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ABSTRACT

Good modularity is seen as an important goal in software design.
Achieving this goal is claimed to improve, among other things, the
understandability and modifiability of a design. Yet, when teaching
software design, we see that students limit the amount of modular-
ity that they introduce into their code and cannot see the benefit of
further modularity. This could be because they do not understand
the benefits, but it could also be that these benefits are limited for in-
experienced developers. In order to teach the benefits of modularity
we need to understand what, if any, benefits exist for students. We
conducted a controlled experiment where 40 students performed a
modification task on two different designs, one with higher mod-
ularity than the other. Students were better able to successfully
complete the task with the design with higher modularity. How-
ever, we found a trend where understanding was lower for the high
modularity design. These results suggest modularity is beneficial to
students, and that understanding of modularity needs to be better
supported when teaching software design.
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1 INTRODUCTION

Modularity is regarded as an important quality attribute of any
software design. A modular design is believed to lead to better
understandability and modifiability [28]. This means modularity is
a topic of significant importance when teaching software design.
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However we have found that students struggle to learn this con-
cept. Our experience is that students struggle to come up with
designs that might reasonably be considered “modular”. Over mul-
tiple years, when fourth year Software Engineering students were
asked to implement a relatively small Java application, they pro-
duced implementations with poor modularity, despite the fact that
the assessment criteria included a requirement for good modular-
ity. When asked to evaluate the modularity of their designs, those
that choose designs with poor modularity often reported them as
being easier to understand, seemingly in contradiction to the stated
benefits of modularity, modifiability and understandability.

While our experience is anecdotal, similar concerns have been
reported by others [10]. Cai et al. suggest the problem is due to
students not receiving explicit feedback on their designs [8]. While
this seems plausible, we wonder whether there is also the issue that
students simply are unable to perceive increased modularity past a
certain point. This could be because in fact there is no significant
benefit to students—the nature of the programming assignments
they do means the benefits are too small to see. Or it could be that
the benefits are there, but the students are simply not aware of
them.

In order to improve how modularity is taught, we need to better
understand where the difficulty lies. We conducted a controlled
experiment to improve our understanding of how students engage
with more or less modular code. We designed a between-subjects ex-
periment to investigate whether higher modularity leads to higher
modifiability and better understanding for students.

The rest of our paper is organised as follows. In the next section
we discuss the relevant background and related work. We then
discuss our motivation in more detail and our experiment method-
ology in Section 3. Section 4 presents our results. We then discuss
the implication our results have on how to teach modularity in
Section 5, and finally present our conclusions.

2 RELATED WORK

There has been much research discussing software modularity.
Parnas describes the benefits of modular programming include the
ability to make substantial changes to one module without needing
to change others, and allowing a system to be studied on module
at a time [28]. That is, modularity leads to better understandability
and modifiability.

While he was not the first to discuss this concept, Parnas founded
its study as an academic discipline by suggesting that different
criteria result in different modularisations of a design [28]. He
argued that choosing modules based on the criteria of information
to hide lead to better designs than modules that perform tasks.
He argued that, of the two, the information hiding decision was
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easier to understand and easier to change. The information hiding
principle involves decisions that are consistent with choosing good
classes in object-oriented design, and so teaching modularity based
on information hiding is essentially teaching good object-oriented
design.

Modularity is a quality attribute of software that has an appeal-
ing intuition but it is difficult to find a clear definition. Parnas used
the definition of modularity provided by Gauthier and Pont[15],
which referred to “separate, distinct program module”, where the
modules are “well-defined”. It also refers to the consequences of a
“good modularisation”, such as modules being able to be tested in-
dependently and limiting the scope of what needs to be understood
when debugging. Unfortunately this does not help with assessing a
given design as to how modular it is.

There are been a number of software quality models that at-
tempt to explain the different software quality attributes and their
relationships. One of the earliest software quality models was by
McCall et al. (generally referred to as “McCall’s Quality Model”)
[24]. It describes modularity as a “quality criteria” associated with
the “quality factors” that included maintainability, testability, and
interoperability. At about the same time, Boehm et al. proposed
their model of software quality (“Boehm’s Quality Model”) [3, 4].
This model does not mention modularity. There are internationals
standards on software quality, including ISO 9126, which does not
mention modularity, and ISO 25010, which has modularity as a
sub-characteristic of maintainability. The inconsistency between
different quality models makes it difficult to determine exactly what
is meant by such attributes as modularity.

