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Abstract—Feedback from software users is vital for engi-
neering better software requirements. One tool for extracting
requirements from online user feedback is clustering, where the
most mentioned topics are found by grouping similar feedback
together. For these topics to be understood, clusters have been
summarized in previous work using characterizing phrases or
sentences. This work evaluates which method of characterization
(unigrams, bigrams, trigrams, or sentences) is most effective
for understanding the semantic meaning of a whole cluster
using feedback from multiple feedback sources. We evaluate
multiple characterization methods to determine the ability of
each method to create distinct, descriptive characterizations. We
further evaluate the amount of requirements relevant charac-
terizations created by each characterization method. We find
that unigrams, bigrams, trigrams, and full sentences all perform
similarly in distinguishing clusters from each other. However, we
find that fewer and more expressive characterizations, such as
full sentences, contain more requirements relevant information
from a feedback cluster compared to more numerous but less
expressive unigrams, meaning a sentence will better summarize
the important requirement relevant information from a cluster.
Our findings inform the future development of user feedback
clustering tools, with different cluster characterization methods
being quantitatively measured for the first time.

I. INTRODUCTION

Knowing what the users of a software product want is vital
for the continual improvement of that product. One way to
gain insight into what users want is by analysing the product
feedback that is often left by users on online platforms such
as App Stores, Twitter, and product forums. Feedback on
these platforms have all been shown to contain information
that is relevant to requirements engineering (RE) [30], [13],
[37]. Manually reading all user opinions on a product may
be impractical due to the sheer volume of feedback available
online, and so many automated approaches to analysing this
feedback have been proposed within the literature (e.g., [16],
[31]).

Clustering, which is a technique that collects user feedback
into semantically linked groups, has been used widely within
the literature. Clustering has been shown to generate clusters
that effectively group semantically similar user feedback to-
gether, both in Tweets [36] and in App Store Reviews [11],
[35]. This includes grouping feedback into meaningful clusters
of similar functional bug reports or feature requests [35].
Clustering results in a (potentially large) list of feedback in

each cluster. Therefore, feedback contained within a cluster
must still be somehow summarized to software developers so
they do not need to manually read all of the feedback in a
cluster to make sense of it.

Summarization of clusters has been done within the litera-
ture by identifying characterizations such as a set of individual
words (unigrams) [35], pairs of words (bigrams) [11], sen-
tences [11], or full Tweets [36] that can be used to describe the
many pieces of feedback that are contained within a cluster.
Some work has been done to understand which method of
cluster characterization best summarizes feedback, with Gao
et al. [11] finding that sentences describing user feedback have
a higher word embedding similarity to subsequent changelogs
than bigrams. However, this work compares the same number
of phrases against sentences, meaning that sentences may only
be better summaries due to their higher word count. There has
been little work evaluating the direct effectiveness of different
characterizations in summarizing feedback within a cluster
given a fixed set of words.

An effective characterization of a cluster must be both
descriptive of the cluster content and distinct from other
clusters’ characterizations [18]. Moreover, in the context of
summarizing user feedback for the purpose of understanding
software requirements, we also believe cluster characteriza-
tions should focus on the requirements relevant information
within the cluster. While previous work has found that clus-
tering tools are effective at clustering requirements relevant
feedback together [35], it is unclear as to the requirements rel-
evance of the subsequently generated characterizations. While
a descriptive and distinct characterization may be generated
for a cluster of user feedback, it may relate to the general
semantic meaning of the feedback in the cluster (e.g. “thanks”
or “problem”) rather than specifically communicating the
requirements relevant details of the cluster (e.g. “crashing”
or “dark mode”). Thus, a question remains as to how effective
these clusters would be at communicating their requirements
relevant contents to a user of such a tool.

For this reason, this work seeks to evaluate which method of
characterizing clusters is most suitable for creating descriptive,
distinct, and requirements relevant characterizations. This in-
forms how future clustering tools should be designed in order
to most effectively summarize important requirements relevant



information within user feedback.
This resulted in two main research questions:
• RQ1: What characterization method is best able to de-

scribe and distinguish a cluster compared to a random
baseline?

• RQ2: What characterization method best communicates
requirements relevant information from a cluster?

In this work, we evaluate four methods of characterizing
clusters: unigrams, bigrams, trigrams, and sentences. This
evaluation is performed on user feedback from five user feed-
back platforms (Google Play Store, Apple App Store, Reddit,
Twitter, and product user forums) sourced from 6 literature
datasets [4], [14], [5], [35], [37], [38], as well as additional
user feedback collected for this study. The evaluation was done
in two stages, firstly as a random characterization comparison
task, in which labellers attempted to select the correct charac-
terization for a cluster given both the correct characterization
and a random characterization. Secondly, we also performed
a requirements relevance labelling task, in which character-
izations were manually labelled as requirements relevant or
requirements irrelevant. Together, this evaluation gives insight
into which methods of characterization work best for different
platforms, and, thus, which methods of characterizing clusters
can be most effective across a range of feedback.

II. BACKGROUND

Prior work has shown that user feedback is valuable for
product development insights, and much recent research has
investigated user feedback from online sources [6], [16]. User
feedback from Twitter [15], App Stores [30], and product
forums [37] have all been shown to contain useful information
for requirements engineering. Due to the large amount of user
feedback available online, manually identifying requirements
relevant information can be too time-consuming [12]. Thus,
various methods and tools to analyze this online user feedback
have been proposed. A systematic review by Lim et al. found
that clustering methods were some of the most popular ways
in analysing user feedback, alongside classification [21]. The
classification methods typically aim to categorize online user
feedback into predefined categories, such as bug reports or
feature requests [23], [31], [28]. This still leaves significant
work for the product development team to understand, for
example, which user feedback is related to the same bug
report or feature request. Clustering can help to reduce this
effort by grouping together similar feedback. Lim et al. found
that topic modelling, such as LDA [2] and BTM [39], and
classical clustering methods, using algorithms such as k-means
clustering [24], were the two most popular methods used to
cluster together similar user feedback.

