
Like, Dislike, or Just Do It? How Developers Approach Software Development Tasks

Zainab Masooda, Rashina Hodab, Kelly Blincoea, Daniela Damianc

aThe University of Auckland, Auckland, New Zealand
bMonash University, Melbourne, Victoria, Australia

cUniversity of Victoria, Victoria, Canada

Abstract

Context: Software developers work on various tasks and activities that contribute towards creating and maintaining software appli-
cations, frameworks, or other software components. These include technical (e.g., writing code and fixing bugs) and non-technical
activities (e.g., communicating within or outside teams to understand, clarify, and resolve issues) as part of their day-to-day re-
sponsibilities. Interestingly, there is an aspect of desirability associated with these tasks and activities. Objective: However, not
all of these tasks are desirable to developers, and yet they still need to be done. This study explores desirability and undesirability
of developers for software development tasks. Method: Based on semi-structured interviews from 32 software developers and
applying a grounded theory research approach, the study investigates what tasks are desirable and undesirable for developers, what
makes tasks desirable and undesirable for them, what are the perceived consequences of working on these tasks, and how do they
deal with such tasks. Results: We identified a set of underlying factors that make tasks (un)desirable for developers, categorised as
personal, social, organisational, technical, and operational factors. We also found that working on desirable tasks has positive con-
sequences while working on undesirable tasks has negative consequences. We reported di↵erent standard, assisted, and mitigation
strategies that aid software practitioners manage developers’ likes and dislikes. Conclusion: Understanding these likes and dislikes,
contributing factors, and strategies can help the managers and teams ensure balanced work distribution, developers’ happiness, and
productivity, ultimately increasing the value developers add to software products.

Keywords: software tasks, desirability, undesirability, contributing factors

1. Introduction

Software development involves working on technical tasks
and collaborative activities [1, 2]. Tasks are high-level work
assignments, e.g., new features and bug fixes. Activities are
interactions to accomplish any task, e.g., discussions, meet-
ing, debugging, or testing [2]. We refer to such technical
tasks and non-technical/collaborative activities as ‘tasks’ in this
paper. These tasks vary in terms of e↵ort involved, thought
process, intellectual/cognitive load, and stakeholder commu-
nication. Some tasks may require cooperation and collabora-
tion among members, while others may require more intellec-
tual and cognitive work. For example, coding a new feature
or enhancing an already working feature would have di↵erent
requirements compared to documentation, design, or support
tasks [3]. Similarly, fixing a bug or an issue requires familiarity
and specific knowledge of the developed feature.

Software development tasks and activities are both technical
and non-technical/collaborative. Technical tasks require tech-
nical skills to accomplish, e.g., core development, testing, and
automation skills. Some examples of technical tasks are im-
plementing a new feature, maintaining features, fixing bugs,
migrating data, configuring environments, reducing technical
debt, and providing technical support such as reviewing code
for other teams. These technical tasks are done by dedicated
roles such as developers, testers, or architects. Software devel-
opment also involves non-technical tasks and activities. They

may not require technical skills, but for some non-technical
tasks, these skills are good to have. Examples of non-technical
tasks are creating user guides, conducting feasibility studies,
preparing demos, and coordinating with other teams. These
tasks and activities could be performed by dedicated roles such
as scrum masters, business analysts, technical writers. Roles
like programmers and testers are also seen to share these re-
sponsibilities. Both technical and non-technical tasks and ac-
tivities play a significant part in software development. For
example, non-technical activities such as formal and informal
team discussions can provide input on technical tasks such as
implementation details or architectural solutions.

With a growing interest of the software engineering commu-
nity in investigating the human aspects, numerous researchers
have explored developers’ feelings and behaviors such as hap-
piness [4], frustration [5], and emotions [6, 7]. This study
explores another similar human aspect, i.e., task desirability
and undesirability as perceived by developers (referred to as
(un)desirability throughout the paper). The term ‘developers’
represents testers, programmers, architects, and all other roles
involved in software development. Desirability is the quality of
being worthy of desiring, liking, wanting. Task desirability has
to do with the pleasure of a task or an activity, i.e., working on a
desirable task will make the developer happy [8]. When a task
is desirable, given a choice, developers would like to work on
such a task or activity. Similarly, wherever possible, developers

Preprint submitted to Information and Software Technology June 8, 2022

This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at:
http://doi.org/10.1016/j.infsof.2022.106963

Type Sub-Category Examples Ref

Tasks

Requirement-related: tasks that focus on initial stages of software
development, i.e., requirement identification, analysis, representation Identifying constraints, assessing potential problems, requirements classification [4]

General software: tasks that focus on later stages of software
development, i.e., user support, testing, code reusability

Code restructuring, dead code removal, code inspections, personal debugging,
user documentation, on-line help, tutorial production, user training [5]

Information-seeking: tasks that involve seeking information Browsing web, documentation, articles or FAQs, asking coworkers [14]
Clerical: tasks that can be completed using a routine procedure Generating reports/documents , storing design versions, maintaining changes [13]
Intellectual: tasks that require non-routine thought processes Requirement elicitation, requirement classification, estimate tasks/projects [13]
Software: tasks related to bug fixing, documentation, or providing
new functionality or extending any previous feature Defects, support tasks, enhancements [3]

Activities

Development/coding: activities related to code-writing tasks Coding, reading/reviewing code, editing code, navigating code, bug-fixing,
testing, committing code, submitting pull requests.

[1], [6],
[7]

Version control: activities related to change management Reading changes, accepting changes, submitting changes [6]
Documentation: activities that involves reading or writing documents Reading artifacts, editing artifacts, writing artifacts [6]
Organizational: activities that involve managing project community,
assigning/ un-assigning tasks to developers Assigning GitHub issue or reviewing pull request [7]

Supportive: non-coding activities related to documentation, versioning
control, code branch management

Writing documentation/wiki page, managing development branches &
releasing or archiving code versions [7]

Communicative: activities that involve visible communication Providing comments on issues, commit, and project milestones [7]
Collaboration-heavy: activities that involve working with people Meetings, emails, networking, helping or mentoring others [1]
Other: activities not directly related to development tasks or working
with people Learning and administrative tasks, planning, infrastructure setup [1]

Table 1: Examples of software tasks and activities from literature

will try to avoid an undesirable task or activity.

2. Background

Literature on software development tasks & activities indi-
cate that software developers work on various tasks as part
of their day-to-day responsibilities. Di↵erent researchers have
used di↵erent definitions, terms, and classifications for the tasks
involved in software development. Table 1 lists examples of
software development tasks from literature [1, 9, 10, 11, 12].
Some previous research has classified the types of tasks per-
formed during software development based on the software
development life cycle. Brackett et al. classified tasks in-
volved in initial stages of the software development life cy-
cle [9], while Jones reported tasks involved in the later stages
of software development [10]. These include requirement-
related tasks such as tasks involved in requirement identifi-
cation, requirement analysis and requirement representation,
code-related tasks such as restructuring of existing code, re-
moval of dead code, code inspections, personal debugging,
testing-related tasks, e.g., test case development, test library
control, and user-related tasks, e.g., user documentation, on-
line help, tutorial production, user training.

Some researchers classified the types of tasks based on the
nature of software tasks. Robert et al. referred to software tasks
as clerical tasks, routine tasks that can be completed using a
standard way, and intellectual tasks that cannot be done fol-
lowing a standard procedure, they require non-routine thought
processes to accomplish such tasks [13]. Milewski defined
information-seeking tasks as the tasks that involve browsing the
web (documentation, articles or FAQs), asking friends and/or
coworkers, etc. [14]. Licorish et al. classified software tasks
as defects, support tasks, and enhancements for providing new
functionality or extending any previous feature or fixing is-
sues [3].

Researchers have also classified software development activ-
ities. Meyer et al. record activities developers pursue during

their workdays. These include development activities related to
coding (reading, editing, navigating code), version control (e.g.
reading, accepting, submitting changes), documentation (read,
edit, write artifacts) [11]. In another work, they classified these
activities into development-heavy (coding, bug-fixing, testing)
and collaboration-heavy (meetings, helping, networking) activ-
ities, and other activities (learning, administrative) [1]. Another
study classified software developers’ daily activities into four
categories [12]. The organizational activities involve manag-
ing the project community and delegating tasks, e.g., assigning
an issue or reviewing a pull request. The communicative activ-
ities involve communication, e.g., commenting on issues, com-
mit, project milestones. Supportive activities are non-coding
activities related to documentation, versioning control, code
branch management, e.g., writing documentation/wiki page,
managing development branches. Typical activities are conven-
tional code-writing tasks submitted as code reviews, commits,
and pull requests.

