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ABSTRACT
Background: Software smells reflect the sub-optimal patterns in
the software. In a similar way, community smells consider the
sub-optimal patterns in the organizational and social structures
of software teams. Related work performed empirical studies to
identify the relationship between community smells and software
smells at the architecture and code levels. However, how community
smells relate with design smells is still unknown.

Aims: In this paper, we empirically investigate the relationship
between community smells and design smells during the evolution
of software projects.

Method: We apply three statistical methods: correlation, trend,
and information gain analysis to empirically examine the relation-
ship between community and design smells in 100 releases of 10
large-scale Apache open-source software projects.

Results: Our results reveal that the relationship between com-
munity and design smells varies across the analyzed projects. We
find significant correlations and trend similarities for one type of
community smell (when developers work in isolation without peer
communication—Missing Links) with design smells in most of the
analyzed projects. Furthermore, the results of our statistical model
disclose that community smells are more relevant for design smells
compared to other community-related factors.

Conclusion:Our results find that the relationship of community
smells (in particular, the Missing Links smell) exists with design
smells. Based on our findings, we discuss specific community smell
refactoring techniques that should be done together when refactor-
ing design smells so that the problems associated with the social
and technical (design) aspects of the projects can be managed con-
currently.
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• Software and its engineering → Programming teams; Soft-
ware design engineering; Object oriented development.
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1 INTRODUCTION
Software development is not an isolated activity; instead it involves
a team of managers, stakeholders, and developers [16, 20]. Tasks
must be well-coordinated, and communication between the project
teammembers is essential to create a successful product [11–13, 38].
If good communication structure is not present, it may lead to com-
munity (or social) smells—sub-optimal patterns in the organiza-
tional and social structure of software teams [40]. Such sub-optimal
patterns then lead to increased project cost (termed social debt) [39].
Similarly, when software practitioners take poor design decisions
during the technical (software) development, the software may con-
tain sub-optimal patterns known as software smells [35]. Software
smells can occur at different granularity levels (architecture, de-
sign, and source code) and, if not addressed, they can contribute to
increased maintenance cost (termed as technical debt) [35].

Conway’s law suggests that there is a relationship between the
communication structure of a software team and the software de-
sign that team creates: “Organizations, which design systems, are
constrained to produce designs which are copies of the communica-
tion structures of these organizations."—Conway’s Law [16]. This
suggests a relationship between software quality and communica-
tion structures, and prior work has shown relationships between
developer communication and software quality [13].

Prior work has studied the relationship of community smells
with software smells at the architecture-level [37] and the code-
level [24, 25]. Palomba et al. [24] found a relationship between
code smells and community smells, and suggested that developers
contributing to the same code file should communicate about code
quality decisions to improve code maintainability and reduce tech-
nical debt (i.e., the costs associated with sub-optimal patterns in
source code). Similarly, Tamburri et al. [37] found a relationship
between the existence of community smells and sub-optimal struc-
tures in software architecture (architecture smells). These studies
show that if the communication structure is not optimal, it is often
associated with maintainability issues in the software [24, 37]. In
other words, these studies reported that the relationships of archi-
tecture and code smells exist with community smells. However, it
is unknown if such a relationship exists between community smells
and design smells. Therefore, this study explores the relationship
of community smells with design smells. The idea works under the
same motivation as previous studies (and Conway’s Law [16]) that
a software project cannot have an optimal design (i.e., has design
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smells) while having a sub-optimal communication structure (i.e.,
has community smells).

We structure our investigation around the following research
question (RQ):

RQ— Is there a relationship between community smells and design
smells in software projects?

This study investigates the relationship between software design
smells and software community smells by examining two commu-
nity smells (Organizational Silo and Missing Links). Both of these
smells reflect missing or low communication in the development
team [39]. We examine the design smells related to modularization
and hierarchy aspects defined by Suryanarayana et al. [36]. The
modularization smells include Broken, Insufficient, Hub-like, and
Cyclically-dependent, while hierarchy smells under analysis are
Wide, Multipath, Cyclic, Rebellious, Missing, and Broken.We collect
these community and design smells from 100 releases of 10 large-
scale Apache projects (i.e., 10 recent releases from each project, not
including patch releases). We investigate the relationship between
the community and design smells using three statistical methods:
correlation, trend, and information gain analysis. Correlation analy-
sis identifies the association between community and design smells;
trend analysis demonstrates the similarities in the trends of com-
munity and design smells over releases; finally, information gain
analysis explains the extent of the dependency of community smells
with design smells by specifying their respective entropy values.

Our results show that the correlations between community and
design smells vary across the analyzed projects. The results also
reveal that the Missing Links community smell is more significantly
correlated and has more significant trend similarities with the de-
sign smells under analysis compared to the Organizational Silo com-
munity smell. In addition, our statistical model (information gain
analysis) reveals that design smells are more dependent on commu-
nity smells (in particular, Missing Links) in comparison with other
community-related factors (socio-technical metrics [13, 23, 40]).

Similar to the previous studies that highlighted the importance of
both the community and technical aspects of software development,
our findings provide further evidence that, during the evolution of
the software, community-aware development is equally important
as design development and technical refactoring. Therefore, there
is a need to focus on both the design and social aspects while
developing a software product.

The main contributions of this study are:

• Empirical evidence of the relationship between community
and design smells using a set of 10 large-scale Apache soft-
ware projects (10 recent releases each—100 releases in total).
This empirical study provides further evidence of the impor-
tance of both the social and technical aspects of software
development. It also provides specific recommendations for
ensuring community smells are considered when refactoring
to fix design smells.

• A replication package1 containing: community smells, de-
sign smells, socio-technical metrics, and class-level metrics
of the 100 releases of the 10 analyzed Apache projects.

