
Noname manuscript No.
(will be inserted by the editor)

Code Smells Detection via Modern Code Review: A Study
of the OpenStack and Qt Communities

Xiaofeng Han · Amjed Tahir · Peng Liang ·
Steve Counsell · Kelly Blincoe · Bing Li ·
Yajing Luo

Received: date / Accepted: date

Abstract Code review plays an important role in software quality control. A typi-
cal review process involves a careful check of a piece of code in an attempt to detect
and locate defects and other quality issues/violations. One type of issue that may
impact the quality of software is code smells - i.e., bad coding practices that may
lead to defects or maintenance issues. Yet, little is known about the extent to which
code smells are identified during modern code review. To investigate the concept
behind code smells identified in modern code review and what actions reviewers
suggest and developers take in response to the identified smells, we conducted
an empirical study of code smells in code reviews by analyzing reviews from four
large open source projects from the OpenStack (Nova and Neutron) and Qt (Qt
Base and Qt Creator) communities. We manually checked a total of 25,415 code
review comments obtained by keywords search and random selection; this resulted
in the identification of 1,539 smell-related reviews which then allowed the study
of the causes of code smells, actions taken against identified smells, time taken to
fix identified smells, and reasons why developers ignored fixing identified smells.
Our analysis found that 1) code smells were not commonly identified in code re-
views, 2) smells were usually caused by violation of coding conventions, 3) reviewers
usually provided constructive feedback, including fixing (refactoring) recommen-

Xiaofeng Han · Peng Liang (�) · Bing Li · Yajing Luo
School of Computer Science, Wuhan University, Wuhan, China
Hubei Luojia Laboratory, Wuhan, China
E-mail: {hanxiaofeng, liangp, bingli, luoyajing}@whu.edu.cn

Amjed Tahir
School of Mathematical and Computational Sciences, Massey University, Palmerston North,
New Zealand
E-mail: a.tahir@massey.ac.nz

Steve Counsell
Department of Computer Science, Brunel University London, London, United Kingdom
E-mail: steve.counsell@brunel.ac.uk

Kelly Blincoe
Department of Electrical, Computer, and Software Engineering, University of Auckland, Auck-
land, New Zealand
E-mail: k.blincoe@auckland.ac.nz

2 Xiaofeng Han et al.

dations to help developers remove smells, 4) developers generally followed those
recommendations and actioned the changes, 5) once identified by reviewers, it usu-
ally takes developers less than one week to fix the smells, and 6) the main reason
why developers chose to ignore the identified smells is that it is not worth fixing the

smell. Our results suggest the following: 1) developers should closely follow cod-
ing conventions in their projects to avoid introducing code smells, 2) review-based

detection of code smells is perceived to be a trustworthy approach by developers,
mainly because reviews are context-sensitive (as reviewers are more aware of the
context of the code given that they are part of the project’s development team),
and 3) program context needs to be fully considered in order to make a decision
of whether to fix the identified code smell immediately.

Keywords Modern Code Review · Code Smell · Mining Software Repositories ·
Empirical Study

1 Introduction

Code smells are defined as symptoms of possible code or design problems (Fowler,
1999), which may potentially have a negative impact on software quality, such
as maintainability (Palomba et al., 2018), code readability (Abbes et al., 2011),
testability (Tahir et al., 2016), and defect-proneness (Khomh et al., 2009).

A large number of studies have focused on smell detection and removal tech-
niques (Moha et al., 2009; Tsantalis and Chatzigeorgiou, 2009). There are also
a number of open source (and widely used in industrial settings) static analy-
sis tools for smell detection; these include tools such as PMD1, SonarQube2, and
Designite3. Those tools are general purpose and use a threshold approach for iden-
tifying certain smells. However, previous work (Tahir et al., 2020; Yamashita and
Moonen, 2013) has shown that the program context and domain are important
in identifying smells. This may also include other factors like developer experi-
ence and previous involvement in the project, which makes it difficult for program
analysis tools to correctly identify smells since this information is rarely taken into
account. Existing smell detection tools are also known to produce false positives
(Fontana et al., 2016; Sharma and Spinellis, 2018). Therefore, manual detection of
smells could be considered more valuable than current automatic approaches.

Code review is a process which aims to verify the quality of software by detect-
ing defects and other issues in the code and to ensure that the code is readable,
understandable and maintainable before they are merged into the code base. It has
been linked to improved quality (Baker Jr, 1997), reduced defects (McIntosh et al.,
2016), reduced anti-patterns (Morales et al., 2015) and the identification of vulner-
abilities (Meneely et al., 2014). Compared to smell detection tools, code reviews
are usually performed by developers belonging to the same project (McConnell,
2004), so it is possible that reviewers will take full account of program context and
thus better identify code smells. In modern code review (MCR), code changes are
reviewed through some code review platforms, such as Gerrit4. There is a common

1 https://pmd.github.io
2 https://www.sonarqube.org
3 https://www.designite-tools.com
4 https://www.gerritcodereview.com

https://pmd.github.io
https://www.sonarqube.org
https://www.designite-tools.com
https://www.gerritcodereview.com

Code Smells Detection via Modern Code Review 3

practice of keeping the changes as small as possible to facilitate the review. But it
is still important to see if reviewers identify any code smells in the changes being
added to the code base. We are interested in this human-driven detection of code
smells since we want to see how different this is from automatic detection of code
smells given that context matters. However, little is known about the extent to
which code smells are identified during modern code review and whether develop-
ers (the code authors) take any action when a piece of code is deemed “smelly”
by reviewers.

Therefore, we set out to study the concept behind code smells identified in
MCR and track down actions taken after reviews were carried out. To this end, we
mined code review discussions from four most active projects from the OpenStack5

community (Nova6 and Neutron7) and the Qt8 community (Qt Base9 and Qt
Creator10), which use Gerrit as their code review platform. We then conducted
a comprehensive quantitative and qualitative analysis to study how common it
was for reviewers to identify code smells during code review, why the code smells
were introduced, what actions they recommended for those smells, how long it
took developers to change the code based on those recommendations and why
developers ignored some of the identified smells. In total, we analysed 1,539 smell-
related code reviews obtained by manually checking 25,415 review comments to
achieve our goal. Our results suggest that:

1. Code smells are not widely identified in modern code review.
2. Following coding conventions can help reduce the introduction of code
smells.
3. Reviewers usually provide useful suggestions to help developers better fix
the identified smells, while developers commonly accept reviewer recommen-
dations regarding the identified smells and tend to refactor their code based
on those recommendations.
4. Review-based detection of code smells is seen as a trustworthy mechanism
by developers.
5. Program context needs to be taken into full account to determine whether
to fix the identified code smells immediately.

In this paper, we extended our earlier work on studying code smells in code
reviews (Han et al., 2021) through the following additions:

1. We extended our dataset by including the code review data from two large
projects of the Qt community.
2. We explored specific refactoring actions suggested by reviewers.
3. We investigated two additional research questions (RQ4 and RQ5 in Section
3.1) discussing the resolution time of smells and also the reasons why developers
chose to ignore the identified smells.

The paper is structured as follows: related work is presented in Section 2. The
study design and data extraction methods are then explained in Section 3 and

5 https://www.openstack.org
6 https://wiki.openstack.org/wiki/Nova
7 https://wiki.openstack.org/wiki/Neutron
8 https://www.qt.io/
9 https://github.com/qt/qtbase

10 https://www.qt.io/product/development-tools

https://www.openstack.org
https://wiki.openstack.org/wiki/Nova
https://wiki.openstack.org/wiki/Neutron
https://www.qt.io/
https://github.com/qt/qtbase
https://www.qt.io/product/development-tools

4 Xiaofeng Han et al.

the results are presented in Section 4; this is followed by a discussion in Section 5
before threats to the validity in Section 6; finally, conclusions and future work in
Section 7.

2 Related Work

2.1 Studies on Code Smells

A growing number of studies have investigated the impact of code smells on soft-
ware quality, including defects (Hall et al., 2014; Khomh et al., 2009), maintenance
(Sjøberg et al., 2013) and program comprehension (Abbes et al., 2011). Other stud-
ies have looked at the impact of code smells on software quality using a group of
developers working on a specific project (Palomba et al., 2015; Sjøberg et al., 2013;
Soh et al., 2016).

Tufano et al. (2015) mined version histories of 200 open source projects to study
when code smells were introduced and the main reason behind their interaction. It
was found that smells appeared in general as a result of maintenance and evolution
activities. Sjøberg et al. (2013) investigated the relationship between the presence
of code smells and maintenance effort through a set of control experiments. Their
study did not find significant evidence that the presence of smells led to increased
maintenance effort. Previous studies also include work investigating the impact of
different forms of smells on software quality, such as architectural smells (Garcia
et al., 2009; Martini et al., 2018), test smells (Bavota et al., 2015; Tahir et al.,
2016) and spreadsheet smells (Dou et al., 2014).

A number of previous studies have investigated developer perception of code
smells and their impact in practice. A survey on developer perception of code smells
conducted by Palomba et al. (2014) found that developer experience and system
knowledge are critical factors in the identification of code smells. Yamashita and
Moonen (2013) reported that developers are moderately concerned about code
smells in their code. A recent study by Taibi et al. (2017) replicated the two
previous studies (Palomba et al., 2014; Yamashita and Moonen, 2013) and found
that the majority of developers always considered smells to be harmful; however,
it was found that developers perceived smells as critical in theory, but not as
much in practice. Tahir et al. (2020) mined posts from Stack Exchange sites to
explore how the topics of code smells and anti-patterns were discussed amongst
developers. Their study found that developers widely used online forums to ask for
general assessments of code smells or anti-patterns instead of asking for particular
refactoring solutions.

2.2 Code Reviews in Software Development

Code review is an integral part in modern software development. In recent years,
empirical studies on code reviews have investigated the potential code review fac-
tors that affect software quality. For example, McIntosh et al. (2014) investigated
the impact of code review coverage and participation on software quality in the
Qt, VTK, and ITK projects. The authors used the incidence rates of post-release
defects as an indicator and found that poorly reviewed code (e.g., with low review

Code Smells Detection via Modern Code Review 5

coverage and participation) had a negative impact on software quality. Uchôa et al.
(2021) investigated whether and how technical (e.g., number of times a file has
been changed and types of change) and social (e.g., number of prior code changes
submitted by the code owner and centrality of the code owner on the collaboration
graph) metrics can be used to predict design impactful changes by analyzing more
than 50k code reviews of seven real-world systems.

Some studies have focused on the impact of code review on software quality.
A study by Kemerer and Paulk (2009) investigated the impact of review rate on
software quality. The authors found that the Personal Software Process review rate
was a significant factor affecting defect removal effectiveness, even after account-
ing for developer ability and other significant process variables. Several studies
(Kononenko et al., 2015; McIntosh et al., 2014, 2016) have investigated the impact
of modern code review on software quality. Other studies have also investigated
the impact of code reviews on different aspects of software quality, such as vulner-
abilities (Bosu et al., 2014), design decisions (Zanaty et al., 2018), anti-patterns
(Morales et al., 2015) and code smells (Nanthaamornphong and Chaisutanon, 2016;
Pascarella et al., 2020).

Many recent studies of code review are based on pull requests (PR). Wessel
et al. (2020) conducted an empirical study on the effects of adopting bots to sup-
port the code review process on pull requests. They found that the adoption of
code review bots increased the monthly number of merged pull requests with less
communication between maintainers and contributors and lead projects to reject
fewer pull requests. Coelho et al. (2021) investigated technical aspects characteriz-
ing refactoring-inducing PRs based on data mined from GitHub and refactorings
detected by RefactoringMiner. They found that PRs that induced refactoring edits
have different characteristics from those that do not. Besides, their qualitative anal-
ysis indicates that at least one refactoring edit was induced by code review in more
than half of refactoring-inducing PRs they studied. Cassee et al. (2020) present
an exploratory empirical study investigating the effects of Continuous Integration
(CI) on open source code reviews. They found that the number of comments per
code review decreases after the adoption of CI, while the number of changes made
during a code review remains constant.