There are a variety of definitions of modularity. ISO 25010 defines
modularity as “degree to which a system or computer program is
composed of discrete components such that a change to one compo-
nent has minimal impact on other components” [13, 4.2.7.1]. Booch
defines it as “the property of a system that has been decomposed
into a set of cohesive and loosely-coupled modules.” [5, p57]. Berard
defines it as “the extent to which a larger system is broken into
smaller, easily integrated, easily maintained, easily tested, easily
reused, components;” [1, p334]. Pfleeger offers “In a modular design,
the components have clearly defined inputs and outputs and each
component has a clearly stated purpose” [31, p207].

The difficulty is, none of these provide a direct means to examine
a design and determine its modularity. The common theme in all the
discussions we have seen is one of “independence” of modules, and
that is what we have adopted. However, it cannot be that all modules
are completely independent. To provide the requisite functionality,
there must be some interaction between modules. Furthermore,
the nature of the interaction bears on the degree of independence.
Martin argues that depending on abstract modules is preferable to
depending on concrete modules [22] (and see also the Dependency
Inversion Principle from SOLID [23]). So assessing modularity is
difficult. We will address this point further in section 3.

There has been a great deal of research on how to teach object-
oriented programming (OOP). Some of the discussion has been
on “objects-early” versus “objects-late” (e.g. see Bruce for a sum-
mary [6]). Some have focused on language issues (e.g. [19]) or
environment support (e.g. [20]), and based on this experience new
languages have been design to support teaching OOP [2]. Issues
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relating to general concepts in object-oriented programming con-
tinue to create challenges for teachers [33], as do how they manifest
in particular languages [25]. The computer science education com-
munity continues to seek more effective methods to teach these
concepts [26].

While understanding the concepts associated with object-oriented
programming and associated languages is important, creating a
good design is more than that. Parnas’ discussion was independent
of the language used, and in fact was not in terms of object-oriented
concepts. There has been comparatively little research in teaching
good object-oriented design. There is evidence that students strug-
gle to develop modular designs. Cai et al. conducted a study in which
students were given detailed object-oriented designs in UML [7].
Despite the design having good modularity, the implementations
developed by the students largely did not. Of the 85 usable student
submissions, 74% contained dependencies inconsistent with good
modularity. The authors used design structure matrices (DSMs) to
assess modularity. A DSM provide avisualisation of the dependency
structure of a design. It can be used to indicate dependencies that
are considered inappropriate for good modularisation.

In later work, Cai et al. speculated that the difficulty students face
is that the real benefits of modular designs is in their evolution[8].
As students rarely revisit code they write for assignments, they
do not experience the consequences of design decisions they have
made. They proposed the use of a tool that provided direct feed-
back on DSMs. The authors hypothesised that having such a tool
would enable students to produce more modular designs. While
the results were not significant, they did suggest that even with the
tool, capable students still introduced unnecessary dependencies in
their implementations.

The research described above is interesting in two ways. The first
is, students struggled to produce modular implementations despite
having been given modular designs. This suggests that students
would find it even more difficult if they have to come up with the
designs as well. Second, the feedback given to the students was in
terms of dependencies. While quality attributes such as modifiability
and understandability are likely affected by the dependencies that
exist in a design, assessing dependencies is nevertheless an indirect
view of modifiability and understandability. In contrast, in this
study, we directly assess modifiability and understandability of
software designs with varying levels of modularity.

Controlled experiments are frequently used in software engi-
neering research. Many studies use students as some or all of the
participants, as it is often easier (and cheaper) to recruit them [9, 34].
Most such studies are using students as proxies for all software
developers, rather than the students being the target population.
This has raised external validity concerns with such studies, how-
ever at least in some cases students seem to be representative of all
developers [32].

Use of controlled experiments in computer science education is
also fairly common. Most focus on determining whether an inter-
vention helps with learning (e.g. [11]).

There have been studies examining the impact of how some
characteristic of software design impacts developer performance.
For example Sjoberg et al. hired professional developers to perform
maintenance tasks on four functionally-equivalent implementa-
tions with different code smells [35]. To our knowledge there have
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been no studies, whether on software developers in general, or
students in particular, that directly compare how modularity affects
understandability and modifiability.