1https://figshare.com/s/4d2e68474fba8d9ee053

2 MOTIVATING EXAMPLE
In prior work, developers reported that “large teams" are a com-
mon cause of communication problems and interaction difficulties,
leading to community smells [14]. This same study recommends
restructuring the community by splitting large teams into small
ones to optimize the communication structure [14]. Inspired by this
finding and to motivate the need to understand the relationship
between community smells and design smells, we investigate one
instance of a “large team” problem. After collecting our data on
community and design smells and plotting the evolution of these
smells (methods explained in Section 3), we manually examined
potential relationships between software design smells and commu-
nity smells to validate the need for this study prior to performing
our empirical analysis. Here, we describe one instance of a large
team problem which appeared to be related to a design smell as a
motivating example for the empirical study in this paper.

Community smells spiked in the Apache Spark project (an en-
gine for scalable computing) between releases 1.6.0 and 2.0.0 (see
Figure 1). Through investigation of communications of the develop-
ers between these releases, we observed that several contributors
did not participate in the communications related to many classes.
Here we discuss one class that was associated with several instances
of community smells, UnsafeInMemorySorter. In the communica-
tion related to this class, we found that in release 2.0.0, half of the
contributors did not have any communication at all, causing many
instances of community smells. Between the consecutive releases
(1.6.0–2.0.0), we also found that the number of contributors work-
ing on UnsafeInMemorySorter actually doubled (increasing from
4 contributors to 8). This example is in line with the large team
communication issues discussed in the literature [14]. We also got
interested in the design aspects of UnsafeInMemorySorter. Related
to design, we observed that the size of UnsafeInMemorySorter in-
creased from release 1.6.0 to 2.0.0 because more functionalities were
added for release 2.0.0. It is possible that the large team of 8 con-
tributors (working on this single class) had communication difficul-
ties and kept on adding functionalities to UnsafeInMemorySorter
without consultation with each other, making the class a large
one (Insufficient Modularization issue). This example shows the
co-occurrence of community smells and a design smell (Insufficient
Modularization) in a class.

If a relationship exists between sub-optimal communication
patterns (community smells) and sub-optimal design structures
(design smells), then refactoring the smells on either side (com-
munity or design) becomes important; otherwise, they may cre-
ate social and technical debt in the projects. This motivated us
to deeply investigate the relationship between community and
design smells. Inspired by the potential relationships we uncov-
ered through this preliminary manual analysis, we investigate the
relationship through an empirical study of 100 releases of 10 open-
source software projects (10 recent releases from each project) using
statistical methods.

3 METHODS
To analyze the relationship between community and design smells,
we collect the data from 100 releases of 10 different Apache open-
source projects. To ensure diversity in the selected projects, each
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project was selected from a different category (defined by Apache2)
to have a representation from different application domains. All
selected projects were categorized under the Java language.3 To en-
sure all projects in our dataset are good-sized and have active com-
munities, we used the sampling protocol and thresholds employed
by Palomba et al. [24]; we selected projects that have considerable
codebase size (at least 100 classes per release), longevity (at least
5 years long), activity (more than 1000 commits), and developers
(more than 20). Table 1 summarises the details of the 10 Apache
projects under analysis. In our analyzed projects, the minimum and
maximum classes in a release are 109 and 6324, respectively.

3.1 Smells
3.1.1 Community Smells. In this study, we investigate the commu-
nication structure of the analyzed projects using two community
smells: Organizational Silo and Missing Links, defined as:

• Organizational Silo. When there are isolated sub-groups of
developers that do not communicate except through one or
two of their members [39]. This smell counts the number of
collaboration edges (analyzed in groups of two contributors)
in which one of the co-committing contributors does not
communicate at all.

• Missing Links. When developers work in isolation without
communicating with their peers [39]. This smell counts the
number of collaboration edges that do not have a communi-
cation counterpart.

The rationale for selecting these community smells is their frequent
occurrence in the community structure of open-source software
projects [40]. Furthermore, they have shown correlations with other
community-related health indicators [40]. We leave analysis of
other community smells for future work.

3.1.2 Design Smells. Previous studies used architecture and code
smells to investigate the structural issues in the architecture and
source code, respectively [24, 37]. In this study, we consider the
structural issues in software design that are reflected by modu-
larization and hierarchy smells. The rationale for studying these
smells is their ability to reflect the modularization and hierarchi-
cal issues in the design of software projects, which can lead to
maintainability issues (an important quality aspect for software
evolution) [35]. We adopt the modularization and hierarchy smells
from Suryanarayana et al. [36]. We leave an analysis of other types
of design smells for future work. We analyze all modularization
smells defined by Suryanarayana et al. [36]:

• Broken Modularization. When classes are modularized too
much that they have only a few data members and methods
(that often show interest in other classes) [36].

• Insufficient Modularization. Classes with many data members
and methods or classes with a few methods with excessive
implementation [36].

• Hub-like Modularization. Classes with a lot of dependencies
with other classes [36].

• Cyclically-dependent Modularization. Classes depending on
each other forming a cycle of interactions [36].

2https://www.apache.org/#by-category
3https://projects.apache.org/projects.html?language

These modularization smells consider the design entities (classes)
that are either too big or too small; or have dependency issues. The
modularization issues could potentially relate with community
smells. For instance, developers working in isolation could end up
creating many small classes in the design with a high number of
dependencies.

We analyze a subset of hierarchy smells (defined by Surya-
narayana et al. [36]) because we could not find instances of some
of the hierarchy smells (i.e., Unnecessary, Unfactored, Speculative,
and Deep) in the projects analyzed in this study. Hierarchy smells
under analysis are:

• Wide Hierarchy. When intermediate types are missing from
the hierarchy, the hierarchy may become wide [36].

• Multipath Hierarchy. When subtype inherits both directly
and indirectly from a supertype [36].

• Cyclic Hierarchy. When a supertype has a reference of its
subtype, it introduces a cycle [36].

• Rebellious Hierarchy. When supertype and subtype share
a “is-a" relationship; however, some methods violate this
relationship [36].