Our Grounded Theory study while investigating the phe-
nomenon of self-assignment in agile software development
teams indicated that there is an aspect of fun and personal
enjoyment associated with di↵erent software development
tasks [8, 15]. Not all tasks are equally fun or exciting to work.
Some software developers like to work on front-end related
tasks, while others like back-end development. Some devel-
opers prefer specific tasks over others for a variety of reasons,
e.g., due to the opportunity they provide to grow or because
they have the potential of outside endorsement. However, not
all tasks are desirable, yet they need to be done. We know from
previous studies that working on (un)desirable tasks influences
developers’ motivation and happiness [4]. Individuals working
on tasks they don’t enjoy can build up a certain feeling of re-
sentment leading to unhealthy consequences in the long-term.
If developers are given a healthier environment and opportuni-
ties to work on tasks of their choice most if not all of the time,
they can be more productive.

Current literature informs us that developers work on di↵er-

2

P# Age Sex Role Exp
P1 31-35 M Tech Lead 11
P2 21-25 M Software Engineer 2.5
P3 26-30 M Assoc. Tech Lead 5
P4 21-25 M Software Engineer 2.5
P5 36-40 M Developer 7
P6 26-30 W Sr. Software Engineer 4
P7 31-35 M Tech Lead 7.5
P8 21-25 M Developer 3.5
P9 26-30 M Tech Lead 5
P10 26-30 M Assoc. Tech Lead 4
P11 21-25 M Sr. Software Engineer 3.5
P12 26-30 M Assoc. Tech Lead 4.5
P13 31-35 M Lead Developer 13
P14 36-40 M Lead Developer 17
P15 21-25 W Developer 2
P16 21-25 M Developer 2.5
P17 41-45 M Lead Developer 20
P18 36-40 W Scrum Master 9
P19 31-35 M Lead Developer 8
P20 46-50 M Lead Developer 25
P21 36-40 W Tester 5
P22 36-40 M Configuration Engineer 15
P23 31-35 W Tester 10
P24 36-40 M Quality Engineer 15
P25 46-50 W Senior Tester 20
P26 30-35 M Developer 5
P27 30-35 M Developer 15
P28 30-35 M Tester 10
P29 35-40 M Development Manager 20
P30 41-45 M Scrum Master 20
P31 31-35 M Product Owner 12
P32 36-40 M Developer 12

Table 2: Demographics of participants

ent types of tasks [1, 9, 10, 11, 12]. A limited number of stud-
ies explored developers’ (un)happiness and how developers per-
ceive their tasks [4, 8]. These studies indicate that not all tasks
are desirable to developers, but they do not elaborate on what
tasks are (un)desirable and what makes them (un)desirable for
developers and most importantly how developers and teams ap-
proach these (un)desirable tasks. To fill this gap, we explored
this aspect further in this study.

3. Research Objectives

The overarching research question How do developers
perceive and deal with (un)desirable tasks? drives this study.
To answer this, we conducted 32 in-person, semi-structured
interviews and focused on the following four sub-questions.

(RQ1) What types of tasks are (un)desirable for developers?
(RQ2) What makes a task (un)desirable for developers?
(RQ3) What are the perceived consequences of working on
(un)desirable tasks?

(RQ4) How do developers deal with undesirable tasks?

It is important to understand the what, why, and how aspects
of ‘Tasks Desirability’ to answer the overarching research ques-
tion. RQ1 aims to confirm if all software development tasks are
desirable to developers. It builds the foundation for RQ2 that
examines what makes a task (un)desirable for developers. RQ3
determines if working on (un)desirable tasks leads to di↵erent
impacts, and finally, RQ4 looks at how developers deal with
undesirable tasks.

Our findings indicate that developers have di↵erent likes and
dislikes towards certain tasks. Not all tasks are (un)desirable to
developers. The paper contributes by reporting a set of under-
lying factors that make tasks (un)desirable for developers. As
there will always be tasks that are (un)desirable to developers,
the management and teams need to be aware of these factors
to provide an environment where team members can freely ex-
press their likes and dislikes and e�ciently address developers’
concerns. Not surprisingly, we also found that working on de-
sirable tasks has positive consequences while working on unde-
sirable tasks has negative consequences. Managers and teams
need to work on strategies to deal with undesirable tasks. We
report a list of strategies to deal with undesirable tasks. Man-
agers and teams can benefit from these strategies to manage
developers’ likes and dislikes.

4. Research Method

‘Task desirability’ was identified as one of the factors devel-
opers consider while self-assigning tasks in our previous work
on self-assignment [8]. We used Grounded Theory to explore
various aspects of self-assignment as part of a broader study.
This paper explores this factor further and reports key findings
related to tasks (un)desirability as perceived by the developers.
We applied data analysis techniques from the Grounded Theory
methodology to the data collected through interviews related to
task (un)desirability to the data collected through interviews re-
lated to task (un)desirability.

4.1. Data Collection
Out of the entire data set from the broader Grounded The-

ory study with 54 participants from 26 software companies, this
study data set includes semi-structured interviews with 32 soft-
ware practitioners from New Zealand, India, and Pakistan. Due
to the iterative and emerging nature of Grounded Theory stud-
ies, ‘desirability’ emerged after the first set of interviews, so
questions were added to the interview guide to elicit this in-
formation and only the last 32 participants shared information
regarding (un)desirability.

For participants recruitment, we contacted developers
through personal contacts and networking sites (e.g., MeetUps
and Linkedin). All the participants worked for small to large
software development companies with 2-25 years of software
development experience. They worked under various roles such
as developer, software engineer, tester, team lead which brought
diversity in our data set. Table 2 presents the participants demo-
graphics. The first column states participant numbers P1-P32 to

3

Quote (P#) Concept Sub-Category Property
Problem is not that you don’t want to do that work,
the problem is having a conflict with somebody (P20)

Having conflict with
others Social Conflicts: Undesirability

As this (automation) skill is in market demand
and gives you an experience of new learning...(P28)

Learning automation,
(skill in demand) Personal Learning Opportunity:

Desirability
No one values the time spent on documentation reviews
as the focus is always on a running software...(P21)

Reviewing documents
(Undervalued) Organisational Contribution to organisation:

Undesirability

Table 3: Open-Coding Examples: Emergence of sub-categories (social, personal, organisational) from participants’ quotes leading to the category (contributing
factors covered in (Section 5.2)

maintain participant anonymity following human ethics guide-
lines. The second and third column lists their ages and gen-
der while the remaining columns list their roles in the current
company and the total professional experience in the software
development at the time of interview.

Before conducting the interviews, we gathered the partic-
ipants demographics using a pre-interview questionnaire (a
google form). The form collected participant information such
as professional background, e.g., role, company, personal, e.g.,
age, gender, qualification, etc. Gathering this information
helped us assess the participants’ suitability in advance, e.g.,
their work experience was not less than two years, they were
self-assigning tasks to themselves (mostly if not all the time).
It also saved time to focus on key areas of the research during
the interviews. The questions used in the interviews evolved
iteratively throughout the study. New questions were added to
focus on new findings (concepts, categories) that emerged from
the previous iterations of data collections following Grounded
Theory procedures. For example, it was found from the initial
round of interviews that task desirability is one of the factors
developers consider while self-assigning tasks. At that stage,
open-ended questions focused on factors developers consider
while self-assigning tasks to themselves [8, 15]. In the fu-
ture interviews, we asked open-ended questions focusing on
task desirability. A few examples are: What types of tasks are
(un)desirable to you? Why are they (un)desirable to you? These
interviews were conducted at the participants’ workplaces (e.g.,
in New Zealand) or venues suiting the participants’ convenience
(e.g., co↵ee shops, public places) or through Skype video calls
(e.g., for participants in the UK). These interviews were audio
recorded and transcribed verbatim for analysis.

