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Abstract— Condition Monitoring (CM) is an important ap-
proach to extending the life of complex equipment by forecast-
ing the outcome of an event before catastrophic failure occurs.
Recent advancements in digital twins (DT) offer additional
benefits to machine condition monitoring. In this study, a
framework based on DT for real-time condition monitoring of
industrial machines is proposed. The multi-layer DT framework
consists of a physical entity (PE), virtual equipment (VE), edge
device, fidelity service and digital twin services. The virtual
equipment is a replica of the physical entity or the monitored
machine. It also contains a cloud platform to store data online
and an application to interface with the cloud enabling users to
check the data remotely. The fidelity service ensures conformity
between the PE and the VE. The digital service provides
optimal operation and maintenance schedules based on the
data from both physical and virtual spaces. The integration
of the edge layer enables real-time handling of high-frequency
machine data for effective health monitoring. The validity of the
proposed framework is demonstrated with a case study based
on monitoring a critical component of an industrial drivetrain
test rig. The features of the framework allow end-users to
visualize the component’s real-time health status remotely.

I. INTRODUCTION

Condition Monitoring (CM) is an important approach to
maximize the utilization of complex industrial equipment
such as wind turbines, and ships, which normally work in
harsh environments for decades [1], [2]. For these complex
dynamic systems, failure in one component can lead to a
breakdown of entire systems, which causes significant capital
and productivity loss. CM plays an important role in alleviat-
ing equipment downtime by forecasting the likely outcome of
a situation before catastrophic failure occurs [3]. The existing
CM technologies mainly rely on historical data from phys-
ical assets, making it challenging to achieve the necessary
accuracy and adaptability for real-time evaluation of their
state. Recent advancement in digital twin (DT), driven by
the rapid development of smart sensors and data science,
leverages condition monitoring approaches. A DT structure
mainly consists of a physical entity and virtual equipment,
along with data communication protocols and DT services.
The virtual equipment in cyberspace is a representation that
depicts the essential characterization of the physical entity in
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a digital format. DT models possess data from the physical
entity and virtual space which can generate real-time hard-to-
access data. Thus, DT can provide accurate information and
more comprehensive data for system condition monitoring.
Moreover, adopting the cloud platform endows DT with
high computing and storage capability, which enhances CM
performance. Furthermore, digital twins not only establish
the virtual mirror of the physical entity, but also help users
realize the visualization and transparency of the physical
entity. The visibility of the physical process gives the users
an intuitive sense.

Machine condition monitoring generally relies on vast
amounts of data collected from various sensors [4]. However,
transmitting all the raw and heterogeneous data to the cloud
can be inefficient and costly. Storing machine data in the
cloud can also pose a challenge for real-time response
requirements in some DT applications. In such scenarios,
edge computing technology can provide a solution [5]. Using
IoT devices, edge computing can effectively process massive
time-sensitive data, ensuring real-time responses for DT
applications. This approach not only enhances efficiency but
also reduces costs associated with cloud storage and data
transmission. Therefore, implementing edge computing tech-
nology in digital twin applications can significantly improve
a condition monitoring system’s overall performance and
effectiveness. Motivated by this, the present study adopts
an existing DT framework for machine health management
proposed by Tao et al., [2] by adding an edge computing
layer. The proposed DT framework for real-time condition
monitoring consists of a physical entity, virtual equipment,
edge, fidelity service and digital twin services. The virtual
equipment is a replica that can reproduce the physical entity’s
geometric model, physical properties, and kinematic relation-
ships. It also contains a cloud platform to store data and
an application to interface with the cloud enabling users to
check the data remotely. The edge devices process the signals
collected from sensors and interface with the cloud for data
transmission. The fidelity service ensures the synchrony of
the physical entity and virtual equipment. The digital service
is expected to provide optimal operation and maintenance
schedules based on the data from physical and virtual spaces.

The rest of the paper is arranged as follows. Section II
presents a literature review of digital twins, condition moni-
toring, and edge computing. Section III details the proposed
framework. A simple case study based on a drivetrain test
rig is performed based on the proposed framework in Section
IV. Finally, conclusions are presented in Section V.
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II. RELATED WORK

This section overviews the history of the digital twin evo-
lution and summarizes its research and development progress
in condition monitoring. Edge computing techniques in dig-
ital twins are also reviewed in this section.