Panichella and Zaugg (2020) investigated the approaches and tools that are
needed to facilitate code review activities from a developer point of view. They
found that developers performed additional activities or tasks (e.g., the need to
fix licensing and security issues) during code review with the availability of new
emerging development technologies and practices, thus additional types of feed-
back and novel approaches and tools (e.g., for automatically detecting and fixing
documentation issues) are wanted by developers. However, code review is basi-
cally a human task involving technical, personal and social aspects. Chouchen
et al. (2021) present the concept of Modern Code Review Anti-patterns (MCRA)
and identify five common MCR anti-patterns. They conducted a study by analyz-
ing 100 reviews randomly selected from the OpenStack project. Their preliminary
results show that these anti-patterns are indeed prevalent in MCR, affecting 67%
of code reviews.

Nanthaamornphong and Chaisutanon (2016) examined review comments from
code reviewers and described the need for an empirical analysis of the relationship
between code smells and peer code review. Their preliminary analysis of review
comments from OpenStack and WikiMedia projects indicated that code review

6 Xiaofeng Han et al.

processes identified a number of code smells. However, the study only provided
preliminary results and did not investigate the causes of, or resolution strategies
for, these smells. A more recent study by Pascarella et al. (2020) found that code
reviews helped in reducing the severity of code smells in source code, but this was
mainly a side effect to other changes unrelated to the smells themselves.

3 Methodology

We detail the methodology followed in this study in this section. We explain the
methods used to collect, analyse and report our results for the research questions
answered in this study.

3.1 Research Questions

The main goal of this study is to investigate how code smells are addressed during
the course of a modern code review process. Specifically, we analyse code reviews
for the purpose of understanding the nature of code smells in code reviews from
a code reviewer and developer point of view. This goal is decomposed into the
following five research questions (RQs):

RQ1: Which code smells are the most frequently identified by code review-

ers?

Rationale: This question aims to find out the frequency with which code smells
are identified by code reviewers and what particular code smells are repeatedly de-
tected/reported by reviewers. Such information can help in improving developers’
awareness of these frequently identified code smells and also help tool designers to
focus on smells of more interest to developers.

RQ2: What are the common causes for code smells that are identified during

code reviews?

Rationale: This question investigates the main reasons behind the identified smells
as explained by the reviewers or developers. Previous research has shown that
context is important in identifying code smells (Sae-Lim et al., 2018; Tahir et al.,
2020). When conducting a review, reviewers can express and explain why they
think the code under review may contain a smell. Developers can also reply to
reviewers and explain what they think of the smell(s), and, if they agree with the
reviewers’ assessment, how they introduce the smell(s). Understanding the com-
mon causes of code smells identified manually by reviewers will shed some light on
the effectiveness of manual detection of smells and help developers better under-
stand the nature of identified smells and context in which those smells are being
labelled.

RQ3: How do reviewers and developers treat the identified code smells?

Rationale: This question investigates the actions suggested by reviewers and those
taken by developers on the identified smells. When a smell is identified, reviewers
can provide suggestions to resolve the smell and developers can then decide on
whether to fix or ignore the code with the smell. In addition to this, we also

Code Smells Detection via Modern Code Review 7

investigate the concrete refactoring actions (e.g., move/extract method) suggested
by reviewers. This question is further divided into three sub-questions (from the
perspective of the reviewer, developer and the relationship between their actions):

RQ3.1: What actions do reviewers suggest to deal with the identified

smells?

RQ3.2: What actions do developers take to resolve the identified smells?

RQ3.3: What is the relationship between the actions suggested by re-

viewers and those taken by developers?

RQ4: How long does it take to resolve code smells by developers after they

have been identified by reviewers?

Rationale: With this question, we want to investigate the influence of different
code smell categories on the fix time. In addition, combined with the results of
RQ3.1, we also want to know the influence of reviewers’ suggestions on the fix time
of code smells. This can help in understanding the nature of each of those smells,
and how difficult (using time as an indicator of difficulty) it can be to implement
such fixes.

RQ5: What are the common causes for not resolving code smells that have

been identified in code?

Rationale: In the case where code smells are not resolved, technical debt is in-
troduced by developers. Consequently, with this question, we want to know what
makes the developers choose to ignore the smells. Understanding this can further
help to remove smells and pay back technical debt.

3.2 Research Setting

We conducted our study using the projects from two large and active open-source
communities: OpenStack and Qt. OpenStack is a set of software tools for build-
ing and managing cloud computing platforms. It is considered one of the largest
open source communities. OpenStack projects contain around 13 million lines of
code, contributed to by around 12 thousand developers11. Qt is an open source
cross-platform application and UI framework developed by the Digia operation.
Contributions form different large communities are also welcomed by Qt.

We deemed these two communities to be appropriate for our study, since they
are large in size and both have long investment in their code review process.
We then selected two of the most active projects (based on the number of patch
submissions (Hirao et al., 2020)) in each of those communities as our subject
projects: Nova (a fabric controller) and Neutron (a network connectivity platform)
from the OpenStack Community and Qt Base (core UI functionality) and Qt
Creator (Qt IDE) from the Qt community.

The two OpenStack projects (Nova and Neutron) are mainly written in Python,
while the Qt projects (Qt Base and Qt Creator) are mostly written in C++. All
these projects use Gerrit12, a web-based modern code review platform built on
top of Git. The Gerrit review workflow is explained next.

11 As of March 2022: https://www.openhub.net/p/openstack
12 https://www.gerritcodereview.com

https://www.openhub.net/p/openstack
https://www.gerritcodereview.com

8 Xiaofeng Han et al.

Gerrit is designed for modern code review and provides a detailed code review
workflow. First, a developer (author) makes a change to the code and submits the
code (patch) to the Gerrit server so that it can be reviewed. Then, verification bots
check the code using static analysers and run automated tests. A reviewer (usually
other developers that have not been involved in writing the code under review)
will then conduct a formal review of the code and provide comments. The original
author can reply to the reviewer’s comments and action the required changes by
producing a new revision of the patch. This process is repeated until the change
is merged to the code base or finally abandoned.

3.3 Mining Code Review Repositories

Fig. 1 outlines our data extraction and mining process. We mined the code review
data via the RESTful API provided by Gerrit, which returns the results in a
JSON format. We used a Python script to automatically mine the review data
in the studied period and store the data in a local database. Details of the four
projects are shown in Table 1.

OpenStack
&
Qt

Code Review
Comments

Build
Keyword Set

Search

Randomly
Selected

Smell Related?
Labelled

DataYes

Remove FPs

No

Answer
Our RQs

Fig. 1: An overview of our data mining and analyzing process

Table 1: An overview of the subject projects

Project Review Period #Code Changes #Comments

Nova

Jan 2014 - Dec 2018

22,762 156,882
Neutron 15,256 152,429
Qt Base 27,340 104,272
Qt Creator 28,229 79,087

Total 93,587 492,670

In total, we mined 93,587 code changes and 492,670 code review comments
between Jan. 2014 and Dec. 2018 from the four projects. Upon checking the data,
we found that there are comments published by bots in Qt Base and Qt Creator
projects. Since our goal is to investigate manual detection of code smells in code
review, we decided to remove all bots generated comments (51,837 comments in
total). By doing so, we ended up with a total of 93,587 code changes and 440,833

Code Smells Detection via Modern Code Review 9

review comments (309,311 from the OpenStack community and 131,522 from the
Qt community) for further analysis.

3.4 Building the Keyword Set

To locate code review comments that include code smell discussions, we used sev-
eral variations of terms referring to code smells or anti-patterns, including “code
smell”, “bad smell”, “bad pattern”, “anti-pattern” and “technical debt”. In addi-
tion, considering that reviewers may point out a specific code smell by its name
(e.g., dead code) rather than using general terms, we also included a list of specific
code smell terms obtained from Tahir et al. (2018), that extracted these smell
terms from several relevant studies on this topic, including the first work on code
smells by Fowler (1999) and the systematic review by Zhang et al. (2011). The list
of these specific smell terms used in our study are shown in Table 2.

Table 2: Specific code smell terms included in our data mining process

Specific Code Smell Terms

Accidental Complexity Anti Singleton Bad Naming Blob Class
Circular Dependency Coding by Exception Complex Class Complex Conditionals
Data Class Data Clumps Dead Code Divergent Change
Duplicated Code Error Hiding Feature Envy Functional Decomposition
God Class God Method Inappropriate Intimacy Incomplete Library Class
ISP Violation Large Class Lazy Class Long Method
Long Parameter List Message Chain Middle Man Misplaced Class
Parallel Inheritance Hierarchies Primitive Obsession Refused Bequest Shotgun Surgery
Similar Subclasses Softcode Spaghetti Code Speculative Generality
Suboptimal Information Hiding Swiss Army Knife Temporary Field Use Deprecated Components

Since the effectiveness of the keyword-based mining approach relies on the set
of keywords that are used in the search, we followed the systematic approach used
by Bosu et al. (2014) to identify the keywords included in our search. This includes
the following steps13:

1. Build an initial keyword set (as described above).
2. Build a corpus by searching for review comments that contain at least one
keyword of our initial keyword set (e.g., “dead” or “duplicated”) in the code
review data we collected in Section 3.3.
3. Process the identified review comments which contain at least one keyword
of our initial keyword set and then apply the identifier splitting rules (i.e.,
“isDone” becomes “is Done” or “is done” becomes “is done”).
4. Create a list of tokens for each document in the corpus.
5. Clean the corpus by removing stopwords, punctuation and numbers and
then convert all the words to lowercase.
6. Apply the Porter stemming algorithm (Porter, 2001) to obtain the stem of
each token.
7. Create a Document-Term matrix (Tan et al., 2016) from the corpus.
8. Find the additional words that co-occurred frequently with each of our
initial keywords (co-occurrence probability of 0.05 in the same document).

13 implemented using the NLTK package: https://www.nltk.org

https://www.nltk.org

10 Xiaofeng Han et al.

After performing these eight steps, we found that no additional keywords co-
occurred with each of our initial keywords, based on the co-occurrence probability
of 0.05 in the same document. Therefore, we believe that our initial keyword set is
sufficient to support the keyword-based mining method. The initial set of keywords
(which is the same as the final set of keywords) is shown in Table 3.

Table 3: The initial set of keywords included in our data mining process

Code Smell Term Keywords

Code Smell smell, smelly
Bad Smell bad, smell, smelly
Anti-Pattern anti, pattern, bad
Bad Pattern bad, pattern
Technical Debt technical, debt
Accidental Complexity accidental, complexity, complex
Anti Singleton anti, singleton
Bad Naming bad, naming
Blob Class blob
Circular Dependency circular, circularity, dependency, dependent
Coding by Exception exception
Complex Class complex, complexity
Complex Conditionals complex, complexity, conditional, condition
Data Class data class
Data Clumps clump
Dead Code dead, death, unused, useless
Divergent Change divergent, divergence
Duplicated Code duplicated, duplicate, duplication, clone
Error Hiding hiding, hide
Feature Envy envy
Functional Decomposition decompose, decomposition
God Class god, brain
God Method god, brain
Inappropriate Intimacy inappropriate, intimacy
Incomplete Library Class incomplete, library
ISP Violation ISP, violate, violation
Large Class large, big
Lazy Class lazy
Long Method long
Long Parameter List long, parameter list
Message Chain chain
Middle Man middle
Misplaced Class misplace, misplaced
Parallel Inheritance Hierarchies parallel, inheritance
Primitive Obsession obsession
Refused Bequest refuse, refused, bequest
Shotgun Surgery shotgun, surgery
Similar Subclasses similar, subclass
Softcode softcode
Spaghetti Code spaghetti
Speculative Generality speculative, generality
Suboptimal Information Hiding suboptimal, hiding, hide
Swiss Army Knife swiss, army, knife
Temporary Field temporary, temporal
Use Deprecated Components deprecated, deprecate, component

Code Smells Detection via Modern Code Review 11

3.5 Identifying Smell-related Reviews in Keywords-searched Review Comments

We identified smell-related code reviews in four steps, as follows:

In step one, we developed a script to search for review comments that con-
tained at least one of the keywords identified in Section 3.4. The search returned
a total of 23,292 review comments from the four projects.

In step two, two of the authors independently and manually checked the review
comments obtained in step one without considering any other information to
exclude comments that were clearly unrelated to code smells. When both coders
decided a review comment was clearly not related to code smells, we excluded
it from any future analysis. The Cohen’s Kappa coefficient value (Cohen, 1960)
is 0.83, which indicates a near perfect agreement between the two coders. The
number of votes is shown in Table 4. As a result of this step, the number of
remaining review comments became 4,761.