• Missing Hierarchy. When conditional logic is used to man-
age different behaviors instead of using hierarchical struc-
ture [36].

• Broken Hierarchy. When supertype and subtype semantically
do not share a “is-a" relationship; however, such relationship
has been created [36].

These hierarchy smells mainly reflect the design structures that
have relationship issues (e.g., hierarchical relationships are not
implemented, or, if implemented, they are incorrect). The hierarchy
smells could potentially relate with community smells. For instance,
developers working in isolation could not be aware of similar classes
that could benefit from a hierarchy structure.

3.1.3 Smells Collection. We employed the tools Designite4 [33] and
Kaiaulu5 [26] to collect the design and community smells, respec-
tively. To collect the design smells, we downloaded the project’s
source code and provided this as input to the the Designite tool. To
collect the community smells, we took the following steps:

(1) Prepared configuration files of the analyzed projects by pro-
viding all the necessary paths (e.g., communication channels’
paths, gitlog path) and other required information, such as
projects’ release dates and time slice (in days) between two
releases.

(2) Collected communication data from commonly used com-
munication channels: Apache Mailing List, Jira, and GitHub
using Kaiaulu.

(3) Calculated community smells for the analyzed projects using
Kaiaulu.

3.2 Analysis
We employed three statistical methods to analyze the relationship
between community and design smells: correlation analysis, trend
analysis, and information gain analysis. Correlation analysis ex-
plains the overall strength of the relationship. To see whether the

4https://www.designite-tools.com/designitejava/
5https://github.com/sailuh/kaiaulu/
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Table 1: Apache projects under analysis

Project Category Commits Devs Duration Releases

Ant [1] Build management ≈15k 62 22 years 1.1, 1.2, 1.3, 1.4, 1.5, 1.6.0, 1.7.0, 1.8.0, 1.9.0, 1.10.0
Cassandra [2] Database ≈27k 353 12 years 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10
Jackrabbit [5] Network-server ≈9k 26 16 years 2.12.0, 2.13.0, 2.14.0, 2.15.0, 2.16.0, 2.17.0, 2.18.0, 2.19.0, 2.20.0, 2.21.0
Jena [6] Library ≈9.7k 78 10 years 3.9.0, 3.10.0, 3.11.0, 3.12.0, 3.13.0, 3.14.0, 3.15.0, 3.16.0, 3.17.0, 4.0.0
JMeter [7] Testing ≈17.5k 47 22 years 3.0, 3.1, 3.2, 3.3, 4.0, 5.0, 5.1, 5.2, 5.3, 5.4
Karaf [8] OSGI ≈8.9k 145 14 years 2.0.0, 2.1.0, 2.2.0, 2.3.0, 3.0.0, 2.4.0, 4.0.0, 4.1.0, 4.2.0, 4.3.0
Spark [10] Big data ≈32.4k 1,786 12 years 1.3.0, 1.4.0, 1.5.0, 1.6.0, 2.0.0, 2.1.0, 2.2.0, 2.3.0, 2.4.0, 3.0.0
CloudStack [3] Cloud ≈34.9k 352 11 years 4.6.0, 4.7.0, 4.8.0, 4.9.0, 4.10.0, 4.11.0, 4.12.0, 4.13.0, 4.14.0, 4.15.0
CXF [4] Network-client ≈16.7k 172 14 years 2.3.0, 2.4.0, 2.5.0, 2.6.0, 2.7.0, 3.0.0, 3.1.0, 3.2.0, 3.3.0, 3.4.0
Nutch [9] Web framework ≈3.2k 46 12 years 2.3, 1.10, 1.12, 1.13, 1.14, 1.15, 2.4, 1.16, 1.17, 1.18

smells (community and design) evolve over releases in a similar
manner or not, we applied trend analysis (specifically,Mann-Kendall
test). Lastly, we employed information gain analysis because it can
quantify the actual gain provided by the variables of interest in the
model by ranking them based on the information gain provided.

3.2.1 Correlation Analysis. Correlation explains the degree of the
relationship between variables [27]. We employed Spearman’s cor-
relation to assess the association of community and design smells.
We computed the Spearman’s correlation because the data is not
normally distributed [27]. We interpreted the correlations as fol-
lows: 0–0.19 as negligible, 0.20–0.29 as weak, 0.30–0.39 as moderate,
0.40–0.69 as strong, and equal or greater than 0.70 as very strong [17].

3.2.2 Trend Analysis. We employed theMann-Kendall test because
it can explain whether the variables of interest (i.e., community and
design smells) follow a similar upward or downward trend (or no
trend at all) as they evolve over releases. The null hypothesis of the
Mann-Kendall test represents that there is no trend, whereas the
alternate hypothesis means that a trend exists (either upward or
downward). The coefficient value of the test indicates the strength
of the similarity between the variables (i.e., higher coefficient values
mean strong similarities). Therefore, we exploit the Mann-Kendall
test to examine the similarity in the trends of the design and com-
munity smells over releases. Given the number of releases (10) for
each project, if the trend analysis shows similar trends of commu-
nity and design smells over time, it is an indication that there could
be a relationship between the smells.

3.2.3 Information Gain Analysis. Information gain analysis ex-
plains the extent of the relationship between independent and
dependent variables by quantifying the gain provided by each vari-
able in the model [28]. Since we are interested in identifying the
extent of the relationship of community smells with design smells,
we chose this statistical modeling by estimating the mutual infor-
mation gain of each variable [21]. Similar to Palomba et al. [24], we
treated design smells as dependent variables and community smells
as independent variables. We also included various community-
related and non-community-related (technical) control factors in
the gain analysis (statistical modeling).We employed similar control
factors in the statistical model, presented by Palomba et al. [24, 25],
which examined the relationship between community smells and
code smells.