A. The Evolution of Digital Twin

The concept of digital twin technology can be traced back
to the early 2000s. Grieves [6] used the term “digital twin”
to describe a virtual replica of a physical asset that could be
used to simulate its behavior in real time. The idea was to
create a digital twin allowing engineers to test and optimize
designs before they were built in the physical world [6].
In 2010, the initial detailed definition of Digital Twin was
given by the National Aeronautics and Space Administration
(NASA) as “an integrated multi-physics, multi-scale, prob-
abilistic models, sensor updates, fleet history, and so forth,
to mirror the life of its flying twin [7]. Tao et al., [8], [9]
proposed a five-dimensional DT model for prognostics and
health management for a wind turbine system. The proposed
model included physical part, virtual part, connection, data,
and service [8], [9]. Figure 1 shows a timeline of some major
milestones in the evolution of digital twins.

B. Digital Twin in CM

Condition monitoring is a process of monitoring the state
of a system or equipment to identify any deviations from its
normal operating condition. CM aims to detect any potential
issues before they result in equipment failure, downtime,
or safety hazards [10], [11]. Early detection of defects can
enable timely maintenance, which can effectively reduce
the occurrence of unplanned downtime, costly repairs, and
safety-critical incidents. Introducing digital twins in CM can
overcome limitations in existing monitoring approaches (lack
of qualitative data) and offer additional benefits [12]. By
creating digital twin models using sensor data, engineers can
predict equipment failures, optimize maintenance schedules,
and reduce downtime [13], [14], [2]. It enables proactive
maintenance and improves overall efficiency, making it an
essential technology for modern engineering practices [15].
Digital twin technology can also be integrated with other
monitoring technologies, such as vibration analysis and
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thermography to provide a comprehensive view of equip-
ment performance [16]. Moreover, remote access to digital
twin models enables remote diagnosis and support, which
is critical during travel restrictions [17]. It also supports
condition-based maintenance and real-time decision-making,
improving efficiency and cost-effectiveness by providing
engineers and technicians with real-time insights into the
performance of equipment and systems [18].

C. Edge Computing in Digital Twin

Edge computing is a distributed computing paradigm
gaining popularity due to the rise of Internet of Things
(IoT) devices, which generate massive data that need to
be analyzed and processed in real-time [19], [20]. Edge
computing makes computation and storage closer to the
source of data, reducing the latency and bandwidth require-
ments of the centralized cloud computing model [21]. These
advantages of edge computing have the potential to benefit
digital twins in CM. Edge computing enables digital twins
to leverage the power of distributed computing and real-
time data processing close to its source, thereby enabling
better insights and decision-making capabilities [22]. This is
particularly important in applications having a large number
of assets that require real-time data processing, such as
manufacturing and transportation [23], [24].

An application of edge computing in digital twins can be
found in online anomaly detection for automation systems.
Edge computing was introduced to improve data transmis-
sion efficiency and satisfy real-time response [5]. Wu et
al., [16] proposed an edge computing-based digital twin
for intelligent transportation systems, which enables traffic
management teams to make better decisions regarding traffic
flow and congestion. In addition to the above applications,
edge computing is also being used in digital twin applications
for energy management [25] and smart city planning [26].
Edge computing is rapidly becoming a critical component of
digital twin applications, enabling real-time data processing,
predictive maintenance, and better decision-making capabil-
ities.

III. DIGITAL TWIN BASED CONDITION MONITORING

FRAMEWORK

The proposed DT framework for real-time condition mon-
itoring consists of a physical entity, virtual equipment, edges,
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fidelity, and digital twins services as shown in Fig. 2. The
virtual equipment is a replica that can reproduce the physical
entity’s geometric model, physical properties, and kinematic
relationships. It also contains a cloud platform to store data
online and an application to interface with the cloud enabling
users to check the data remotely. The fidelity service ensures
the synchrony of the physical entity and virtual equipment.
The digital service is expected to provide optimal operation
and maintenance schedules based on the data from physical
and virtual spaces.