4.2. Data Analysis
Data analysis comprised open coding and constant com-

parison following Strauss and Corbin guidelines [16]. It in-
volved identifying concepts by asking questions and compar-
ing one concept to another. Concepts are the words that rep-
resent an idea in the data based on researcher’s interpretations.
Through constant comparison, similar concepts are grouped to-
gether to generate a higher level of abstraction, i.e., Categories.
This classification from concepts to categorisation helps the re-
searcher to manage enormous amounts of data.

We highlighted the potential areas of interest by annotating
relevant details in the transcripts to facilitate open coding. We
analysed the annotated areas focusing on tasks (un)desirability.
We identified concepts in the data from quotes of participants

such as from P20, P21, P28 as shown through examples in Ta-
ble 3. These quotes result in concepts such as ‘having conflict
with others’, ‘learning skills in demand or valued by company’,
‘reviewing documents treated as undervalued activity in com-
pany’. These concepts were defined in terms of their proper-
ties (characteristics that explain a concept) for further under-
standing and refinement. For example, ‘conflict’ was defined
with regards to disagreement within (with team members) or
outside (external stakeholders) teams. Then, we grouped sim-
ilar concepts under di↵erent categories, e.g., contributing fac-
tors to desirability and undesirability were grouped into sub-
categories, e.g., personal, social, organisational, technical, and
operational factors factors for understanding and better repre-
sentation. Other examples of categories are perceived impact
and strategies presented in Section 5.3 and 5.4.

The first author collected the data and performed open cod-
ing and the other authors reviewed the final set of concepts, sub-
categories, and categories. This was done through frequent and
detailed discussions amongst the co-authors throughout the data
analysis and reporting of results. We proceeded with data col-
lection and analysis until theoretical saturation was reached for
the wider study [8, 15]. This study only employed Grounded
Theory procedures of open-coding and constant comparison.
Therefore, we do not claim theoretical saturation (with 32 in-
terviews) for this part of the study.

5. Results

Software developers work on di↵erent tasks and not all these
tasks are (un)desirable to developers. We organize the results
of our analysis in Figure 1. Table 4 lists examples of tasks
shared by the participants. Knowing about these di↵erent tasks
will help build the context for the study where participants re-
ferred to these tasks as desirable or undesirable tasks. We out-
line the factors that make tasks desirable or undesirable for the
developers, the positive and negative impacts of working on
(un)desirable tasks, and the strategies developers use to deal
with these impacts.

5.1. What tasks are (un)desirable to software develop-
ers (RQ1)?

We asked the participants what tasks are desirable and unde-
sirable to them. Their responses confirmed that some tasks are
more desirable than others.

4

Tasks Examples

Coding
Front-end development (UI, UX),
back-end development (application logic,
data & application integration)

Bug reproducing
& fixing

Debugging or fixing bugs or
clients/users issues

Testing Exploratory testing, API testing,
testing, performance & smoke testing

Specification Requirements gathering, elicitation

Automation Writing scripts, framework designing,
automation tools

Monitoring Regression build farms, test suites
Reviewing Code reviews (within or outside teams)
Environmental &
Configuration Infrastructure setup, Configure containers

Documentation Manuals, technical documentation

Meetings Scrum events, customer meetings,
technical meetings

Emails Reading/writing emails

Supporting teams Helping other team members, demos,
presentations

Mentoring Trainings, knowledge transfer

Table 4: Examples of tasks shared by the study participants

5.1.1. Desirable Tasks
We found that most software developers desire to work on

tasks that involve emerging research areas, cutting edge tech-
nologies, and novel development tools such as using di↵er-
ent APIs, programming languages, tools, frameworks, and li-
braries. Tasks that are complex and provide developers a solid
grasp on the system’s underlying architecture, logic, complex-
ities, or domain knowledge are desirable for developers. For
example, a junior developer stated that broad-level testing is
desirable to them as they get to explore the system to ensure
their implementation was not breaking the system. This helped
them get familiar with the system. For some developers, un-
derstanding the intricacies underlying the complex system fas-
cinated them. Some participants stated tasks which take them
out of their comfort zone are desirable to them. Conversely, a
very few stated tasks that provide opportunities to serve people
are desirable irrespective of the nature of the task.

For some developers front-end development tasks are more
desirable as indicated by a developer.
“For me, I really like doing front-end stu↵” [P14]

For other developers, the back-end tasks are more desirable
as quoted by P1.
“They [developers] want heavy, meaty back-end coding work”.

For some developers working on enhancements is desirable.
“The enhancements, I guess are a lot more fun”.

Generally, many participants reported that working on new
features is desirable as brought up by P11.
“Always the new development...”
“Working on new applications, I’d say is probably the most de-
sirable.” [P19].

Developers acknowledged reviewing others’ code as a desir-

able task as part of pair-programming or code reviews. How-
ever, this relied on the code quality and the peer author. Junior
developers said examining experienced programmers’ code was
a desirable activity and a learning opportunity for them. To
summarise, task desirability seems to vary between front-end
and back-end development. Developers expressed their desir-
ability for working on new features and enhancements over bug
fixes and change requests.

5.1.2. Undesirable Tasks
The majority of the participants reported that tasks that do

not require thinking and analytical skills or are redundant or
mundane are generally undesirable. Some examples mentioned
were testing the UI fields, monitoring daily regression results,
and troubleshooting daily build failures. A participant said,
“I don’t like working with UI ... doing one pixel up, other pixel
down” [P26].

Another common undesirable task reported involves work-
ing on live or production servers, e.g., providing live support to
customers, changing and uploading data.
“Our team does live support for one of our legacy products.
This work is mostly undesirable for individuals” [P15]

Not surprisingly, developers expressed dislike for reviewing
and refactoring a bad quality code. Similarly, most of the devel-
opers agreed that documentation is one of the most undesirable
tasks. Documentation here refers to di↵erent activities such as
writing test cases, providing code comments, documenting test-
ing results, adding details to discussion threads on any work
items, documenting technical details for writers to include in
product documentation. Similarly, many developers find fixing
bugs or automation failures undesirable.
“Fixing bugs is an undesirable task, let’s be clear ..” [P20]
Participants responded to unit testing as an undesirable task.
Most of them appreciated having dedicated testers for detailed
features verification. Also, testing of the historic production is-
sues is regarded as one of the most undesirable tasks.
“Developers often complain about unit testing” [P28]

For some participants, coordinating with di↵erent teams is
undesirable. Tasks that involve coordinating, or supporting
other teams is reported as undesirable, e.g., integrating modules
developed by other teams who are unwilling (to provide sup-
porting details). Similarly, tasks like status meetings, planning
meetings, and generally meetings are reported as undesirable to
developers but unavoidable. Another task, which is not actually
related to software development but reported as undesirable
by a couple of participants, is the involvement in the hiring of
resources at a technical stage where they need to shortlist and
interview the candidates.

5.2. What makes a task (un)desirable to software develop-
ers (RQ2)?

Our findings reveal that tasks become (un)desirable due to
multiple contributing factors. The categories that emerged in
our analysis are personal, social, organisational, technical, and
operational. These are explained with examples below.

5

Figure 1: (Un)desirability for di↵erent tasks

5.2.1. Personal factors
Personal factors include factors directly related to developers

such as learning opportunities, career growth, ownership over
task, domain knowledge, appreciation earned, and impact of
task on developer.

Learning opportunities: We found that developers desire to
work on tasks that involve new and emerging tools, technolo-
gies or frameworks. This is primarily because working on such
tasks helps them learn new tools or technologies and improve
their technical skills as indicated by a participant.
“I liked it [automating build process] coz it was a new expe-
rience for me. I designed framework from scratch..... creating
new instance on open stack, assigning floating IP, setup ssh con-
nection, installing all prerequisites packages..... etc. and then
adding it to Jenkins worker pool” [P22]
Working on a certain technology stack such as Android, iOS,
Microsoft, etc., seems to interest some developers making as-
sociated tasks desirable to them. Some prefer to keep working
on the same tech stack, others are happy to switch if the role
demands.