We considered the following community-related control factors
(calculated using the Kaiaulu tool) based on the rationale that they
are indicators of the project’s social health [23, 40]:

• Socio-technical Congruence. It is the degree of agreement be-
tween the communication needs of software projects and
the actual communications that occur within a software
development environment [13, 23, 40]. Socio-technical con-
gruence measures the direct comparison of the collabora-
tions (representing all the development relationships and
communication needs) to the communications (representing
all the actual coordination relationships within a software
development team) [13, 23, 40].

• Code.only.devs. This metric counts the number of contribu-
tors (developers) in the collaboration network who do not
participate in the communication channels [23, 40].

• Code.files. We use the number of classes (code.files) that were
changed between two releases. The intuition is that the
greater the number of modified classes (i.e., more collabora-
tions), the higher the likelihood that communication issues
may appear [23, 40].

From the design perspective, we also control for non-community-
related factors (computed using the Designite tool) that indicate the
project’s technical health because they are related to software de-
sign structure. Size, coupling, complexity, and inheritance are com-
mon maintainability quality attributes [29]. Therefore, we use the
following well-known and empirically-evaluated, object-oriented
metrics estimating size, coupling, complexity, and inheritance as
control factors:

• Lines of Code (LOC). It counts the lines of code in the class
(size) [15].

• Coupling between Objects (CBO). The number of classes that
a class references (coupling) [15].

• Weighted Method per Class (WMC). It measures the sum of
complexities of methods of a class (complexity) [15].

• Depth of Inheritance (DIT). It aggregates the classes that a
particular class inherits from (inheritance) [15].

The output of the gain analysis is an ordered (descending) se-
lection of metrics based on their degree of dependency (given by
the entropy values—higher value means more dependency). The
most relevant metric for the dependent variable is placed at the
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top followed by the metrics in the order of their relevance to the
dependent variable.

4 RESULTS
In this section, we present the statistical analysis results explaining
the relationship between community and design smells.

4.1 Correlation Analysis
The results in Table 2 and Table 3 show that the correlations of com-
munity and design smells vary across projects (i.e., some projects
show correlations and some do not). We find that more projects
demonstrate significant correlations of design smells with Missing
Links compared to Organizational Silo. For instance, most of the
time, at most 4 projects (out of 10) have shown significant correla-
tions of design smells with Organizational Silo. On the other hand,
more projects (on average 6 projects) demonstrate significantly
strong correlations between design smells and Missing Links. Only
one design smell, Multipath Hierarchy, has more significant correla-
tions with Organizational Silo compared to Missing Links; however,
this is significant for only 2 of the 10 projects (Ant and Karaf). There
are also instances in Table 2 and Table 3 where correlations are
zero because specific design smells did not change over releases in
the projects, yielding no correlations.

4.2 Trend Analysis
Overall, the trend similarities of design smells are more evident with
Missing Links than Organizational Silo in the analyzed projects. In
terms of modularization smells, we find that more projects have
similar trends with Missing Links, except in the case of Broken
Modularization, where the number of projects demonstrating simi-
lar trends is the same (7 projects each) for both of the community
smells—see Table 4. From the hierarchy smells perspective, we find
that more projects have trend similarities in four hierarchy smells
(Wide, Cyclic, Missing, and Broken) with Missing Links; while, for
the remaining two hierarchy smells (Multipath and Rebellious),
the number of projects showing the similar trends with both the
community smells is same (6 projects each)—see Table 4. It can
be observed that mostly the trends are either upward or no-trend
except in a couple of instances in design smells where the trends
are downward (i.e., Rebellious Hierarchy smell in Apache Jena and
Wide Hierarchy smell in Apache CXF—highlighted in bold in Ta-
ble 4). These downward trends happen because instances of these
smells were removed from the design as these projects (Jena and
CXF) evolved.

The examples of Apache Spark (Figure 1) and Ant (Figure 2)
projects show the evolution of design (modularization and hierar-
chy) and community smells over releases. These figures illustrate
the similarities in the trends of design and community smells. Both
design and community smells spike in the same releases; in addi-
tion, they touch their peaks at the same time. For instance, between
releases 1.6.0 and 2.0.0 of Apache Spark, community smells increase
sharply when there is also a sharp increase in design smells. In an-
other instance in Apache Spark, during another spike from 2.4.0 to
3.0.0 in community smells, we also observe the same sharp increase
in modularization and hierarchy smells (see Figure 1). Moreover,
during the periods when the increase in community smells is subtle,

we also observe the similar slight upward trend in design smells.
For instance, in Figure 1, the upward slope of Missing Links from
release 2.1.0 to 2.4.0 resembles that of the Broken Hierarchy trend
(2.1.0–2.4.0). Similarly, in the Apache Ant project, both community
and design smells reach their peaks in release 1.7.0 (see Figure 2).
Both design and community smells follow an upward trend until
release 1.7.0, with most of the smells either dropping or staying
constant thereafter (see Figure 2). All of these trend similarities
in the examples of Apache Spark and Ant projects (also in other
projects as indicated by the Mann-Kenadall test in Table 4) show
that the design and community smells under study behave almost
the same way as they evolve over releases (i.e., exhibiting their
relationship temporally).

4.3 Information Gain Analysis
Table 5 and Table 6 report the results of the information gain
analysis by listing the community smells and control factors (in
descending order) in accordance with their dependency with de-
sign smells. From the community point of view, we find that all of
the analyzed design smells have shown some level of dependency
with the considered community smells (see Table 5 and Table 6).
In addition, we find that community smells can explain the rela-
tionship with design smells better than the other socio-technical
metrics do. For instance, for Insufficient Modularization, Missing
Links has significantly higher entropy reduction (0.41) in com-
parison to socio-technical congruence (0.02). There are a couple
of exceptions, e.g., in the cases of Hub-like Modularization and
Wide Hierarchy, where community-related factors (code.only.devs
and socio-technical congruence, respectively) can explain the de-
pendency with design smells better than community smells (See
Table 5 and Table 6). In addition, both of the community smells
have shown relevance for different design smells. It can be seen
in Table 5 that Organizational Silo has demonstrated relationships
with Cyclically-dependent Modularization, Multipath Hierarchy,
and Cyclic Hierarchy; whereas Missing Links is more relevant for
the Broken Modularization, Insufficient Modularization, Rebellious
Hierarchy, Missing Hierarchy, and Broken Hierarchy smells.