A. Physical Entity

The physical entity (PE) consists of all system components
and sensory devices. The system runs at various conditions to
perform desired tasks and operations, and the sensors collect
the working states and the system’s operational data. To
establish the virtual equipment (VE) for CM, the attributes
of the PE need to be obtained from various aspects such
as geometrical structures, physical properties, operational
and environmental conditions, kinematics and dynamics.
Sensory devices could provide machinery measurement data
to indicate PE’s healthy states, and these data are of great
importance for the successful development of the VE. The
measurement data could be obtained from built-in devices
and add-on sensors. Built-in devices like controllers, drives,
encoders or other internal sensors could provide primary
operational data like the input voltage, position and speed,
etc. Add-on sensing technologies with external sensors offer
a non-invasive way to acquire more prominent measurements
like vibration, temperature, force, torque, etc. These data
greatly enhance edge computing with comprehensive mea-
surements and can also improve the fidelity of the virtual
equipment as they can provide more reference indicators.

B. Virtual Equipment

A virtual equipment (VE) is a digital replica of the PE in
cyberspace. It is constructed based on physical information
and sensing measurements. The VE is expected to reproduce
PE in three regards: 1) construct the geometric model of PE

The proposed digital twin based framework for machine condition monitoring.

in cyberspace; 2) simulate the physical property of PE; 3)
describe the behaviours of PE in response to driving and
disturbing factors. The VE also contains a cloud platform
and interfaces, which allows online data storage and users to
visualize components’ health status remotely.

To build a high-fidelity virtual representation of PE, an
accurate geometric model and physical property model that
can mirror the physical assets is needed. A geometric model
is a mirror image or 3D solid model that can depict all geom-
etry components and describe their kinematic relationship.
The geometric model can be created by commercial CAD
modelling software, and the assembly constraints of the CAD
model can describe the kinematic relationships.

The physical property model conveys these properties that
can simulate the response of PE’s components in physical
principles, such as the strain and stress governed by material
properties of the parts and constitutive models. The physical
property, such as strain and stress can be described through
theoretical analysis using finite element analysis (FEA),
while the property without a sound theoretical model can
be expressed by the empirical formula.

The behaviour model is another essential factor for con-
structing accurate VE. The behaviour model defines the dy-
namic response of the whole system under diverse operating
and environmental conditions. For example, the output torque
of a gearbox is affected by its control order and health status
but is also subject to its loading and the temperature and
lubrication conditions of the bearing system.

C. Fidelity Service

Fidelity service aims to integrate physical entity (PE) and
virtual equipment (VE). PE is subject to degradation and is
affected by operational orders and environmental conditions.
VE which serves as the mirror image of PE should be able to
reflect its actual performance. To eliminate the discrepancy
of PE and VE is the main function of the fidelity service. In
order to make the VE be consistent with the response of PE,
the fidelity service can be regarded as an optimization control



problem. The control aim is to eliminate the error between
the dynamic response from VE and the actual response
measured from PE.

D. Edge computation

The advancement of information technologies, such as
edge computing, IoT and cloud computing, leverages the
means of processing the data collected from the field. Cloud
computing is a highly flexible computing infrastructure that
allows heterogeneous data to be processed remotely. How-
ever, it has challenges in massive data transmission and real-
time computing requirements. Edge computing pre-processes
data before sending it to the cloud, thereby reducing its size
and complexity. Edge computing analyzes data using real-
time and historical data collected from physical entities. Data
is collected through built-in and external sensing devices.
There are massive amounts of raw data from the physical
entity. The edge devices can be utilised to transform the raw
high dimensional sensor data into effective health indicators,
which can be utilized to monitor the health status and predict
a component’s as remaining useful life (RUL).

E. Digital Twin Service

The digital twin service is supposed to output the optimal
operating conditions and the best maintenance strategies
based on the measurement data from PE and the simulated
data from VE. The actual measurement data and the unob-
servable data simulated from VE are streamed to DT service.
Those data are analyzed to perform a more comprehensive
diagnostic and prognostic process. DT service could give
optimal operating schedules to the system to maximize its
life cycle based on the results. In addition, DT service can
also provide optimal maintenance strategies according to the
results.