To illustrate this process, consider the following two review comments that
contain the keyword “dead”. In the first example, the reviewer commented that:
“why not to put the port on dead vlan first?”14. Although this comment contains the
keyword “dead”, both coders agreed that it was unrelated to code smells and the
comment was therefore excluded. In the second example, the reviewer commented:
“remove dead code”15, which was regarded as related to dead code by the two coders
and was included in the analysis.

In step three, the same two coders worked together to manually analyze the
remaining (4,761) review comments using the related information of each review
comment, including the code review discussions and associated source code to de-
termine whether the code reviewers identified any smells in the review comments.
We considered a comment to be related to code smells only when both coders
agreed. The agreement between the two coders was calculated using the Cohen’s
Kappa coefficient (Cohen, 1960), which is 0.84 (almost perfect agreement). The
number of votes for TT (True-True), TF (True-False), FT (False-True), FF (False-
False) from the two coders is shown in Table 4. When the coders were unsure or
disagreed about the outcomes, a third author was then involved in the discussion
until a consensus was reached. This resulted in a reduction in the number of review
comments to 1,592.

Table 4: The number of votes for TT, TF, FT, FF from the two coders in step
two and three

Step two Step three

Coder 2
Coder 1

Maybe No
Coder 2

Coder 1
Yes No

Maybe 3576 482 Yes 1435 151
No 703 18531 No 187 2988

14 http://alturl.com/gqn7u
15 http://alturl.com/2kcko

http://alturl.com/gqn7u
http://alturl.com/2kcko

12 Xiaofeng Han et al.

To better explain our selection process, consider the two examples in Fig.
2. In the top example16, the reviewer suggested adding another argument to a
method to eliminate code duplication. Then the developer replied: “Done”, which
implies an acknowledgment of the code duplication. We considered this as a clear
smell-related review and the review comment was retained for further analysis. In
contrast, in the bottom example17, we observed that the comment was just used
to explain the meaning of the “DRY” principle, but did not indicate that the code
contained duplication according to the context. Thus, this comment was excluded
from analysis.

Reviewer

Developer

pass the datastore regex as a second argument and make the relevant checks in this new function;
that way we can remove the duplicate code on lines 1038 and 1128

Done

Reviewer

Developer

What do you mean by 'DRYer' here ?

Don't Repeat Yourself. It just means to consolidate duplicated code.

Reviewer

Then please just change the commit to say that instead of using obscure acronyms :-)

Fig. 2: Review comments related to duplicated code: the top review is
smell-related, while the bottom one is not

Finally, in step four, we recorded the related information of each review com-
ment in an external text file for further analysis, which contained: 1) a URL to the
code change, 2) the type of the identified code smell, 3) the discussion between
reviewers and developers and 4) a URL to the source code. We ended up with
a total of 1,502 smell-related reviews (we note that several review comments ap-
pearing in the same discussion were merged). An example of an extracted source
file is shown below:

16 http://alturl.com/4s775
17 http://alturl.com/786zn

http://alturl.com/4s775
http://alturl.com/786zn

Code Smells Detection via Modern Code Review 13

Code Change URL: http://alturl.com/2ne85

Code Smell: Dead Code

Code Smell Discussions:

1) Reviewer: “Looks like copy-paste of above and, more importantly, dead
code.”
2) Developer: “yes, sorry for that.”
Source Code URL: http://alturl.com/yai68

3.6 Identifying Smell-related Reviews in Randomly-selected Review Comments

Knowing that reviewers and developers may not use the same keywords as we
used in Section 3.5 when detecting and discussing code smells during code review,
we supplemented our keyword-based mining approach by including a randomly
selected set of review comments from the rest of the review comments (291,229 in
the OpenStack projects and 126,312 in the Qt projects) that did not contain any of
the keywords used in Section 3.4. Based on 95% confidence level and 3% margin of
error (Israel, 1992), we ended up with an additional 1,064 review comments from
the OpenStack projects and 1,059 review comments from the Qt projects. We then
followed the same process of manual analysis (i.e., from step two to step four

as described in Section 3.5) to identify smell-related reviews in these randomly
selected review comments. Finally, we identified a total of 37 smell-related reviews
from the randomly selected review comments.

In addition to the 1,502 smell-related reviews obtained by keywords search in
Section 3.5, we finally obtained a total of 1,539 smell-related reviews for further
analysis. Fig. 3 shows the size (in the form of inserted and deleted lines) of code
changes related to the identified smell-related reviews. For inserted lines, 55% of
code changes have no more than 200 lines of newly added code. Only 21% of the
code changes have more than 500 insertions. As for deleted lines, 92% of code
changes only deleted no more than 200 lines. This suggests that the size of code
changes was relatively small, generally.

1420, 92%

840, 55%

76, 5%

368, 24%

15, 1%

170, 11%

28, 2%

161, 10%

D EL ET ED L I N ES

I N S ER T ED L I N ES

<=200 200-500 500-1000 >1000

Fig. 3: The size of code changes related to the identified smell-related reviews

http://alturl.com/2ne85
http://alturl.com/yai68

14 Xiaofeng Han et al.

3.7 Manual Analysis and Classification

3.7.1 RQ1: Which code smells are the most frequently identified by code reviewers?

In Sections 3.5 and 3.6, we explained how we identified and recorded the smell type
noted in each review when analyzing the review comments. When a reviewer used
general terms (such as “smelly” or “anti-pattern”) to describe the identified smell,
we classified the type in these reviews as “general”. The others were classified as
specific smells, based on the keyword included and the description provided (e.g.,
duplicated code).

3.7.2 RQ2: What are the common causes for code smells that are identified during

code reviews?

For RQ2, we adopted Thematic Analysis (Braun and Clarke, 2006) to find the
causes for the identified code smells in Sections 3.5 and 3.6. We used MAXQDA18

- a software package for qualitative research - to code the related information of
the identified code smells. Firstly, we coded the collected smell-related reviews
by highlighting sections of the text related to the causes of the code smell in the
review. When no cause was found, we used “cause not provided/unknown”. Next,
we looked over all the codes that we created to identify common patterns and
generated themes. We then reviewed the generated themes by returning to the
dataset and comparing our themes against it. Finally, we named and defined each
theme. We also undertook further analysis from the perspective of smell types, to
investigate the main causes leading to the introduction of a specific smell type.

This process was performed by the same two coders as in Section 3.5 and
Section 3.6. A third author was involved in cases of disagreement by the two
coders.

3.7.3 RQ3: How do reviewers and developers treat the identified code smells?

For RQ3, we manually checked the code reviews obtained by following the pro-
cess described in Section 3.5 and Section 3.6 to identify the actions suggested by
reviewers and taken by developers.

For RQ3.1, we placed the actions recommended by reviewers into three cate-
gories, as proposed in Tahir et al. (2018):

1. Fix: recommendations are made to refactor the code smells.
2. Capture: detecting that there may be a code smell, but no direct refactor-
ing recommendations are given.
3. Ignore: recommendations are to ignore the identified smells.

When reviewers provided fix actions, we considered this as a refactoring action.
We then further investigated the concrete refactoring actions provided by reviewers
based on the classification in Fowler (1999), which provides 7 categories with 72
specific refactorings. For example, when you have a code fragment that can be
grouped together, you can use Extract Method (i.e., move this code to a separate
new method (or function) and replace the old code with a call to the method).

18 https://www.maxqda.com/

https://www.maxqda.com/

Code Smells Detection via Modern Code Review 15

Another example is related to generalization. If you have two classes with similar
features, you can use Extract Superclass to refactor your code. That is, create
a superclass and move the common features to the superclass. When no specific
refactoring action could be extracted from one review, we chose to exclude it from
our analysis.

For RQ3.2, we investigated how developers responded to reviewers that iden-
tified code smells in their code. We conducted this analysis following a three step
approach: We first checked the developer’s response to the reviewer in the dis-
cussion (Gerrit provides a discussion platform for both reviewers and developers).
Second, we investigated the associated source code file(s) of the patch before the
review was conducted and the changes in the source code made after the review. Fi-
nally, if the developers neither responded to the reviewers nor modified the source
code, we then checked the status of the corresponding code change (i.e., merged
or abandoned).

We considered the identified code smells to be solved in these two cases: 1)
changes were made in the source code file(s) and 2) the corresponding code change
was finally abandoned (i.e., when the code change was abandoned, the code change
was not be merged into the code base. In other words, the code smell no longer
existed).

There were cases where developers would not fix the smell immediately and
said that they would fix the identified smell in the future (i.e., in a later code
change). In such a case, it is difficult to judge whether the identified smell was
finally fixed. Therefore, we regarded this situation as unknown.

For RQ3.3, based on the results of RQ3.1 and RQ3.2, we categorized the re-
lationship between the actions recommended by reviewers and those taken by
developers into the following three categories:

1. A developer agreed with the reviewer’s recommendations.
2. A developer disagreed with the reviewer’s recommendations, or
3. A developer did not respond to the reviewer’s comments.

These three categories were then mapped into three actions:

1. Fixed the smell: Refactoring was done and the smell was successfully
removed.
2. Ignored the smell: No changes were performed to the source code and the
smell was finally ignored.
3. Unknown: Explained above.

In the below example, the reviewer just pointed out an instance of a dead code

smell. We categorised the suggestion of the reviewer as “Capture”. Subsequently,
the developer replied “Done” to the reviewer, which meant that the developer had
resolved the smell. We thought that, in such a case, the developer had agreed with
the reviewer’s recommendation and fixed the smell.

Link: http://alturl.com/7u8yq

Reviewer: “This is dead code since you’re overwriting it next.”
Developer: “Done”

http://alturl.com/7u8yq

16 Xiaofeng Han et al.

3.7.4 RQ4: How long does it take to resolve code smells by developers after they have

been identified by reviewers?

When an identified code smell was fixed by developers, we checked the time taken
for the fix. We extracted two types of time information related to the identified
code smells:

1. Identification Time: we regarded the time when the reviewer published
the smell-related review comment as the identification time of the smell.
2. Resolution Time: the time taken until a smell is resolved/refactored. This
time can be divided into two categories:

(a) when the smell was fixed in a later patch, we regarded the time of up-

loading the patch as the resolution time.
(b) when the smell was not fixed in a later patch, but the code change that
contained the smell was later abandoned, we regarded the time of abandoning

the change as the resolution time.

To provide a better understanding of these two types, Fig. 4 shows an example
from the Qt Creator project19. This example shows a comparison of source code
between two patches: patch 3 (left) and patch 4 (right). In this example, the
reviewer identified duplication (i.e., duplicated code). We regarded the published
time of this comment (i.e., Jul 28, 2014, 17:47:32 UTC+08:00) as the identification
time of this smell. In patch 4, we see that the developer made a change as the
reviewer suggested, implying that the smell was fixed. So we considered the upload
time of patch 4 (i.e., Jul 28, 2014, 18:42:38 UTC+08:00) as the resolution time of
this smell. The interval between these two time points (55 minutes and 6 seconds)
is seen as the time taken to fix the code smell.

Identification
Time

Resolution Event
Resolution

Time

Developer

Reviewer

Developer

Fig. 4: Example for the identification time and resolution time of a smell

In four reviews, the time interval between the resolution time and the identi-
fication time is very long, exceeding one year. In this case, the code change where
the identified smell was located took a long time to be abandoned. We believe

19 http://alturl.com/b2dkt

http://alturl.com/b2dkt

Code Smells Detection via Modern Code Review 17

that this case is abnormal (i.e., outliers) and including these reviews would have
affected our results; consequently we excluded these four reviews.

There are also two reviews in which the resolution time of the identified smells
could not be determined. Fig. 5 shows an example from the Nova project20. In this
example, the developer replied to the reviewer that they had removed most of the
duplicate code (i.e., the smell was fixed). However, we could not find out in which
code change this code smell was fixed. That is, we could not get the resolution
time of this smell; consequently, we excluded this review from our analysis.

Reviewer

Developer

It would be nice if you could refactor these two very similar contexts to a method. Not a blocker or
anything, but their length (even without the similarity) distracts from the actual action that's
happening here. And their similarity suggests they can be one instead of two methods.

I've got a change later in the series which handles the TODO and removes most of the duplicate
cruft here.

Fig. 5: An example of a smell where the resolution time cannot be found

There are also two reviews in which the reviewer added the smell-related com-
ment after the code change had been abandoned. In this case, the identification
time was earlier than the resolution time, which is not suitable for our analysis
and consequently we excluded these two reviews too.