The results also show that design smells are most dependent on
the non-community-related (technical) control factors (LOC, CBO,
WMC, and DIT). The most likely reason for this behavior is because
these non-community-related control factors are generally used to
detect the analyzed design smells [36]; therefore, this relationship is
natural and expected. Among the non-community-related control
factors, coupling is the most relevant maintainability factor because
Coupling between Objects (CBO) has shown the highest gain for
most of the analyzed design smells (see Table 5 and Table 6).

Answer to RQ —We have identified relationships between
the community smells and the design smells under study. The
Missing Links smell has demonstrated more significant corre-
lations and trend similarities with the design smells in the an-
alyzed projects. Community smells (especially, Missing Links)
are more relevant than the other community-related metrics
(e.g., socio-technical congruence) in explaining the relation-
ship with design smells.
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Table 2: Spearman’s correlation of modularization smells with community smells

Broken Insufficient Hub-like Cyclically-dependent

Project O_S M_L O_S M_L O_S M_L O_S M_L

Ant 0.78** 0.74* 0.81** 0.78** 0.74* 0.74* 0.94*** 0.89***
Cassandra 0.14 0.71* 0.5 0.76* 0.28 0.75* 0.2 0.47
Jackrabbit 0.74* 0.64* 0.22 0.34 0.74* 0.64* 0.31 0.21
Jena 0.25 -0.02 0.29 -0.08 -0.25 -0.55 0.61* 0.41
JMeter -0.04 -0.26 0.32 0.5 0.35 0.53 0.56 0.7*
Karaf 0.74* 0.71* 0.77** 0.81** 0.00 0.00 0.75* 0.76*
Spark 0.62* 0.7* 0.78** 0.78** 0.9*** 0.78** 0.79** 0.77**
CloudStack -0.44 -0.65* 0.44 0.63* 0.41 0.41 0.34 0.58
CXF 0.01 0.76* 0.22 0.73* 0.12 0.78** -0.13 0.73*
Nutch 0.09 -0.09 -0.03 -0.14 0.00 0.00 0.07 -0.17
O_S is Organizational Silo and M_L is Missing Links
* p <0.05, ** p <0.01, *** p <0.001
0–0.19: negligible; 0.20–0.29: weak; 0.30–0.39: moderate; 0.40–0.69: strong; and ≥ 0.70: very strong

No correlation (0.00) occurs when the design smell remains constant over releases, hence, zero correlation

Table 3: Spearman’s correlation of hierarchy smells with community smells

Wide Multipath Cyclic Rebellious Missing Broken

Project O_S M_L O_S M_L O_S M_L O_S M_L O_S M_L O_S M_L

Ant 0.85** 0.79** 0.86** 0.81** 0.77** 0.72* 0.92*** 0.87** 0.59 0.65* 0.89*** 0.83**
Cassandra 0.54 0.84** 0.53 0.29 0.56 0.78** 0.81** 0.94*** 0.66* 0.91*** 0.51 0.76*
Jackrabbit 0.74* 0.64* 0.00 0.00 0.74* 0.64* 0.74* 0.64* 0.25 0.32 -0.12 0.13
Jena 0.73* 0.4 -0.14 -0.43 0.31 0.17 -0.32 -0.07 0.47 0.47 0.22 -0.04
JMeter 0.45 0.64* 0.04 0.26 0.45 0.64* -0.4 -0.35 0.00 0.00 0.44 0.67*
Karaf 0.6* 0.69* 0.65* 0.57 0.65* 0.65* 0.00 0.00 0.00 0.00 0.8** 0.79**
Spark 0.67* 0.67* 0.52 0.52 0.76* 0.61* 0.9*** 0.78** 0.85** 0.77** 0.8** 0.79**
CloudStack 0.65* 0.65* 0.3 0.53 0.00 0.00 0.00 0.21 0.00 0.00 0.58 0.75*
CXF -0.11 -0.82** 0.29 0.51 -0.01 0.18 0.31 0.69* 0.21 0.86** 0.22 0.73*
Nutch 0.00 0.00 0.00 0.00 0.04 -0.03 0.00 0.00 -0.1 -0.21 0.24 -0.02
O_S is Organizational Silo and M_L is Missing Links
* p <0.05, ** p <0.01, *** p <0.001
0–0.19: negligible; 0.20–0.29: weak; 0.30–0.39: moderate; 0.40–0.69: strong; and ≥ 0.70: very strong

No correlation (0.00) occurs when the design smell remains constant over releases, hence, zero correlation

5 DISCUSSION AND VALIDITY THREATS
In this section, we first discuss our results and afterward present
the validity threats of this study.

5.1 Discussion
Community-aware development is also important alongside
technical development. In this study, community smells have
shown their relevance in explaining the presence of design smells. In
addition, the correlations and similarities in the evolution of design
and community smells suggest that they have a strong relation-
ship. Previous studies also discovered the importance of removing
community smells because they could contribute to the intensity of
code and architecture smells [24, 37]. This study provides further
evidence that social aspects should also be given attention when

practitioners highlight the importance of quality during technical
development. While the information gain analysis of this study
found that non-community (technical) factors are the most relevant
ones for design smells, this should be interpreted with caution since
these metrics are used within the design smell detection methods.