Scalabrino et al. proposed the CLAP model, which performs
analysis of app reviews [35]. Firstly, all reviews are classified
into classes such as “functional bug report”, “suggestion for
new feature”, and “report of security issues”. The reviews
contained within a class are then clustered using unsupervised
machine learning with the DBSCAN algorithm [10]. Each
cluster is then classified as “high priority” or “low priority”

with high priority clusters being sorted to the top of the list
of cluster results. CLAP was found to have high accuracy
in categorizing user reviews, an ability to create meaningful
clusters of related reviews, accuracy in prioritising clusters,
and positive qualitative feedback from industrial contexts, all
of which show promise for the adoption of clustering user
feedback in the RE field more broadly.

Similar to CLAP, other methods and tools have been pro-
posed to cluster online user feedback. Stanik et al. presented
a tool to cluster feedback from Twitter [36]. This work
embedded Tweets to a large telecommunications company
using SBERT [33], before clustering these embeddings using
a HDBSCAN algorithm [26]. Like CLAP, this work showed
high coherence within the clusters generated by this method,
highlighting its potential usefulness for developers analysing
their users’ feedback. Gao et al. proposed MERIT [11], a
clustering tool that uses an Adaptive Online Biterm Sentiment-
Topic Model (inspired by the biterm topic model [39]) to
cluster app reviews. MERIT was found to be accurate at
identifying emerging issues in new app releases.

While these studies show that clustering is an effective
way of grouping user feedback into semantically coherent
groups, there is a lack of knowledge on how user feedback
clusters such as the ones produced by these methods and tools
should be communicated to the product development team.
CLAP summarized clusters by showing the four most popular
terms (unigrams) within the reviews of each cluster [35]. The
tool created by Stanik et al. used a representative tweet to
summarize each cluster [36]. MERIT used both the three most
descriptive phrases (mainly consisting of bigrams) and the
three most descriptive sentences extracted from the feedback
text to characterize each cluster. The studies of CLAP and
the tool created by Stanik et al. did examine the effectiveness
of different characterization techniques. The study of MERIT
did compare their two characterization techniques (phrases
and sentences). However, the characterizations were evaluated
against software changelogs instead of directly examining
the effectiveness of the characterization to summarize the
cluster. They found that sentences had higher coverage in the
changelogs compared to phrases. However, as they report, this
result could simply be due to the fact that sentences contain
more words than phrases and there were an equal number (3)
of sentences and phrases being compared. It remains unclear as
to which summarization technique is most effective when the
number of words is roughly equal, which is a pertinent ques-
tion given that space within a UI layout can be limited when
designing feedback summarization tools. In addition, none of
the studies have examined whether the cluster summarizations
in the existing methods and tools capture the requirements
relevant content of a user feedback cluster. Thus, an open
question remains as to how best these semantically coherent
and requirements relevant clusters can be communicated to
a requirements analyst given a finite amount of words in a
requirements relevant way.

It is for these reasons that this work seeks to evaluate
the different ways in which clusters have previously been



Fig. 1. Diagram depicting the cluster characterization data preparation process for one cluster of hypothetical app α from dataset X

characterized within the literature to assess which are most
appropriate for use in a requirements engineering tool.

III. METHOD

In this work, we clustered user feedback from six literature
datasets, supplemented by user feedback data we collected
from five platforms. Feedback was split up by app, each
piece of feedback for that app was embedded, and then
these embeddings were clustered together. From these clusters,
characterizations were generated for each, with separate char-
acterizations created using unigrams, bigrams, trigrams, and
sentences, all extracted from the corpus of feedback from that
app. A pictorial description of our characterization creation
process can be seen in Fig 1. These cluster and characterization
pairs were then evaluated by human annotators through a
random characterization comparison task and a requirements
relevance classification task. This section details how each part
of this process was carried out more thoroughly.

A. User feedback data

For the evaluation in this study, we selected data relating
to multiple apps across different platforms from a variety of
datasets such that our results cover a variety of different use
cases and data distributions. We used user feedback from six
datasets made available by prior studies in the literature [4],
[14], [5], [35], [37], [38], which contain feedback from four
different platforms: the Google Play Store, the Apple App
Store, Twitter, and user product forums. These datasets contain
user feedback relating to a wide range of apps in each. Since
the majority of these datasets only averaged a few hundred
pieces of feedback per app, and this is too low to generate a
significant amount of clusters per app, more user feedback
was collected for this study. We collected data relating to
the Spotify music player1 due to its popularity, as it has
millions of reviews on both the Apple and Play stores, millions
of followers on its dedicated support Twitter account, and
hundreds of thousands of members in its dedicated subreddit.
Spotify user feedback was collected between the 26th of Au-
gust and the 17th of September 2020. This data was collected

1https://www.spotify.com/

from five sources, the Google Play Store (24,346 reviews),
the Apple App Store (5,670 reviews), r/Spotify subreddit on
Reddit (1,536 posts), Twitter (6,115 Tweets), and the Spotify
product user forum (1,061 posts).

All feedback that was not detected as being English by the
langdetect Python module 2 was removed for each dataset.
Text was then further cleaned by removing all URL links from
feedback.

Requirements engineers are most often interested in gen-
erating requirements related to a single software application.
Thus, when clustering tools are applied to user feedback, they
usually create clusters separately for each app. For this reason,
each dataset was split up into individual apps, such that only
feedback that is from the same dataset and the same app can be
embedded and clustered together. This splitting is detailed in a)
of Fig 1. Table I describes the number of pieces of feedback in
each dataset, the number of pieces of feedback after removing
all non-English language posts, the number of apps within that
dataset, the number of apps that were included in the clusters
generated, and the number of clusters that were created from
those apps.

B. Characterization candidate creation and data cleaning

In order to characterize our clusters, we first generate a
list of candidate characterizations. We do this for 4 types
of characterizations: unigrams (single words), bigrams (two
consecutive words), trigrams (three consecutive words), and
full sentences. Unigrams, bigrams, and sentences were chosen
as characterization methods due to their previous use to
characterize clusters within the literature [11], [35], [36]. We
also sought to test longer n-grams than those explored in
the established literature, but there is a trade-off between the
number of n-gram lengths tested and the time it takes for the
manual labelling tasks used in our analysis. For this reason,
trigrams were also included in our evaluation, but we leave
examining longer n-grams for future work. Candidate selection
is illustrated in b) of Fig 1.