Understanding the quality of code also includes understanding
the effect of code design on developers. Psychological constructs
have been used to better understand how developers work with
code. A “mental representation” refers to how developers represent
their understanding of the code base [29], for example, how a de-
veloper understands the behaviour of the specific object, method
or function of the software system. During programming tasks,
developers accumulate transient representations, referred to “Task
Knowledge” [30], which they maintain long enough to complete
the task [29]. Information foraging has been used to describe how
programmers navigate when they modify and debug code [21],
where the programmer is the predator, the software bug is the prey,
the scents are any cues that may lead to the bug. Code design may
influence the salience of scent information.

Cognitive load has been used for decades to understand individ-
ual differences in task performance. Cognitive load describes the
interaction between task demands and the person’s capabilities,
and can be thought of as a multidimensional construct including
mental load, mental effort, and performance [27]. These and related
emotional constructs have been associated with software engineer-
ing. Graziotin et al. found a relationship between unhappiness,
productivity and performance [16]. Cognitive depletion may re-
sult from being “overloaded” from acute workload and extended
engagement [14]. Cognitively depleted individuals may abandon
their tasks [14]. The NASA task load index (NASA TLX) introduced
in 1998 [18], is a subjective, multidimensional assessment tool to
assess perceived mental workload. The NASA-TLX has become
widespread internationally as a standard in government, industry
and academic research [17]. The NASA TLX is divided into six
sub-scales: mental demand, physical demand, temporal demand,
performance, effort and frustration. Thus, in attempting to under-
stand the effect of modularity on developers, we seek to understand
performance as well as multidimensional subjective effort.

3 METHODOLOGY

Our overall goal is to better understand how students respond to
modularity in order to develop better ways to teach this concept.
Modularity is presented as having benefits to software quality, in
particular modifiability and understandability. Thus, we ask: in a
software engineering student population:

(1) does modularity impact modifiability of code?
(2) does modularity impact understandability of code?

We use a controlled experiment to answer these questions. Our
design is a between-subjects experiment. Our participants were
asked to perform the same modification task on a design, with each
participant receiving either a “low modularity” or a “high modular-
ity” design. That is, “modularity” is the independent variable. The
dependent variables are the correctness of the result from complet-
ing the task and a rating by participants of how understandable
they perceived the design they worked with.

Participants completed the experiment in an office room at our
organisation. There were two desks with two standard computers.
The desks faced toward different walls of the room. There was a
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maximum of two participants that could partake in the study for
every session. The methods used in this research were approved
by the ethics committee at our institution.

3.1 Participants

Forty computer science or software engineering students completed
the experiment. Participants were recruited from students enrolled
in the 4th year of a software engineering program or enrolled in
a postgraduate computer science program. 10 participants were
women, and were near evenly distributed across conditions, with
four women who were assigned to the low modularity and six
assigned to the high modularity condition.

3.2 Code Modification Task

We selected two designs to use for the Modification task, one from
the high modularity group and one from the low modularity group
(Figures 2 and 1 respectively). These were selected to reflect high
or low modularity for the particular modification task.

Both designs provided the same functionality, confirmed through
unit tests. The functionality was to process a file containing meta-
data about classes, interfaces, enums, and annotations (collectively
referred to as “modules”) in a Java project. The result was a report
showing the dependencies between modules in the alphabetical
order of their fully-qualified names, i.e., ordered based on the pack-
ages a module is located in.

The programs used in this study were implementations of a
system typical for a first assignment in a introductory course on
object-oriented programming. This meant it was small enough
to be done in a reasonable amount of time but complex enough
to allow students to make use of features typically found in an
object-oriented language. The programs used were in fact prior
submissions by students in such a course and were implemented in
Java.

The system is meant to provide different forms of analysis of a
data file. It takes the name of the file with the data and a query as
input, and it produces output corresponding to applying the query
to data in the file. The details of the data and the possible queries
are not important here, except that the data includes names of Java
modules (including the package the modules belong to) and one
query produced a list of fully qualified names in alphabetical order.
So, for the input x.y.A, m.n.M, and x.m.B, the output would be (on
separate lines):

m.n.M
x.m.B
X.y.A

The task the participants had to perform was to change the order
that these names were displayed to be in alphabetical order of the
simple name (the name of the module without the package name).
For the example, this order would be:

X.y.A
x.m.B
m.n.M

As discussed in Section 2, it is difficult to reliably assess the
modularity of a design. As we noted there, a common theme in
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Figure 2: UML class diagram of design with high modularity.

discussions on modularity is independence between modules. How-
ever this alone is not a sufficient basis to assess modularity, as there
has to be some interaction between modules in order for the req-
uisite functionality to be provided. We resolved this in two ways.
First, we only need to know the relative modularity of two designs,
that is, which is “more modular” Second, we assessed a design with
respect to the task we wanted participants to perform.
Measurement is ultimately about comparison, in this case com-
paring the modularity of two designs. If we had a reliable means to
measure modularity, we could do so with the two designs and use
the measurements to determine which is “more modular” However
all measurement does is provide a means to determine the empir-
ical relationship of two things (Fenton and Pfleeger, referring to
the representation condition [12]). Measurement is not required to

determine this—it can be determine through direct observation. We
provide the details of this direct observation below.