Literature has separately discussed in detail how the refactoring
of the design [36] and community [14] smells should be approached.
Catolino et al. [14] discussed several refactoring strategies that can
be applied to remove Organizational Silo andMissing Links commu-
nity smells. Suryanarayana et al. [36] presented various refactoring
methods for removing the modularization and hierarchy design
smells. However, we believe it is important that the refactoring
of these community and design smells is accomplished together
to tackle the community and technical issues in the projects at
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Table 4: Mann-Kendall trend analysis of design and community smells

Smell Ant Cassandra Jackrabbit Jena JMeter Karaf Spark CloudStack CXF Nutch

Broken Modularization 29[↑]* [–] [–] 24[↑]* [–] 33[↑]** 17[↑]* [–] 35[↑]** 26[↑]*
Insufficient Modularization 45[↑]*** 42[↑]*** 29[↑]** 28[↑]* 33[↑]** 45[↑]*** 45[↑]*** 43[↑]*** 45[↑]*** [–]
Hub-like Modularization 32[↑]** 27[↑]* [–] [–] [–] [–] 29[↑]** [–] 40[↑]*** [–]
Cyclically-dependent Modularization 38[↑]*** 29[↑]** [–] [–] [–] 41[↑]*** 42[↑]*** 41[↑]*** 34[↑]** 29[↑]*
Wide Hierarchy 35[↑]** 29[↑]** [–] [–] 33[↑]** 37[↑]*** 23[↑]* [–] 22[↓]* [–]
Multipath Hierarchy 33[↑]** [–] [–] 24[↑]* [–] 24[↑]* [–] 35[↑]** 31[↑]** [–]
Cyclic Hierarchy 39[↑]*** 41[↑]*** [–] [–] 33[↑]** 21[↑]* 27[↑]* [–] 27[↑]* [–]
Rebellious Hierarchy 28[↑]* [–] [–] -24[↓]* [–] [–] 29[↑]** 24[↑]* 39[↑]*** [–]
Missing Hierarchy 24[↑]* 25[↑]* [–] [–] [–] [–] 32[↑]** [–] 24[↑]* [–]
Broken Hierarchy 33[↑]** 44[↑]*** 35[↑]** [–] 37[↑]*** 41[↑]*** 43[↑]*** 37[↑]** 45[↑]*** 27[↑]**

Organizational Silo 30[↑]** [–] [–] [–] [–] 28[↑]* 27[↑]* [–] [–] [–]
Missing Links 28[↑]* 25[↑]* [–] [–] [–] 31[↑]** 31[↑]** [–] 23[↑]* [–]
Community smells are in italic

* p <0.05, ** p <0.01, *** p <0.001
The higher the coefficient value, the stronger the trend similarity; [↑] = Increasing trend; [↓] = Decreasing trend; [–] = No trend

Table 5: Information gain analysis of modularization smells

Broken Insufficient Hub-like Cyclically-dependent

Variable Gain Variable Gain Variable Gain Variable Gain

CBO 1.59 CBO 1.43 CBO 1.38 WMC 1.80
LOC 1.55 LOC 1.28 DIT 1.27 LOC 1.73
DIT 1.44 DIT 1.03 LOC 0.88 CBO 1.70
WMC 1.29 WMC 0.92 WMC 0.86 DIT 1.48
Missing Links 0.56 Missing Links 0.41 Code.only.devs 0.39 Org. Silo 0.92
Code.only.devs 0.54 Org. Silo 0.26 Org. Silo 0.37 Missing Links 0.69
ST Cong. 0.45 Code.only.devs 0.23 Missing Links 0.36 ST Cong. 0.57
Org. Silo 0.38 Code.files 0.07 ST Cong. 0.29 Code.only.devs 0.45
Code.files 0.36 ST Cong. 0.02 Code.files 0.21 Code.files 0.39
Community smells are in italic

Higher gain value means more dependency of the variable on the design smell

Table 6: Information gain analysis of hierarchy smells

Wide Multipath Cyclic Rebellious Missing Broken

Variable Gain Variable Gain Variable Gain Variable Gain Variable Gain Variable Gain

DIT 1.34 CBO 1.31 CBO 1.05 CBO 1.57 CBO 1.90 DIT 1.83
CBO 1.28 DIT 1.25 WMC 0.89 DIT 1.30 DIT 1.57 CBO 1.71
LOC 1.19 LOC 1.24 DIT 0.86 WMC 1.10 LOC 1.47 LOC 1.42
WMC 1.09 WMC 1.07 LOC 0.70 LOC 1.07 WMC 1.38 WMC 1.13
ST Cong. 0.53 Org. Silo 0.38 Org. Silo 0.45 Missing Links 0.65 Missing Links 0.73 Missing Links 0.93
Missing Links 0.45 Missing Links 0.34 Missing Links 0.26 Code.only.devs 0.64 Code.only.devs 0.65 Org. Silo 0.67
Code.only.devs 0.37 Code.only.devs 0.23 Code.only.devs 0.22 Org. Silo 0.57 Org. Silo 0.59 Code.only.devs 0.63
Org. Silo 0.34 ST Cong. 0.16 Code.files 0.14 Code.files 0.36 ST Cong. 0.50 Code.files 0.29
Code.files 0.33 Code.files 0.08 ST Cong. 0.14 ST Cong. 0.36 Code.files 0.33 ST Cong. 0.13
Community smells are in italic

Higher gain value means more dependency of the variable on the design smell
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Figure 1: Line plots of design and community smells in
Apache Spark. Broken Hierarchy and other hierarchy smells
are plotted on two different y-axes because of the differences
in their scales.

the same time. If community and design smells are not refactored
together, the smells are likely to reemerge because of their relation-
ships.

For instance, we observed that, in release 1.5.0 of ApacheAnt, five
classes (TreeBasedTask, StarTeamCheckin, StarTeamCheckout,
StarTeamList, and StarTeamLabel) implemented semantically in-
correct “is-a" relationships (i.e., Broken Hierarchy instances). From
release 1.5.0 to release 1.7.0, no refactoring was performed to re-
move the Broken Hierarchy issues in these five classes. In addition,
the community smells also escalated between these releases (1.5.0–
1.7.0)—see Figure 2. However, in release 1.8.0, both the community
smells and Broken Hierarchy instances decreased (see Figure 2).
The decline in Organizational Silo and Missing Links indicates the
removal of the community issues in the project. On the design
side, we found that developers removed the semantically incor-
rect “is-a" relationships (i.e., Broken Hierarchy instances) associ-
ated with TreeBasedTask, StarTeamCheckin, StarTeamCheckout,
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Figure 2: Line plots of design and community smells in
Apache Ant. Broken Hierarchy and other hierarchy smells
are plotted on two different y-axes because of the differences
in their scales.