Finally, we decided to keep only the smell categories that had over 100 in-
stances. Some code smell categories (i.e., long method, circular dependency, spec-

ulative generality, swiss army knife and general smell) were rarely identified and
consequently these smell categories may have limited statistical significance. We
decided to exclude them (35 reviews) from answering this RQ.

Moreover, to investigate the relationship between the time for fixing smells and
reviewer suggestions, we divided the selected reviews into two groups: 1) reviews
in which reviewers provided specific refactoring actions and 2) reviews in which
reviewers just captured the smells or provided general actions. We then calculated
and compared the minimum, quartile, maximum, and median time in these two
groups.

3.7.5 RQ5: What are the common causes for not resolving code smells that have been

identified in code?

For RQ5, we further investigated the reasons why developers explicitly disagreed
with reviewers’ assessment of smells (i.e., when developers challenge the reviewers’
assessments and then decide to ignore the identified smells). We adopted Thematic
Analysis (Braun and Clarke, 2006) to identify the causes of developers ignoring
code smells identified by reviewers by studying the content in the reply section of

20 http://alturl.com/odfjv

http://alturl.com/odfjv

18 Xiaofeng Han et al.

the review. We followed the same process in this RQ as the one used for answering
RQ2. For these cases, we then further checked the final status of the code changes to
investigate what happened after developers disagreed with reviewers and decided
not to fix the identified code smells.

Note that all of the manual analysis and classification (i.e., identifying smell-
related code reviews and their classifications in various aspects) was conducted by
at least two authors. A third author was involved in case of disagreement. In total,
the manual analysis process took around 65 days (full-time) work of the coders. To
facilitate replication, we provide the full data (coded) together with scripts used
to collect the dataset in our replication package (Han et al., 2022).

4 Results

In this section, we present the results of our five research questions (RQs). We also
provided a replication package online which is complementary for understanding
the results and replicating this study (Han et al., 2022).

4.1 RQ1: Which code smells are the most frequently identified by code reviewers?

We show the distribution of code smells identified in the code reviews from the
OpenStack projects in Figure 6. In general, we identified 1,184 smell-related re-
views in OpenStack. Of all the code smells we identified, duplicated code is the most
frequently identified smells, with exactly 617 (52%) instances. The smells of bad

naming and dead code are also frequently identified, as they are discussed in 304
(26%) and 218 (18%) code reviews, respectively. There are 30 (2%) code reviews
which identified long method, while other smells such as circular dependency and
swiss army knife are discussed in only 4 code reviews. The rest of code reviews (11,
1%) use general terms (e.g., code smell) to describe the identified smells, which
are called general smell terms in this work. Note that the results of distribution of
smell-related reviews from the OpenStack projects are slightly different from the
results in our previous work (Han et al., 2021) because we found that some code
smells were mentioned by developers and were not identified through code review,
which were consequently removed from our analysis.

The distribution of code smells identified in the Qt projects is shown in Fig.
6. In general, we identified 355 smell-related reviews in Qt. Unlike OpenStack, bad

naming is the most frequently identified smell, appearing in 146 (41%) reviews.
Dead code and duplicated code follow closely, identified in 113 (32%) and 92 (26%)
reviews, respectively. Long method, circular dependency, and speculative generality

are discussed in only 2, 1 and 1 reviews, respectively. Another finding is that no
general smell term is identified in the code reviews of Qt projects.

RQ1 Summary: According to the percentage of smell-related review comments
(less than 1% of total review comments), only a small number of code smells were
extracted in the code review data we analysed. Of the identified smells, duplicated
code, bad naming , and dead code are the most frequently identified smells in code
reviews.

Code Smells Detection via Modern Code Review 19

617

304

218

30 4 11

Duplicated Code Bad Naming Dead Code
Long Method Other Smell General Smell Terms

617

304

218

30 4 11

92

146

113

2 2
OpenStack Qt

Fig. 6: Distribution of smell-related reviews from the OpenStack and Qt projects

4.2 RQ2: What are the common causes for code smells that are identified during
code reviews?

For RQ2, we used Thematic Analysis to identify the common causes for the iden-
tified code smells as noted by code reviewers or developers. We then identified four
key causes:

– Violation of coding conventions: certain violations of coding conventions
(e.g., naming convention) are the cause for the smells. (Example: “moreThanOneIp

(CamelCase) is not our naming convention” 21).
– Lack of familiarity with existing code: developers introduced the smells due

to the unfamiliarity with the functionality or structure of the existing code.
(Example: “this useless line because None will be returned by default” 22).

– Unintentional mistakes of developers: developers forgot to fix the smells or
introduced the smells by mistake. (Example: “You can see I renamed all of the

other test methods and forgot about this one” 23).
– Design choices: the smells were considered to be caused by the design choice

of developers. (Example: “...If that’s the case something is smelly (too coupled)...”
24).

We firstly found that the majority of reviews (1,081, 70%) did not provide any
explanation for the identified smells - in most cases, the reviewer(s) simply pointed

21 http://alturl.com/azijc
22 http://alturl.com/h2bpc
23 http://alturl.com/cisgv
24 http://alturl.com/y2ndw

http://alturl.com/azijc
http://alturl.com/h2bpc
http://alturl.com/cisgv
http://alturl.com/y2ndw

20 Xiaofeng Han et al.

375

39
22 22

0

50

100

150

200

250

300

350

400

Violation of coding
conventions

Lack of familiarity with
existing code

Unintentional mistakes
of developers

Design choices

Fig. 7: Causes for the identified smells (we note that there are 1,071 reviews where
the reason was not provided)

out the problems, but did not provide any further reasoning for their judgements.
The detailed result is shown in Fig. 7.

Of the remaining 458 reviews in which the causes of the smells are provided,
375 (82%) of the reviews indicate that violation of coding conventions is the
main reason for the smell. For example, a reviewer suggested that the developer
should adhere to the naming standard of ‘test [method under test] [detail of what
is being tested]’ which indicated a bad naming smell, as shown below:

Link: http://alturl.com/zw5e6

Reviewer: “Please adhere to the naming standard of ‘test [method under
test] [detail of what is being tested]’ to ensure that future maintainers will
have an easier time associating tests and the methods they target.”

In addition, 39 (8%) of the reviews indicate that the smells are caused by
developers’ lack of familiarity with existing code. An example of such a case
is shown below. In this case, the reviewer pointed out that the exception did not
raise, so the exception handling code became a dead code smell that should be
removed. This could imply that the developer was not aware that the specific
exception was not raised.

Link: http://alturl.com/ccjy3

Reviewer: “on block device.BlockDeviceDict.from api(), excep-
tion.InvalidBDMVolumeNotBootable does not raise. so it is necessary to
remove the exception here.”

http://alturl.com/zw5e6
http://alturl.com/ccjy3

Code Smells Detection via Modern Code Review 21

Twenty-two reviews (5%) attribute unintentional mistakes of developers

(such as copy and paste) to be the cause of the smells, similar to the example
shown below:

Link: http://alturl.com/zwz2x

Reviewer: “I think you forgot to remove this.”
Developer: “Darn, yes bad copy / paste. Will fix it.”

Twenty-two reviews (5%) indicate that design choices was the cause of the
identified smells. This means that the developers made a poor design choice which
introduced the smell. Below is an example in which the reviewer pointed out
that the code may indicate that the developer improperly decomposed some test
methods.

Link: http://alturl.com/9ctor

Reviewer: “The fact that this is now a one liner feels like code smell. I’m
not sure, but it may indicate improper decomposition of some of these test
methods.”
Developer: “I think I see where you’re coming from with this. I’m going
to have another look.”

More specifically, from the perspective of code smell types, the distribution of
causes for different smell types are shown in Table 5.

Table 5: The distribution of causes for different smell types

Code Smell Cause Count %

Duplicated Code
cause not provided 683 96.3%
lack of familiarity with existing code 19 2.7%
unintentional mistakes of developers 7 1.0%

Bad Naming

violation of coding conventions 368 81.8%
cause not provided 79 17.6%
unintentional mistakes of developers 2 0.4%
lack of familiarity with existing code 1 0.2%

Dead Code

cause not provided 284 85.8%
lack of familiarity with existing code 19 5.7%
design choices 15 4.5%
unintentional mistakes of developers 13 4.0%

Long Method
cause not provided 29 90.6%
design choices 3 9.4%

Circular Dependency cause not provided 4 100%

Swiss Army Knife cause not provided 1 100%

Speculative Generality cause not provided 1 100%

General Smell
violation of coding conventions 7 63.6%
design choices 4 36.4%

For duplicated code, the majority of reviews (683 out of 709, 96.3%) did not
provide any cause for the identified smells. When causes are provided, lack of

http://alturl.com/zwz2x
http://alturl.com/9ctor

22 Xiaofeng Han et al.

familiarity with existing code is the main cause for this smell type, accounting
for 2.7%. The situation of dead code is similar to that of duplicated code. In 85.8% of
the reviews, no further explanation was provided. When the cause was provided,
lack of familiarity with existing code, design choices and unintentional mis-

takes of developers account for almost the same proportion, 5.7%, 4.5%, and
4.0%, respectively. On the other hand, bad naming was different to duplicated code

and dead code smells. The reviewers usually provided an explanation for why they
think a bad naming smell existed and violation of coding conventions is the
main noted cause for bad naming. In only 17.6% of reviews was the cause of the
bad naming smell not provided. For the other 49 smells, 71% of the reviews did
not provide the cause of the identified smell. Both design choices and violation

of coding conventions are mentioned in 7 reviews.

RQ2 Summary: In general, over half of the reviews did not provide an explanation
of the causes of the smells. In terms of the causes, violation of coding conventions

is the main cause for the smell as noted by reviewers and developers. Specifically,
violation of coding conventions is the main cause of the bad naming smell. For the
other smells, lack of familiarity with existing code and unintentional mistakes

of developers are the main noted causes of smells.

4.3 RQ3: How do reviewers and developers treat the identified code smells?

4.3.1 RQ3.1: What actions do reviewers suggest to deal with the identified smells?

Table 6: Actions recommended by reviewers to resolve smells in the code

Reviewer’s recommendation Count

Fix (without recommending any specific implementation) 718
Fix (provided specific implementation) 405
Capture (just noted the smell) 366
Ignore (no side effects) 50

The results of this RQ are shown in Table 6. In the majority of reviews (1,123,
73%), reviewers recommended fix resolving the identified code smells. These fixes
included either general directions (such as the name of a refactoring technique to be
used) or specific actions (pointing to specific changes to the code base that could
remove the smell). 405 (36%) of these fixes provided example code snippets to
help developers better refactor the smells. An example review where the reviewer
suggested a general fix action is shown below.

Link: http://alturl.com/3r3pu

Reviewer: “remove dead code”
Developer: “Done”

http://alturl.com/3r3pu

Code Smells Detection via Modern Code Review 23

Next is an example of a review that suggested a fix recommendation with spe-
cific implementation. In this example, the reviewer suggested removing duplicate
code from a test case and also provided a working example of how to apply Extract

Method (i.e., the process of moving part of the code inside a method/function to
a separate new method and replacing the existing code with a call to the newly
created method) refactoring to define a new test method.

Link: http://alturl.com/c3g69

Reviewer: “I think you can do function that remove duplicated code, some-
thing like that following...”

def compare (s e l f , e x p r e a l) :
for exp , r e a l in e x p r e a l :

s e l f . a s s e r tEqua l (exp [’ count ’] , r e a l . count)
s e l f . a s s e r tEqua l (exp [’ a l i a s name ’] , r e a l . a l i a s name)
s e l f . a s s e r tEqua l (exp [’ spec ’] , r e a l . spec)

366 reviews (24%) fall under the capture category. In those reviews, reviewers
just pointed out the presence of the smells, but did not provide any refactoring
suggestions. In a small number of reviews (50, 3%), reviewers suggested ignoring
the code smells found in the code reviews. In such a case, reviewers indicated that
they could tolerate the identified code smell or there was no need to fix the smell at
that point. We further analysed the types of the identified smells when reviewers
suggested an ignore action. The detailed results are shown in Table 7. Of the code
smells that reviewers suggested ignoring, duplicated code makes up the majority
(68%). Bad naming follows, accounting for 22%. The remaining code smells (i.e.,
dead code, circular dependency and long method) only appear in 5 (10%) reviews.

