
  

  

Abstract— Reliable machinery health monitoring using 
measured vibration signals requires a good readability of time-
frequency (TF) images. However, conventional TF methods 
suffer from a limited time–frequency resolution and cross-term 
interferences, which limit their practical applicability in health 
monitoring. To address this issue, a TF image improvement 
method using deep learning is proposed in this paper. The 
proposed method employs a deep learning technique known as 
conditional generative adversarial network (cGAN) to convert a 
noisy low-resolution TF image of a bearing vibration signal into 
a noise-free high-resolution image such that the true frequency 
characteristics of measured signals may be revealed. In this 
paper, the cGAN model is trained using a simulation-based 
dataset generated from a bearing analytical model. The trained 
cGAN model is then utilized to improve TF images generated 
from real bearings under different fault and operating 
conditions. The results reveal that the proposed image 
improvement method generates high-resolution TF 
representations which are better than both the traditional TF 
images and those generated using TF reassignment methods. 

I. INTRODUCTION 

Time-frequency analysis of machine vibration signals reveal 
valuable health information that can be utilised for effective 
health monitoring. Generally, the measured vibration signal is 
transformed to a TF representation that can reveal the time-
varying frequency characteristics of the signal. The classical 
tool for TF representation is the Short Time Fourier 
Transform (STFT) [1]. However, STFT is subject to the 
Heisenberg uncertainty principle and suffers from limited 
time-frequency resolution [1]. As a remedy to the time-
frequency resolution problem, the reassignment method was 
developed, which obtains a better TF localization but it still 
deviates substantially from the ideal noise free TF image [1, 
2].  

Recently, deep learning has been applied to achieve 
improvement in image resolution based on supervised 
training schemes [3]. Convolutional auto-encoders and 
Generative Adversarial Networks (GANs) have been 
successfully used in image prediction and generation 
applications [4, 5]. Especially, a variant of GAN known as the 
conditional GAN (cGAN) has shown outstanding results in 
various tasks such as image generation and translation, super-
resolution imaging, and face image synthesis. These advances 
in deep learning techniques provide an opportunity for its use 
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in improving machine vibration TF images, which can then 
be effectively used for health monitoring. However, as 
already established, deep learning models require a large 
volume of training datasets to minimize their variance during 
model generalization [5, 6]. These learning models also 
require knowledge of the ideal characteristics of the images 
for effective translation of the trained knowledge.  

Over the years, researchers have observed that it is 
relatively expensive to generate such large and diverse data in 
industrial fault diagnosis and health monitoring applications, 
and the ideal signal frequency characteristics may be rarely 
known beforehand for training. Several attempts have been 
initiated to address the issue with data augmentation methods 
such as using a deep generative adversarial network approach 
[6, 7]. However, the dependency on quality data is still an 
ongoing issue. Simulation-based data generation has been 
adopted recently as a solution to supplement the datasets for 
deep learning model training, gaining much interest in 
different fields [6, 8]. Several studies have been conducted to 
integrate sophisticated simulation models with deep neural 
networks to create sufficient variations for training in 
machine fault diagnosis and health monitoring research [7-
12]. Gryllias et al. [9] proposed a simulation-driven bearing 
fault classification method using support vector machine. In 
this study, simulated-based model training is utilised to 
improve TF images of measured vibration signals. The use of 
simulated data provides an opportunity to fulfil the 
requirement of ideal image generation, as the accurate 
simulated frequencies used to generate the training images 
may also be utilised to generate the ideal TF images required 
for image-to-image translation in cGAN. 

In this study, the issue of low-resolution TF image is solved 
using a deep learning based framework, where a high-
resolution TF representation of a measured bearing vibration 
signal is obtained by adopting a conditional implementation 
of GAN called Pix2Pix, developed for general image-to-
image transformation applications [4]. The training of the 
deep learning model is based on simulated data obtained from 
a characteristic bearing fault analytical model under different 
machine frequency scenarios. The aim of this study is to 
demonstrate that GAN based models trained on simulated 
images can be utilized for improving TF image obtained from 
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real machine vibration signals. The improved TF images can 
then be used as an evidence demonstrating the existence of 
faults for effective machinery health monitoring. 

The remainder of this article is organized as follows. 
Section II summarizes the basic theory of the bearing signal 
model, TF representation, and GANs. Section III describes 
the proposed TF image improvement method. Section IV 
presents the validation of the proposed method using 
measurements from a bearing test-rig. Finally, Section V 
concludes the presented work. 