Career growth: In addition to a new learning experience,
working on new, emerging tools or technologies improve devel-
opers’ profile, therefore desirable. They get to add new skills
to their resume which helps them secure a higher rank in cur-
rent team or even a better job in the future. As indicated by
P24, developers take it as an opportunity to upskill, improve
their profile, and increase chances of success in the job market.
“These skills are in demand and looks good on CV” [P24]

Ownership over task: Developers enjoy ownership over their
work and reported it as another contributing factor in making a

task desirable for them. They love working on tasks that give
them autonomy and freedom. A developer expressed pleasure
for getting full ownership and responsibility over their task by
their manager as:
“My manager allows me to do a to z for that feature and lets
me do all of it which I love.” [P23]

Domain knowledge of developers is indicated as another fac-
tor. Sometimes developer’s lack of domain knowledge makes
a task undesirable, e.g., working on a core financial or payroll
problem can be challenging without domain knowledge. Devel-
opers cannot propose a solution until they understand the details
of the issues. They get these domain-specific details from the
external stakeholders.

Appreciation earned by the developer from any task is re-
ported as another contributing factor. We found instances when
not being appreciated by the seniors was demotivating, hence
making such tasks undesirable for future. Senior developers
shared instances when their junior co-workers felt awkward
when their work was not considered worthy. A senior partic-
ipant revealed how their intervention changed co-workers’ re-
sponses towards a junior developer.
“You can just see di↵erence in how they’re treated. I’ve seen an-
other tester in the team telling them [developers] something’s
wrong and been given the brusho↵. So, I’ve come in to back
them and then, magically they’re taking it seriously” [P25]

Participants also indicated that this behavior could be due to
other reasons, e.g., the incompetency of the junior or some re-
cent negative reputation that the junior earned from any of their
previous work. Other participants revealed how their working
relationships improved over time, as indicated below.

6

“We have been working on it for a long time and with the prod-
uct our relationship also flourished. Now, whenever there is
any new feature or an issue, we sit together discuss stu↵ before
starting. It wasn’t the same before I still remember in the be-
ginning it was really hard getting hold of him [developer]. But
I think over the time I built a nice reputation” [P22]

Impact of task on developer: The task’s impact often makes
them undesirable. A participant shared an example where a
task was undesirable because of associated mental fatigue and
burnout. A small mistake can lead to repercussions as the
changes made were going on the live server simultaneously.
The developer found it mentally exhausting and stressful.
“This task needed to update our website with all components
and corresponding versions for all supported platforms. It re-
quires a lot of concentration as the data become live simultane-
ously. It was a simple task, but mentally exhausting”. [P22]

5.2.2. Social factors
These include factors that involve influence of others such

as conflicts with teammates, incompetency of teammates, and
unnecessary pressure and stress put by teammates.

Conflicts with teammates can occasionally lead to undesir-
ability for a task. For example, a business analyst or product
owner may not admit that the initial requirement they shared
with the developer was ambiguous. Instead, they hold the de-
veloper responsible for making incorrect changes. This makes
such a task undesirable for the developer.
“So, the challenge is, an undesirable task becomes undesirable
when somebody is asking for a change because they messed up
or whatever and not willing to take the responsibility” [P20]

Incompetency of teammates: Participants reported few in-
stances when working with an underperforming team members
made tasks undesirable. Developers shared disliking situations
when testers report bugs that reproduce in their unique environ-
ment or focus on cosmetic issues missing real issues in signifi-
cant functionality and treat unreproducible issues as showstop-
pers. Interestingly, a tester shared similar feelings for develop-
ers’ low-quality work.
“...when you’ve had bad developers who weren’t very good at
their job. That ends up being a nightmare. So every time you
worked on their stu↵ you would, you’d just do Oh no! So it’s
always nicer when you’re working with the really good devel-
opers when you’ve got quality code to start with and you’ve not
got the silly issues.” [P25]

If there is a friendly environment that supports open conver-
sations between teammates, and if the teammates take construc-
tive criticism positively, this generally fascinates developers. It
goes back to what type of relationships and reputations the de-
velopers have with their teammates. Typically, developers ap-
preciated discussions that can help them to gain clarity towards
tasks. P11 stated
“I mean I work in other projects as well but I’ve got a senior
and junior dev and they’re both terrific to work with because
they both, they’ll both talk to me” [P11]

We also noticed that working with incompetent seniors or
even seniors who do not provide details can make a task un-
desirable. In such situations, gathering details, discussing the

impact of the changes, telling them if something is working
wrong gets challenging, as indicated by a participant.
“We have one who isn’t, and unfortunately he’s the boss and
he’s the only one who’s not quite up to snu↵. So whenever you
have to work on something of his, everyone literally does ‘Oh
no’, when you realise you’ve got something coming through
from him. Because it just starts from the very beginning of
there’s not enough information about what the problem was,
what the change was. So you actually end up working blind,
trying to figure out what is this thing and is it going to do any
damage.” [P25]

Pressure and stress put by teammates: Participants reported
that there are times when managers and senior teammates put
unnecessary pressure and stress, which they don’t like. Work-
ing under such co-workers makes related tasks undesirable.
“We have X in Y who has a habit of putting unnecessary pres-
sure saying, ‘What’s going on with this bug, its urgent we want
it right away!’ and then you go back and you can’t do it until
Friday.” [P18]

5.2.3. Organisational factors
These factors are related to organisations developers work

for, i.e., transparency given to developers by the organisation,
contribution of the developers’ work to organisation, and cul-
ture of organisation to ignore developers’ opinion.

Lack of Transparency in the workplace: Participants re-
ported a lack of transparency as another cause towards tasks un-
desirability and disliked when the management does not keep
things open. They are unaware of the impact their work can
make. As an example, a developer was quite frustrated about
making some changes repeatably. However, developer’s views
were changed when the lead shared the significance of these
changes and the impact on the company.

Contribution to organisation. Another contributing factor
was when any piece of work was benefiting a product or com-
pany. It was common for a developer to like a task if the
company valued it. For example, a participant who mentioned
working on automation tasks was exciting and desirable be-
cause the company valued it, they were aligning with the com-
pany’s goals.
“Automation tasks are desirable to me.. in my company, au-
tomation tasks are valued more than manual ones” [P24]
We noticed these tasks varied with job roles and the company’s
areas of interest. They change with time, business needs, and
technology trends. A di↵erent yet related perspective shared by
one of the participants is that any task that provides a chance
to contribute to people’s lives positively makes tasks desirable,
e.g., working on healthcare products and retail services.

Culture of ignoring developers’ opinion: Participants re-
ported that while making any decision, management ignores
developers’ perspectives or recommendations. These decisions
are related to the readiness of product release or any potential
critical issue. Developers feel that their say does not matter,
making them uncomfortable and frustrated, as indicated by a
participant.
“You’ve got no control over it going out and you know it’s not
right, and you know it’s not ready. So that makes it hugely

7

stressful, and that’s really common. You have no, you don’t re-
ally have any say over when it gets released. And it’s invariably
released before it’s finished, which they’re fine with. But I’m not
fine with that so that makes it really hard” [P25]

Developers shared that management do not give importance
to product’s quality. They are aware of the product’s poor qual-
ity but do not prioritize bug fixing unless the customer reports,
which frustrates developers.
“We do have a very buggy product so I watch our logs all the
time. That’s like the first thing, every day I have a look at logs to
see what problems are occurring in production and see if I can
spot what’s occurring... which I find quite frustrating” [P23]

5.2.4. Technical factors
These are related to technical constraints developers face

such as working on slow platforms, in a remote setup, and un-
dervalued nature of work. They also include factors related to
attributes of technical tasks such as repetitiveness.

Subpar and slow processing platforms: make related work
undesirable. Adding features in a product on an obsolete plat-
form that customers hardly use is undesirable. A developer
shared an example where compiling a few lines of code on the
X platform takes ages which is very frustrating. A tester agreed
that setting up a machine and verifying a few basic level test
cases while connecting to a remote machine can take hours for
a few minutes of activity.

Remote setup is reported as another contributing factor. De-
velopers working in a remote setting shared that they have to
perform pre-requisites before starting any work. A developer
reported frustration over a painful process for committing any
code keeping the security policies in place. Connecting to re-
mote servers can be frustrating due to the time it takes. Simi-
larly, inaccessibility to remote machines due to network issues
is sometimes troublesome making such tasks undesirable.