Table 7: Types of code smells that reviewers suggested ignore action

Code Smell Count %

Duplicated Code 34 68%
Bad Naming 11 22%
Dead Code 3 6%
Long Method 1 2%
Circular Dependency 1 2%

We then investigated the specific refactoring actions provided by reviewers
in cases where they recommended a fix action. Of the 1,123 reviews where re-
viewers provided fix suggestions, there are 754 (67%) reviews where no specific
refactoring actions are provided by reviewers. For smells that are straightforward
to resolve, such as dead code and bad naming, reviewers usually just suggested re-
moving the smell without providing concrete refactoring actions in these reviews.
In the remainder of the reviews, the distribution of the specific refactoring actions
recommended by reviewers is shown in Table 8.

From the table, we can see that reviewers usually suggested concrete refactor-
ing actions for duplicated code, such as Extract Method and Consolidate Dupli-

cate Conditional Fragments. It also indicates that there are multiple types of
refactoring actions to solve duplicated code. Furthermore, Extract Method is the

http://alturl.com/c3g69

24 Xiaofeng Han et al.

Table 8: Specific refactoring actions recommended by reviewers to resolve the
identified smells

Code smell Reviewer’s recommendation Count

Duplicated Code

Extract Method 261
Consolidate Duplicate Conditional Fragments 34
Extract Superclass 12
Consolidate Conditional Expression 12
Parameterize Method 11
Pull Up Method 5
Extract Variable 4
Substitute Algorithm 2
Extract Subclass 2
Add Parameter 1

Long Method
Extract Method 19
Consolidate Duplicate Conditional Fragments 2

Swiss Army Knife Extract Method 1

General Smell Extract Method 3

most frequently suggested refactoring action, especially for fixing duplicated code

and long method. Below we present the detailed results of duplicated code and long

method refactoring actions:

Specific refactoring actions for fixing duplicated code

In cases where reviewers named specific refactoring actions (344 reviews), Ex-

tract Method is the most frequently suggested (in 261 reviews, 76%) refactoring.
Below is an example of where the reviewer suggested extracting the duplicated
code to a new private method.

Link: http://alturl.com/482nn

Reviewer: “Instead of duplicating the function body, use a data() function
to supply test rows such as (cipher, presence of the ephemeral key)”

Consolidate Duplicate Conditional Fragments (i.e., move the code which
can be found in all branches of a conditional outside of the conditional) and Con-

solidate Conditional Expression (i.e., consolidate all conditionals that lead to
the same result or action in a single expression) are recommended in 34 (10%)
and 12 (3%) reviews, respectively to solve duplication in conditional statements.
Below is an example from Qt Base project, where the reviewer provided specific
code snippets by consolidating duplicate conditional fragments.

http://alturl.com/482nn

Code Smells Detection via Modern Code Review 25

Link: http://alturl.com/on6ts

Reviewer: “You can remove the duplicate rect.setSize() by re-ordering
these conditions.”

i f (r e c t . width () < . . .) {
i f (r e c t . isEmpty () && (touch−>dev i ce . . .)

diameter = . . .
r e c t . s e t S i z e

}

We note that Extract Superclass (i.e., create a shared superclass for the
classes with common fields and methods and move all the identical fields and
methods to the superclass), Pull Up Method (i.e., make the methods that perform
similar work in subclasses identical and then move them to the relevant superclass)
and Extract Subclass (i.e., create a subclass and use it in cases where a class has
features that are used only in certain cases) were suggested in 12, 5, and 2 reviews,
respectively. These three refactoring actions were used to deal with generalisation
in classes (e.g., two or more classes with common fields and methods that can be
grouped together and the original classes extend the newly created superclass).
Below is an example from the Nova project:

Link: http://alturl.com/z6svv

Reviewer1: “A lot of these methods appear to be duplicated from Libvir-
tISCSIVolumeDriver. Maybe just use it as the base class for LibvirtISER-
VolumeDriver?”
Reviewer2: “I agree with ‘Reviewer1’. This is a very good point.”
Developer: “I’m working on that.. thanks.”

Parameterize Method (i.e., combine methods that perform similar actions
that are different only in their internal values, numbers or operations by using a
parameter that will pass the necessary special value) and Add Parameter (cre-
ate a new parameter to pass the necessary data for the method which does not
have enough data to perform certain actions) were suggested in 11 and 1 re-
views, respectively. When multiple methods perform similar actions differing only
in their internal values, numbers or operations, these refactoring actions can be
used (similar to code duplication) to combine these methods by using a parameter
(argument) passed as a value to the method. An example of the Parameterize

Method refactoring in the Neutron project is shown below:

Link: http://alturl.com/o3r38

Reviewer: “The same comment applies to the below. The methods below
are very similar and it would be better to define a common method which
takes ”resource” name as an argument.”
Developer: “Done”

There are four reviews in which the reviewers suggest Extract Variable to
remove the duplicated code. In another two reviews, the duplicated code was caused
by bad (algorithm) implementation and the reviewers suggested using Substitute

http://alturl.com/on6ts
http://alturl.com/z6svv
http://alturl.com/o3r38

26 Xiaofeng Han et al.

Algorithm as a solution.

Specific refactoring actions for fixing long method

Of the 21 reviews where the reviewers provided specific refactoring actions, Ex-

tract Method was also suggested as a way of extracting the long method (appear-
ing in 19 reviews). Below is an example of a review where the reviewer suggested
splitting the code to separate (more manageable) methods.

Link: http://alturl.com/33dvx

Reviewer: “Aside: this function is crazy long and could probably benefit
from some refactoring into smaller helper functions.”
Developers: “Agreed, I’ll make a note to revisit during R.”

There are two reviews in which the reviewers suggested Consolidating Du-

plicate Conditional Fragments to refactor a long method.

4.3.2 RQ3.2: What actions do developers take to resolve the identified smells?

Table 9 provides details of the number of reviews that identified code smells versus
the number of fixes of the identified code smells.

Table 9: Developers’ actions to code smells identified in code reviews

Code smell #Reviews #Fixed by developers % of fixes

Duplicated Code 709 561 79%
Bad Naming 450 400 89%
Dead Code 331 307 93%
Long Method 32 24 75%
Circular Dependency 4 2 50%
Swiss Army Knife 1 1 100%
Speculative Generality 1 1 100%
General Smell 11 8 73%
Total 1,539 1,304 85%

Of the 1,539 code smells identified in the reviews, the majority (1,304, 85%)
were refactored by developers after the review (i.e., changes were made to the
patch). As per the results of RQ1, duplicated code, bad naming, and dead code were
the most frequently identified smells by reviewers. Subsequently, those smells were
also widely resolved by developers. 561 (79%) duplicated code, 400 (89%) bad naming

and 307 (93%) dead code smells were refactored by developers after they were
identified in reviews. The proportion of other smells being fixed are 73% (36/49).

Below is an example of a review with a recommendation by the reviewer to
remove dead code in Line 132 of the original file (i.e., remove the pass statement);
the developer then agreed with the reviewer’s recommendation and deleted the
unused code. Fig. 8 shows the code before review (Fig. 8a) and after the action
taken by the developer (Fig. 8b).

http://alturl.com/33dvx

Code Smells Detection via Modern Code Review 27

Link: http://alturl.com/szswu

Reviewer: “you can remove ‘pass’, it’s commonly considered as dead code
by coverage tool”
Developer: “Done”

Reviewer

Developer

(a) method before review (b) after change made by the developer

Fig. 8: An example of a remove dead code operation after review (the change is
highlighted in Line 132 (a))

There are 28 (2%) reviews in which the developers indicated that they would
fix the identified smells in a later change or commit. In this case, it is difficult
to determine whether the identified smells are fixed or not. We categorized these
cases as Unknown. Below is an example where the developer promised to remove
the duplication in another patch.

Link: http://alturl.com/dqev8

Reviewer: “nit: I’m pretty sure we have this same pattern in several places
in this driver code, we should create a libvirt.utils helper method for this
at some point, i.e. is parallels(vm mode=None).”
Developer: “Ok, I’ll do it in another patch”

The remaining 207 (13%) reviews do not lead to any changes in the code,
indicating that developers may have chosen to ignore such recommendations. This
could be a case where the developers thought that those smells were not as harmful
as suggested by the reviewers, or that there were other issues requiring more urgent
attention, resulting in those smells being counted as technical debt in the code (Li
et al., 2015).

4.3.3 RQ3.3: What is the relationship between the actions suggested by reviewers and

those taken by developers?

For answering this RQ, a visual map of reviewer recommendations and resulting
developer actions is shown in Fig. 9.

In 971 (63%) of the obtained reviews, developers agreed with the reviewer’s
suggestion and took exactly the same actions (either fix or ignore) as suggested
by the reviewers. Of those cases, there are 23 cases where developers agreed with
reviewers on ignoring the smells (i.e., a smell had been identified, but the reviewer

http://alturl.com/szswu
http://alturl.com/dqev8

28 Xiaofeng Han et al.

Unknown, 28

Ignored the smell, 23

Fig. 9: A treemap of the relationship between developers’ actions in response to
reviewers’ recommendations regarding code smells identified in the code

may have thought that the impact of the smell was minor and there is no need to

fix the smell now). The example below shows a case where a reviewer pointed out
that they could accept duplicated code if there was a reasonable justification and
the developer gave their explanation and ignored the smell.

Link: http://alturl.com/s59so

Reviewer: “...I just don’t like duplicated code but if there is a reasonable
justification for this I can be sold cheaply and easily.”
Developer: “we need create vm here to support a lot of the other testing
in this method. I agree it’s duplicate code, but it’s needed here too and
this one is more complex that (sic) the test config one....”

There are 28 (2%) reviews where the developers agreed with reviewers but did
not make any changes to the code immediately; however, the developers promised
to fix the identified smells in a later patch or commit. Below is an example in
which the developer promised to remove the duplication in a follow-up change.

Link: http://alturl.com/pzmzz

Reviewer: “Can’t we use the same enum class for both instead of keeping
in sync? (for example in follow-up patch)”
Developer: “Yes, I will remove the duplication in a follow up change.”

In 356 (23%) reviews, even when developers did not respond to reviewers di-
rectly in the review system, they still made the required changes to the source code

http://alturl.com/s59so
http://alturl.com/pzmzz

Code Smells Detection via Modern Code Review 29

files. We note that there are other 81 (5%) reviews where developers had different
opinions from reviewers and decided to ignore the recommendations to refactor
the code and remove the smell. In those cases, the developers themselves decided
that the smell was either not as critical as perceived by the reviewers, or there
were time or project constraints preventing them from implementing the changes,
which are typically self-admitted technical debt (Potdar and Shihab, 2014). An
example review is shown below:

Link: http://alturl.com/pzmzz

Reviewer: “This method has a lot duplicated code of
‘ apply instance name template’. The differ in the use of ‘index’ and
the CONF parameters. With a bit refactoring only one method would be
necessary I guess.”
Developer: “I thought to make / leave this separate in case one wants
to configure the multi instance name template different to that of single
instance.”

Similarly, there are also 103 (7%) reviews in which developers neither replied
to reviewers nor modified the source code. For those cases, we suppose that the de-
velopers did not find the recommendations regarding how to deal with the specific
smells in the code helpful and therefore decided not to perform any changes. In
all of those cases, no further explanation/reasons were provided by the developers
on why they ignored these recommended changes.

RQ3 Summary: In most reviews, reviewers provide fixing (refactoring) recom-
mendations (e.g., in the form of code snippets) to help developers remove the
identified smells. Developers generally follow those recommendations and perform
the suggested refactoring operations, which then appear in the patches committed
after the review.

4.4 RQ4: How long does it take to resolve code smells by developers after they
have been identified by reviewers?

According to the result of RQ3.2, a total of 1,304 (85%) code smells identified in
the reviews were fixed by developers. Of these, we removed cases where the time
taken for the fix was more than one year (4 reviews), the resolution time could
not be determined (2 reviews), and the identification time was earlier than the
resolution time (2 reviews, as explained in Section 3.7.4). We also note that some
smell categories are very few in number from the 1,304 code reviews (e.g., long

method and circular dependency) and we chose to exclude them (35 reviews) from
the analysis of this RQ because their resolution time may have limited statisti-
cal significance. Thus, the main smell categories we investigated in this RQ are
duplicated code, bad naming, and dead code smells. Finally, we analysed 1,261 code
reviews to answer RQ4. Table 10 shows minimum, quartile, maximum, and mean
time for fixing different categories of code smells.

