Unsupervised Extreme Multi Label Classification of Stack
Overflow Posts

Peter Devine

Kelly Blincoe
pdev438@aucklanduni.ac.nz
k.blincoe@auckland.ac.nz
The University of Auckland
Auckland, New Zealand

ABSTRACT

Knowing the topics of a software forum post, such as those on
StackOverflow, allows for greater analysis and understanding of
the large amounts of data that come from these communities. One
approach to this problem is using extreme multi label classification
(XMLC) to predict the topic (or “tag”) of a post from a potentially
very large candidate label set. While previous work has trained
these models on data which has explicit text-to-tag information,
we assess the classification ability of embedding models which
have not been trained using such structured data (and are thus
“unsupervised”) to assess the potential applicability to other forums
or domains in which tag data is not available.

We evaluate 14 unsupervised pre-trained models on 0.1% of
all StackOverflow posts against all 61,662 possible StackOverflow
tags. We find that an MPNet model trained partially on unlabelled
StackExchange data (i.e. without tag data) achieves the highest
score overall for this task, with a recall score of 0.161 R@1. These
results inform which models are most appropriate for use in XMLC
of StackOverflow posts when supervised training is not feasible.
This offers insight into these models’ applicability in similar but not
identical domains, such as software product forums. These results
suggest that training embedding models using in-domain title-body
or question-answer pairs can create an effective zero-shot topic
classifier for situations where no topic data is available.

ACM Reference Format:

Peter Devine and Kelly Blincoe. 2022. Unsupervised Extreme Multi Label
Classification of Stack Overflow Posts. In The 1st Intl. Workshop on Natural
Language-based Software Engineering (NLBSE’22), May 21, 2022, Pittsburgh,
PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3528588.
3528652

1 INTRODUCTION

StackOverflow ! is an online forum containing questions and an-
swers regarding programming. It has been widely used throughout
the software engineering literature to study, amongst other things,
how developers write code examples [30], how developers inter-
act [42], how code gets reused [1], how to use StackOverflow posts
to support code re-documentation [39], and how to use code from

!https://stackoverflow.com/

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 1st Intl. Workshop
on Natural Language-based Software Engineering (NLBSE’22), May 21, 2022, Pittsburgh,
PA, USA, https://doi.org/10.1145/3528588.3528652.

StackOverflow to direct automatic program repair [26]. Each ques-
tion asked on StackOverflow has a title and body, which describe
what the user is asking about, and a set of between one and five
“tags”, which describes the theme or topic of the question. These
tags can be useful in analysing posts on a large scale. For example
Abdalkareem et al. [1] filtered StackOverflow posts based on the
“Android” tag to investigate code reuse from the platform.

Automated approaches have been proposed for automatically
applying tags to posts [25, 36]. Many standard machine learning
classifiers exist within the literature which are trained to classify
posts into a small subset of the most popular tags available [18, 21,
43]. However, if classification is not constrained to just the most
popular tags, then predicting tags of a post becomes an extreme
multi label classification (XMLC) problem, in which a potential
label set of thousands of tags are considered when classifying [45].
Recent work has trained text embedding models on text-tag pairs
to classify text using tags that were unseen at training time [23].
However, this approach still requires a large amount of text-to-tag
training pairs and may not be able to be applied to new platforms
or domains.

App store reviews [8, 28], software subreddit Reddit posts [2],
and product user forums [38] have all been shown to contain infor-
mation that could be relevant to the software development cycle,
and thus could be used to improve the product overall. However,
these data sources do not contain explicit tags of all the topics
discussed within the posts. Being able to classify tags or topics to
posts on these other platforms would enable more effective filtering
and analysis of this valuable information. A model that can accu-
rately classify tags to StackOverflow posts without being trained
on StackOverflow tag data could open up possibilities for other
platforms.

We extend previous work by using publicly available embedding
models which have not been explicitly trained to embed tags to
questions to do this classification. Our approach embeds each post
and each possible tag name using a pre-trained model, and then
compares the similarity of each embedding to create a ranking
across the label set for each post. We evaluate across a wide variety
of models to determine which are best able to classify correct tags
to a given post. We also provide an evaluation focused on “rare”
tags that are seldom used within our dataset to demonstrate how
these models perform in situations where training data would not
be available, and thus supervised classifiers could not be applied.

We report which models achieve the highest performance for
fully unsupervised XMLC of StackOverflow posts. Our findings
indicate that training an embedding model on pairs of text from the

https://doi.org/10.1145/3528588.3528652
https://doi.org/10.1145/3528588.3528652
https://stackoverflow.com/
https://doi.org/10.1145/3528588.3528652

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

same data domain as the intended XMLC task creates a superior

XMLC model. These findings have implications for topic classifica-

tion and topic search in data sources outside of StackOverflow.
This work is guided by the following research question:

RQ - Which unsupervised model is best able to perform XMLC
on StackOverflow data?

The replication package for these experiments has also been
made available online 2.