A list of example characterizations related to a randomly
sampled piece of feedback from a cluster can be seen in

2https://pypi.org/project/langdetect/

https://www.spotify.com/
https://pypi.org/project/langdetect/


TABLE I
TABLE DESCRIBING THE NUMBER OF PIECES OF FEEDBACK CONTAINED WITH EACH DATASET USED FOR EVALUATION, THE NUMBER OF PIECES OF
FEEDBACK ONCE NON-ENGLISH LANGUAGE FEEDBACK HAD BEEN REMOVED, THE NUMBER OF APPS WITHIN EACH DATASET, AND THE NUMBER OF

CLUSTERS THAT THEY ENDED UP GENERATING.

Dataset ID Citation Feedback
source

Downloaded
data size

Post-cleaning
size

Number
of apps

Number
of apps
with clusters

Number
of clusters

A [4] App reviews 181,081 141,877 4 4 40
B [5] App reviews 2,325 1,415 27 3 8
C [14] App reviews 6,159 3,863 7 7 28
D [35] App reviews 3,000 2,867 694 1 2
E [37] Forums 3,806 3,293 3 3 16
F [38] Twitter 4,000 3,795 10 10 24

G
Supplementary
data for
Spotify Twitter

Twitter 6,115 1,653 1 1 10

H

Supplementary
data for
Spotify Apple
App Store

App reviews 5,670 2,889 1 1 10

I
Supplementary
data for
Spotify Play Store

App reviews 24,346 16,394 1 1 10

J
Supplementary
data for
Spotify Reddit

Reddit 1,536 840 1 1 4

K
Supplementary
data for
Spotify Forum

Forums 1,061 1,032 1 1 8

TABLE II
EXAMPLE SAMPLE FEEDBACK FROM A CLUSTER, AND ITS ASSOCIATED

CHARACTERIZATIONS USING DIFFERENT METHODS.

Sample feedback

I had use app 6 month ... but now i
cant open my app... when i try it is
indicate offline conection ... but
internet is conected....

Unigram characterization

login,
offline,
authentication,
unable,
connect,
apk,
password,
reconnect,
unavailable,
unusable,
unresponsive,
connectivity

Bigram characterization

unable sign,
app unresponsive,
offline issue,
account error,
bug login,
unable access

Trigram characterization

unable login app,
unable login offline,
unable login facebook,
app bug login

Sentence characterization
Won’t let me log in just keeps saying
I have no Internet connection
when every other app works fine?

Table II. Note that the characterizations are extracted from all
feedback in the cluster, not only the sample feedback presented
in the table.

Unigrams In order to generate unigrams, we first split
sentences into individual words. This was done by applying the
word splitter from the PyICU package3 to the entire corpus
of lowercased feedback for a given app. Any words longer
than 15 characters were also excluded, as was done by Man
et al. because such long strings are seldom valid words [25].
All unigrams that only contained numeric characters were also
excluded due to their lack of semantic expression. We removed
all misspellings or otherwise noisy non-standard words by
excluding any unigrams that were not recognized as valid
words by the Autocorrect library’s4 correctly spelled word list.
Conjugations and forms of the same word were all unified by
using lemmatization, which changes words into their common
base form (E.g. “crashes”, “crashing”, “crashed” to “crash”).
All words were lemmatized using the NLTK lemmatizer [1] to
reduce the number of highly similar words within our unigram
list. We used a list of stopwords (words which carry little
semantic meaning by themselves, such as “a”, “the”, and “do”)
from the stopwordsiso list5 and removed any words on this list
from our candidate word list. This resultant list became our
unigram candidate list.

Bigrams and trigrams Using the cleaned unigram can-
didate list, we applied the NLTK n-gram creator6 to each
piece of feedback, which joins each unigram to its neighbours

3https://pypi.org/project/PyICU/
4https://github.com/filyp/autocorrect
5https://github.com/stopwords-iso/stopwords-iso
6https://www.nltk.org/api/nltk.util.html#nltk.util.ngrams

https://pypi.org/project/PyICU/
https://github.com/filyp/autocorrect
https://github.com/stopwords-iso/stopwords-iso
https://www.nltk.org/api/nltk.util.html#nltk.util.ngrams


to form all possible bigrams and trigrams of the sequence.
Any n-grams that contained repeated words were removed
from these candidate list to avoid repetitive characterizations
of the clusters. The maximum number of unique trigrams
was 100,110 in the Facebook dataset of the Chen et al.
dataset [4]. Due to computational constraints when comparing
embeddings, we kept the 10,000 most popular n-grams for
each app, with only 7 out of the 33 apps studied having a
unique bigram or trigram list longer than this limit.

Sentences Similarly to generating unigrams, in order to
generate characterization candidate sentences, we first split
up our feedback into individual sentences. To do this, we
use the PyICU3 sentence splitter, which breaks sentences as
defined by the break rules of the Unicode Organisation7. In
order to reduce the amount of single or few word sentences
that contained little information, short sentences (those with
less than 5 words) were removed from our list of candidate
sentences. This step was validated by manually inspecting
100 sentences with less than 5 words, with only a small
minority (4 out of 100) identified as potentially containing
useful information (for example ”everything all crashed”). This
validation was done by two of the authors who agreed on all
cases. For this reason, these sentences were excluded from our
candidate list.

Synonym removal Initial experiments found that charac-
terizations using unigrams, bigrams, and trigrams contained
many synonymous words and phrases. For example, “delete”
and “deletion”, or “app crash” and “crash app”. Some of these
were handled by the lemmitization performed when cleaning
the data. However, some still remained after lemmitization.
Therefore, pairs of characterizations that were highly similar
were removed in the following way. Embeddings of all candi-
dates were generated, and compared pairwise with each other.
Then, one of any pair of characterizations that had a similarity
greater than 0.8 were excluded from the candidate list. This
ensured diversity within the candidate list. Experiments were
done to determine an appropriate threshold, with a sample of
characterizations being manually evaluated for their presence
of synonyms. We experimented with thresholds of 0.7, 0.8,
and 0.9, finding that 0.8 was the best threshold. An example
is a cluster which contained feedback such as “After the last
update one third of my PDF files fail to open in the built in
reader They worked fine under the old built in pdf reader” and
“Cannot open 225mb PDF Excellent for everything except for
opening larger PDFs. Please fix!!!’, a threshold of 0.7 yielded
trigrams of “annoy pdfs crash”, “ipad select pdf”, “pdfs finally
figure”, “ipad update install”, a threhold of 0.8 yielded “unable
pdf file”, “issue bad pdfs”, “pdfs screen black”, “pdf annoy
constantly”, and a threhold of 0.9 yielded “update unable pdf”,
“app pdfs update”, “bad pdfs app”, “pdf viewer update”. Thus
a threshold of 0.8 was chosen as it represents a middle ground
between representing a cluster and removing synonyms.