Discussions regarding modularity often focus on the benefits of
having good modularity, such as resulting in “easily maintained,
easily tested, easily reused” [1, p334]. Such benefits apply to specific
tasks. It is therefore reasonable that some tasks may benefit more
than others, and so we reason that it is appropriate to compare the
modularity of two designs with respect to a specific task.

Based on the rationale above, we chose the two designs for our
study based on how independent the relevant components in the
designs were with respect to the task, in this case changing the
order that results are displayed.

The two designs chosen are shown in Figures 2 and 1. Figure
2 shows the design with “high” modularity, at least with respect
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to the ordering of classes, referred to as “modules” in the require-
ments specification. It does so by representing declaring an abstract
class Module that implements the Comparable interface. Doing so
consists of a 1-line implementation of the compareTo() method.
This means that how modules are ordered is determined by this
one method.

Figure 1 shows the design with “low” modularity. It uses a 10-line
implementation of the Comparator interface that is an inner class
implemented as a parameter in a method invocation and in a method
that is 65 lines long. We argue that because this implementation is
an actual parameter to a method call contained in another method
means the code that supports ordering of modules in this design
is less independent than the equivalent in Figure 2, and so the
modularity is lower.

There are clearly other differences between the two designs.
The low modularity design appears simpler, with fewer modules
with few dependencies and a single level of inheritance. The high
modularity design has many more dependencies (not just due to
the larger number of modules), and more levels of inheritances
(e.g. UsesQuery extends CategoryDepQuery, which in turn, ex-
tends Query). As we have no way to reliably and objectively assess
the modularity of a design ([8]), we had to rely on our manual,
and possibly subjective, assessment of the modularity of the two
designs only with respect to the task. We discuss this further in
Section 5.1.

In both cases, the modification task requires finding the relevant
sections of code and making the changes. Our reasoning was that,
in the case of the high modularity design, the fact that Module
implemented the Comparable interface was very visible (being
near the top of the file) and the code that needs to be changed was
very short (one line). For the low modularity design, we felt that the
fact that the relevant code is buried in the middle of a long method
would make it difficult to find. Further, as the code is much longer
(10 lines), it would be more difficult to change.

Participants completed the task using Eclipse Photon edition,
which is an Integrated Development Environment (IDE). Through
this IDE, the participants could verify the functionality of their
modification through a JUnit Test Suite that was provided. The
JUnit Test Suite consisted of seven JUnit Test Cases that checked
the output of the Java program for the given inputs.

Participants had access to coding resources. In the introduction
of the code base and modification task, participants were given
a link to a Java reference tutorial with the exact text “Optional
resource: https://docs.oracle.com/javase/tutorial/”.

A system-level logger developed in C# was created to track
activities during sessions. In the instructions, participants were
informed that they had 30 minutes to complete the task. Our system
displayed a pop-up notifications on the amount of time left at the
20, 28 and 30-minute marks.

3.3 Dependent Variables

A key outcome for this research is on whether participants were
able to complete the modification task in the allotted time period.
We term whether participants completed the task as “functional
correctness”. To do so, every time a participant executed the JUnit
Test Suite, the time and the number of passed and failed test cases
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were logged. The logs of the JUnit Test Suite were used to deter-
mine if the participant’s modification has “passed” or “failed” the
programming test cases, i.e., was the participant able to complete
the requested modification. This variable was then converted into
a binary variable of “passed” or “did not pass”. We also assessed
understanding and perceived task difficulty.

We administered four questions to test participants’ understand-
ing of the code base:

(1) Which class(es) are responsible for displaying the output?

(2) Which method(s) contains the implementation for displaying
the output?

(3) Which class(es) are responsible for ordering the output?

(4) Which method(s) contain the implementation for ordering
the output?