2 BACKGROUND

StackOverflow has been described within the literature as “one of
the most visible venues for expert knowledge sharing around software
development” [29]. This has lead researchers to study the topics
and content of what this large community of programmers are
saying [4]. Due to the fact that the tags associated with any Stack-
Overflow post may not be exhaustive, machine learning systems
have been employed to extract generic topics contained within
these discussions. Examples include using Latent Dirichlet alloca-
tion (LDA) to extract topics from posts which have already been
filtered by using the machine_learning tag [3]. Thus, much work
has been done on automatically classifying all the tags applicable
to a post.

Initial approaches for classifying tags of StackOverflow posts,
such as those by Kuo [25] and by Schuster et al. [36], included using
Bayesian word co-occurrence models, which find the probability
that each word from a post appears individually in the post from
a given tag. These probabilities are modified by the tags global
frequency, and are then used to predict the most probable tags
given a piece of text.

Other early classification methods involved classifying posts into
a small tag subset (i.e. hundreds of the most common tags). This
includes training classical machine learning models (e.g. Bayesian
co-occurrence, k-NN, SVM, NNS) on bag-of-words (BoW) or term
frequency inverse document frequency (TF-IDF) features to classify
into a relatively small tag subset, such as in work by Hong and
Fang [21], Gonzélez et al. [18], and Wang et al. [43].

Neural networks have also been used to classify posts, with the
TagCNN, TagRNN, TagHAN, and TagRCNN models presented by
Zhou et al. [46], which are convolutional neural networks (CNNs)
or recurrent neural networks (RNNs) which generate embedding
representations of posts that are passed to a softmax layer which
classifies over tens of thousands of tags. Another example of this
include Post2Vec by Xu et al. [45], which are a series of CNNs
which are similarly trained as above (with a sigmoid layer instead
of a softmax classification layer), but also include code snippet
information within the generated representation.

Such embedding approaches have been further improved upon
by training neural networks to generate embeddings of both text
and tag. Nie et al. present a model which trains embeddings of posts
to be closer in embedding space to embeddings of tags associated
with a post than those not associated [31]. This is done by pre-
processing the posts and tags separately, generating vectors for
both, then calculating the dot product between these vectors. This
dot product result is then passed to a sigmoid cross entropy loss

Zhttps://doi.org/10.5281/zenodo.5880185

Peter Devine and Kelly Blincoe

function, with the labels supplied to the loss function being 1 if the
tag in question was given to the post, and 0 otherwise. In contrast to
previous approaches, these embeddings allow for fast comparison
between a piece of text and many candidate tags, which in turn
enables comparison of a large amount of posts and classes at once.

The above approaches all rely on training on a set of tags and
then predicting tags at inference time only out of those included at
training time. Jain and Roy propose a zero-shot setting for StackEx-
change forum classification [23], in which skip-gram embeddings
are first trained using a selection of posts to tags. Tags are then
split into “seen” and “unseen”, with the former being used for train-
ing a standard text classifier into one of the seen tag classes. An
embedding similarity matrix created between the seen and unseen
tags, and posts that are classified as being one of a set of seen tags
are also classified as being one of a set of similar unseen tags. This
approach allows for new tags to be considered at inference time,
but still requires much data for creating the initial skipgram embed-
dings. Moreover, since they focus on three smaller StackExchange
subfora, there are a maximum of 1,895 classes considered at any one
time for classification, which is much less than the potential topics
available on larger StackExchange forums such as StackOverflow.
With a smaller class set, it becomes more difficult to predict the
ability of models to deal with “one-off” unique tags or topics, which
would appear in the real world.

A model for generalized XMLC was created by Gupta et al. [20].
This model is efficiently trained on 31 million labels from four data
sources (legal data, Amazon review data, Wikipedia data, propri-
etary Bing Ad search data) to create a model that can classify text
on previously unseen labels. Due to the fact that this model has not
been tested on StackOverflow data, it is unclear how well it would
perform in the StackOverflow XMLC task.

General embedding models are a potential candidate for use in
the XMLC problem. Models such as SBERT[34] and USE[7] have
been trained on a wide variety of paired text datasets such that they
produce embeddings that demonstrate good performance when
used on a range of down-stream tasks, such as in the Semantic Text
Similarity Benchmark[6]. Due to their relative generality, these
models may be well placed to perform zero-shot tasks. It remains
an open question as to whether these models would provide a good
embedding base from which XMLC could be performed on the
StackOverflow tag prediction task.

To the authors’ knowledge, there has been no prior work within
the literature which seeks to evaluate the StackOverflow XMLC
effectiveness of embedding models which have not been trained on
the StackOverflow post to tag classification problem. In this paper,
we aim to fill this gap by examining whether it is possible to perform
XMLC on software engineering artifacts without a supervised label-
set data signal.

3 METHOD
3.1 Our data

The data used in this study was downloaded from a StackOverflow
mirror available on archive.org 3. This data was unzipped, and the
posts data (Posts.xml) was used as our dataset. We selected only the

3https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z

https://doi.org/10.5281/zenodo.5880185
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z

Unsupervised Extreme Multi Label Classification of Stack Overflow Posts

question posts (i.e. no comments or answers) for our evaluation, as
has been done in the previous literature. We focused on analysing
posts only from the StackOverflow forum as it is the biggest on
StackExchange and the most studied throughout software engineer-
ing literature.