7https://unicode-org.github.io/icu/userguide/boundaryanalysis/break-
rules.html

C. Feedback embedding and characterization embedding
A text embedding is a numerical vector representation of

natural language text. These representations are designed to
encode semantic meaning into natural language text which can
be quantified, with two sentences that are semantically similar
also producing vectors or embeddings that are similar. In order
to cluster text, we first convert each piece of feedback into such
an embedding such that it can then be quantitatively compared
to every other piece of feedback, and thus eventually clustered.
This is done in the same manner as previous work such as that
by Stanik et al. [36]. We used the Universal Sentence Encoder
(USE) [3] to embed the feedback due to its proven efficacy in
embedding requirements related data together [8]. Each piece
of user feedback and every cluster characterization candidate
was encoded using the official latest implementation of the
USE model hosted on TFHub8. Embedding of feedback and
characterizations is detailed in both c) steps of Fig 1.

D. Feedback clustering
The embeddings of user feedback for each app were clus-

tered using HDBSCAN [26], which has been shown by Stanik
et al. to create coherent feedback clusters [36]. In order to
achieve a diverse mix of clusters across apps, we limited our
selection of clusters to a maximum of 10 clusters per app
per platform, which were randomly sampled from all clusters.
This meant that our Spotify dataset clusters were limited to 10
clusters per platform due to them only representing one app.

Clustering algorithms such as HDBSCAN require calculat-
ing the distance of individual points to others to determine
their relative closeness to assign them to clusters. This dis-
tance calculation can be computationally expensive at higher
dimensions. Due to the fact that the USE embedder outputs
a 512 dimension embedding of a piece of text [3], clustering
each point based on its position within this 512 dimension
space was beyond our computational limitations. For this
reason, a dimensionality reduction technique was applied to
all embeddings before being clustered. The Uniform Manifold
Approximation and Projection (UMAP) manifold learning
technique [27] creates a graph representation of the data and
then optimizes a low-dimensional version of the graph to be
as structurally similar to the original graph as possible. This
technique was used due to its proven performance in creating
semantically coherent user feedback clusters, as shown in
work by Stanik et al. [36]. As was done by Stanik et al., we
used the following parameters: a UMAP output dimensionality
of 20, the number of neighbors considered in the UMAP
algorithm to be 100, the UMAP minimum distance to be 0,
and the HDBSCAN minimum cluster size at 30. All other
hyperparameters used were the default for the HDBSCAN
Python package9 (epsilon = 0.0, distance metric = euclidean,
alpha = 1.0) and Python implementation of UMAP10.

Due to the requirement by the UMAP to have at least as
many embedding points as number of neighbors considered in

8https://tfhub.dev/google/universal-sentence-encoder-large/5
9https://github.com/scikit-learn-contrib/hdbscan
10https://github.com/lmcinnes/umap

https://unicode-org.github.io/icu/userguide/boundaryanalysis/break-rules.html
https://unicode-org.github.io/icu/userguide/boundaryanalysis/break-rules.html
https://tfhub.dev/google/universal-sentence-encoder-large/5
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/lmcinnes/umap


the dimensionality reduction step, only apps with more than
100 pieces of feedback were clustered. This resulted in the
creation of 160 clusters taken from 33 apps across all datasets.
This clustering step is described in d) of Fig 1.

E. Characterization candidate selection

For each cluster, characterizations were selected for each
of the four characterization techniques (unigrams, bigrams,
trigrams, and sentences). To select the characterization for each
of these types, the encoded list of characterization candidates
described in section III-B were compared against all encoded
pieces of feedback for a given cluster using cosine similarity.
While cosine similarity was used here, early experiments
showed little difference in candidate ranking when using
other distance metrics. The overall similarity score for each
candidate characterization was calculated by summing the
cosine similarity for that characterization with each piece
of feedback in the cluster. This calculation is described in
equation 1.

sc =
∑
i=F

sim(ec, ei) (1)

Where ec is the embedding of the candidate characteriza-
tion, ei is the embedding of the i-th piece of feedback, F is
the set of all pieces of feedback within a cluster, sim is the
cosine similarity function, and sc is the overall similarity score
for candidate characterization c.

Candidates were ranked from most similar to least, and the
top k were selected for inclusion in the characterization. Values
of k=12 was used for unigrams, k=6 for bigrams, k=4 for
trigrams, and k=1 for sentences. These values were chosen so
as to balance the number of words included within each char-
acterization (i.e., there are 12 words for each characterization
for the unigrams, bigrams, and trigram characterizations). This
number of 12 words was chosen so that these characterizations
would be at least as long, and thus not be disadvantaged in
their characterization ability by a fewer number of words com-
pared to the sentence characterizations. The average number of
words in the sentence characterizations chosen was 9.84 and
81% of sentences contained less than or equal to 12 words.

Each cluster was then characterized in this way for each
characterization type. This resulted in four characterizations
(one for each of unigrams, bigrams, trigrams, and sentences)
for each of the 130 clusters created. Selection of characteristic
n-grams and sentences from the list of candidates is described
in e) of Fig 1.

F. Evaluation criteria

In order to evaluate the characterizations of each cluster,
manual labelling was employed. A sample piece of feedback of
each cluster was randomly sampled from all feedback within
that cluster, and this sample feedback was stored with its
respective characterizations. The sampling of feedback can
be seen described in f) of Fig 1. Two separate evaluation
tasks were then undertaken - a random characterization
comparison task and a requirements relevance evaluation

Fig. 2. Diagram depicting the format of the data used in the labelling process
of both evaluation tasks

task. These evaluation tasks were carried out by three soft-
ware engineering PhD students, all of whom have experience
working as a software engineer. Each individual labelling was
done by two separate people for both tasks in order to allow
for the calculation of inter-coder reliability across our dataset.