As shown in Table 10, we found that the minimum time taken for fixing du-

plicated code, bad naming, and dead code could be very short - only around one or
two minutes. However, it may also take a very long time to fix these code smells

http://alturl.com/pzmzz

30 Xiaofeng Han et al.

Table 10: Time taken for fixing different categories of code smells

Duplicated Code Bad Naming Dead Code

Count 555 401 305
Minimum Time (second) 69s 127s 63s
Lower Quartile (hour) 7.9h 3.4h 2.1h
Median Time (hour) 23.0h 20.5h 19.1h
Higher Quartile (day) 5.0d 3.8d 3.7d
Maximum Time (day) 352.0d 325.3d 291.2d
Mean Time (day) 12.2d 9.2d 7.8d

(around a year in some cases). According to the quartile time (i.e., lower quartile,
median, and higher quartile time) for fixing these three categories of code smells,
duplicated code was fixed slower than the other two smells. We also conducted a
survival analysis using the Kaplan–Meier curves (Kaplan and Meier, 1958). The
survival curve is shown in Fig 10, which also supports our finding above.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
fix time / second 1e7

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

Bad Naming
Dead Code
Duplicated Code

Fig. 10: The survival curve of different smells identified in code reviews

Further, we used a Kruskal-Wallis Test (Kruskal and Wallis, 1952) to deter-
mine whether or not there was a statistically significant difference in fix time be-
tween these three groups. We used SciPy25 (fundamental algorithms for scientific
computing in Python) to perform the Kruskal-Wallis Test. In this case, the test
statistic is 13.3041 and the corresponding p-value is 0.0013. Since the p-value is less
than 0.05, we can conclude that the category of code smell lead to a statistically
significant difference in fix time.

25 https://scipy.org/

https://scipy.org/

Code Smells Detection via Modern Code Review 31

Fig. 11 shows the distribution of time taken for fixing those code smells. From
this figure, we observe that 1,045 smells (83%) were fixed within one week. More
than half of smells (674, 53%) were fixed within one day, and 371 (29%) smells were
fixed in more than one day but within one week. 125 (10%) smells took developers
2-4 weeks to fix, and only 91 (7%) smells took more than one month to fix.

674

371

125
91

0

100

200

300

400

500

600

700

800

< 1day 1day < 7day 7day < 1month > 1month

Fig. 11: Distribution of time for fixing smells identified in code reviews

We also calculated the minimum, quartile, maximum, and mean time for fix-
ing code smells based on whether the specific refactoring actions were provided
or not. The results are shown in Table 11. We can see that the time taken to
fix the identified smells is almost the same under these two circumstances. We
formed a null hypothesis that there was no statistical difference in time taken to
fix a smell whether specific refactoring suggestions have been provided or not. We
then performed a Mann-Whitney Test (Mann and Whitney, 1947) to compare the
differences between those two groups. The test statistic is 160548.5 and the corre-
sponding p-value is 0.7800 (i.e., p-value>0.05); it can therefore be concluded that
there is no statistically significant difference between fix time in these two cate-
gories. Based on the results, we can see that whether reviewers provided specific
refactoring suggestions or not has little effect on the fix time of the identified code
smells.

RQ4 Summary: Among the studied smells, duplicated code smells took more time
to fix compared to bad naming and dead code smells. Moreover, 83% of the smells
were fixed by developers within one week from being identified in code reviews.

32 Xiaofeng Han et al.

Table 11: Time taken for fixing smells (classification according to whether the
reviewers provide specific refactoring actions or not)

Specific refactoring actions provided No specific actions provided

Count 360 901
Minimum Time (second) 69s 63s
Lower Quartile (hour) 4.5h 4.6h
Median Time (hour) 21.6h 21.1h
Higher Quartile (day) 3.9d 4.2d
Maximum Time (day) 266.1d 352.0d
Mean Time (day) 8.2d 10.9d

4.5 RQ5: What are the common causes for not resolving code smells that have
been identified in code?

According to the results of RQ3.2, there are 81 (5%) reviews in which develop-
ers disagreed with reviewers and chose to ignore the identified code smells. We
excluded one review as we were not able to access the URL link provided by the
developer. Fig. 12 shows this review, in which the developer only replied with a
URL to the reviewer, but to which we had no access. We then inspected the later
patches and the final status of the code change. We found that the developer made
no change in later patches and the code change was finally merged to the code
base. Considering this, we treated this as a case of an ignore of the reviewer’s
suggestion. We could not find the reason why the developer ignored the smell and
consequently we excluded this review from our analysis.

Reviewer

Developer

This function has a bad name. It should be "conjugated".

Maybe we should deprecate & rename?

https://codereview.kdab.com/#/dashboard/self

Fig. 12: The review in which we could not find the reason why the developer
ignored the smell

As shown in Table 12, we found that the main reason for why developers ig-
nored identified smells was simply that it was not worth fixing the smell (in
28 reviews). In this case, the developers thought that there were more important
things to consider, or fixing the smells would bring little value or add more com-
plexity. An example of such a case is shown below. In this case, the developer
thought that removing the duplication would make specific comparisons more ex-
pensive and the developer chose to ignore the smell.

Code Smells Detection via Modern Code Review 33

Table 12: Distribution of causes for ignoring smells identified in code reviews

The cause Count %

Not worth fixing the smell 28 35%
Difference in opinion between developers and reviewers 20 25%
Limited by developers’ knowledge 9 11%
Keep consistent with other code 8 10%
For future consideration 7 9%
Cause other errors when fixing the smell 4 5%
Improve code readability 4 5%

Link: http://alturl.com/76z9f

Reviewer: “How about implementing int compare() which returns <0, 0
or >0, and then implement the other comparisons in terms of that? Should
result in less code duplication as there currently is with operator<and
operator== ...”
Developer: “I don’t see how this reduces code duplication. I can see how a
compare would allow one function to do all comparisons but it would make
specific comparisons more expensive.”

20 reviews attribute difference in opinion between developers and review-

ers to be the reason why developers ignored the smells. This means that although
the reviewers identified the code smell, the developer thought it was acceptable
and chose not to fix it. In the below example, the reviewer suggested removing the
duplicated code while the developer thought that there was no problem and ignored
the smell.

Link: http://alturl.com/up6a5

Reviewer: “It’s kind of crazy to have to duplicate this kind of logic in the
tests. The first thing I’d like to suggest is extracting event name determi-
nation into its own method so it can be easily mocked out in unrelated
tests.”
Developer: “I’d prefer to just leave this for now if that’s okay”

In nine reviews, the reason why developers ignored the identified smell was
limited by developers’ knowledge. This means that developers could not find a
better way to fix the identified smell or they did not have enough information to
fix it. Here is an example about bad naming where the developer could not find a
better name and left it as it was.

http://alturl.com/76z9f
http://alturl.com/up6a5

34 Xiaofeng Han et al.

Link: http://alturl.com/z753q

Reviewer: “naming might be confusing. You could also include Re-
sult::MessageIntermediate and think of a better name for this group... (just
to save an unnecessary roundtrip: no suggestions.)”
Developer: “got no better naming idea as well.. leaving this for now as is,
guess this will change when the whole Message* stuff gets re-done.”

In eight reviews, the reason why developers ignored the smell is that they
chose to keep consistent with other code. The following example shows that
the developer just used the original name, although the reviewer thought that it
was poor naming.

Link: http://alturl.com/onn6f

Reviewer: “Gosh, what an awful naming convention...”
Developer: “I agree but I just used the original one”

Seven reviews indicate that developers chose to ignore smells for future con-

sideration. Developers indicated that they preferred to keep the status quo to
help future changes. There are also cases in which developers indicated that the
smells would be fixed once some certain features came online. Below is an example
in which the developer believed that small duplication would help to make things
cleaner for subsequent changes.

Link: http://alturl.com/bevos

Reviewer: “This really needs to be extracted into a common method. We
will suck at maintaining the API if we have this level of duplication.”
Developer: “I think we could remove duplication for force param here,
but leave things as is for other params, e.g. common get args method will
add microversion checks for block migration param, see lines 83-97, which
I’d like to leave for microversion 2.34, because it’s already supports ’auto’
for block migration. So this small dup will help to make things cleaner for
subsequent changes.”

Four reviews indicated that dealing with a particular smell could cause other

errors when fixing the smell. The following example shows that removing the
identified dead code (i.e., the return statement) would produce errors in release
mode.

Link: http://alturl.com/au5pu

Reviewer: “No dead code, please.”
Developer: “It’s dead code but if I omit the ”return 0” statement I get
errors in release mode about missing return value.”

In the remaining 4 reviews, the developers noted that the existence of smells
would have a positive impact and it would, in general, improve code readability,
as shown in the example below.

http://alturl.com/z753q
http://alturl.com/onn6f
http://alturl.com/bevos
http://alturl.com/au5pu

Code Smells Detection via Modern Code Review 35

Link: http://alturl.com/uzo6c

Reviewer: “nit: duplicates to lines 444-449; could be refactored into an
attribute.”
Developer: “True, but that would make the test a little less readable IMO.
In this case I think the duplication is worth it”

We also checked the status of the code changes where developers disagreed
with reviewers and chose to ignore the identified smells. The detailed results are
show in Table 13. Although the identified smells were ignored by developers, 61
(75.3%) code changes were still merged to the primary codebase while only 20
(24.7%) code changes were finally abandoned or deferred.

Table 13: The status of code change where developers disagreed with reviewers
and ignored the smells

Code Change Status Count %

Merged 61 75.3%
Abandoned 19 23.5%

Deferred 1 1.2%

RQ5 Summary: Developers disagreed with reviewers in only a small number
of code reviews (81, 5%). In terms of the reasons for disagreement, not worth

fixing the smell was the main reason for ignoring the identified smells. Although
developers disagreed with reviewers and ignored the smells, 75.3% of these changes
were still merged into the codebase.

5 Discussion

5.1 RQ1: The most frequently identified smells

In general, most of the smells are not extracted from the code review data. One
potential reason is that code smells do not appear frequently during the develop-
ment of the four selected projects in this study, or, simply, that the reviewers were
unaware of the presence of certain code smells. Another potential reason is that
reviewers were aware of code smells, but that they did not consider them very
harmful. One avenue of further work would be to run smell detection tools and
compare the smells identified by these tools with the smells identified manually by
reviewers to better understand how many code smells are being missed by review-
ers. Interviews with the code reviewers can also provide further understanding of
the reasons behind the low number of code smells being discussed in code review.

The results of RQ1 imply that duplicated code, bad naming and dead code are, by
far, the most frequently identified code smells in code reviews. Results regarding
duplicated code are in line with previous findings which indicate that this smell is
frequently discussed among developers in online forums (Tahir et al., 2020) and is
also the smell that developers are most concerned about (Yamashita and Moonen,

http://alturl.com/uzo6c

36 Xiaofeng Han et al.

2013). However, dead code and bad naming were not found to be ranked highly
in previous studies (Yamashita and Moonen, 2013). The different results are due
to the different context and domain, critical to identifying smells, as shown by
previous studies (Tahir et al., 2020; Yamashita and Moonen, 2013). The results
reported in these two previous studies (Tahir et al., 2020; Yamashita and Moonen,
2013) are based on a more generic investigation of code smells among online Q&A
forum users and developers. The context of some of these code smells is not fully
taken into account, even if the developers provide specific scenarios to explain
their views. In contrast, the results reported in this study are project-centric and
the context of the identified code smells during code reviews is known to reviewers
and developers involved in the identification and removal of the smells. This is also
supported by our further investigation of the refactoring actions applied to source
code once smells are identified (discussed in RQ3 and RQ5).

A study by Palomba et al. (2018) has shown that the most diffuse code smells
are those characterized by long and/or complex code (e.g., complex class), which is
different from our results of RQ1. One potential reason for this is the contrast in
code smells considered in the two studies. In the study of Palomba et al. (2018),
they did not consider duplicated code, dead code and bad naming, but focused on
a larger granularity of code smells, i.e., at the class and method level. Another
potential reason is that, in modern code review, code changes are kept as small as
possible to facilitate the review process and this may contain very few class level
design issues, e.g., complex class. Code smells at a lower level of granularity (e.g.,
dead code) are easier to detect on the fly (especially with conditional statements),
while complexity related smells can be hard to detect without the use of detection
tools. The reasons for the difference are also an interesting aspect that should be
explored in future research.