From the 21,641,802 posts downloaded, we found 61,662 unique
tags. Due to computational limitations, a subset of the 21,641,802
posts was selected such that all posts could be loaded into memory
at once on the computer being used. The entire dataset was iterated
over, one post at a time, with each post having a 0.1% chance of being
added to a dataset for further classification. The 0.1% figure was
chosen as the highest order of magnitude that could be loaded easily
into memory. This resulted in a classification dataset of 217,174
individual posts containing 27,092 unique tags.

In our results, we further break down our dataset into an “un-
popular” subset, in which we select only posts which contain at
least one unique tag within the dataset (i.e. only selecting posts
which contains a tag which is only used once within our dataset).
This resulted in a subset of 9,740 posts that contain tags that would
be difficult for a standard supervised classifier to classify due to a
paucity of training data. There is a “long tail” of unpopular posts
within the dataset we studied, with 21,765 out of 27,092 unique tags
being used in less than 10 posts, which represents 55,683 (25%)
total posts. This shows the importance of being able to classify rare
or unseen topics, and so this evaluation is also reported to contex-
tualise the evaluated model’s performance in a scenario unsuited
to standard supervised classifiers.

3.2 Pre-processing

Tag text was cleaned by replacing all hyphens in text with spaces
(e.g. “amazon-s3” becomes “amazon s3”) to make tags appear more
like natural language, which most evaluated models have been
exclusively trained on.

Only text from the question body was used in our evaluation.
Because the post data as available on archive.org is supplied in
HTML format, text was extracted from the post body using the
BeautifulSoup HTML parser. During this process, any <code> and
<blockquote> tags were removed from the body before extracting
all text within the remaining HTML.

3.3 Evaluation

An illustration of our zero shot classification evaluation method
can be found in Fig 1.

All posts were converted from text into an embedding using an
embedding model. All possible tags (61,662) were also converted
from text into an embedding. These two sets of embeddings were
then compared using a similarity function to create a similarity
matrix between all posts and all tags. Tags were then ranked based
on similarity for each post, with the more similar tags being ranked
higher. The top 10 rankings for each post were then compared to
the true labels given to each post. Evaluation metrics were then
generated.

Multiple embedding models were tested, and are explained in
more detail in section 3.4. The similarity function used within this
paper was cosine similarity due to the fact that some models tested
(such as MPNet (All) and CLIP) were trained to explicitly model

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

Text input Vector output

{02 o1 [0 [0s [5 [9 o1 o]

post { ‘Howdoladda..” ——

“android” ——————— Embedding ————{-02]0s [05[02 [ws[w02To6 [...1]

i model
Ca?:gliate “mobile’ ——————— L (0905 Joz [01]oo Jos [07]...]

f——~[04 [02 [04 [05 [02 [06 |02 |...]

“cybersecurity”

[02 [0 [0 Tos [0s s o7 [on]

Tag Similarity
() y—> Android 0.6
Cosine similarity Mobile 0.4
[-02T09 [-05[02 [03[-02]06 [...] Cybersecurity | 0.1

[=09 [03 |02 [-01 [00 [0 |07 [... |
[04 [02 04 |05 |02 |06 |02 |...]

Figure 1: Example of how the post text and tags are compared
to generate a ranking of tag recommendations based on sim-
ilarity score.

semantic similarity in text through cosine distance between text.
Early experiments indicated that using cosine, Euclidean, or Man-
hattan distance measures did not greatly affect the final rankings of
tags. The evaluation metrics used in this work are the same as those
used by Xu et al. [45] and Jain and Roy [23]. We report the recall,
precision, and F1 of the recommendations generated at different rec-
ommendation sizes. This gives the accuracy (and hence usefulness)
of our XMLC method when outputting n recommendations. We
choose to report evaluation metrics for between 1-10 recommenda-
tions. Notation is standard, with precision over 3 recommendations
being denoted as P@3, for example.

3.4 Models (and their datasets)

Various models were used to create embeddings for comparing post
text to tags. These are all derived from deep Transformer [40] based
models which have been pre-trained on a large set of data. The pre-
training tasks of the models evaluated are broadly in two categories:
language modelling and similarity embedding. Language modelling
trains a model to re-write a known passage of text given that some
of it is hidden to the model, and this can be performed on any
format of free text. Similarity embedding trains a model to embed
two pieces of text into a close embedding space if they are labelled
as "matches" and in a distant embedding space if not. A model can
be trained using this task as long as similar and dissimilar text
pairs are available, which could be questions and answers, post
titles and bodies, abstracts and articles, or some other similarity
signal. Outside of these two tasks, the Universal Sentence Encoder
(USE) [7] is trained in a multi-task setting, with the tasks including
a SkipThought like task [24], a conversational input-response task,
and various classification tasks. This multi-task pre-training is done
to create a general embedding of a piece of text for use in any of
a multitude of different situations. Once pre-trained, models all
take text as an input and output a vector or set of vectors which
represent some of the semantic content of the text, and these vectors
are used as an embedding which can then be compared.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