StarTeamList, and StarTeamLabel, improving the hierarchical
structure of the project. This example scenario demonstrates the
simultaneous increase of the community smells and a design smell
as the project evolved, and the possible collective refactorings of
the smells that lead to the improvement in both the community
and design structures of the Apache Ant project. Future work could
perform in-depth qualitative analysis of such cases to better under-
stand these relationships.

In the remainder of the discussion, we suggest how the separate
refactoring methods of the community and design smells (presented
by Catolino et al [14] and Suryanarayana et al. [36], respectively)
can be joined to eradicate social and technical issues together.

Missing Links has demonstrated relationships with the
design structures that are either not implemented at all (i.e.,
missing) or implemented when not required (i.e., broken).
For instance, both Insufficient Modularization and Missing Hier-
archy reflect the design structures that are not implemented by
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the developers (i.e., classes are not modularized and do not have
a desired hierarchical structure). We found that if modularization
is missing or hierarchy is missing, they have strong relationships
with the Missing Links community smell. This means that the de-
velopers who are working on the project without coordinating with
their peers (i.e., Missing Links) can create classes that are either
too big (i.e., Insufficient Modularization) or do not create hierar-
chies at all, even when required (i.e., Missing Hierarchy). Similarly,
such developers can also create classes that are too small (i.e., Bro-
ken Modularization) or create hierarchical relationships that are
semantically incorrect (Broken Hierarchy).

For refactoring Insufficient Modularization, large classes are split
into multiple maintainable classes [36]. Team restructuring is a
common refactoring strategy to improve the communication in the
community. Therefore, large teams (working on large classes) can
be split into smaller ones as the large classes are split into multiple
smaller classes. Broken Modularization can be removed by moving
methods between classes to reduce dependencies [36]. Similarly,
on the social side, team restructuring will move the developers to
work on classes where methods are moved.

To eradicate Broken Hierarchy issues, the semantically incorrect
relationships (“is-a") should be removed [36]. To ensure that such
incorrect relationships are not created in the future, software teams
should perform communication mentoring (defined as teaching
all team members how to best share information [14]) and cohe-
sion exercises (defined as activities to improve team cohesion [14])
to identify issues in the communication structure and improve
cohesion between the team members so that Broken Hierarchy
issues can be discussed proactively. Similarly, Missing Hierarchy
can be refactored by replacing behaviors (conditional logic) with
hierarchies [36]. On the social side, team restructuring can create
dedicated teams for implementing each behavior as a hierarchy;
furthermore, communication mentoring will ensure that incorrect
hierarchies are not created in the design.

Design smells that focus on cycles between the classes (e.g.,
Cyclically-dependent Modularization and Cyclic Hierarchy)
have a relationship with Organizational Silo. This means that
missing communications because of the disjoint sub-communities
in the organizational structure (Organizational Silo) are related to
the sub-optimal ways classes communicate with each other (i.e.,
classes communicating with each other in cycles). Such cycles in
the design should be removed by moving methods so that depen-
dencies no longer exist [36]. On the community side, the team’s
communication issues can be removed by restructuring the team
through functionality re-assignments to the classes where methods
are moved. Additionally, the software teams can create communi-
cation protocols in advance so that teams are well-aware of how
the communication should be executed, ensuring cyclic structures
are not introduced in the future design.

The two design smells (Hub-like Modularization andWide
Hierarchy) that are more related with socio-technical factors
are similar in a way that both create a hub-like design struc-
ture (i.e., one main class and with many associated classes).
In Hub-like Modularization, there is often a central class and many
classes communicate with it; whereas, in Wide Hierarchy, there is
a root class with many directly derived classes [36]. Although we
saw that these design smells had correlations and trend similarities

with the community smells in the analyzed projects, in information
gain analysis, both showed more relevancy with the socio-technical
metrics. Specifically, Hub-like Modularization showed dependency
with “code.only.devs", while “socio-technical congruence" is more
relevant for Wide Hierarchy. Both these socio-technical metrics
reflect that the social side of the projects is not optimal; thus, we see
two sub-optimal patterns (Hub-like Modularization and Wide Hier-
archy) in software design. The refactoring of these design smells
mainly requires moving methods between the classes; therefore,
for refactoring community structure, the community side of the
projects should perform team restructuring and define communica-
tion protocols so that these design smells can be removed efficiently.

In our discussion, we presented several refactoring suggestions
to deal with social and technical quality issues in the projects jointly.
For all of these suggestions, it may not always be possible to restruc-
ture the software teams, so in these cases the design refactoring
should carefully consider the existing team structures. Future work
can perform experiments to validate these suggestions.

5.2 Threats to Validity
We explain the validity threats of our empirical study in terms of
four categories (as presented by Wohlin et al. [43]).

5.2.1 Conclusion Validity. The conclusion validity refers to the abil-
ity to draw correct conclusions regarding the relationship between
the dependent and independent variables [43]. In our empirical
analysis, imprecise measurement of the variables could be a con-
clusion validity threat because error-in-variable bias could occur if
variables are measured imprecisely, leading to incorrect conclusions.
To mitigate this threat, we employed two empirically-validated and
widely-used tools (Designite [30, 31] and Kaiaulu [18, 41]) to auto-
mate the collection of design and community smells, respectively.
We also captured the communication data (required for computing
social smells) automatically using the Kaiaulu tool. Another conclu-
sion validity threat in our study is the threshold-based design smell
detection employed the Designite tool, which can potentially intro-
duce bias, particularly when the detected (or undetected) smells are
in close proximity to the predefined thresholds in the tool. However,
Designite has been empirically-validated [30, 31], and is the current
state-of-the-art design smell detection tool.