A diagram visually depicting these two tasks can be seen
in Fig. 2.

1) Random characterization comparison task: In line with
previous similar cluster evaluation tasks in the literature, such
as the intruder detection tasks used by Guzman et al. and
Stanik et al. [15], [36], a random characterization and a true
characterization were selected for each cluster and paired with
the sample feedback for that cluster. The generation of true
and random cluster characterizations is shown in the final
output of Fig 1. Evaluators were instructed to read the sample
feedback and choose the most appropriate characterization for
this feedback from the two presented options (the randomly
selected characterization and the most similar characteriza-
tion selected using the method described in Section III-E).
This random characterization comparison was repeated for
all characterization types, with only one characterization type
being considered at a time (e.g. only unigram characterizations
were compared against other unigram characterizations and so
forth). This evaluation of comparing a true characterization
to a randomly sampled characterization helps to determine
how distinguishable an intentionally created characterization
is compared to a random one. Higher accuracy on this task
signifies that a cluster characterization is better able to describe
the contents of the cluster and distinguish it from other clusters
based on human judgement.

Three accuracies are reported: per-coder accuracy is the
accuracy of an individual labelling of a characterization of a
cluster, both-coder accuracy is the accuracy of both labellers
choosing the same correct characterization of a cluster, and
either-coder accuracy is the accuracy of either one of the
coders choosing the correct characterization. These accuracies
are then reported across all characterization types, in order to
compare the comparative strength in characterization ability
between unigrams, bigrams, trigrams, and sentences.



2) Requirements relevance labelling: Once each labeller
had labelled a cluster for the random characterization com-
parison task, they also labelled each sample feedback and
each matching characterization as requirements relevant or
not relevant. The sample feedback was labelled as relevant
or not relevant in every cluster. For clusters whose sample
feedback was labelled as requirements relevant, its matching
characterization was also labelled as requirements relevant
or not. Labelling was done using manual content analy-
sis [20], in which a definition of requirements relevance was
first established amongst all labellers, a small amount of
example sentences were labelled together as practice, before
individually labelling the dataset. This ensured consistency
of labelling standards between evaluators. The definition of
“requirements relevant” used by the labellers was derived
from Santos et al. [34] and centered around mentioning a
specific feature or behaviour of the product in relation to a
bug report, feature request, or other information pertinent to a
software developer. Before labelling began, the three labellers
first examined a small sample of characterizations for their
requirements relevance to their associated sample feedback.
Once an agreement was reached as to which characterizations
best related to the requirements of the feedback within the
cluster, these characterizations were included as part of a
labelling guideline for future labelling. In order to ensure
that both labellers were labelling the same characterization
(in relation to the given sample feedback) for requirements
relevance, only clusters which had characterizations that been
correctly selected by both labellers in the previous random
characterization comparison task were labelled for require-
ments relevance.

The inter-coder agreement score of this labelling process
was calculated using Cohen’s Kappa [7], and resulted in a κ of
0.677 for the sample feedback labelling (with 84.2% of sample
feedback having the same label from both evaluators) and
0.555 for the characterization labelling (with 78.3% of charac-
terization labels having the same label from both evaluators).
These scores respectively indicate substantial and moderate
inter-coder agreement according to Landis and Koch [19].

A sample piece of feedback or characterization was then
evaluated to be requirements relevant only if it was labelled
as such by both labellers, so as to ensure a high degree of
precision in identifying truly requirements relevant feedback
from our labelling process.

IV. RESULTS

A. Random characterization comparison task

RQ1: What characterization method is best able to describe
and distinguish a cluster compared to a random baseline?

The results of the random characterization comparison task
can be seen in Table III.

These results describe the percentage of characterizations
that are correctly selected compared to a random characteri-
zation in the manual analysis of the most appropriate charac-

TABLE III
LABEL ACCURACY FOR AN INDIVIDUAL CODER, ACCURACY OF EITHER

CODER LABELLING A CHARACTERIZATION CORRECTLY, AND ACCURACY
OF BOTH CODERS LABELLING IT CORRECTLY. THERE IS LITTLE

DIFFERENCE IN THE ACCURACY SCORES BETWEEN CHARACTERIZATION
TYPES.

Per-coder Either coder Both coder
Unigrams 0.838 0.900 0.775
Bigrams 0.853 0.906 0.800
Trigrams 0.847 0.944 0.750
Sentences 0.888 0.956 0.819

terization. A high percentage means that the characterizations
of the clusters are descriptive of the cluster feedback contents
and distinct from other clusters’ characterizations. Conversely,
a low percentage signifies that a characterization does not
represent the content of a cluster well or is too similar to
other characterizations of clusters.

Averaged over all characterization types, per-coder accuracy
is 85.6%, both coder accuracy is 78.6%, and either coder accu-
racy between 92.7%. For all characterization types, we can see
that per-coder accuracy ranges between 83-89%, both coder
accuracy between 75-82%, and either coder accuracy between
90-96%. These results all exceed the random baselines of 50%,
25%, and 75% significantly.

We find cluster characterization accuracy to be similar
across different characterization types, with accuracy not
differing by greater than 7% for any characterization type.
With this finding, we do not detect any characterization type
(unigrams, bigrams, trigrams, and sentences) to significantly
characterize the contents of its cluster more descriptively or
distinctly than any other.

In 14.1% (90 total) cases, evaluators disagreed on which
characterization was most appropriate for a given sample
feedback. An example of this can be seen with the sample
feedback “Music, podcasts and everything mine!” which had
candidate bigram characterizations of “spotify worth, apps
music, music stream, music android, basically spotify, spo-
tify offline” and “podcast apps, podcast absolutely, favourite
podcast, nice podcast, enjoy podcast, library podcast”, with
the latter being the true generated characterization for the
cluster. One characterization focuses on music and another
on podcasts, while the sample feedback contains references
to both, and so both characterizations can be seen to be
relevant to the sample feedback. In this case, the generated
characterization is descriptive of the feedback that it contains,
but is not successfully distinct from other characterizations,
and therefore is not an effective characterization.