Peter Devine and Kelly Blincoe

Source Source ID Cite | Training dataset Training task | Base model
MPNet (All) all—mpn.et—base—vz "All" dataset M?Net[37]
MiniLM (All) all-MiniLM-L6-v2 [34] MiniLM[44]
multi-qa-mpnet- Similarity task
MPNet (QA) sbert.net base-dot-v1 "QA" dataset with text pairs MPNet[37]
. multi-qa-MiniLM- .
MiniLM (QA) Lé-dot-v1 MiniLM[44]
LaBSE LaBSE [16] | CommonCrawl, Wikipedia, and None
multilingual text pairs mined online
SPECTER llenai-spect [9] Pairs of scientific papers that are N
afienal-specter close or distant on the citation graph one
N Similarity task
CLIP clip-ViT-B-32- . . .
(Multilingual) multilingual-v1 [32] | Image and caption pairs Wlth text‘and None
image pairs
google/
USE (Large) TFHub universal-sentence (7] W1k1ped1a., web news, Assorted tasks None
-encoder-large/5 web question-answer pages, to create
google/ discussion forums, and SNLI[5] general
USE (Base) universal embedding
-sentence-encoder/4
BERT bert-base-uncased
(Base uncased) [12] | Wikipedia, Book Corpus[47], None
Masked
BERT . CommonCrawl
Huggingface | bert-base-cased language
(Base cased) delli
DistilBERT distilbert- (35] modeling N
(Base cased) base-uncased one
CodeBERT microsoft/ [17] | CodeSearchNet challenge dataset[22] None
codebert-base
Graph microsoft/ [19] | CodeSearchNet challenge dataset[22] CodeBERTI[17]
CodeBERT graphcodebert-base odesearchivet chaflenge datase ode

Table 1: Description of all models used in our evaluation. Base model details the original model which was used upon which

the resulting model was trained using the training task.

A selection of models available on sbert.net [34], Huggingface >,
and TF Hub ¢ were evaluated.

The criteria for selection of our models was based on a mixture of
choosing models with high performance on the sbert.net semantic
search and sentence embedding leaderboard 7, speed, and training
diversity. This selection was intentionally diverse to aid in finding
the highest performing model on our task.

Two of the models evaluated, MPNet (QA) and MPNet (All),
were based on MPNet [37] and were both trained using siamese
networks (as was done by S-BERT [34]) but with different datasets.
These two models were the highes performing on the aforemen-
tioned sbert.net leaderboard. One was trained using a “QA” dataset,
which contains text pairs from a variety of sources, including
WikiAnswers [14], Amazon product pages [41], SQuADZ2.0 [33],
and StackExchange. The StackExchange data makes up 47,017,540
text pairs out of 214,988,242 total training pairs (22%) of the whole
dataset, which in turns consists of 25,316,456 (12%) StackExchange

“https://www.sbert.net/docs/pretrained_models.html
Shttps://huggingface.co/models

Shttps://tfhub.dev/

"Provided by sbert.net at https://www.sbert.net/docs/pretrained_models.html#model-
overview

post title-body pairs, 21,396,559 (10%) title-answer pairs, and 304,525
(<1%) title-title duplicate post pairs 8. The second MPNet-based
model was trained using an “all” dataset, which contains all of the
data in the “QA” dataset, plus other text pair data from different
sources, including Semantic Scholar (title and abstract pairs) [27]
and Wikipedia (English article and simple English article [10]). This
dataset is much larger (1,170,060,424 training pairs), meaning that
StackExchange data is a lower share of total training data in this
dataset °.

Two similar models, MiniLM (QA) and MiniLM (All), were
also evaluated, and are based on the 6 layer variant of the MiniLM
model [44], again with variants being trained on either the “QA” or
“all” datasets. These model variants perform slightly worse the the
aforementioned sbert.net leaderboard, but are much smaller models,
consequently embedding text faster. These models are included as
a faster alternative model in our evaluation.

8https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
Archived on 24 November 2021 on the WayBack Machine (https://archive.org/web/)
https://huggingface.co/sentence-transformers/all-mpnet-base-v2 - Archived on 12
January 2022 on the WayBack Machine (https://archive.org/web/)

https://www.sbert.net/docs/pretrained_models.html
https://huggingface.co/models
https://tfhub.dev/
https://www.sbert.net/docs/pretrained_models.html#model\protect \discretionary {\char \hyphenchar \font }{}{}overview
https://www.sbert.net/docs/pretrained_models.html#model\protect \discretionary {\char \hyphenchar \font }{}{}overview
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
https://archive.org/web/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://archive.org/web/

Unsupervised Extreme Multi Label Classification of Stack Overflow Posts

Both the base USE (Base) '° and large USE (Large) versions 1
of USE [7] were also evaluated. The training data for the USE model
is only given as being sourced from “Wikipedia, web news, web
question-answer pages and discussion forums”, and is augmented
with the SNLI dataset [5]. Therefore, we do not know specifically
what these models were trained on. This model has been used
within the Software Engineering literature before with promising
results [11, 13], and thus was included in our evaluation.