Participants’ answers to these questions were manually assessed
for correctness by two honours software engineering students, who
also created model answers for each question. Participants were
given a score of 1 for each correctly answered question, and a score
of 0 for incorrectly answered questions. If the participant’s response
did not match the model answers, their response may still be marked
correct because they may have modified their code as for the answer
to be correct. For each answer that did not match the model answer,
we checked whether the participants’ responses were correctly
aligned with their revised code. If the answer was aligned with
their revised code we marked it as correct. The correctness of the
answers could be determined objectively—either the participants
provided the name of the correct class/method or they did not. If
there was any uncertainty, the assessors consulted each other and
reached a consensus.

The NASA TLX [18] was used to assess the perceived workload
for the code modification task. Scales were shown as continuous
sliders that registered 21 values between the anchors “very low”
and “very high”. Participants completed the scale at the end of the
experiment.

4 RESULTS

In this section we present differences in performance, understand-
ing and self-reported mental load.

To investigate modifiability, we conducted a y? (Chi-square) test,
a non-parametric test designed to analyse group differences, with
condition and functional correctness. We observed that achieving
functional correctness was significantly associated with modularity,
where those in the high modularity condition achieved a higher
rate of success compared to those in the low modularity condition
x2(1, N = 40) p=.038 (Figure 3).

To investigate understandability, we conducted a t-test with
condition and the number of questions that were answered cor-
rectly. We observed a statistical trend between score and modularity,
where those in the high modularity condition exhibited poorer un-
derstanding compared to those in the low modularity condition
(mean low modularity = 3, mean high modularity = 2.4, p=.07).

In the low modularity condition, 11 participants were able to
achieve fully accurate understanding (all questions correct), whereas
only 3 of those also achieved functional completeness. In the high
modularity condition, only 7 participants were able to achieve full
understanding, and all of them achieved functional completeness.
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Figure 3: Number of participants whose modification passed
or failed test cases, i.e., who achieved functional correctness,
in the high or low modularity conditions. Nine out of twenty
participants in the high modularity condition were able to
complete the modification compared to only three out of
twenty participants in the low modularity condition.

In the high modularity condition, there were two participants who
achieved functional completeness with incomplete understanding
(one student with 0 questions correct, and another with 2/4 ques-
tions correct).

We conducted a MANCOVA on the effects of high or low modu-
larity on the NASA-TLX indices including mental demand, tempo-
ral demand, performance, effort, and frustration, and we included
the functional correctness pass/fail as a covariate. We observed a
significant effect for functional correctness (p=.002), suggesting
that the experience of either completing or not completing the
task was more salient to perceived load than the code design. We
further investigate the univariate analyses and found that func-
tional correctness had a significant effects on mental demand (F[1,
37]=8.262, p=.007; , temporal demand(F[1, 37]=4.993, p=.032; , and
performance(F[1, 37]=23.193, p<.001 (Figure 4).

5 DISCUSSION

Modularity has been referred to for decades with variations on the
construct and a gap in evidence on the effects on programmers.
We conducted an experiment to investigate the causal impact of
modularity on software engineering performance. The results in-
dicate that designs with high modularity code enable participants
to achieve successful modification compared to designs with low
modularity. However, there was a trend where participants’ under-
standing of the high modularity code was lower than of the low
modularity code. Our results indicate that modularity may present
a tension between understandability and modifiability. Understand-
ability of code with high modularity may require the ability for
abstraction.

Modularity affected the complexity of the modification task. It is
fascinating that high modularity led to more successful modification
as well as to a poorer understanding of the code. The most was
found by those who understood the high modularity design as
they were all able to modify it successfully. It is interesting that
another 2 participants were able able to successfully modify the
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Figure 4: Average NASA TLX scores and standard deviations
for participants whose modification passed or failed test
cases, on a 21 point scale. Participants who were able to
complete the modification task rated the task’s mental de-
mand and temporal demands as lower and rated their per-

formance as higher.

high modularity condition without a fully accurate understanding.
In the low modularity condition, the correct understanding did not
transfer to being able to successfully modify the code.

We expect that the results for modifiability will hold with devel-
opers but we anticipate that results for understanding may change
with experience. In our sample with students, modularity affected
their ability to quickly develop a good understanding of the code. In
the case of the low modularity design, there were fewer classes and
methods, hence the task may be inherently easier for the simple
reason that there are fewer things to choose from. In the case of low
modularity, students did not have to understand relationships be-
tween abstractions. We believe that more expertise and experience
may lead to more ease in understanding relationships between ab-
stractions. Specifically, more experienced developers may be more
familiar with abstracts, and hence hold more mental schemas of
abstractions, meaning that perceiving cues for abstraction can then
match a mental model of how the sections of code fit together.