In 7.3% (47 total) of cases, both evaluators chose the
incorrect, random characterization. An example of this can be
seen in the case where the sample feedback was “otherwise,
amazing game with awesome graphics!”, and the two choices
for a sentence characterization were “otherwise a great game
!” and “the graphics are fantastic !”. In this case, both
evaluators chose the latter as the matching feedback when
the former was the actual generated characterization for this
cluster. While the former does have some semantic overlap



with the sample feedback (i.e. the use of the word “otherwise”
and praising the game), the latter also semantically matches
the sample feedback but in a way that is more relevant to the
software product (i.e. praising the graphics of an app). As
with the previous example, this clustering has resulted in an
indistinct characterization in that characterizations of other
clusters would also be appropriate for this cluster. Beyond a
lack of distinction, this characterization also does not describe
the elements of feedback specifically related to the software
that a requirements engineer would be more interested in,
in that it does not describe the graphics mentioned within
the feedback. This characterization is also ineffective as it
is both indistinct from other characterizations and does not
fully describe the feedback contained within a cluster.

Overall, we observed that the majority (78.6%) of
characterizations were chosen correctly by both evaluators.
This demonstrates the relative effectiveness of our
characterization method overall. When compared across
characterization types, we observed no notable differences
between unigrams, bigrams, trigrams, and sentences (see
details in Table III). We also found that in the minority
of cases where both or either evaluator chose an incorrect
characterization, characterizations had been shown to be
indistinct and to not fully describe the information from the
cluster feedback which would be relevant to requirements
engineers.

Answer to RQ1:
All characterization methods tested (unigrams, bigrams, tri-
grams, and sentences) describe and distinguish clusters com-
pared to a random baseline to a similar high degree.

B. Requirements relevance labelling

RQ2: What characterization method best communicates
requirements relevant information from a cluster?

The sample feedback labelling evaluation resulted in 34.1%
of sample feedback (218 sample feedback relating to 640
characterizations) being labelled as requirements relevant. This
reflects previous work, such as that by Chen et al. [4], that
found that informative user feedback ranges between 24.6%
and 55.4% of all app reviews for different apps. Of the 34.1%
of sample feedback that were labelled as requirements relevant,
82.6% (180 characterizations out of 218 total) were correctly
selected and agreed upon by both labellers in the prior random
characterization comparison task.

From these 180 cluster characterizations, the percentage la-
belled as requirements relevant can be seen in Table IV. These
numbers range dramatically between characterization types.
Only 3 unigram characterizations (nearly 7% of all unigram
characterizations) were labelled as requirements relevant. This
stands in contrast to 21 sentence characterizations (45.7% of
sentence characterizations correctly selected and associated
with a requirements relevant sample feedback) that were
labelled as requirements relevant. Between these two, bigrams

TABLE IV
PERCENTAGE OF CHARACTERIZATIONS THAT ARE ASSOCIATED WITH

REQUIREMENTS RELEVANT SAMPLE FEEDBACK THAT WAS ALSO
LABELLED AS REQUIREMENTS RELEVANT.

% Characterizations
requirements relevant

Unigrams 6.98%
Bigrams 31.91%
Trigrams 29.55%
Sentences 45.65%

and trigrams have an intermediate requirements relevance rates
of 31.9% and 29.5%, respectively.

While unigrams had the most individual characterizations
(12 unigrams per cluster), we can see that a small set of
longer n-grams is more effective at capturing the requirements
relevant content of a cluster compared to a large amount
of shorter n-grams. We can see this trend somewhat borne
out with bigrams and trigrams having lower requirements
relevance than sentences but higher than unigrams. Within
the 21 requirements relevant sentence characterizations, the
average length of a sentence is 13.7 words with 62.0% of these
sentences below the 12 words. This average is longer than the
9.84 average sentence length of all sentence characterizations
in our dataset. This suggests that adding more words to a
single characterization has a positive effect on the ability
of the characterization to summarize requirements relevant
information.

An example of a requirements relevant characterization can
be seen in the sentence characterization associated with the
sample feedback “Spotify all of a sudden not playing certain
local files. I have a few local files that I got from soundcloud
that used to play but now do not, even if I re download them,
they appear in the local files library but they are greyed out.
They used to play and still play on my touch pad that has
not connected to wifi in a few weeks.”, which is “Spotify
Local Files arent syncing with mobile device correctly.”. This
characterization succinctly summarizes the main points of
the requirements relevant information contained within the
feedback representing the cluster. A similar example can be
seen with the trigram characterization for the sample feedback
“pics don’t load after the new update.”, which is rarely
load update, photo mobile update, picture feature update,
picture refuse load. Again, the characterization covers both
the problem (the picture not loading) and the context (after
an update) which would inform requirements engineers that a
bug needs to be addressed from this cluster of user feedback.

Conversely, examples of related but requirements irrelevant
characterizations for requirements relevant sample feedback
are also informative to our understanding of the effectiveness
of these characterizations. The sample feedback “2/3 of my
Home Screen is Podcast suggestions. It’s really annoying.
Considering going back to Apple Music. And use separate
app for podcasts again” has a trigram characterization of
podcast play unavailable, podcast video issue, podcast feature
disable, podcast spotify offer, which does mention an aspect



of the software product (podcasts), but fails to summarize
the requirement itself (changing the UI to reduce the number
of podcasts on it). Similarly, sample feedback “Good. But
this would probably be my go-to lockscreen app if you guys
integrated a pass code and/or PIN feature.” has a unigram
characterization of wallpaper, tweak, widget, fingerprint, un-
lock, lock, launcher, setup, minimalist, customizable, android,
moto, which does not mention the pass code, password, or
PIN number that was requested in the original feedback.

Therefore, we can see that while some characterizations
can effectively summarize requirements, most do not and are
instead related to some requirements irrelevant aspect of the
set of feedback it is summarizing.

Answer to RQ2:
While requirements relevance of evaluated characterizations
is somewhat low, longer characterization types (such as sen-
tences) communicate requirements relevant information more
effectively than shorter types (such as unigrams).