For other embedding models, we also investigated the perfor-
mance of the sbert.net version of SPECTER [9], the multilingual
version of CLIP [32], and the sbert.net version of LaBSE [16].
These models have been trained on scientific citations, image and
text pairs, and multilingual text pairs respectively, representing a
distinct set of training data compared to the above models.

Outside of embedding models, we also evaluated the averaged
outputs of several standard language models (i.e. models that were
not trained to create good text embeddings specifically). This in-
cluded 2 BERT [12] variants, distilBERT [35], CodeBERT [17],
and GraphCodeBERT [19]. The output of these models was aver-
aged across all token positions to create a standard length embed-
ding for each piece of text.

A basic baseline was also included within the evaluation to con-
textualise results. This baseline is the 10 most frequent tags from
our dataset recommended for every post. This was chosen as a
simple, naive baseline against which to test, effectively serving as a
majority baseline for the recommendations.

Full details of the models can be found in Table 1.

4 RESULTS

The recall of each model is listed in Table 2, while plots of recall,
precision, and F1 score at different recommendation sizes can be
seen in Fig 2 for all models with a non-negligibly small performance.
We can see that the MPNet and MiniLM based models outperform
all other models significantly. Specifically, the models trained on the
“QA” datasets are best performing, with the MPNet model (QA)
best out of these. This model outperforms the baseline for P and R
@1-4, and has a higher maximum F1 score. The MPNet (QA) model
has a maximum recall value at R@1 of 0.161, meaning that roughly
16% of all top recommended tags were in the list of tags for the given
StackOverflow post. For F1 score, the MPNet (QA) model performs
best at F1@3, with a score of 0.112 (compared to the baseline value
of 0.094), and the baseline performs best at F1@5, with a score of
0.097 (compared to the MPNet (QA) score of 0.095). This is best
illustrated in Fig 2, where MPNet (QA) (red line) has a higher
precision, recall, and F1 for small recommendation sizes, while the
naive baseline (pink line) exceeds it at larger recommendation sizes.
The non-embedding trained models, as well as CLIP, LaBSE and
SPECTER, all performed poorly on this task, with recall never
rising above 0.053 for any of these models.

The graphs of precision, recall, and F1 score for the highest scor-
ing models on the “unpopular” subset are plotted in Fig 3. Again,
both QA-dataset trained models outperformed all other models, but
also outperformed the baseline on R@1-10.

Ohttps://tfhub.dev/google/universal-sentence-encoder/4
Hhttps://tfthub.dev/google/universal-sentence-encoder-large/5

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

0.16 —— MiniLM (All)
MPNet (All)
0.14 —— MiniLM (QA)
—— MPNet (QA)
—— USE (Base)
0.12 —— USE (Large)
Baseline
0.10 —— LaBSE
0.08
0.06
0.04
0.02

R@1 R@2 R@3 R@4 RE5 R@6 R@7 R@8 R@9 R@10

(a) Recall
—— MiniLM (All)
MPNet (All)

0.20{ — MiniLM (QA)

—— MPNet (QA)

~—— USE (Base)

—— USE (Large)
0.15 Baseline

—— LaBSE
0.10
0.05

P@l P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@I P@10

(b) Precision

—— MiniLM (All)
MPNet (All)
0.12 —— MiniLM (QA)

—— MPNet (QA)
—— USE (Base)

0.08 /

0.06 /\

Baseline

—— USE (Large)
—— LaBSE
0.04

0.02

0.00

F1@l Fl@2 Fl@3 Fl@4 Fl@5 Fl@6 Fl@7 Fl@8 Fl@9 Fl@10

(c) F1

Figure 2: Evaluation metrics @1-10 on the whole evaluation
dataset. MPNet (QA) performs best of all models across all
metrics, and outperforms the naive baseline for small rec-
ommendation sizes.

RQ - Which unsupervised model is best able to perform
XMLC on StackOverflow data?

A - We find both models that were trained mainly on Stack-
Overflow text pairs, MPNet (QA) and MiniLM (QA), per-
form better at XMLC on StackOverflow posts than all other
models evaluated. Overall accuracy is poor over the large
label set evaluated.

https://tfhub.dev/google/universal-sentence-encoder/4
https://tfhub.dev/google/universal-sentence-encoder-large/5