II. BACKGROUND 

A.  Problem Statement 
STFT cannot achieve proper time localization and 

frequency localization simultaneously due to the Heisenberg 
uncertainty principle leading to low resolution issues. 
Reassignment offers better resolution but suffers from noise 
interference. Figure 1(a) shows the STFT of a sinusoidal 
signal and Fig. 1(b) shows the corresponding reassigned time-
frequency plot. It can be observed that due to better 
localization using reassignment, Fig. 1(b) achieves better 
resolution as compared to the STFT based TF image of Fig. 
1(a). However, even after the reassignment the resulting TF 
image deviates substantially from the ideal noise free TF 
image shown in Fig. 1(c). This can lead to misleading 
decisions, especially in case of machine health monitoring, 
which is heavily dependent on understanding the accurate 
time-varying frequency characteristics of a measured signal.  
 

 
Fig. 1. (a) STFT based TF image of a simulated sinusoidal signal. (b) 
Reassigned STFT based TF of the simulated sinusoidal signal. (c) Ideal TF 
image of the simulated sinusoidal signal. 
 

B. Bearing Analytical Model 
In this paper, the vibration response of a defective bearing 

operating under time-varying speed is generated as a chain of 
impulse responses of a one degree-of-freedom mass-spring 
damper system [13, 14], 
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where n(t) is measurement noise, 𝐴(t)=1+χ cos8∫ fsh(t)dtt
0 : is 

the amplitude modulation term caused by the shaft rotational 
frequency variations (χ > 0 implies inner race faults and χ = 0 
implies outer race faults) and fsh(t) is the time-varying shaft 
frequency, which is also the modulating frequency of the 
signal. Li = L0 + ζ fsh(ti), L0 and ζ are constant terms, tk is the 
time of occurrence of the kth impulse, K is the number of 
impulse responses, βd is the value of the damping 
characteristics, fr is the resonating frequency of the bearing 
system, and u(t) is the unit step function. The time of 
occurrence of the impulses tk can be calculated as, 
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where x is the slip coefficient having typical value between 
0.01 and 0.02 [15], ff(t) is the fault characteristic frequency 
and t0 is the time when the first impulse occurs. With specific 
bearing parameters and operating conditions, the detailed 
numerical implementation of the analytical model will be 
demonstrated in Section III. 

C. Time-frequency Representation 
Time-frequency analysis is a powerful tool to understand 

the complex time-varying characteristics of machine 
vibration signals. In order to recognize the intricate time-
variant sidebands and the frequency characteristics under 
variable speeds, the quality of the time-frequency analysis 
method is a necessity. Short-time Fourier transform (STFT) 
based spectrograms can be employed to achieve time–
frequency (TF) imaging. For a signal x(t), its short-time 
Fourier transform is defined as [16], 

 
𝑆(𝑡, 𝑓) = ∫𝑥(𝜏)ℎ∗(𝑡 − 𝜏)𝑒"-./+0𝑑𝜏,               (3) 
 
where h(t) is a window function of unit energy and * denotes 
conjugate operation. A spectrogram is defined as the square 
modulus of the STFT, i.e.,	|𝑆(𝑡, 𝑓)|..  

It is, however, worthwhile to mention that while a 
spectrogram has low computational complexity, but its time-
frequency resolution is limited due to the Heisenberg 
uncertainty constraint [1, 16]. Depending on the length of the 
window function, the spectrogram can attenuate the cross-
terms between frequencies, however, there is a trade-off 
between the cross-term suppression and the TF resolution. 
Therefore, in order to achieve successful fault diagnosis and 
conduct efficient health monitoring using measured vibration 
signals, there is a need to generate high-resolution time-
frequency images that can correctly reflect the underlying 
frequency characteristics of the measured signal. In this 
paper, we have tackled the issue of generating high-resolution 
TF images using a generative adversarial network trained on 
a simulation-based dataset to carry out image translation. 



  

D. Generative Adversarial Network (GAN) 
A generative adversarial network is a class of deep learning 

frameworks designed by Goodfellow et al. [4], where two 
neural networks, namely the generator (G) and the 
discriminator (D), contest with each other in a game of zero-
sum, where one network’s gain is another network’s loss. 
Given a training set, a GAN learns to generate new data with 
the same statistics as the training set. However, GAN 
generates images based on random noise z, so the generated 
output image is not controllable. In order to tackle this issue a 
conditional implementation of GAN known as the cGAN was 
proposed [4]. In cGAN an image is generated by random 
noise z and an input conditional variable. In this paper, we 
have utilized a general algorithm based on cGAN named 
Pix2Pix [4]. In the Pix2Pix model, shown in Fig. 1, the 
generator network G uses U-Net, a network structure that is 
widely used in the field of image segmentation to fully 
integrate features and improve details. The discriminator 
network D utilizes a PatchGAN to output a predicted 
probability value for each area or patch of the input image, 
which is equivalent to performing a simple task of classifying 
whether the input is true or false. The overall objective 
function of the Pix2Pix is, 
 
𝐺∗ = arg	min

1
max
2

𝐿3145 (𝐺, 𝐷) + 𝜆𝐿6*(𝐺),             (4) 
 
where LcGAN(G, D) is the objective of the condition GAN, 
LL1(G) is the L1 loss of the generator network and λ is the L1 
loss regularization  parameter.  

