could potentially
be used in tools that analyse user feedback from multiple
platforms for a single app.

The relatively strong performance of LaBSE is another
notable result, because this model is trained to produce cross
lingual embeddings where sentences of different languages
but equivalent semantic meaning are mapped into the same
embedding space. Due to the multilingual nature of its training,
it could potentially perform similarly on other languages.

While deep models achieve better results in our evaluation
compared to other methods, they require being run on a GPU
to embed them at maximum efficiency. Out of the models
which do not benefit from being run on a GPU, TF-IDF and
USIF performed best. Therefore, in situations where using a
deep model is not feasible, TF-IDF or USIF could also be
considered.

Within the topic model results, we can see that the strength
of approaches that are more suited to short texts perform
better in our evaluation, which validates the recent widespread
adoption of the Biterm model over LDA within the user feed-
back field when topic modelling. Overall, embeddings derived



TABLE III
NDCG OF ALL EMBEDDING MODELS OVER ALL EVALUATION DATASETS. BOLDED VALUES ARE THE HIGHEST BETWEEN EMBEDDING METHODS ON THE
GIVEN DATASET. DATASET LETTERS REFER TO DATASETS FROM: A - CHEN ET AL. (2014) [11], B - CIURUMLELEA ET AL. (2017) [13], C - GUZMAN ET

AL. (2014) [24], D - MAALEJ ET AL. (2016) [36], E - SCALABRINO ET AL. (2017) [44], F - TIZARD ET AL. (2019) [47], G - WILLIAMS ET AL.
(2017) [50]

Dataset

Model type A B C D E F G Mean

USE Deep model 0.941 0.904 0.871 0.886 0.836 0.744 0.855 0.862

S-RoBERTa Deep model 0.944 0.894 0.888 0.907 0.812 0.732 0.842 0.860
S-BERT Deep model 0.942 0.894 0.883 0.901 0.804 0.728 0.836 0.855

LaBSE Deep model 0.932 0.903 0.853 0.875 0.797 0.738 0.832 0.847
USIF Word embeddings 0.928 0.892 0.844 0.856 0.791 0.697 0.815 0.832

GloVe (840B, 300D) Word embeddings 0.923 0.888 0.842 0.852 0.785 0.706 0.811 0.830
TF-IDF Word frequency 0.922 0.894 0.831 0.844 0.791 0.698 0.821 0.829

GloVe (6B, 300D) Word embeddings 0.923 0.888 0.843 0.847 0.794 0.695 0.811 0.829
Komninos Word embeddings 0.925 0.893 0.843 0.840 0.789 0.692 0.813 0.828

Levy Word embeddings 0.924 0.890 0.843 0.839 0.785 0.693 0.811 0.827
BOW Word frequency 0.921 0.894 0.826 0.839 0.791 0.695 0.819 0.826

TF-IDF (Stopwords removed) Word frequency 0.920 0.886 0.824 0.838 0.800 0.685 0.819 0.825
1,2-gram TF-IDF (Stopwords removed) Word frequency 0.920 0.888 0.823 0.839 0.791 0.686 0.820 0.824

BOW (Stopwords removed) Word frequency 0.919 0.884 0.819 0.841 0.795 0.684 0.817 0.823
1,2-gram BOW (Stopwords removed) Word frequency 0.919 0.889 0.820 0.838 0.791 0.684 0.818 0.823

GSDMM (T=5) Topic modelling 0.933 0.863 0.834 0.839 0.769 0.670 0.810 0.817
Biterm (T=50) Topic modelling 0.925 0.877 0.811 0.843 0.783 0.667 0.808 0.816

GSDMM (T=50) Topic modelling 0.929 0.853 0.825 0.833 0.780 0.678 0.811 0.815
GSDMM (T=13) Topic modelling 0.930 0.849 0.829 0.832 0.780 0.667 0.810 0.814

Biterm (T=13) Topic modelling 0.925 0.875 0.805 0.841 0.773 0.665 0.797 0.812
Biterm (T=5) Topic modelling 0.924 0.866 0.792 0.835 0.760 0.662 0.792 0.804