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

Peter Devine and Kelly Blincoe

R@1 | R@2 | R@3 | R@4 | R@5 | R@6 | R@7 | R@8 | R@9 | R@10
Baseline 0.105 | 0.094 | 0.089 | 0.080 | 0.075 | 0.070 | 0.058 | 0.053 | 0.045 | 0.041
MPNet (QA) 0.161 | 0.129 | 0.104 | 0.083 | 0.067 | 0.055 | 0.047 | 0.041 | 0.036 | 0.032
MiniLM (QA) 0.128 | 0.105 | 0.087 | 0.071 | 0.059 | 0.050 | 0.043 | 0.038 | 0.034 | 0.031
MiniLM (All) 0.104 | 0.085 | 0.070 | 0.057 | 0.048 | 0.040 | 0.035 | 0.032 | 0.029 | 0.027
MPNet (All) 0.097 | 0.076 | 0.061 | 0.049 | 0.039 | 0.032 | 0.027 | 0.024 | 0.022 | 0.020
USE 0.059 | 0.049 | 0.041 | 0.034 | 0.029 | 0.024 | 0.021 | 0.020 | 0.018 | 0.016
USE (Large) 0.055 | 0.044 | 0.037 | 0.030 | 0.024 | 0.021 | 0.019 | 0.017 | 0.016 | 0.015
LaBSE 0.032 | 0.027 | 0.023 | 0.020 | 0.017 | 0.016 | 0.014 | 0.013 | 0.012 | 0.011
SPECTER 0.014 | 0.011 | 0.009 | 0.008 | 0.007 | 0.006 | 0.005 | 0.005 | 0.004 | 0.004
CLIP (Multilingual) 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
Bert (Base uncased) 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
DistilBERT (Base cased) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
GraphCodeBERT 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Bert (Base cased) 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
CodeBERT 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

Table 2: Recall@1-10 for each model evaluated. The QA dataset-trained MPNet model performs better than all other models
and the baseline for recall @1-4. The baseline performs better than all models evaluated for recall @5-10. Bolded values are the
best performing scores across all models and baseline for a given metric.

5 DISCUSSION

The results suggest that the MPNet (QA) and MiniLM (QA) models
are best able to classify StackOverflow posts over a large potential
label set out of all models evaluated. These models modestly outper-
form a naive baseline over the whole dataset for a small number of
recommendations, but perform better and outperforms the baseline
more convincingly on less frequently used classes.

We can also note that the models that were not explicitly trained
to embed text (BERT, DistilBERT, CodeBERT, GraphCode-
BERT) performed poorly on the XMLC task. This is not surprising
as they have been trained to model language at a token level rather
than create a holistic embedding of a piece of text.

One finding of the results is that all models trained on Stack-
Exchange data (title-body pairs, question-answer pairs, duplicate
question pairs) outperform all other embedding models. Indeed,
the models trained solely on the “QA” dataset, which included the
StackExchange data, outperformed models trained on that plus
other data. This suggests that models trained on in-domain paired
data (in our case, StackExchange post data) are effective at XMLC,
even when they have not been explicitly trained on using tags for
an XMLC task. There are many sources of data online which do
not have topic tags in the way that StackExchange has them, but
do contain possible text pairs (title-body, question-answer, dupli-
cate questions) on which a model could be trained. Examples of
this include the app reviews and forum posts. Future work could
explore the possibility of creating such an embedding model using
text pairs from specific data sources for their use in XMLC or topic
searching on that data source.

The gross performance values of our evaluation are relatively low
(not exceeding 0.2 F1 score in any evaluation), and so these results
need to be considered in relation to the setting of this task. For a
classification task in which supervised training data is available,
the zero shot methods evaluated in this paper could not compete
with most trained classifiers. However, the fact that 16% of all

top recommendations are valid for our top performing model is
noteworthy, given the fact that this is a lower bound. This lower
bound is due to the fact that nearly all tags of a post are relevant, but
not all tags that weren’t applied to a post are irrelevant. Therefore,
while this XMLC method should not be applied in settings where
topic data is already available (e.g. tags for StackOverflow posts),
it may be useful in data domains in which this topic data is not
available.

While classification is the main focus of this work, this could
also illuminate which embedding models create a good general
semantic representation of a post, which could then be used in sim-
ilarity detection, clustering, or outlier detection. Future work could
evaluate the effectiveness of the models evaluated in this work, or
models evaluated on text-pairs from other software engineering
artifact sources, on these down-stream tasks.

Another consideration of this work is that we provide a much
more difficult XMLC task compared to previous work. We consider
all 61,662 unique tags used on StackOverflow at the time of writing
on a random sample of all StackOverflow posts. This is in contrast
to Xu et al. [45], which identified 29,357 “rare” tags which were
used less than 50 times throughout all StackOverflow posts, and
removed all posts which only contained “rare” tags. The use of all
available tags classifying on a random sample of posts is a realistic
setting, especially due to the fact that as new technology becomes
available, new tags will be used on the StackOverflow site. Thus,
our results reflect how a model would perform in this zero-shot
setting as well as in settings where training data would otherwise
be available.

6 THREATS TO VALIDITY

A threat to the validity of these results is that not all models
from the literature were tested. Models such as GMXML [20] and
SE_Bert [15] were considered, but were not readily available online
as a pre-trained model. As wide a variety of seemingly applicable

Unsupervised Extreme Multi Label Classification of Stack Overflow Posts

0.30 —— MiniLM (All)

’ MPNet (All)
—— MiniLM (QA)

0.25 —— MPNet (QA)
—— USE (Base)
—— USE (Large)

0.20 Baseline

LaBSE

0.15

0.10

0.05

0.00

R@1 R@2 R@3 R@4 RE5 R@6 R@7 R@8 R@9 R@10

(a) Recall
—— MiniLM (All)
MPNet (All)
0.25] — MiniLM (Qa)
—— MPNet (QA)
—— USE (Base)
—— USE (Large)
0.20 Baseline
—— LaBSE
0.15
0.10
0.05

P@L P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@I P@LO0

(b) Precision

—— MiniLM (All)
MPNet (All)
MiniLM (QA)
MPNet (QA)
USE (Base)
USE (Large)
Baseline

LaBSE

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00 F1@l Fl@2 Fl@3 Fl@4 Fl@5 FlE6 Fl@7 Fl@8 Fl@9 F1l@10

(c) F1

Figure 3: Evaluation metrics @1-10 on the rare tag evalua-
tion data subset. MPNet (QA) performs better than all other
models and the naive baseline across all metrics.

and available models as possible was used in our evaluation, but it
remains for future work to add new models to this evaluation as
they become available.