IV. CASE STUDY

The proposed DT based condition monitoring framework
has various technologies working together for integrated
utilization, as shown in Fig. 3. This section presents a case
study to evaluate the effectiveness of the proposed system.
In this case study, the PE and VE were established, and real-
time data was collected from PE through vibration sensors.
The real-time data was analyzed on edge and stored in
a local database. The edge layer would estimate a health
indicator (HI) which reflects the real-time health status of
the monitored component from the PE. In this work, the
VE contains an application allowing users to see the health
status of components. The case study chose a bearing in the
gearbox as the component to be monitored.

A. PE of a Drivetrain Test Rig

The physical entity of this case study is an electromechan-
ical drivetrain controlled by the variable frequency drive.
The drivetrain consists of three main parts: an electrical
motor, a generator, and a planetary gearbox. The operational
conditions, such as motor speed and output loading, can be
dynamically controlled to evaluate the condition monitor-
ing system more practically. The gearbox has a two-stage
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Fig. 3. Establishment of a digital twin for a drivetrain test rig.

planetary gear structure with two identical planetary gears
consisting of a stationary ring gear, a sun gear and a carrier
holding three planet gears. The reduction ratio of the gearbox
is 1:1 as its two planetary stages are identical.

The data acquisition system consists of a micro-
electromechanical systems (MEMS) accelerometer, a micro-
controller unit, and a single-board computer. The sensing
device, LIS3DH is a 3-axis digital MEMS accelerometer.
The Arduino Mega 2560 serves as a microcontroller unit to
interface with the MEMS accelerometer. Arduino’s inherent
analog-to-digital converter (ADC) makes the analog sensors
readily accessible to the system without additional inter-
facing electronics. However, because of the communication
limitation of Arduino, a portable single-board computer -
Raspberry Pi 4B, is chosen to facilitate integrating the
sensor and microcontroller into the digital twin framework.
Raspberry Pi 4B is a widely used single-board computer with
powerful wireless communication capability and is com-
patible with various operating systems. Moreover, they can
handle complex data analytic tasks such as signal processing
and machine learning. A host computer serving as a central
local server is established to control and manage the edge
nodes and interact with a cloud database. At the same time, a
local database is also set up to store the data intermediately.

B. Construction of VE

According to the digital twin framework proposed in
Section III, the virtual equipment of the drivetrain test-rig
gearbox was constructed. With the obtained physical infor-
mation, the geometric model of all the gearbox components
was built up in the commercial CAD modelling software
SolidWorks. The physical properties, like materials, were
set up simultaneously. The kinematic relations of all the
components were realized by setting assembly constraints.

The geometric model, physical properties, and kinematic
model were constructed in SolidWorks to have a virtual
replica of the real gearbox. To fulfill more complex tasks,
such as changing the settings of components, an application
programming interface (API) was developed, enabling users
to access SolidWorks using programming to manipulate
the virtual model. The virtual model interface (VMI) was
programmed in C#. The VMI was used to change the
subject’s colour to indicate its health status according to
the data analysis results. The sensor data collected from the
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machine was preprocessed in the edge device and transferred
to the local server. The transmitted data, which is the
health indicator value calculated from the high dimensional
accelerometer data, is analyzed to indicate and predict the
health status of the bearing being monitored. With the
analysis results, the VMI would access SolidWorks to change
the component’s colour accordingly, which indicates the real-
time health status of the bearing.

Data storage on the cloud was achieved using Firebase
powered by Google. The interface between Firebase and
the local server was also realized by VMI. The visualized
data of the component produced by VMI, such as images,
was formatted and uploaded to the cloud. An executive
program that allows users to monitor the health status of
the component was also developed in C#. It retrieves the
data from the cloud and displays the visualized images to
the users.