Therefore, TF images of machine vibration signals can be 
fed as the input vector to the generator (G) that generates an 
initial estimate of the input. The discriminator (D) then tries 
to classify the generated image as a fake or a real image based 
on the information of the corresponding ideal TF image (high 
resolution and without noise) fed to it as the ground truth. The 
architecture of the proposed image enhancement method 
discussed in this paper is shown in detail in Fig. 2. 

 
 
Fig. 2. Architecture of Pix2Pix for image improvement. 
 

III. PROPOSED METHODOLOGY 
In this paper, the cGAN known as Pix2Pix is used to improve 

the resolution of a blurry and noisy TF image in order to reveal 
accurate instantaneous frequency contents. The proposed idea is 
to convert bearing vibration data into high-resolution noise-free 
STFT based spectrogram images, which contain the constituent 
frequencies that are indicators of the bearing health status.  

A. Source Domain Image Generation 
The source domain images for training the Pix2Pix model 

were generated using a combination of simulated signals and 
real-world bearing vibration signals. The simulated signals 
were generated according to the bearing analytical model of 
Eq. (1). The values of the various parameters of Eq. (1) used 
in the simulation are given in Table I.  

TABLE I.  VALUES OF PARAMETERS USED IN THE SIMULATION. 

Resonance 
frequency, fr Damping, βd Slippage 

coefficient, ξ 
Constant 

terms, L0 and ζ 
2000 Hz 250 0.01 1 and 0.5  

 
Different fault scenarios under various speed variations were 
simulated to generate the source domain TF images. 
However, one of the challenges during source domain image 
generation for training the Pix2Pix model was to make the 
simulated faults adaptable to the given target domain images 
generated from real fault samples [6, 8]. In order to tackle this 
issue we utilised some real healthy data samples of the target 
domain. The noise term in the analytical model of Eq. (1) was 
simulated by adding these real healthy samples as base 
signals. It has been observed in previous studies that as the 
base signal encodes information about the operating and 
environmental conditions of the bearing under observation, 
the generated simulated training data becomes more adaptable 
to the target domain [6, 8]. It is to be mentioned that to 
generate the source domain training images an assumption 
was made that the early measurements of the bearing, when 
the faults have not yet emerged, is  available. This is generally 
a practical assumption as most modern health monitoring 
systems have access to measurements when a machine is 
considered to be operating in a healthy condition. In order to 
test the effectiveness of the proposed method, a training set of 
300 simulated signals and corresponding spectrograms 
TFr(t,f) and ideal spectrograms TFi(t,f) were generated. The 
source domain signals for training were simulated using the 
bearing vibration model of Eq. (1). Different fault situations 
were simulated to generate the training images under various 
speed variation conditions and noise levels. The time-domain 
signals have 1024 samples. The overall framework of the 
proposed methodology is presented in Fig. 3. 
 

 
 
Fig. 3. Methodology of the Pix2Pix based TF image enhancement for 
bearing health monitoring. 
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B. Model Training 
The Pix2Pix network was implemented to include 8 

generator hidden layers and 4 discriminator hidden layers. 
The L1 regularization parameter was set to λ = 100 as 
proposed in [4]. Similarly, the Adam optimizer was selected 
with learning rates α = 0.0001, β1 = 0.5, and β2 = 0.999. The 
training was carried out for 100 epochs. The TF images were 
converted to a resolution of 256 ´ 256 pixels before being fed 
to the model. The structure of the Pix2Pix model used in this 
study is shown in Fig. 4. The detailed architecture of Pix2Pix 
is provided in [4].  
 

 
 

Fig. 4. Structure of the proposed model for image improvement. 

IV. EXPERIMENTAL VALIDATION 
This section utilises the experimental data provided by the 

University of Ottawa [17] to validate the effectiveness of the 
proposed TF image improvement method under different 
bearing faults in time-varying speed conditions. A Spectra 
Quest machine fault simulator (MFS-PK5M) was used to 
collect the experimental measurements. The test-rig consists 
of a motor that drives a shaft, and an AC drive for rotational 
speed adjustment, as shown in Fig. 5. The driven shaft was 
supported by two ball bearings with a healthy bearing placed 
as the left-end support and the test bearing was placed as the 
right-end support of the shaft. The right-end support was 
replaced by bearings of different fault conditions in order to 
simulate an inner race defect and an outer race defect.  

 

 
 

Fig 5. Experimental set-up used to collect the bearing dataset [19]. 

 
 
Fig. 6. STFT based TF image of bearing inner race fault.  
 