V. DISCUSSION

A. Implications

Overall, we find that all characterization types evaluated
had a fairly similar ability to both describe and distinguish
a cluster of user feedback. This suggests that there is not
necessarily a benefit in using one method of characterizing
clusters over another purely for describing the whole semantic
content of a cluster or distinguishing clusters from each other.
However, there is a clear advantage to using full sentences as
opposed to shorter characterization types, such as unigrams,
when describing specifically requirements relevant information
from the cluster. It is also notable that the sentences that
were labelled as requirements relevant were longer than the
average of all characterization sentences. This indicates that a
longer single sentence can contain more requirements relevant
information than a shorter one. However, even when the
number of words is kept constant (as in our evaluation of
unigrams, bigrams, and trigrams), we see that unigrams are
considerably worse at describing requirements compared to
more expressive bigrams and trigrams.

These results dovetail with those of Gao et al., who showed
that a fixed number of sentences are more likely to explain an
emerging issue in feedback compared to the same number of
phrases [11]. We show that even when the number of phrases
(in our case unigrams, bigrams, and trigrams) is increased
to include enough words to roughly match that of sentences,
sentences are still more effective at summarizing bug reports,
feature requests, and other requirements relevant information.

This suggests that using sentences or higher n-grams to
summarize a cluster of user feedback will be more useful for
conveying the requirements relevant information of that cluster
compared to using unigrams. This informs the future devel-
opment of user feedback summarization tools, as some within
the literature thus far have used unigrams or bigrams as their
method of characterizing clusters [11], [35]. User feedback

analysis tools will benefit from displaying what requirements
a cluster is mentioning rather than another characterization that
may be semantically linked to the cluster but is not relevant
to software development. This will increase the requirements
engineering possibilities of these tools, and thus their utility.

The higher requirements relevance of sentence character-
izations above other characterization types may be related
to the higher expressivity of individual sentences compared
to individual unigrams or bigrams. We can see that a small
number of more expressive characterizations ultimately com-
municate requirements relevant information more effectively
than a larger number of less expressive characterizations. This
is a somewhat intuitive result, but an important one given the
widespread use of unigrams and bigrams as characterization
methods throughout the literature.

Another learning from these results is the fact that many
characterizations do not match the requirements relevant
aspects of the feedback that they are summarizing, but
instead match another aspect of the feedback. The selecting
of characterizations was done using the cosine similarity of
feedback to characterization candidates based on a general
text embedder (USE) which has been trained on a broad range
of natural language processing tasks. This means that these
comparisons were not done within the context of software or
requirements engineering, but rather in the broader semantic
space of language more generally. Therefore, improvement
upon these characterizations could possibly be made by using
an embedding model which has been specifically trained on
data relevant to requirements engineers.

B. Future work

In this work, we compare our characterizations against an
identically generated characterization from another cluster.
This random baseline is quite a low barrier against which to
select a “best” characterizations. Future work could explore
how the characterizations generated in this work compare to
other, potentially more sophisticated methods of generating
characterizations. An experiment could include selecting the
best characterization from a selection of multiple characteri-
zations for a specific cluster.

Given that this work has shown the ability of a few expres-
sive characterizations to communicate requirements contained
within user feedback, we can look to new ways of generating
different types of expressive characterizations for future use
in user feedback clustering tools. Extractive summarization
relies on using similar methods to those in this paper, in which
a selection of candidate characterizations is extracted from a
document or corpus of text, from which a few are selected
as the summary of that document or corpus. Examples of this
include HAHSum [17] and MatchSum [41], and could be used
to extract better sentence based characterizations of a set of
user feedback which effectively summarize the requirements
detailed from a potentially large number of users. Abstractive
summarization is also a potentially useful tool for creating user
feedback cluster summaries. This method of summarizing a



set of texts uses a model which has been trained to generate
summaries using text that is not necessarily contained within
the original text [9]. Examples of this include PEGASUS [40],
and potentially allow for more natural, concise, or compre-
hensive summary of user feedback than simply extracting the
most representative existing sentences from a cluster. This
could result in the output of a short report of user feedback
covering feedback over a certain time span that is generated
periodically by automatic clustering and characterization. Such
a report would allow requirements engineers to understand
what users want from a piece of software in a quick and
comprehensive way without having to read large amounts of
feedback manually. It remains for future work to evaluate these
methods of generating characterizations compared to those
used in this study.

Another possibility for future work would be to fine tune
an existing model to specifically create requirements relevant
summaries using labelled data. This could be done using a
siamese network (as was used to train SBERT [33]), in which
a deep neural network (e.g. a pretrained transformer based
model such as BERT) is trained to embed semantically related
sentences into similar positions within an embedding space. If
such a model was trained on pairs of user feedback data, it may
be better suited to generating meaningful clusters of feedback
compared to general text embedders such as SBERT or USE.
Another type of model that could be applied to the problem of
summarizing user feedback clusters is a text generation model
(e.g. GPT-2 [32] or GPT-3 ??). These transformer decoder
based models are trained to model language by predicting the
next word in a document, and can then be used to generate text
based on this internal modelling of language. A text generation
model could be trained on multiple pieces of user feedback and
their summaries (such as multiple bug reports and the resultant
issue ticket) such that the model can summarise feedback in
a natural and holistic manner. Using models which have been
fine-tuned on user feedback may result in more requirements-
aware characterizations than using generalised text embedding
models as has been done in this work.

Along with using multiple methods to generate character-
izations, future work could also consider the optimal length
of this characterization. In our work, we have kept the length
of the characterization roughly constant across the four char-
acterization methods that we looked at (unigrams, bigrams,
trigrams, and sentences). However, future work could explore
whether there may be an optimal length of characterization
which balances brevity and expressivity best.

VI. THREATS TO VALIDITY AND LIMITATIONS

A. Method for creating clusters and characterizations

One potential threat to validity is that our results regarding
clustering characterization are specific to the methods we used
for embedding, clustering, and characterizing feedback in our
evaluation. We used a state of the art embedding method,
USE [3], for embedding our feedback, which has previously
been shown to be the most effective at grouping alike user
feedback together [8]. We also used the state of the art methods

available in the user feedback clustering literature, UMAP and
HDBSCAN, which has previously shown to produce highly
coherent clusters of user feedback in Tweets [36]. Future work
can replicate this study with other embedding, clustering, and
characterization techniques to validate our findings.