Undervalued nature of work: Developers indicated that
working on old, legacy applications is undesirable. They find
it unexciting as understanding an older technology can be di�-
cult, time-consuming, and undervalued. Working on such out-
dated applications requires many changes, sometimes doubling
the e↵ort, which is neither rewarding nor impactful. Another
developer compared why working with such applications is un-
desirable compared with newer applications.
“A couple of applications that we work with are using older
technology and a lot of changes. If any changes need to be
made to those applications, you can pretty much take the level
of e↵ort you think it’s gonna be and double it... the newer ap-
plications have that all set up so it’s really easy to deploy them.
The older ones are very complicated and there’s always some-
thing that’s going wrong.”[P19]

Sometimes, a client asks for changes on such platforms that
require major architectural changes, potentially impacting other
unknown areas of the application. Such tasks are undesirable
due to complexities.
“I mean a lot of those application migration ones are [undesir-
able] because some of them can just be kind of endless holes
(laughing)” [P19]

Task repetitiveness is another common reason behind an un-
desirable task. Some common examples shared by the partici-
pants are retesting the same bug again and again or on di↵erent
supported platforms, regressions caused as a result of recent
changes in the code base, e.g.,
“If dev fixes one defect but the fix causes ripples, like already
tested functions do not work anymore, then retesting same thing
again and again becomes undesirable” [P23]
It is also reported that certain activities are monotonous and
repetitive, yet they need to be done to fulfil the company’s SOP.
“.. Every time we have any major or minor release of our prod-
uct, we need to go through an exhausting and repetitive set of
activities as part of our company’s practice although we have
automation suites for them” [P24]
Setting up an environment may involve tedious infrastructure
and configuration-related tasks, e.g., setting up multiple di↵er-
ent environments which are acknowledged as undesirable, not
because they are di�cult but because they are time-consuming.

5.2.5. Operational factors
These are related to business operations, their planning, and

management. These include unrealistic deadlines, resources in-
accessibility due to flexible work arrangements, other distrac-
tions, bottlenecks and delays, scope creep, and meetings related
factors.

Unrealistic deadlines: Participants reported that there are
times when management proposes and agrees on unrealistic
deadlines. Working on such time pressing tasks that involve
unrealistic deadline is frustrating, stressful, exhausting and un-
desirable. As an example, developers are expected to address
the high priority issues reported by the customers on the spot,
irrespective of their reporting time which can be on a weekend,
after working hours, or a public holiday.
“To keep the things going we need to deliver a customer build
as a workaround as soon as possible no matter what” [P22]
If there is not enough time to finish a task properly, it makes
developers anxious. In some cases, they are aware in advance
that all their e↵orts will go to waste, and the management will
release the deliverable before it’s even ready.

Inaccessibility due to flexible work arrangements: In a flex-
ible working environment, some developers come to work early
or late depending on their convenience, and their unavailability
at certain times causes delays which annoys teammates. But
for others, it is not a big concern, as shared by a developer who
mentioned making a call if there is anything important.
“One team member starts earlier [due to personal reasons] and
others join 2-3 hours later. His day ends earlier so sometimes
feels like we see him quite less. Though this isn’t a big concern
we call him for any clarifications if needed but would be nice to
have him around like the others” [P24]

Other distractions: Participants reported that involvement in
the recruitment such as conducting technical interviews, pro-
moting company’s recruitment at a career fair is undesirable
because it is time consuming and distracts them from regular
activities. They are expected to do these tasks in addition to
their routine, business as usual tasks.

8

Bottlenecks and Delays: Many participants, specifically
testers reported that the delay in getting the work from the pro-
grammers causes a bottleneck and leads to frustration which
makes related tasks undesirable. It is because testers have to
work extra hours to meet the project deadlines. The testers
shared that they get the code to test closer to the end of the day,
and then the programmers expect them to verify the changes as
soon as possible. Many testers reported this as frustrating and
happening more like a norm, irrespective of their raised con-
cerns.

Scope Creep: We also found that tasks that involve contin-
uous change in scope are undesirable. They lead to never-
ending requirements and communication loops and waste of ef-
fort. Developers find working on such tasks unpleasant. They
have to keep waiting for clarification from di↵erent stakehold-
ers, and the work remains unfinished. For example, developers
often have to wait for the clients to respond to queries, clarifi-
cations, or approval, keeping them hanging to tasks, and they
often complain about this.

Meetings related aspects: cover factors related to meetings
such as duration of meetings, not following meeting agenda, ir-
relevance to meeting agenda, and limited accessibility to clients
make tasks undesirable.
Duration of Meetings: Meetings are generally understood to
contribute to project success and completion, yet many partic-
ipants quoted them as undesirable. The participants acknowl-
edge the importance of having these meetings but at the same
time declared that prolonged duration of meetings wastes a lot
of their time. What makes it more undesirable is when these
meetings do not add any value to the attendees, and there is lit-
tle or nothing to take away from them.
“It’s undesirable for me, like at my current company the meet-
ings don’t add value. So, you know, I don’t enjoy them, they
often feel like a waste of time. But in my previous companies,
you know, the meetings were really fun, loved them because hey
were really useful” [P25]

Another participant, reported client meetings to be undesir-
able. This is primarily because meetings with the customers
take a lot of their time. On the other hand, another partici-
pant shared a di↵erent perspective towards such activities and
acknowledged these meetings as a medium to clarify require-
ments with the customer.
“I love communicating with developers and BA from time to
time. It helps me to understand the feature, to foster a good
relationship within the team and to ensure a quality product is
shippable” [P21]
Not Following Meeting Agenda: Participants agreed that if
meetings do not add any value to the product, there is no point in
having them. But if they have a well-defined agenda, are time-
boxed, and are limited to the relevant people, they add value
by all means. A participant highlighted that their teammates
were unaware of the dangers of not following the structure of
the daily stand-ups. They were skipping valuable details, (e.g.,
their current progress, any impediments) and expressed happi-
ness over finishing stand-ups earlier. “It [stand up] was like ba-
sically instead of people actually doing what you’re supposed
to do in a stand up, saying what you’re actually working on.

People basically said I’m working on this like this is the area,
without any detail and at the end our team leader was like that
was the shortest stand up we’ve ever done, and everybody was
like yay!. And I didn’t say anything but I was like, do you actu-
ally realise that there was nothing of value actually got said in
that meeting. We already know what areas everyone’s working
on” [P25]
Meeting Style: It’s not just about the time and the relevance
to the meeting which can make them (un)desirable, but also
how they are conducted. A participant stated that team meet-
ings on Zoom are more tiring than physical meetings with re-
mote meetings due to multiple reasons such as missing physi-
cal contact, connectivity issues, exhausting with missing breaks
between back-to-back meetings.

5.3. How working on (un)desirable tasks impacts develop-
ers (RQ3)?

We asked developers about the perceived impact of working
on (un)desirable tasks and found that many developers shared
a common opinion about the negative impact of working on
undesirable tasks and positive impact of working on desirable
tasks. Not surprisingly, many participants reported increased
motivation while working on desirable tasks, e.g.,
“Working on desirable tasks a↵ects me positively by giving me
a sense of achievement and motivation” [P24].
Some reported decreased motivation while working on undesir-
able tasks, e.g.,
“working on repetitive, boring ones definitely makes you less
motivated..” [P23].
Participants reported positive emotions such as relaxed,
happy, less stress while working on desirable tasks.
“Working on something impactful (desirable) is emotionally re-
warding. You feel happy that you are playing a part in some way
or the other” [P16]
On the other hand, negative emotions such as loss of interest,
low dedication, boredom were also reported.
“On every release, when we are assigned di↵erent platforms
for testing, it’s always boring to run same steps on X number of
platforms. I find this activity useless and have raised my con-
cern too” [P22]
Sometimes, personal emotions like stress, frustration are linked
to making tasks undesirable as indicated by the developer.
“I think there is a strong link because when I am stressed or
frustrated, I lose my real interest in doing it [task]” [P24].