An accelerometer mounted on the test bearing housing was 
used to measure the vibration signals, whereas an incremental 
encoder measured the shaft rotational speed. The 
accelerometer signal and encoder signal were collected under 
various time-varying speed conditions. A detailed account of 
the data measurement steps is provided in [17]. The signals 
collected for inner race defect under increasing-decreasing 
speed and increasing only speed conditions and signals 
collected for outer race defect under increasing-decreasing 
speed and decreasing-increasing speed conditions are 
considered in this paper. Every signal file contained two 
channels, one having the accelerometer data and the other 
having the encoder data, respectively. All the signals were 
collected at a sampling frequency of 200 kHz for 10 seconds. 
The theoretical fault frequency for a bearing was calculated 
as FCC*fsh, where FCC is the fault characteristic coefficient. 
For this test-rig, the FCC due to an inner race fault is 5.43 and 
an outer race fault is 3.57 [14]. Figure 6 shows the STFT of 
the bearing with inner race defect where the first three 
harmonics of the fault characteristic frequency is within a 
frequency range of 80Hz - 353 Hz as the shaft speed increases 
from 14.8 Hz to 21.7 Hz and then decreases to 13.6 Hz.. The 
STFT based spectrogram of the envelop signals are found to 
be of low resolution and the fault induced frequencies are not 
clearly visible in these plots. Therefore, for accurate 
estimation of the envelop signal characteristics, the generated 
spectrograms of the original envelop signals were fed to the 
trained Pix2Pix model. Figure 7(a) and Fig. 8(a) show the 
spectrograms of the measured envelop signals of the test 
bearing under inner race defect under increasing-decreasing 
speed and increasing only speed conditions. The improved 
spectrograms after applying the image improvement 
algorithm were found to clearly reveal the constituent 
frequencies of the envelop signals, as shown in Fig. 7(b) and 
Fig. 8(b). The frequencies observed in Fig 7(b) and Fig 8(b) 
correspond to the theoretical fault characteristic frequency (fc) 
and its harmonics due to inner race fault of the bearing under 
consideration. The improved spectrograms were also found to 
exhibit better and clearer TF images in comparison to the 
reassigned spectrograms of Fig. 7(c) and Fig. 8(c). The 
reassignment procedure is known to achieve better 
localization than STFT.  
 



  

 
Fig. 7. Inner race fault observed under increasing-decreasing speed condition. 
(a) Original spectrogram, (b) cGAN generated improved spectrogram, and 
(c) Reassigned spectrogram. 
 

 
Fig. 8. Inner race fault observed under increasing only speed condition. (a) 
Original spectrogram, (b) Improved spectrogram, and (c) Reassigned 
spectrogram. 

 
Fig. 9. Outer race fault observed under increasing-decreasing speed 
condition. (a) Original spectrogram, (b) cGAN generated improved 
spectrogram, and (c) Reassigned spectrogram. 
 

 
Fig. 10. Outer race fault observed under decreasing-increasing speed 
condition. (a) Original spectrogram, (b) cGAN generated improved 
spectrogram, and (c) Reassigned spectrogram. 



  

 
However, it unavoidably introduces noise to the eventual TF 
result [18], which is not observed in the proposed cGAN 
based method. The improved TF images for outer race fault 
under increasing-decreasing speed and decreasing-increasing 
speed conditions are shown in Fig. 9(b) and Fig. 10(b). The 
corresponding STFT-based spectrograms are shown in Fig. 
9(a) and Fig. 10(a) and the reassigned spectrograms are 
shown in Fig. 9(c) and Fig. 10(c). Thus, the TF images 
obtained using the proposed conditional GAN based image 
improvement strategy show promise in monitoring the 
presence of faults in bearings operating under variable speed 
conditions. 

V. CONCLUSION 
This paper proposes a conditional generative adversarial 

network (cGAN) based time-frequency (TF) image 
improvement method for bearing health monitoring. The 
proposed method leverages a bearing phenomenological 
model to simulate spectrogram images that are utilised to train 
a cGAN variant called Pix2Pix developed for image-to-image 
translation. The results show that a Pix2Pix model trained on 
a simulation-based bearing vibration TF image dataset can 
reliably denoise and improve the resolution of TF images 
generated from real bearing vibration signals. The proposed 
method was validated using experimental datasets from a 
mechanical fault simulator test-rig. Compared to the 
conventional TF images like spectrograms and reassigned 
spectrograms, the images generated using the proposed 
method significantly reduced noise and improved the 
readability of the bearing vibration TF images to pinpoint the 
frequency contents and time variability of such signals 
necessary for reliable health monitoring. The experimental 
results indicate that the cGAN based method is able to 
generate physically meaningful TF images. The proposed 
method was found to achieve satisfactory results using 
simulation-based model training and availability of only a 
small amount of real data, which reinforces the method’s 
applicability in situations where collecting large datasets for 
model training is expensive.  
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