Our research has implications for curriculum design. For ex-
ample, students are rarely presented with examples of the same
program with designs that vary in modularity. In our experience of
presenting such exemplars, most students are able to rank the de-
signs based on modularity, but a portion are not able to. When asked
for explanations on better or worse modularity, students explain
their choices with justifications that are unrelated to modularity.
Students are also rarely given the opportunity to experience the ben-
efits of modularity. One of the main benefits of modularity occurs
when code must be modified periodically. Students’ assignments are
typically ‘one-off’s’ where they never revisit code produced earlier
in their education. This type of revisiting is difficult to include in
curriculum because it means that each student would be starting
off at a different point, introducing inequalities in the outcomes.
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5.1 Threats to Validity

One potential threat is confounding factors. Distractions can impact
participant performance, and so we tried to provide a relatively
quiet space for them to work in. Familiarity with the technologies
and tools used in another possible confounding factor. The experi-
mental artefacts were written in Java and the IDE used was Eclipse,
which the participants should be familiar since they are used in
both our Computer Science and Software Engineering programmes.
Nevertheless, there could be other confounding factors that have
not been considered in our analysis.

The modularity of the artefacts was assessed by one of the
researchers, with the rationale given above. It is possible there
are other characteristics of these artefacts that affect participants’
performance. For example, the low modularity design seems sim-
pler, and so may be easier to work with. In fact this characteristic
strengthens our result. Participants were more successful for the
apparently more complex, but more modular, design.

Because the high modularity design has more modules than the
low modularity design, it is possible those participants with the
low modularity condition had a higher chance of guessing answers
to the questions correctly. Since the lower modularity design had
11 classes, the chance of guessing correctly would still be quite low,
and so we believe that the level of modularity better explains our
results than does number of classes.

We used task success as our measure of modifiability. Where
this choice may not be appropriate is if someone achieved success
but took a significant amount of time to complete the tasks. As we
had a limit on the time available for the task, we believe this is not
a factor. We used the correctness of the answers to the questions
to measure the level of understanding. We acknowledge that the
questions were at quite a high level, and so may not reflect the
participants’ true understanding.

All of our participants were in undergraduate programmes with a
strong programming component (e.g. Computer Science, Software
Engineering). This may limit the generalisability of our results.
However our programmes are developed according to international
curricula, and so we believe our results are generally applicable.
Future research can replicate our study to validate whether our
results generalise outside of our organisation.

There is the question as to whether the difference in the two
designs are really differences in modularity or due to some other
quality attribute. Given the lack of agreement in proposed definition
of modularity, it is possible that others would disagree with our
assessment. Nevertheless, we believe the differences can be best
explained in terms of difference in modularity.

Finally, we performed a single study with only two different
designs, so we cannot claim that our results generalise beyond our
study. To generalise further would require many more studies. Our
results suggest that such studies are justified.

6 CONCLUSION

To investigate how modularity impacts how students modify and
understand code, we conducted an experiment where 40 computer
science or software engineering students worked through a 30-
minute Java task. Participants were randomly allocated to modify a
design high in modularity or low in modularity. We found that those
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in the high modularity condition where better able to successfully
modify the code. We found a trend in the opposite direction for
understanding, where students in the high modularity condition
tended to have worse understanding of the code.

Our results have implications for how modularity is taught in
tertiary curriculum. In order to demonstrate the benefit of modu-
larity on modifiability, we should expose students to this through
appropriate activities.

In science, one study provides only an indication of what may be
true. More evidence is needed. We call upon the Computer Science
Education community to conduct more such students to confirm
(or refute) our results.
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7 APPENDIX: TASK DESCRIPTION
PROVIDED TO PARTICIPANTS

The Java program analyses data sets and displays a set of results
after analysing the data. This program processes a file containing
data about dependencies in code. The program will display a list
of modules that match certain queries. In Eclipse, you’ll find the
source code of one design. Currently, the program displays a list
of modules in the alphabetical order of their fully-qualified names
(i.e., full file name including directory). For example, for modules
x.y.A, m.n.M, x.m.B, the current output is:

m.n.M

x.m.B

xy.A

Your task is to modify the code so that the modules are displayed
in the alphabetical order of their simple class names (i.e., last seg-
ment of file name). For example, for modules x.y.A, m.n.M, x.m.B,
the modified output would be:

x.y.A
x.m.B
m.n.M

Optional resource: https://docs.oracle.com/javase/tutorial/
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