Participants also reported losing track of time and e↵ort they
put in while working on a desirable task. It increases their pro-
ductivity but, on the downside, could impact their well-being
as when they work outside o�ce hours, it could get exhausting.
But since they enjoy doing it, they don’t care as much about
how it a↵ects their well-being.
“I feel more productive when I am doing them [desirable] and I
do it with all my heart and feel really happy about it. Sometimes
doing desirable task make you feel losing track of time coz you
are so much into it and my productivity increases.” [P23]

We noted some negative responses towards consistent unde-
sirable work. One example is redesigning entire code to avoid
waste of time and e↵ort.

9

“ So, the senior developer, he took another week, rewrote entire
thing and then it got fixed.” [P32]
Another, rather extreme response reported is quitting job as
indicated by a participant.
“I have witnessed colleagues leaving our company because as
they said its getting too much for them” [P23].
One participant admitted that recent work had been overwhelm-
ingly frustrating but in current times, due to Covid-19, even des-
perately wanting for a job switch is not possible due to shrink-
ing opportunities.
“With COVID this is the worst possible time to think of finding
another job. Like in my case, I absolutely would. If something
came up I’d be gone, it’s just been too frustrating” [P21].
Another participant indicated that the duration of working on
the task also influences the impact.
“... but working even on an undesirable task is not frustrating
if done for a short time but not motivating either” [P2]

There are instances when working on a task reaches far be-
yond the developer’s patience and there comes a point when it
starts a↵ecting their well-being, as shared by a participant. This
could be due to complexity of the problem, e.g., understanding
the underlying architecture or logic applied, or regressions due
to new changes in the code. One example revealing junior de-
veloper’s stress as:
“It [retesting tests] was just going in circles. And he got to the
point where he was like I’ve got PTSD (Post-traumatic stress
disorder), I can’t work on this any longer (laugh). This is the
more junior developer, so he was like that’s it, I just cannot do
it, I’m too stressed, too hard” [P23]

5.4. How developers and managers deal with undesirable
tasks (RQ4)?

We asked participants how they respond to (un)desirable
tasks. Whether a task is desirable or undesirable to develop-
ers, it still needs to be accomplished to add business value and
deliver customer’s requirements. Yet, participants revealed that
there are tasks that remain on the board unless being reminded
of or intentionally made visible by the leads or managers. It
was found that developers adopt a set of strategies to deal with
undesirable tasks.

Three main types of strategies emerged from participants re-
sponses which we have described below.
Standard Strategies: are the strategies in which the developers
do not take any steps to make undesirable tasks desirable. These
are followed as team assignment protocols or norms.

Just do it, whether (un)desirable: A majority of the devel-
opers agreed to the fact that all tasks are part of their job, and
they have to do it whether they like it or not. Even if they are
undesirable, they still cannot be avoided as refusing undesirable
is not an option.
“That’s part of job so can’t ignore, I do my best” [P24]

Pass-on to juniors: It is seen that quite often boring and
mundane tasks are assigned to the junior developers. However,
sometimes this is to help them understand the system. Juniors
are reluctant to bring this up as part of conversation, even to
address their own needs.

“So often, the junior will get stuck with, updating text or, you
know, mundane tasks” [P28]

Everyone gets a turn (round robin): Another popular strat-
egy evident from the participants is everyone in the team gets
their turn at some point.
“.....team members work on these tasks in rotations” [P15]
Developers and mangers consider it as a fair strategy to deal
with such tasks.

First-come first served: In some teams, the work distribu-
tion is such that whoever gets out of work will have to take the
next available work. In such cases, it’s more of luck than the
desire to work on the task.
“The first person who runs out of task (un)desirable above that
story will have to grab the task” [P14]

Keeping others well-informed: Developers who cannot
voice their concerns or avoid working on an undesirable task
stated just keeping their managers or leads well-informed as a
strategy.
“I try to keep my manager in loop letting him know that
document review task is taking a lot of time” [P24]

Assisted Strategies: are the strategies in which the developers
assist other developers to finish an undesirable task.

Everyone participates (team activity): to get the undesir-
able tasks done. This happens like a round robin strategy where
every team member gets an equal share of the work from the
list. For example, a team gets installers for di↵erent platforms
before every major release; though the processes are automated,
a set of steps need to pass before they are released. This is
considered an undesirable task but important to business, and
so platforms are distributed within teams and across teams for
smooth execution. They perceive it as an accepted strategy as it
reduces the frequency of working on a task for every developer.
“The best part is we all contribute to finish this [installer smoke
testing] unavoidable task on our chosen platform” [P22]

Negotiations: Team members negotiate with each other to
work on or avoid any task which happens very commonly.
These happen during team meetings and discussions.
“They will say ‘Look, I know you’ve taken this card. Do you
mind if I do it, I’ve got particular skills in this area’?” [P28]

Help struggling peers: Developers often ask for help or
even re-assign undesirable tasks to others within teams as an-
other strategy.
“If someone struggles they are encouraged to call out for help
and that works most of the time” [P11]
“We often swap tasks we don’t want to work on” [P17]

Working in Pairs: These negotiations usually end with the
team members working in pairs for quicker completion in case
of undesirable tasks or learning for desirable tasks.
“If two are interested in one, then we wire them up together.
People are, ‘Oh, you want to fix that, I have a clue maybe, we
can introduce that in the framework to resolve that’” [P31]
Mitigation Strategies: are the strategies in which team mem-
bers make collective e↵orts to mitigate the undesirable tasks.

Rectifying the root cause: We have seen in Section 5.2, that
many times it is not about the task, rather it is the underlying
factor that makes it undesirable. A manager quoted that

10

“Writing code is fun to every developer whether it’s to develop
a new feature or changing an already build thing” [P20]
It is the responsibility of a manager to identify the root cause
behind an undesirable task and rectify it for the team through
discussions. Unfortunately, not many managers do this. On the
contrary, a few developers stated if they see something making
a task undesirable, they try to communicate with the manager
as soon as possible. This way they try to prepare or deal with
them minimising any waste of time, e↵ort, or money.
“So he was like I’m just going to rewrite it, and we all thought
by that point that we should’ve started with rewriting the code
because it was just too complicated which is why we just had
issue after issue. So he started with rewriting it” [P25]

Automate undesirable tasks: Another commonly practiced
strategy to overcome repetitive, mundane tasks is automating
them. This not only helps them focus on useful work, but also
reduces the possibility of human error.
“We try to automate letting us focus on productive stu↵” [P31]

Team mutually decides: is a future mitigation approach in
which teams bring undesirability related concerns up at retro-
spectives, and mutually address “Is there anything we can do?”
Then, the team makes a decision on how they want to approach
that sort of tasks in the future collectively.
“You’ve got to bring everybody in and have a reasonable con-
versation and appeal to reason” [P20]

6. Discussion

Here we discuss our findings in light of related work, touch
on additional aspects that could be investigated in future work,
and finally present how we mitigated threats to validity.

6.1. Comparison to Related Work

Researchers acknowledged the need to focus on software
developers and their happiness to improve developers’ pro-
ductivity and quality of software products more than thirty
years ago [17]. This study is an attempt to explore task
(un)desirability. While comparing our findings (Q1 and Q2)
to related work, we found that a limited number of studies have
explored the emotions and behaviours of developers for soft-
ware development tasks. A study explored causes for unhappi-
ness among software developers and reported them as internal
and external causes [4]. Some of these are related to tasks, i.e.,
being stuck in problem solving, time pressure, bad code quality
and coding practice, mundane or repetitive task, unexplained
broken code. Some of the causes reported by them, e.g., time
pressure, mundane or repetitive tasks are common to our find-
ings. In this study, we explore why developers want and don’t
want to work on certain tasks. This study is an initial step to-
wards understanding tasks desirability as another indicator of
developer’s happiness, a less explored area in software engi-
neering. It extends the limited literature within software en-
gineering on desirability and undesirability for di↵erent tasks.
We reported not only the contributing factors that make tasks
undesirable but also the factors that make tasks desirable. Our

findings suggest that contributing factors are not limited to tech-
nical aspects. They are also related to other aspects, e.g., social,
organisational, operational.