C. Data Analysis in Edge Layer

The PE in this study is a drivetrain test-rig. However, uti-
lizing it to simulate a run-to-failure experiment for a bearing
was cumbersome. Therefore, to verify the effectiveness of
the proposed digital twin framework, a publicly available
bearing run-to-failure dataset was utilized [27], [28]. The
data was obtained from a high-speed shaft of a 2 MW wind
turbine. Over a 50-day period, the severity of the inner race
fault in the high-speed shaft bearing of the turbine was
increasing due to harsh operation. Accelerometer signals and
tachometer signals are recorded for a duration of 6 seconds
every day. The nominal operating speed of the high-speed
shaft was 1800 rpm (30 Hz).

In order to mimic a bearing run-to-failure scenario in the
drivetrain test-rig, we utilized the accelerometer data of the
wind turbine bearing as being the run-to-failure data of one
of the bearings of the test-rig gearbox. Instead of the LIS3DH
MEMS accelerometer directly collecting data from the test-
rig, the available accelerometer data was converted into a
health indicator in the edge device. Kurtosis was used to
generate the health indicator of the bearing. Kurtosis is a
sensitive, non-linear, and robust statistical measure that is
often used in condition monitoring to detect changes in a
machine’s condition over time in machine vibration signals.
Figure 4 shows an example of the results.

Physical Entity Virtual Model

Fig. 5. The physical entity (PE) and virtual equipment (VE) considered
in this study.

Fig. 6. Virtual Model Interface allowing communication between the edge
and cloud.
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Fig. 7. User interface to monitor health states of components.

D. Results

The DT model for the gearbox of a drivetrain test rig
was established. The PE was set up at a vibration lab at
the University of Auckland. The virtual model of PE was
developed in Solidworks. Figure 5 shows the DT’s physical
entity and virtual model. The cloud real-time database of
VE was built on the Firebase. The edge computing was
conducted on a portable single-board computer Raspberry
Pi 4B and the local server. The interface between the edge
and the VE was developed and run on the local server. The
communication in this case study is one-way from PE to
VE, and their synchrony is not so demanding. So the fidelity
service was not of prime importance, and we just regarded
the rotating speed of the shaft as the synchronized indicator.
The DT service is not included in this case study and will
be taken care of in the extended research of this work.
Figure 6 shows the Virtual Model Interface (VMI), which
connects the edge and cloud of the DT system. The command
button of Import Health Indicator allows loading of the
processing results in the edge. The results of computing the
health indicator in the edge are displayed in the image box.
The command button of update status triggers the event of
getting access to SolidWorks to modify the setting of the
virtual model accordingly. The VMI also allows users to
check the health status of the component locally. Users can



check the health status of a certain component at a specific
time by choosing the component and time range from the
drop menu. The command button of Upload Status activates
the communication between the local server and the cloud.
After triggering, the data will automatically be formatted and
uploaded to the cloud (Firebase). The user interface, Fig. 7,
for monitoring is an executive application. Users can run the
application and choose a certain date they want to check the
health status of the PE, and the application will access the
cloud and retrieve the required data to display in the image
box. Users can check the PE status anywhere and anytime
visually via the application.

V. CONCLUSION & FUTURE WORK

In this paper, we proposed a digital twin based framework
for real-time condition monitoring of an industrial gearbox.
The proposed DT framework builds on the five-dimensional
framework by integrating an edge computing layer. In the
case study, the physical entity of a drivetrain test rig gearbox
was utilized. The virtual model was constructed in Solid-
Works. The in-house edge-cloud interface was developed in
C#, enabling the data to be uploaded from the local server to
the cloud (Firebase). The interface that allows users to check
component’s health status was developed in C# to retrieve the
data from the cloud. As a result, the DT framework realized
the function of enabling users to check their health status
remotely. The proposed framework was able to handle high-
frequency raw machinery data by converting it into lower
dimensional indicators in the edge layer and integrating it
with a DT for efficient monitoring of the machine under
observation. This aspect can be particularly useful when real-
time remote monitoring needs to be achieved by analysing
large volumes of machine data.

Some aspects of the framework still need further work
like improving the communication functionality between the
PE and the VE as in this study we only discussed one-
way communication rather than bidirectional communica-
tion. Future work will focus on improving this aspect of the
framework along with focusing on integrating sophisticated
health indicators in the edge layer.
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