In addition, different styles of code reviews may affect smell detection. In this
work, we focused on the modern code review process that reviews code changes.
Compared with other styles of code reviews (e.g., reviewing code instead of changes
to the code base), changes by default are going to be smaller in a modern code
review setting, leading to detection of smells with a smaller granularity. Other
styles of code review may consider the whole project and it is more likely to
identify smells at higher levels, such as project and component level code smells.

5.2 RQ2: The causes for identified smells

In general, we identified four types of common causes (see Fig. 7) for code smells
in code reviews (RQ2). Among these, violation of coding conventions was the
major cause of code smells identified in reviews. Conventions are important in re-
ducing the cost of software maintenance, while the existence of smells can increase
this cost. We conjecture that this is because developers may not be familiar with
the coding conventions of their community and the system they implemented. More
specifically, violation of coding conventions is the main cause for the bad naming

smell. Usually, communities or companies will have a specific naming convention,
which can help improve the readability of code. The main cause for duplicated code

and dead code is lack of familiarity with existing code. For example, duplicated

code and dead code may occur because developers are unaware of existing func-
tionality. This implies that a developer’s unfamiliarity with coding conventions or

Code Smells Detection via Modern Code Review 37

existing code can inadvertently lead to smells or other problems and this can have
a negative impact on software quality.

Another main observation is that more than half of reviewers (in review com-
ments where they indicated that there was a code smell) simply pointed out the
smells in the code, but did not provide any further explanation as to why they
considered that as a smell. One explanation for this is that the identified smells
are simple or self-explanatory (e.g., duplicated code, dead code). Therefore, it is not
expected that the reviewers needed to provide any further explanation for these
smells. Although the point of code review is to identify shortcomings (including
potential code smells) in contributed code, understanding the causes of code smells
can help practitioners better understand how the code smell was introduced and
then take corresponding remedial measures.

5.3 RQ3: The relationship between what reviewers suggest and the actions taken
by developers

The results of RQ3 show that reviewers usually provide useful recommendations
(sometimes in the form of code snippets) when they identify smells in the code
and developers usually follow these suggestions. Given the constructive nature
of most reviews, developers tend to agree with the review-based smell detection
mechanism (i.e., where a reviewer detects and reports a smell) and, in most cases,
they perform the recommended actions (i.e., refactoring their code) to remove the
smell. We believe that this is because reviewers can take more information into
account as the program context and domain are important in identifying smells
(Sae-Lim et al., 2018; Tahir et al., 2020; Yamashita and Moonen, 2013).

The result of RQ3.1 shows that reviewers usually provide general refactoring
instructions (i.e., remove or refactor the smells) without specific suggestions (i.e.,
how to refactor the smells) and these types of smells are usually easy to fix. For
example, dead code is usually resolved by simply removing the unused or unreach-
able code. For bad naming, it is usually a matter of coming up with a different
name and changing a small part of source code. Moreover, compared with the
recommendations for dead code and bad naming, there are more types of specific
refactoring actions suggested by reviewers for resolving duplicated code. One possi-
ble reason could be that duplicated code is more difficult to repair by contrast and
consequently reviewers would propose more detailed actions to help developers
remove those smells. Another finding is that Extract Method is the most fre-
quently suggested refactoring action, which is consistent with what Fowler states
in his seminal refactoring text (Fowler, 1999): “Extract Method is one of the most

common refactorings I do. I look at a method that is too long or look at code that needs

a comment to understand its purpose. I then turn that fragment of code into its own

method”.

There were some case when reviewers suggested ignoring identified smells. In
these cases, we found that duplicated code made up the majority. In general, the
tolerance of duplicated code varies from one reviewer to another. When reviewers
identified duplicated code, but the number of lines of duplicated code did not reach
their threshold, reviewers often indicated that the relevant duplicated code could
be ignored.

38 Xiaofeng Han et al.

5.4 RQ4: The time taken for fixing the smells

From the perspective of code smell categories, it usually takes more time to fix
duplicated code than dead code and bad naming. We believe that this is related to
the nature of those code smells. Usually, code duplication involves multiple parts
of the source code rather than a single part, which makes it more difficult to fix
than dead code and bad naming. Another finding is that the longest time taken for
fixing duplicated code, bad naming, or dead code was around 300 days. We posit that
this is partially related to the way developers work on patches and abandon code
changes. When the developer uploads a new patch, it may not be used to solve
the identified code smell and to solve other problems also. In some reviews, we
regarded the time of abandoning the code change where the smell locates as the
resolution time of the identified code smell. This could also prolong the resolution
time of the code smell we obtained because the code change is usually abandoned
after a long time without any update.

Moreover, from the perspective of the distribution of the time taken to fix
smells, most of the identified smells were fixed within one week from the time they
were first identified in the reviews. We suspect that this finding may be related to
the nature of the code smell and the reviewers’ recommendations. Dead code and
bad naming are usually easier to fix as we explained in Section 5.3. Additionally,
we found that 7% of smells took more than one month to fix. We then further
checked related information on these smells, i.e., the code review discussions, but
found that no reasons were provided for such a delay in most cases. The developers
just uploaded the patches or abandoned the code changes after a significant time
period without providing any reasoning. Only in one review26, a developer indicate
that it was not the right time to fix the identified code smell.

5.5 RQ5: Reasons for ignoring the identified smells

Although not as frequently occurring, there are cases where changes recommended
by reviewers were ignored (see Figure 9). The result for RQ5 shows that not worth

fixing the smell is the main reason why developers ignored removing the smells
from the code. In other words, it is assumed that fixing the smells would either
add more complexity to the code, or just bring little value as a result. The context
of the smell (such as the time of fixing it, the complexity it brings, whether there
is something more important, etc.) should be taken into full consideration and the
value that the fix will bring should also be assessed.

Another reason is difference in opinion between developers and review-

ers, consistent with what Fowler noted (Fowler, 1999) that “no set of metrics rivals

informed human intuition”. This situation is partially due to the different under-
standing or experience of reviewers and developers about the severity of identified
code smells. When a reviewer identifies a code smell to be resolved, a developer
may not agree that the code smell needs to be fixed; equally, that it is an issue
which can be fixed later in the same way that technical debt is accrued (Li et al.,
2015).

We also found that although developers ignored smells, most of the code
changes were still merged into the codebase. One potential reason for this is that

26 http://alturl.com/rrxo7

http://alturl.com/rrxo7

Code Smells Detection via Modern Code Review 39

the proposal of a code change is not specifically used to fix the identified code
smell. The introduction of a code smell is usually a side product and the existence
of a code smell may have little influence on the merging of code change. It also
means that the program context of a code smell has a great impact on how harmful
the smell is and whether or not it needs to be fixed immediately.

5.6 Implications

There are a number of implications of the work contained in this paper. First,
although we built the initial set of keywords with 5 general code smell terms and 40
specific code smell terms, most of the smells are not extracted from the code review
data (e.g., long parameter list, temporary field, and lazy class). Gerrit is designed to
review code changes and smells might not be mentioned during the code review
process if they are not deemed severe enough by the reviewers. Another potential
reason is that code smells considered as problematic in academic research may not
be considered as a pressing problem in industry. Thus, more research should be
conducted with practitioners to explore existing code smells and to understand
the driving force behind industry efforts on code smell detection and elimination.
This will help to guide the design of next-generation code smell detection tools.

Second, violation of coding conventions is the main cause of code smells
identified in code reviews. It implies that a developer’s lack of familiarity with
the coding conventions in their company or organization could have a significantly
negative impact on software quality. To reduce code smells, project leaders need to
adopt code analysis tools and also help educate their developers to become familiar
with the coding conventions adopted in the system; we note that some tools can
also be used to automatically check for compliance with code conventions.

Third, in smell-related reviews, reviewers usually give useful suggestions to help
developers better fix the identified code smells and developers generally tend to
accept those suggestions. Review-based detection of smells is seen as a trustworthy
mechanism by developers. Although code analysis tools (both static analyzers and
dynamic (coverage-based) tools) are able to find some of those smells, their large
outputs restrict their usefulness. Most tools are context and domain-insensitive,
making their results less useful due to potential false positives produced by these
tools (Fontana et al., 2016).

Fourth, it usually takes developers less than one week to fix an identified smell.
According to the results of RQ4, providing detailed recommendations has little
influence on the fix time of code smells. Fixing those smells depends on many
factors, most importantly program context. For relatively less complex code smells
(e.g., duplicated code), reviewers may merely point out the existence of those smells
rather than spending time making more detailed suggestions for their removal.

Fifth, there are cases where developers disagreed with reviewers and ignored
identified smells (see Figure 9). Of these, not worth fixing the smell is the
main cause when developers chose to ignore identified smells. This could imply
that developers do not tend to make any changes to existing code where fixing
code smells takes significant effort (a typical technical debt scenario (Li et al.,
2015). That is, context seems to matter in deciding whether a smell is bad or
not (Sharma and Spinellis, 2018; Tahir et al., 2020). There have been some recent
attempts to develop smell-detection tools that take developers-context into account

40 Xiaofeng Han et al.

(Pecorelli et al., 2020; Sae-Lim et al., 2018). However, contextual factors such as
project structure and developer experience are much harder to capture with tools.
Code reviewers are much better positioned to understand and account for those
contextual factors (as they are involved in the project) and their assessment of
smells might be trusted more by developers than that of automated detection
tools.

Finally, to increase the reliability of detecting code smells, it may need a two-
step detection mechanism; first, static analysis tools to identify smells (as they are
faster than human assessment and also more scalable) and second for reviewers to
go through those smell instances. They should then decide, based on the additional
contextual factors, which of those smells should be removed and at what cost.
One potential problem with such an approach is that most tools would probably
produce large sets of outputs, making it impractical for reviewers working on a
large code base; improving the accuracy of smell-detection tools is vital for its
application in such a context.

6 Threats to Validity

Given the empirical nature of our study, potential threats can affect the study
results. We classify and discuss these threats by following the recommendations
suggested in Wohlin et al. (2012).

External Validity: Our study considered two major projects from the Open-
Stack community (Nova and Neutron) and two major projects from the Qt com-
munity (Qt Base and Qt Creator), since those projects have invested a significant
effort in their code review process (see Section 3.2). OpenStack is a set of soft-
ware tools for building and managing cloud computing platforms and Qt is an
open source cross-platform application and UI framework. The projects from the
OpenStack community are mainly written in Python, while the projects from the
Qt community are mainly written in C++. Different domains and programming
languages can help improve the external validity and make the study results and
findings more generalizable to other systems. We believe that our results and
findings could help researchers and developers understand the importance of the
manual detection of code smells better. Moreover, including code review discus-
sions from other communities will supplement our findings and this may lead to
more general conclusions.

Internal Validity: The main threat to internal validity is related to the quality
of the selected projects. It is possible that the projects we selected do not provide a
good representation of the types of code smells we included in our study. To address
this threat, we selected two large projects from the OpenStack community and two
large projects from the Qt community with Gerrit as their code review tool. Their
investment in code review processes and commitment to perform code review to
their entire code base make them good candidates for our study. Another threat
to the internal validity is the nature of modern code review used in Gerrit. In
such code review platforms, code changes (instead of a code snapshot or the whole
codebase) are reviewed, where the changes are usually micro to small changes. The
practice with such a review system is to review small additions or modifications to
the codebase. By default, this will limit higher, more abstract project-level smells
and issues from being detected.

Code Smells Detection via Modern Code Review 41

Construct Validity: A large part of the study depends on manual analysis
of the data, which could affect the construct validity due to personal oversight
and bias. In order to reduce its impact, each step in the manual analysis (i.e.,
identifying smell-related code reviews and their classifications in various aspects)
was conducted by at least two authors and a third author was involved in case
of disagreement. The selection of the keywords used to identify the reviews which
contain smell discussions is another threat to construct validity since reviewers
and developers may use terms other than those that we used in our mining query.
To minimize the impact of this threat, we first combined a list of code smell terms
that developers and researchers frequently used, as reported in several previous
studies (Fowler, 1999; Tahir et al., 2018; Zhang et al., 2011). Then, we identified
the keywords by following the systematic approach used by Bosu et al. (2014)
to minimize the impact of missing keywords due to misspelling or other textual
issues. Moreover, we randomly selected a collection of code review comments that
did not contain any of our keywords to supplement our dataset, reducing the threat
to construct validity.