Our use of the Autocorrect library also presents a threat to
this work. This library may dispose of words that are not offi-
cially recognised, but are useful to the developer. The decision
to use the Autocorrect library was made to remove noisy or
misspelled words that would make our characterizations less
meaningful. This tradeoff could be mitigated in future work
with a more sophisticated correction technique.

Finally, our characterization method was chosen as a sim-
ple summed similarity between the embeddings of feedback
within a cluster and the embeddings of the characterization
candidates. This method was chosen for its simplicity such
that our results did not reflect the choice of a more convoluted
or complex characterization method that was specific to our
work. However, since this is the first study evaluating the
ability of different cluster characterizations to communicate
user feedback, it remains for future work to compare other
methods for choosing characterizations from candidate lists.

B. Data threats

A threat exists in that our results may not generalize to user
feedback more broadly. This threat was mitigated by using
multiple datasets from the literature that contain feedback
from a wide variety of sources in our evaluation. However,
it remains for future work to replicate this study on a wider
array of user feedback, particularly on sources that were not
represented in this study, such as Steam reviews [22] or
Facebook posts [29].

There is also a threat of a labeller biasing results as there
were only three labellers used in the labelling of data within
this study. This threat was mitigated by using three PhD
students, all of whom had previous experience working as
software engineers, as knowledgeable labellers for this task.
Grounding of the definition of requirements relevance in the
literature (as described in section III-F) was done to reduce
bias in the labellers, and a preparatory joint labelling session
done before our evaluation ensured that each labeller knew
the standard at which to label. The use of multiple, trained
labellers and a consistent, settled labelling schema helped to
mitigate the biases of manually labelling data.

Our decision to characterise a cluster using one piece of
feedback is a potential threat to the validity of our findings.
It could be the case that our random sample of one piece
of feedback from a cluster does not represent the rest of the
feedback within a cluster. We try to mitigate this threat by
using a similar clustering process to previous work, which
has shown that clustering feedback using a large, pre-trained
language model, UMAP embeddings, and HDBSCAN cluster-
ing algorithms results in coherent clusters [36]. It is for future
work to assess cluster characterizations while comparing to
multiple pieces of feedback from a cluster.



A related threat to the validity of our work is the fact that a
piece of feedback or characterization was only considered re-
quirements relevant if both labellers labelled it as requirements
relevant, and thus may be under-counting the true number of
requirements relevant pieces of feedback and characterizations.
This was done to avoid including requirements relevance false
positives within our dataset, and the moderate inter-coder
agreement scores show that the majority of feedback was
agreed upon by labellers. Moreover, we focused on evaluating
the differences in requirements relevant rates for each charac-
terization type, and so the gross value requirements relevance
is not as impactful on our work. However, while some form of
consensus can be achieved for what feedback is “requirements
relevant”, it remains a somewhat subjective characteristic. It
remains for future work to replicate our evaluation with more
evaluators to determine the true requirements relevance rate of
cluster characterizations.

This threat relates to another threat, that our final evaluation
dataset of 180 cluster characterizations was somewhat small.
This was due to the fact that we only selected characterizations
that were both correctly selected as being the representation of
the sample feedback from the cluster and this sample feedback
being labelled as requirements relevant by both evaluators.
This was done to ensure that both evaluators were labelling
the requirements relevance of the correct characterizations that
were actually related to the piece of feedback. Moreover,
this was done to ensure that there was a potential for the
characterization to refer to requirements relevant information,
as it would otherwise be impossible if the sample feedback
was not requirements relevant. This was done to facilitate
both the random characterization comparison and requirements
relevance labelling tasks being done on the same data with
manual analysis, which had not previously been done within
the literature. However, this did result in a smaller evaluation
dataset, and so future work could complement our results by
using automated tools, such as a requirements relevance or
informativeness classifier such as AR-Miner [4], to determine
the RE content of various characterizations on a much larger
dataset.

Another threat of this work is that our evaluation dataset is
heavily biased towards app reviews, so we do not know how
our results will generalize to other feedback platforms. The
majority of clusters created were generated using app review
datasets, which are the most plentiful within the user feedback
analysis literature. Therefore, while the initial intention of
this work was to also offer a comparison of characterization
methods across individual user feedback platforms, we had
too few clusters from lesser represented data sources (e.g.
forums, Twitter, Reddit) to make any comparison between
these meaningful. It remains for future work to replicate this
work on a larger set of user feedback from more feedback
sources.

VII. CONCLUSION

In this work, we present a novel evaluation of the sum-
marization of user feedback for a requirements engineer.

We carried out a state-of-the-art clustering of user feedback
from multiple literature datasets covering a diverse range of
feedback platforms. These clusters were summarized using
four different characterization methods (unigrams, bigrams,
trigrams, and sentences). These characterizations were then
manually evaluated for how well they generate descriptive and
distinct summaries of the feedback contained within a cluster.
Further manual evaluation was done to determine the relevance
of these characterizations to requirements included within
feedback. We found our characterizations to create highly
distinguishing summaries of feedback in general and that
all characterization methods evaluated performed similarly in
their ability to distinguish a cluster of feedback compared to a
random characterization. We also found that a smaller number
of longer, more expressive characterizations (such as sen-
tences) were more effective at summarizing the requirements
relevant content of the user feedback they were characterizing
compared to a larger number of shorter characterizations (such
as unigrams). Our results allow insight into how requirements
are summarized to requirements engineers, and open many
questions as to how this can be better done in the future.
Due to the demonstrated effectiveness of expressive charac-
terizations, extractive or abstractive summarization techniques
could be used to generate few sentence summaries of feedback
clusters in the future. This will allow requirements engineers to
quickly understand what their users want from their software,
ultimately benefiting the engineer, the users, and the software.

Our replication package for generating the clusters and
characterizations in this work, as well as the code for
analysing our labelled data has been made available at
https://zenodo.org/record/6585857.
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