LDA (T=5) Topic modelling 0.910 0.844 0.784 0.827 0.737 0.660 0.792 0.794
LDA (T=50) Topic modelling 0.910 0.845 0.776 0.828 0.741 0.654 0.792 0.792
LDA (T=13) Topic modelling 0.910 0.835 0.776 0.832 0.733 0.652 0.789 0.790

Random baseline Random 0.903 0.838 0.768 0.821 0.738 0.641 0.784 0.785

from topic modelling performed relatively poorly compared
to other techniques in our evaluation. This is because topic
modelling approaches are most commonly used to generate an
overview of topics within a corpus, rather than to categorize
individual pieces of feedback. Therefore, we can see that
topic modelling may not be appropriate for this particular
task compared to other state of the art and established text
embedding techniques.

B. Future work
With this work, we evaluated whether similar individual

pieces of feedback could be embedded close to each other
based on coarse labels. These labels group requirement-related
user feedback at a high level (e.g. bug reports and feature re-
quests). Future work could examine whether these embeddings
can also be used to group requirement-related information into
more fine-grained groupings (e.g. all user feedback related to
a specific software feature or even a specific requirement).

Future work could also implement the approach used by
CLAP, where user feedback is first classified into broad re-
quirements relevant categories (E.g. ”Bug”, ”Feature request”)
before being clustered using one of the evaluated techniques in
order to better segment the data. Such work could evaluate how
preliminary classification of user feedback affects the ability
of embedding methods to group related feedback together.

C. Threats to validity
A threat to validity of this work is whether our coverage of

feedback platforms and label sets in our test datasets gives a

useful representation of user feedback and its associated re-
quirements relevant characteristics. This threat was minimised
by evaluating on as a wide a range of datasets as is publicly
available in the field of software user feedback analysis, with a
variety of different feedback platforms and label sets included.
However, as new datasets describing user feedback (such as
those describing feedback on a new platform or with a new
label set) are created and become publicly available, it is
for future work to add these datasets to the evaluation of
embedding techniques.

Another threat is whether the comprehensiveness of the em-
bedding methods evaluated effectively represents the methods
available to embed text for clustering. Again, as wide a set
of available embedding methods as possible was chosen for
evaluation. However, this is not an exhaustive list of every
possible embedding method, and as new embedding methods
become available, it is for future work to evaluate these
embeddings.

Varied distance measures were used for different embedding
methods. This makes for an imperfect comparison between
embedding methods, and thus is a potential threat to validity.
We used varied distance measures due to the varying suit-
ability of these measures for different embedding types (see
Section III-C for more), and the highest overall performing
metric was used for each embedding type. This was done to
mitigate threats to validity when comparing a diverse set of
text embeddings.

Further, all of the datasets used for evaluation within our



evaluation are in English. This is due to the relative abundance
of English language datasets compared to other languages in
the field of analysing user feedback. Therefore, the results
of our evaluation can only be assumed to extend to that
of English user feedback. However, many of the techniques
tested, such as word frequency and topic modelling methods
are language agnostic, meaning that they could be tested on
datasets of other languages if available. Moreover, the USE
model has a cross-lingual embedding version10, and LaBSE
is trained to produce cross-lingual embeddings. Therefore,
these models could potentially be useful for embedding user
feedback in other languages. Future work could apply these
models to user feedback written in other languages to examine
the generalisability of our results.

VI. CONCLUSION

We present an evaluation of text embedding techniques on
software user feedback in order to determine which techniques
are most appropriate for use in feedback clustering and ranking
tasks that exist within the literature. This evaluation was done
over 7 datasets from the literature and on 4 different types
of embeddings. While existing embedding techniques such
as TF-IDF performed well, the performance of pre-trained
deep embedding models such as USE exceeded all existing
techniques from the literature.

The demonstrated superior performance of these pre-trained
models across multiple domains of user feedback can inform
the construction of future tools, particularly tools which seek
to cluster or rank feedback. The best performing embedding
techniques could also be paired with a use-case appropriate
text classifier for potentially even better user feedback analysis
tools.

The replication package for the experiments within this
paper can be found at https://doi.org/10.5281/zenodo.5183351.
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