Another threat to validity is the fact that we only included the
post body when performing classification, ignoring the code and
title associated with each post. Code was excluded as most models

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

evaluated were not trained on source code, and so would not nec-
essarily be able to make a meaningful embedding using it. Titles
were excluded as it was not clear how best to combine this data
with the body text. However, work by Xu et al. notes that including
code and title information as features for a supervised classifier
improves the performance of that classifier overall [45]. It remains
for future work to explore whether incorporating title and code
data to post body text changed the classification performance of
the models tested.

Finally, another threat to validity of these results is the possibil-
ity of false negatives. Due to the fact that we consciously included
as many candidate classes as possible (more than 61,000 possible
tags) to capture the diversity of topics within software forums, we
evaluated posts on many synonymous tags. For example, recom-
mended tags of python and machine learning on a post with only
python 3.x and neural networks real tags would both be classi-
fied as incorrect recommendations. However, Python is a superset
of Python 3.x and neural networks are a form of machine learning,
making both recommendations accurate to the post. Conversely,
we expect relatively few false positives, since each tag is labelled
directly by the author of a post on StackOverflow. Therefore, we
expect the recall values listed in this work to be a lower bound of
their true usefulness. It remains for future work to determine the
false negative rate of this evaluation.

7 CONCLUSION

In this work, we have evaluated the ability of pre-trained deep text
embedding models to perform XMLC of tags for StackOverflow
posts.

We find that out of all models evaluated, the MPNet (QA) and
MiniLM (QA) models performed best, with R@1 scores over the
entire evaluation dataset of 0.161 and 0.128 respectively. These
models were both trained on a variety of data, including text pairs
derived from StackOverflow posts, but crucially not containing any
post tag data.

Our results give insight into which embedding models are most
appropriate for use in classifying tech forum posts when training
is unfeasible. Particularly, our results suggest that training an em-
bedding model using in-domain data (such as title-body pairs or
question-answer pairs) creates a better XMLC model than general
text embedding models. This finding could be applied to software
engineering natural language artifacts which do not have tag data
available, but do have titles or answers, such as app reviews and
forum posts. Future work could determine whether such an embed-
ding model would able to effectively classify topics of these artifacts
without training explicitly on tag data at a higher performance than
baseline methods.

REFERENCES

[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. On code reuse from
stackoverflow: An exploratory study on android apps. Information and Software
Technology 88 (2017), 148-158.

[2] Javed Ali Khan, Lin Liu, Lijie Wen, and Raian Ali. 2020. Conceptualising, extract-

ing and analysing requirements arguments in users’ forums: The CrowdRE-Arg

framework. Journal of Software: Evolution and Process 32, 12 (2020), e2309.

Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexander William Wong,

Abram Hindle, and Karim Ali. 2019. What do developers know about machine

learning: a study of ML discussions on StackOverflow. In 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR). IEEE, 260-264.

[3

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

[4] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are devel-

[10]

[11

[12

[13

[14]

[15]

[16

[17]

(18]

[19]

[20]

[21

[22

[23

[25

[26

]

]

]

opers talking about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering 19, 3 (2014), 619-654.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
2015. A large annotated corpus for learning natural language inference. In
Conference on Empirical Methods in Natural Language Processing, EMNLP 2015.
Association for Computational Linguistics (ACL), 632-642.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. 2017.
Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual
focused evaluation. arXiv preprint arXiv:1708.00055 (2017).

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-
miner: mining informative reviews for developers from mobile app marketplace.
In Proceedings of the 36th international conference on software engineering. 767—
778.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S Weld.
2020. SPECTER: Document-level Representation Learning using Citation-
informed Transformers. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics. 2270-2282.

William Coster and David Kauchak. 2011. Simple English Wikipedia: a new text
simplification task. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies. 665-669.

Souvick Das, Novarun Deb, Agostino Cortesi, and Nabendu Chaki. 2021. Sen-
tence Embedding Models for Similarity Detection of Software Requirements. SN
Computer Science 2, 2 (2021), 1-11.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171-4186.

Ayesha Enayet and Gita Sukthankar. 2020. A Transfer Learning Approach
for Dialogue Act Classification of GitHub Issue Comments. arXiv preprint
arXiv:2011.04867 (2020).

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2014. Open question an-
swering over curated and extracted knowledge bases. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1156-1165.