In relation to Q3, several studies reported a link between de-
velopers’ emotions with their performance [18]. Positive af-
fective states were perceived to enhance developers’ productiv-
ity, while negative states such as frustration deteriorated pro-
ductivity. Another study by Ford and Parnin [5] explored
frustration in software engineering. Some of the causes for
frustration were related to factors such as learning curves of
programming tools, too large task sizes, the time required to
adjust to new projects, lack of resources, perceived lack of
programming experience, fear of failure, internal hurdles and
personal issues, limited time, and issues with peers. Devel-
opers’ happiness and impact on performance have been in-
vestigated in multiple studies. These studies have confirmed
links between a↵ect, emotions, politeness, and software qual-
ity [19, 20]. In contrast, emotions such as anxiety and burnout
link with issues priority [21]. Interestingly, shorter resolu-
tion time is associated with positive a↵ect, emotions, and po-
lite attitudes [19, 20]. Prior research on software tasks has
covered variations in tasks and attitudes of teams while work-
ing on di↵erent forms of tasks. For instance, an empirical
study explored the influence of personality types in software
task choices [22]. In that study, opposing psychological traits,
such as extroversion–introversion, sensing-intuition, thinking-
feeling, and judging-perceiving were mapped to software devel-
opment tasks to find evidence of relationships between software
engineers’ Myers Briggs Type Indicator (MBTI) types and role
preferences. Another study explored the relationship between
task type and team attitudes [23]. That study found that teams
expressed di↵erent attitudes when working on various forms of
software tasks. While working on the support, enhancement
tasks, or resolving defects, teams expressed attitudes such as
positive indicated through words, e.g., beautiful, relax, perfect
and negative indicated through words, e.g., hate, suck, stupid.
This study further explores the behaviours of developers from
a di↵erent dimension i.e., working on (un)desirable tasks and
confirms that working on desirable and undesirable tasks have
positive (e.g., happy, motivated) and negative (e.g., frustrated,
stressed) impacts on developers.

Recent studies confirm that happy developers also perform
better than unhappy developers and providing incentives and
flexible working environments makes them happy and more
productive [24, 25]. Multiple studies have explored general in-
dicators of developers’ motivation and happiness such as job
security, sense of belonging, supportive relationships, rewards
and incentives, increased pay, recognition, etc. Managers and
team leaders of software companies take care of developers’
happiness in several ways. They provide di↵erent perks and
benefits to teams and individuals, such as fun things to do, pro-
viding food during working hours, or flexibility to work from
home [4].

Emerging research on behavioral software engineering con-
firmed a positive relationship between developers’ happiness
and work-related constructs. In the past, Hall et al. found that
specific work-related constructs such as a variety of work, task

11

significance, and technically challenging work are reported to
contribute to developers’ motivation [25]. While these studies
indicated di↵erent ways to keep developers happy, our study on
the other hand reveals that working on desirable tasks also con-
tributes to developers happiness. So, managers should also keep
this aspect into consideration. To the best of our knowledge,
not many studies explicitly studied (un) desirability of tasks and
specifically how teams, managers, and developers deal with un-
desirable tasks. A prior study pointed out strategies to over-
come challenges introduced by the self-assignment practice.
For example, strategies such as pairing up with experienced re-
sources, o↵ering work, self-assigning the next available task,
informal team discussions and negotiations, fixed work assign-
ment were used [15].

6.2. Implications
Our findings indicate that (un)desirability is personality-

dependent and varies from developer to developer. It is also
context-dependent and changes with situations and time. It is
quite likely that two developers with the same domain knowl-
edge, experience, and skill sets may not like the same tasks at
any or all times. It is also common that working on new tech-
nologies or tools fascinates a developer at the beginning and
working on certain technologies or tools too frequently or for
a long duration makes it boring for them. Some developers get
fed up, bored, frustrated and so keeping them occupied with
exciting pieces of work is challenging. It would be beneficial
to investigate how managers and teams can keep work exciting
for developers. Both developers and managers agreed that the
task’s priority takes precedence over the task’s (un)desirability
in practice. It indicates that the developer’s liking is not a pref-
erence, and they keep working on such tasks even if it’s not
fascinating.

Our findings also suggest various constructs such as devel-
opers’ personality and their professional traits such as work-
ing experience, skill set, nature of their work, i.e., high-
severity and priority work items (e.g., support issues) impacts
(un)desirability for tasks. We noticed that task (un)desirability
varies with project contexts such as product type and team cul-
ture. A participant pointed out that if teammates or the man-
ager appreciates developers’ e↵ort they put on an undesirable
task, appreciation gains precedence over the task’s undesirabil-
ity. Similarly, an undesirable task (due to complexity, missing
prior knowledge, etc.) can become desirable with support as
shared by P23.
“One example is of API test where I didn’t had prior knowledge
but because of supportive peers it became desirable”. [P23]

We have noticed variations around likes and dislikes within
the same roles. Some programmers or testers have di↵erent
preferences towards tasks compared to other programmers or
testers. For some developers’ front-end work is boring, tedious,
while the back-end is appealing. For others, working on front-
end development involving a user interface is more desirable.
Similarly, enhancements and bug-fixing are typically not desir-
able tasks, but some developers said they were exciting as they
provide opportunities to explore the system before any mod-
ifications or fixation. Others stated bug fixing was good, but

reproducing is frustrating and time-consuming. We know that
a team comprises members with di↵erent traits, likes, and dis-
likes, and this study confirms that team members have di↵erent
(un)desirability for tasks. Future research can further investi-
gate how these likes and dislikes are catered at the team level
by looking at the relative importance of the reported strate-
gies and how well these strategies balance varying individual
(un)desirabilities from a limited pool of tasks. Future research
can find out how do managers balance between undesirable
tasks among developers with di↵erent traits or how easy or hard
is it for a team to handle these tasks with developers of di↵erent
traits.

We also noted that (un)desirability varies with the job tenure.
Novice developers are still enthusiastic to work on all tasks to
gain some experience. But as developers advance in their ca-
reers, they tend to be more selective about their work. They
switch companies, departments or teams if they don’t find the
work desirable and fascinating. We noticed that some partic-
ipants did not care much about whether tasks are desirable or
undesirable and treated them as part of their job. We noted
this specifically in junior participants and participants on term
or contractual roles. A possible reason could be that the con-
tractual roles are for a fixed tenure. After the completion of
the contract, the developers naturally get to work on a variety
of tasks. Similarly, graduates and novice developers are open
to all types of tasks for learning and experience purposes. It
needs to be explored further if these are the only developers
who claim not to care about the type of work and get to work
on monotonous and mundane tasks. It would also be interest-
ing to further examine how working on such tasks impacts the
quality of their work and how they stay motivated and maintain
their productivity while working on undesirable tasks.

We also found instances of undesirable tasks becoming de-
sirable for developers. For example, the former company did
not value the task making it undesirable for the developer, but
a similar task was significant to the current company and its
business so it became desirable for the developer. Some man-
agers are aware of their team members’ (un) desirability for
certain tasks. They try to make undesirable tasks desirable.
For example, a participant, P23, was shy of public speaking,
and shared how their manager helped them change their be-
haviors and choices over time. The manager’s support turned
an undesirable task of presenting demos into a desirable task.
Sometimes, managers discuss these aspects with the develop-
ers in one-to-one meetings. Few managers would not regard
tasks (un)desirability unless team members raise them. Future
researchers can study how managers can support and motivate
developers to deal with undesirable tasks and what support is
more e↵ective for developers.

6.3. Threats to Validity
We mitigated the potential threats to validity by consider-

ing reliability, construct validity, and external validity. The
reliability of research findings can be impacted by researcher
bias. To mitigate researcher bias, we conducted extensive
discussions amongst all authors on the data collection, anal-
ysis, and results to ensure mutual consensus, understanding,

12

and cross-verification. Construct validity relates to the ex-
tent to which the scales, metrics, and instruments used, ac-
tually test the hypothesis, theory or properties they are sup-
posed to measure [26]. To address the threat of construct valid-
ity, instruments used for data collection (interview guides and
pre-interview questionnaires) were developed, reviewed, and
revised iteratively through discussions between the research
group members throughout the study. Also, we conducted a
pilot study to ensure that the interview questions were under-
standable and su�cient to collect the desired data within a suit-
able time frame. Regarding threats relating to external valid-
ity and generalizability of the research findings, we recruited
participants through multiple channels (e.g., social media, net-
working platforms). To ensure diversity in our data set, we in-
cluded participants from di↵erent age, experience, gender, role,
company size, and project domain. Still, we do not claim gen-
eralizability due to the subjective nature of the study. However,
we did have a suitable number of participants for a qualitative
study [27, 28].