Reliability: Before starting our full scale study, we conducted a pilot run to
check the suitability of the data source. The execution of all the steps in our
study, including the process of data mining, data filtering and manual analysis
was discussed and confirmed by at least two of the authors. We also provided the
replication package of this work online (Han et al., 2022) for replication purposes,
which partially increases the reliability of the study results.

7 Conclusions

In this work, we conducted an empirical analysis of code smells identified in modern
code review (MCR). Although there are many studies focusing on code smells or
code reviews, little is known about the extent to which code smells are identified
and resolved during MCR. To this end, we statistically analysed the code review
comments from four most active projects of the OpenStack community (Nova and
Neutron) and the Qt community (Qt Base and Qt Creator). More specifically,
we manually analysed the types, causes, actions, and fixing interval of/towards the
identified code smells.

According to our results, code smells are not commonly identified in code
reviews and when identified, duplicated code, bad naming and dead code are, by far,
the most frequently identified smells. When smells are identified, most reviewers
provide constructive suggestions to help developers fix the code and developers are
willing to fix the smells through suggested refactoring operations; it usually takes
developers less than one week to fix the identified smells. We also found that code
smells were often introduced as a result of developers violating coding conventions.
Although not as frequent, there are also cases where developers disagree with the
reviewers and ignore identified smells. The main cause for it is that developers
think it is not worth fixing the smells (i.e., bring little value or introduce more
complexity when fixing).

Based on our findings, we make the following suggestions for both researchers
and practitioners:

42 Xiaofeng Han et al.

1. Developers should follow the coding conventions in their projects to reduce
code smell incidents; some tools can also be used to automatically check for
compliance with code conventions.

2. Code smell detection via code reviews is seen as a trustworthy approach by de-
velopers (given their constructive nature) and smell-removal recommendations
made by reviewers appear more actionable by developers.

3. Program context is important in the identification of code smells and also
should be taken into account in order to determine whether to fix the identified
code smells immediately.

In the next step, we plan to extend this work by studying code smells in code
reviews in a larger set of projects from different communities, including from indus-
trial projects. We also plan to obtain a further understanding of the practitioners’
attitude towards code smells in code reviews by conducting a survey with both
reviewers and developers and thus take a closer look at what the academic and
industrial communities think about code smells via code review.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(NSFC) under Grant No. 62172311 and the Special Fund of Hubei Luojia Labo-
ratory.

References

Abbes M, Khomh F, Gueheneuc YG, Antoniol G (2011) An empirical study of the
impact of two antipatterns blob and spaghetti code on program comprehension.
In: Proceedings of the 15th European Conference on Software Maintenance and
Reengineering (CSMR), IEEE, pp 181–190

Baker Jr RA (1997) Code reviews enhance software quality. In: Proceedings of
the 19th International Conference on Software Engineering (ICSE), ACM, pp
570–571

Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2015) Are test smells really
harmful? an empirical study. Empirical Software Engineering 20(4):1052–1094

Bosu A, Carver JC, Hafiz M, Hilley P, Janni D (2014) Identifying the charac-
teristics of vulnerable code changes: An empirical study. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (FSE), ACM, p 257–268

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qualitative Re-
search in Psychology 3(2):77–101

Cassee N, Vasilescu B, Serebrenik A (2020) The silent helper: The impact of con-
tinuous integration on code reviews. In: Proceedings of the 27th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
IEEE, pp 423–434

Chouchen M, Ouni A, Kula RG, Wang D, Thongtanunam P, Mkaouer MW, Mat-
sumoto K (2021) Anti-patterns in modern code review: Symptoms and preva-
lence. In: Proceedings of the 28th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, pp 531–535

Code Smells Detection via Modern Code Review 43

Coelho F, Tsantalis N, Massoni T, Alves ELG (2021) An empirical study on
refactoring-inducing pull requests. In: Proceedings of the 15th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement
(ESEM), ACM, pp 1–12

Cohen J (1960) A coefficient of agreement for nominal scales. Educational and
Psychological Measurement 20(1):37–46

Dou W, Cheung SC, Wei J (2014) Is spreadsheet ambiguity harmful? detecting and
repairing spreadsheet smells due to ambiguous computation. In: Proceedings of
the 36th International Conference on Software Engineering (ICSE), ACM, pp
848–858

Fontana FA, Dietrich J, Walter B, Yamashita A, Zanoni M (2016) Anti-pattern
and code smell false positives: Preliminary conceptualisation and classification.
In: Proceedings of the 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), IEEE, pp 609–613

Fowler M (1999) Refactoring: Improving the Design of Existing Code. Addison-
Wesley

Garcia J, Popescu D, Edwards G, Medvidovic N (2009) Identifying architectural
bad smells. In: Proceedings of the 13th European Conference on Software Main-
tenance and Reengineering (CSMR), IEEE, pp 255–258

Hall T, Zhang M, Bowes D, Sun Y (2014) Some code smells have a significant but
small effect on faults. ACM Transactions on Software Engineering and Method-
ology 23(4):1–39

Han X, Tahir A, Liang P, Counsell S, Luo Y (2021) Understanding code smell
detection via code review: A study of the openstack community. In: Proceedings
of the 29th IEEE/ACM International Conference on Program Comprehension
(ICPC), IEEE, pp 323–334

Han X, Tahir A, Liang P, Counsell S, Blincoe K, Li B, Luo Y (2022) Replication
package for the paper: Code smells detection via modern code review: A study
of the OpenStack and Qt communities. URL https://doi.org/10.5281/zenodo.

5588454

Hirao T, McIntosh S, Ihara A, Matsumoto K (2020) Code reviews with divergent
review scores: An empirical study of the openstack and qt communities. IEEE
Transactions on Software Engineering DOI 10.1109/TSE.2020.2977907

Israel GD (1992) Determining sample size. Fact Sheet PEOD-6, Florida Coopera-
tive Extension Service, Institute of Food and Agricultural Sciences, University
of Florida, Florida, U.S.A

Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observa-
tions. Journal of the American statistical association 53(282):457–481

Kemerer CF, Paulk MC (2009) The impact of design and code reviews on software
quality: An empirical study based on psp data. IEEE Transactions on Software
Engineering 35(4):534–550

Khomh F, Di Penta M, Gueheneuc YG (2009) An exploratory study of the im-
pact of code smells on software change-proneness. In: Proceedings of the 16th
Working Conference on Reverse Engineering (WCRE), IEEE, pp 75–84

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating
code review quality: Do people and participation matter? In: Proceedings of the
31th IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, pp 111–120

https://doi.org/10.5281/zenodo.5588454
https://doi.org/10.5281/zenodo.5588454

44 Xiaofeng Han et al.

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis.
Journal of the American statistical Association 47(260):583–621

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on technical debt
and its management. Journal of Systems and Software 101:193–220

Mann HB, Whitney DR (1947) On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics pp
50–60

Martini A, Fontana FA, Biaggi A, Roveda R (2018) Identifying and prioritizing
architectural debt through architectural smells: A case study in a large soft-
ware company. In: Proceedings of the 12th European Conference on Software
Architecture (ECSA), Springer, pp 320–335

McConnell S (2004) Code Complete. Pearson Education
McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review

coverage and code review participation on software quality: A case study of the
Qt, VTK, and ITK projects. In: Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR), ACM, p 192–201

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the
impact of modern code review practices on software quality. Empirical Software
Engineering 21(5):2146–2189

Meneely A, Tejeda ACR, Spates B, Trudeau S, Neuberger D, Whitlock K, Ketant
C, Davis K (2014) An empirical investigation of socio-technical code review
metrics and security vulnerabilities. In: Proceedings of the 6th International
Workshop on Social Software Engineering (SSE), ACM, pp 37–44

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2009) Decor: A method for
the specification and detection of code and design smells. IEEE Transactions on
Software Engineering 36(1):20–36

Morales R, McIntosh S, Khomh F (2015) Do code review practices impact design
quality? a case study of the Qt, VTK, and ITK projects. In: Proceedings of
the 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), IEEE, pp 171–180

Nanthaamornphong A, Chaisutanon A (2016) Empirical evaluation of code smells
in open source projects: preliminary results. In: Proceedings of the 1st Interna-
tional Workshop on Software Refactoring (IWoR), ACM, pp 5–8

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they really
smell bad? a study on developers’ perception of bad code smells. In: Proceedings
of the 30th International Conference on Software Maintenance and Evolution
(ICSME), IEEE, pp 101–110

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2015)
Mining version histories for detecting code smells. IEEE Transactions on Soft-
ware Engineering 41(5):462–489

Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018) On
the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Software Engineering 23(3):1188–1221

Panichella S, Zaugg N (2020) An empirical investigation of relevant changes
and automation needs in modern code review. Empirical Software Engineering
25(6):4833–4872

Pascarella L, Spadini D, Palomba F, Bacchelli A (2020) On the effect of code review
on code smells. In: Proceedings of the 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE

Code Smells Detection via Modern Code Review 45

Pecorelli F, Palomba F, Khomh F, De Lucia A (2020) Developer-driven code
smell prioritization. In: Proceedings of the 17th Working Conference on Mining
Software Repositories (MSR), ACM, pp 220–231

Porter MF (2001) Snowball: A language for stemming algorithms. Open Source
Initiative OSI

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt.
In: Proceedings of the 30th IEEE International Conference on Software Main-
tenance and Evolution (ICSME), IEEE, pp 91–100

Sae-Lim N, Hayashi S, Saeki M (2018) Context-based approach to prioritize code
smells for prefactoring. Journal of Software: Evolution and Process 30(6):1–24

Sharma T, Spinellis D (2018) A survey on software smells. Journal of Systems and
Software 138:158–173

Sjøberg DI, Yamashita A, Anda BC, Mockus A, Dyb̊a T (2013) Quantifying the
effect of code smells on maintenance effort. IEEE Transactions on Software
Engineering 39(8):1144–1156

Soh Z, Yamashita A, Khomh F, Guéhéneuc YG (2016) Do code smells impact the
effort of different maintenance programming activities? In: Proceedings of the
23rd International Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), IEEE, pp 393–402

Tahir A, Counsell S, MacDonell SG (2016) An empirical study into the relationship
between class features and test smells. In: Proceedings of the 23rd Asia-Pacific
Software Engineering Conference (APSEC), IEEE, pp 137–144

Tahir A, Yamashita A, Licorish S, Dietrich J, Counsell S (2018) Can you tell me if it
smells? a study on how developers discuss code smells and anti-patterns in stack
overflow. In: Proceedings of the 22nd International Conference on Evaluation
and Assessment in Software Engineering (EASE), ACM, pp 68–78

Tahir A, Dietrich J, Counsell S, Licorish S, Yamashita A (2020) A large scale
study on how developers discuss code smells and anti-pattern in stack exchange
sites. Information and Software Technology 125:106333

Taibi D, Janes A, Lenarduzzi V (2017) How developers perceive smells in source
code: A replicated study. Information and Software Technology 92:223–235

Tan PN, Steinbach M, Kumar V (2016) Introduction to Data Mining. Pearson
Education India

Tsantalis N, Chatzigeorgiou A (2009) Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering 35(3):347–367

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk
D (2015) When and why your code starts to smell bad. In: Proceedings of
the IEEE/ACM 37th IEEE International Conference on Software Engineering
(ICSE), IEEE, vol 1, pp 403–414

Uchôa A, Barbosa C, Coutinho D, Oizumi W, Assunção WKG, Vergilio SR,
Pereira JA, Oliveira A, Garcia A (2021) Predicting design impactful changes in
modern code review: A large-scale empirical study. In: Proceedings of the 18th
IEEE/ACM International Conference on Mining Software Repositories (MSR),
IEEE, pp 471–482

Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA (2020) Effects of
adopting code review bots on pull requests to oss projects. In: Proceedings of
the 36th IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, pp 1–11

46 Xiaofeng Han et al.

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Exper-
imentation in Software Engineering. Springer

Yamashita A, Moonen L (2013) Do developers care about code smells? an ex-
ploratory survey. In: Proceedings of the 20th Working Conference on Reverse
Engineering (WCRE), IEEE, pp 242–251

Zanaty FE, Hirao T, McIntosh S, Ihara A, Matsumoto K (2018) An empirical study
of design discussions in code review. In: Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), ACM, pp 1–10

Zhang M, Hall T, Baddoo N (2011) Code bad smells: A review of current knowl-
edge. Journal of Software Maintenance and Evolution: Research and Practice
23(3):179–202

	Introduction
	Related Work
	Methodology
	Results
	Discussion
	Threats to Validity
	Conclusions