Eliane Maria De Bortoli Favero and Dalcimar Casanova. 2021. BERT_SE: A
Pre-trained Language Representation Model for Software Engineering. arXiv
preprint arXiv:2112.00699 (2021).

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei
Wang. 2020. Language-agnostic bert sentence embedding. arXiv preprint
arXiv:2007.01852 (2020).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.
1536-1547.

José R Cedeno Gonzalez, Juan] Flores Romero, Mario Graff Guerrero, and Fe-
lix Calderon. 2015. Multi-class multi-tag classifier system for stackoverflow
questions. In 2015 IEEE International Autumn Meeting on Power, Electronics and
Computing (ROPEC). IEEE, 1-6.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In International Conference
on Learning Representations.

Nilesh Gupta, Sakina Bohra, Yashoteja Prabhu, Saurabh Purohit, and Manik
Varma. 2021. Generalized Zero-Shot Extreme Multi-label Learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 527
535.

James Hong and Michael Fang. 2013. Keyword extraction and semantic tag
prediction. unpublished(http://cs229. stanford. edu/proj2013/FangHong-Keyword%
20Extraction% 20and% 20Semantic% 20Tag% 20Prediction. pd f) (2013).

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

Yash Jain and Anurag Roy. 2021. Distributed representation of tags for Active
Zero Shot learning. In 8th ACM IKDD CODS and 26th COMAD. 228-232.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in
neural information processing systems. 3294-3302.

Darren Kuo. 2011. On word prediction methods. Technical report, Technical report,
EECS Department (2011).

Xuliang Liu and Hao Zhong. 2018. Mining stackoverflow for program repair.
In 2018 IEEE 25th international conference on software analysis, evolution and
reengineering (SANER). IEEE, 118-129.

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

(38]

[40

[41

[42

[44

[45

[46

[47

Peter Devine and Kelly Blincoe

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel S Weld.
2020. S20RC: The Semantic Scholar Open Research Corpus. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. 4969-4983.
Walid Maalej, Zijad Kurtanovi¢, Hadeer Nabil, and Christoph Stanik. 2016. On
the automatic classification of app reviews. Requirements Engineering 21, 3 (2016),
311-331.

Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Bjérn Hart-
mann. 2011. Design lessons from the fastest q&a site in the west. In Proceedings
of the SIGCHI conference on Human factors in computing systems. 2857-2866.
Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
In 2012 28th IEEE International Conference on Software Maintenance (ICSM). IEEE,
25-34.

Liqiang Nie, Yongqi Li, Fuli Feng, Xuemeng Song, Meng Wang, and Yinglong
Wang. 2020. Large-scale question tagging via joint question-topic embedding
learning. ACM Transactions on Information Systems (TOIS) 38, 2 (2020), 1-23.
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from natural language supervision.
arXiv preprint arXiv:2103.00020 (2021).

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know What You Don’t Know:
Unanswerable Questions for SQuAD. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers). 784-789.
Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna Gurevych, Nandan Thakur, Nils
Reimers, Johannes Daxenberger, Iryna Gurevych, Nils Reimers, Iryna Gurevych,
etal. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

Sebastian Schuster, Wanying Zhu, and Yiying Cheng. 2017. Predicting tags for
stackoverflow questions. In Proceedings of the LWDA 2017 Workshops: KDML,
FGWM, IR, and FGDB.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet:
Masked and permuted pre-training for language understanding. arXiv preprint
arXiv:2004.09297 (2020).

James Tizard, Hechen Wang, Lydia Yohannes, and Kelly Blincoe. 2019. Can a
conversation paint a picture? mining requirements in software forums. In 2019
IEEE 27th International Requirements Engineering Conference (RE). IEEE, 17-27.
Carmine Vassallo, Sebastiano Panichella, Massimiliano Di Penta, and Gerardo
Canfora. 2014. Codes: Mining source code descriptions from developers discus-
sions. In Proceedings of the 22nd International Conference on Program Comprehen-
sion. 106-109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Mengting Wan and Julian McAuley. 2016. Modeling ambiguity, subjectivity, and
diverging viewpoints in opinion question answering systems. In 2016 IEEE 16th
international conference on data mining (ICDM). IEEE, 489-498.

Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. An empirical study on
developer interactions in stackoverflow. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing. 1019-1024.

Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. 2018.
EnTagRec++: An enhanced tag recommendation system for software information
sites. Empirical Software Engineering 23, 2 (2018), 800-832.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. Minilm: Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. arXiv preprint arXiv:2002.10957 (2020).

Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, Xin Xia, and David
Lo. 2021. Post2vec: Learning distributed representations of Stack Overflow posts.
IEEE Transactions on Software Engineering (2021).

Pingyi Zhou, Jin Liu, Xiao Liu, Zijiang Yang, and John Grundy. 2019. Is deep
learning better than traditional approaches in tag recommendation for software
information sites? Information and software technology 109 (2019), 1-13.
Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proceed-
ings of the IEEE international conference on computer vision. 19-27.

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Our data
	3.2 Pre-processing
	3.3 Evaluation
	3.4 Models (and their datasets)

	4 Results
	5 Discussion
	6 Threats to validity
	7 Conclusion
	References