Our findings report more on tasks undesirability than desir-
ability. It is because participants have provided more details
on undesirability. Generally, humans recall negative experi-
ences more easily than positive experiences [29]. We acknowl-
edge that answers to questions Q1 and Q3 are less detailed than
others. Grounded Theory procedures’s open coding and con-
stant comparison methods allow important concerns of the par-
ticipants to surface. We report on the four key concerns that
emerged from coding. However, given the semi-structured na-
ture of the data collection, typical of Grounded Theory studies,
some aspects can be more evolved and detailed than others, as
is the case with the contributing factors and strategies reported
in response to RQ2 and RQ4. It does not imply that the other
aspects were not important; rather, they provide the necessary
contextual background and supplementary information to com-
plete the findings. Future studies could focus on exploring these
aspects in more depth.

Future studies can further explore the desirability and unde-
sirability of software developers for di↵erent tasks through a
qualitative or quantitative survey with a rich data set involv-
ing software developers from di↵erent demographics like gen-
der, experience, or age and involved in both corporate and
open-source software (OSS) development. Future researchers
can uncover these and other related aspects in-depth, explor-
ing the impact on software developers’ productivity, motiva-
tion, happiness, well-being, professional growth, and personal
life. We provided a variety of strategies (in Section 5.4 for
teams to manage (un)desirable tasks. We suggest teams’ pe-
riodic reflection on these strategies to create a balanced dis-
tribution of (un)desirable work among team members. Fu-
ture researchers can investigate the e↵ectiveness of the reported
strategies specifically looking at how some strategies could be
productive and counterproductive for the teams and individu-
als. Our findings indicate a link between task undesirability
and negative emotional responses from working on undesirable
tasks (in Section 5.3). Exploring this link further in future stud-
ies would be interesting to see if they provoke and progressively
aggravate each other over time.

7. Conclusion

The (un)desirability of tasks is subjective and varies across
software developers. Developers perform various tasks while
developing any software, which include both technical and
non-technical tasks. This study explored (un)desirability for
di↵erent tasks based on data from 32 software practitioners.
Our findings confirm that developers have certain (dis)likes
towards specific software development tasks and working on
(un)desirable tasks can impact software developers. We provide
a set of factors that makes tasks (un)desirable to developers. We
identify how software development teams and managers deal
with undesirable tasks to ensure a fair work distribution using
di↵erent strategies.

Acknowledgements

We thank all participants who contributed to this study. We
would also like to thank our anonymous reviewers for their
feedback that helped to improve the quality of this work. This
study was conducted under approval from the Human Partic-
ipants Ethics Committee at the University of Auckland. This
research was partially funded by the Natural Sciences and Engi-
neering Research Council (NSERC) and Google Research Fac-
ulty Award.

References

[1] A. Meyer, E. T. Barr, C. Bird, T. Zimmermann, Today was a good day:
The daily life of software developers, IEEE Transactions on Software En-
gineering (2019).

[2] M. Konopka, P. Navrat, Untangling development tasks with software de-
veloper’s activity, in: 2015 IEEE/ACM 2nd International Workshop on
Context for Software Development, IEEE, 2015, pp. 13–14.

[3] S. A. Licorish, S. G. MacDonell, Exploring software developers’ work
practices: Task di↵erences, participation, engagement, and speed of task
resolution, Information & Management 54 (3) (2017) 364–382.

[4] D. Graziotin, F. Fagerholm, X. Wang, P. Abrahamsson, On the un-
happiness of software developers, in: Proceedings of the 21st Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing, ACM, 2017, pp. 324–333.

[5] D. Ford, C. Parnin, Exploring causes of frustration for software develop-
ers, in: 2015 IEEE/ACM 8th International Workshop on Cooperative and
Human Aspects of Software Engineering, IEEE, 2015, pp. 115–116.

[6] A. Murgia, P. Tourani, B. Adams, M. Ortu, Do developers feel emotions?
an exploratory analysis of emotions in software artifacts, in: Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 262–271.

[7] K. Madampe, R. Hoda, P. Singh, Towards understanding emotional re-
sponse to requirements changes in agile teams, in: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, 2020, pp. 37–40.

[8] Z. Masood, R. Hoda, K. Blincoe, What drives and sustains self-
assignment in agile teams, IEEE Transactions on Software Engineering
(2021).

[9] J. W. Brackett, Software requirements, Tech. rep., CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST (1990).

[10] T. Jones, Why choose case?, American Programmer 3 (1) (1990) 14–21.
[11] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, T. Fritz, The

work life of developers: Activities, switches and perceived productivity,
IEEE Transactions on Software Engineering 43 (12) (2017) 1178–1193.

[12] Z. Wang, Y. Feng, Y. Wang, J. A. Jones, D. Redmiles, Unveiling elite de-
velopers’ activities in open source projects, ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 29 (3) (2020) 1–35.

13

[13] R. L. Glass, I. Vessey, S. A. Conger, Software tasks: Intellectual or cleri-
cal?, Information & Management 23 (4) (1992) 183–191.

[14] A. E. Milewski, Global and task e↵ects in information-seeking among
software engineers, Empirical Software Engineering 12 (3) (2007) 311–
326.

[15] Z. Masood, R. Hoda, K. Blincoe, How agile teams make self-assignment
work: a grounded theory study, Empirical Software Engineering 25 (6)
(2020) 4962–5005.

[16] A. Straus, J. Corbin, Basics of qualitative research: Grounded theory pro-
cedures and techniques (1990).

[17] B. W. Boehm, P. N. Papaccio, Understanding and controlling software
costs, IEEE transactions on software engineering 14 (10) (1988) 1462–
1477.

[18] M. R. Wrobel, Emotions in the software development process, in: 2013
6th International Conference on Human System Interactions (HSI), IEEE,
2013, pp. 518–523.

[19] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, R. Tonelli,
Are bullies more productive? empirical study of a↵ectiveness vs. issue
fixing time, in: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, IEEE, 2015, pp. 303–313.

[20] G. Destefanis, M. Ortu, S. Counsell, S. Swift, M. Marchesi, R. Tonelli,
Software development: do good manners matter?, PeerJ Computer Sci-
ence 2 (2016) e73.

[21] M. Mäntylä, B. Adams, G. Destefanis, D. Graziotin, M. Ortu, Mining
valence, arousal, and dominance: possibilities for detecting burnout and
productivity?, in: Proceedings of the 13th International Conference on
Mining Software Repositories, 2016, pp. 247–258.

[22] L. F. Capretz, D. Varona, A. Raza, Influence of personality types in soft-
ware tasks choices, Computers in Human behavior 52 (2015) 373–378.

[23] S. A. Licorish, S. G. MacDonell, Exploring the links between software
development task type, team attitudes and task completion performance:
Insights from the jazz repository, Information and software technology 97
(2018) 10–25.

[24] S. Beecham, N. Baddoo, T. Hall, H. Robinson, H. Sharp, Motivation in
software engineering: A systematic literature review, Information and
software technology 50 (9-10) (2008) 860–878.

[25] T. Hall, H. Sharp, S. Beecham, N. Baddoo, H. Robinson, What do we
know about developer motivation?, IEEE software 25 (4) (2008) 92–94.

[26] P. Ralph, E. Tempero, Construct validity in software engineering research
and software metrics, in: Proceedings of the 22nd International Confer-
ence on Evaluation and Assessment in Software Engineering 2018, 2018,
pp. 13–23.

[27] J. W. Creswell, C. Poth, Qualitative Inquiry & Research Design Choosing
Among Five Approaches, Sage Publications. Thousand Oaks, CA, 2007.

[28] N. K. Denzin, The discipline and practice of qualitative research. in. nk
denzin & ys lincoln, Handbook of qualitative research (2005) 1–42.

[29] R. F. Baumeister, E. Bratslavsky, C. Finkenauer, K. D. Vohs, Bad is
stronger than good, Review of general psychology 5 (4) (2001) 323–370.

14