5.2.2 Construct Validity. The construct validity deals with the ac-
curate representation of the theoretical concepts in the dependent
and independent variables [43]. Design and community smells are
indications of problems in the software designs and communities,
respectively; however, they may not always reflect true problems.
To mitigate this, we used a set of well-known, frequently-occurring,
and validated design and community smells. However, other types
of design and community smells may yield different or additional
insights on their relationship in open-source projects.

5.2.3 Internal Validity. Threats to internal validity capture con-
cerns where factors that affect the dependent variables have not
been accounted for [43]. We collected communication data from
three commonly used channels (Apache Mailing Lists, Jira, and
GitHub); still, we cannot guarantee the completeness of the commu-
nication data as there could be other communication channels used
in the analyzed projects. In addition, we adopted several control
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factors to mitigate the problem of wrong interpretations because
of missing confounding factors that can also be related with design
smells. We employed both community-related and non-community-
related factors to cover both social and technical aspects. Similar
control factors were used in the related studies. However, we cannot
be sure that we have not missed other important confounding fac-
tors; particularly since relationships between smells varied across
projects. Future work can include other confounding factors that
may yield further insights into the relationships under analysis.

5.2.4 External Validity. The validity threat is related to the gener-
alization of the experimental results [43]. To mitigate this, we con-
sidered 100 releases of 10 large-scale Apache open-source projects
which each have a good quantity of development and communi-
cation activities. We ensured the projects came from different do-
mains. However, we cannot claim the results generalize beyond our
dataset. Replicating this study with additional open-source projects
may produce more insights into our results. Furthermore, we used
projects from the Apache organization that are categorized under
Java development. To further validate our findings, future work
can select projects developed in different languages and from other
organizations (having different development and communication
norms). Finally, our results are limited to the smells analyzed in
this study. Future work can investigate a wider range of smells.

6 RELATEDWORK
Here, we discuss the research related to the relationships between
different types of software smells (architecture, design, and code),
and then we examine the literature that has investigated the rela-
tionship of community smells with these software smells.

6.1 Relationship between Software Smells
Sharma et al. [34] empirically investigated the relationship between
design and architecture smells using correlation, collocation, and
causation analysis. They found that architecture smells are strongly
correlated with design smells. Similarly, Fontana et al. [19] con-
ducted an empirical study to investigate the relationship between
three architecture smells and many code smells. However, they
found that architecture smells do not influence the existence of
code smells. Palomba et al. [22] and Walter et al. [42] explored the
collocation of design and code smells using open-source software
projects. Both of these studies reported the co-occurrence of smells
in the analyzed projects. In an empirical study, Sharma et al. [32]
explored inter- and intra-category relationships between design
and code smells and reported the existence of their association.

These studies did not examine community smells and focused
only on the technical aspects. In contrast, the study described in
this paper considered the relationship between community smells
and design smells. For examining the technical aspects of software
projects, we used design smells as adopted by Sharma et al. [32, 34].

6.2 Relationship between Community and
Software Smells

Only a few studies explored the relationship between community
and software smells. Tamburri et al. [37] investigated the relation-
ship of architectural smells with community smells using corre-
lation analysis in agile teams. They reported a strong correlation

between community smells and architecture smells. Palomba et
al. [24, 25] reported that community smells contribute to the inten-
sity of code smells and are often correlated. Palomba et al. [24] first
surveyed the developers to understand if the decision of refactoring
the code smells is influenced by the community-related issues (i.e.,
community smells). Alongside other factors, developers highlighted
many community smells that influence the decision of refactoring
code smells. Furthermore, Palomba et al. [24, 25] applied informa-
tion gain analysis (statistical modeling) to see the extent to which
community smells explain the code smells intensity. Their model
used common object-oriented metrics (e.g., LOC, CBO) and com-
munity smells (including socio-technical metrics) as independent
variables. They reported that object-oriented metrics are the most
powerful predictors for code smells. Furthermore, they concluded
that community smells influence the intensity of code smells. For in-
stance, missing communications (Organizational Silo) can misplace
the classes, or Missing Links can influence the evolution of methods
(Feature Envy smell) [24]. Lastly, they found that socio-technical
metrics can explain code smells intensity; however, community
smells showed better dependency than socio-technical metrics.

These studies investigated the relationships of community smells
with architecture and code smells. However, we examined the re-
lationship between community smells and design smells, which
has not yet been explored. Our study employed the same statistical
methods (e.g., correlation and information gain analysis), as applied
in the related works. Furthermore, we collected communication
data from two additional channels (Jira and GitHub) compared to
the related studies where communication data is based only on
Apache Mailing Lists.

7 CONCLUSION
In this paper, we examined the relationship between community
and design smells in 100 releases of 10 large-scale open-source
Apache projects using three methods: correlation analysis, trend
analysis, and information gain analysis. Our results reported that
correlations between community and design smells vary across
the analyzed projects. The Missing Links community smell showed
more significant correlations and trend similarities with the de-
sign smells compared to Organizational Silo community smell. In
information gain analysis, design smells showed dependency on
community smells more so than socio-technical metrics (e.g., socio-
technical congruence). The relationships between design smells
and community smells (especially, Missing Links) provide further
evidence that equal focus should be given to technical (design)
and community aspects during software development. This is im-
portant because software is developed by a community, and if the
community does not have effective communication, software de-
sign quality can suffer. In our discussion, we suggest specific joint
refactoring strategies to ensure that the community and design
smells are fixed together. We suggest future work to conduct ex-
periments to validate these joint refactoring strategies so that their
practical usefulness can be highlighted. Future work can also survey
developers to better understand how software practitioners deal
with the social and technical issues during the evolution of software
projects and validate the collective refactorings of community and
design smells discussed in our work.
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