
Understanding the relationship between Technical Debt, New
Code Cost and Rework Cost in Open-Source Software Projects:

An Empirical Study
Judith Perera

University of Auckland, New Zealand
jper120@aucklanduni.ac.nz

Ewan Tempero
University of Auckland, New Zealand

e.tempero@auckland.ac.nz

Yu-Cheng Tu
University of Auckland, New Zealand

yu-cheng.tu@auckland.ac.nz

Kelly Blincoe
University of Auckland, New Zealand

k.blincoe@auckland.ac.nz

ABSTRACT
Making sub-optimal design decisions during software develop-
ment leads to the accumulation of Technical Debt (TD) in software
projects. There are tools to identify TD Items in software code
through static code analysis. However, quantifying TD to support
decision-making on whether to keep taking on TD or if it is time to
refactor TD is a difficult task, and proposed approaches for this still
lack consensus. Prior work observed that TD Interest could be fur-
ther decomposed into constituents ‘New Code Cost’ and ‘Rework
Cost’, which gives an interesting direction of research to explore
TD quantification in terms of these costs. Therefore, through our
empirical study, we plan to explore the relationship between TD,
New Code Cost and Rework Cost in Open-Source Software Projects.
This paper reports on an initial motivating study, our plan for future
work and implications for researchers.

CCS CONCEPTS
• Software and its engineering→ Software design tradeoffs;

KEYWORDS
technical debt management, mining software repositories
ACM Reference Format:
Judith Perera, Ewan Tempero, Yu-Cheng Tu, and Kelly Blincoe. 2023. Un-
derstanding the relationship between Technical Debt, New Code Cost and
Rework Cost in Open-Source Software Projects: An Empirical Study. In
Proceedings of the International Conference on Evaluation and Assessment
in Software Engineering (EASE ’23), June 14–16, 2023, Oulu, Finland. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3593434.3593490

1 INTRODUCTION
Software companies make sub-optimal decisions with respect to
the design and implementation of a software product either deliber-
ately or inadvertently [3]. These sub-optimal decisions lead to the
accumulation of Technical Debt (TD) in the form of TD Interest. In
prior work, Perera et al., [6] observed that the TD Interest can be
further decomposed into constituents New Code Cost and Rework

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering (EASE
’23), June 14–16, 2023, Oulu, Finland, https://doi.org/10.1145/3593434.3593490.

Cost. Through this work, we plan to study the concept of TD In-
terest in terms of New Code Cost and Rework Cost by examining
their relationship with TD Items in open-source software code.

A TD Item is an artifact in the software code that represents a sub-
optimal decision made with respect to the design of the software
product. According to Avgeriou et. al., a TD Item could be for exam-
ple, a Code Smell, Design Smell, or an Architectural Smell which
can make future changes costly or impossible [1]. In this study,
we consider ‘Code Smells’ as the TD Items under investigation
with respect to our research question: RQ: Is there a relationship
between TD Items, New Code Cost and Rework Cost?

However, distinguishing between New Code Cost and Rework
Cost is a non-trivial problem on its own. Therefore, we begin by
examining what constitutes writing New Code and doing Rework
— Added and Deleted Lines of Code. We refine the research ques-
tion for our initial study as follows: RQ1: Is there a relationship
between Code Smells, Added and Deleted Lines of Code?

To conduct our study, we extract commit history data from
GitHub, Issue Tracking data from Jira, and Code Smells from Sonar-
Qube1 (a TD identification tool widely used in academia as well as
industry). Then we perform statistical tests between the variables of
our interest (See Section 3 Methodology). The novel contributions
of this paper are, preliminary results of our on-going research, study
design and methodology, plan for our future work and implications
for researchers.

The rest of the paper is structured as follows. Section 2 sum-
marizes the most relevant related work, Section 3 describes the
study design and methodology. Section 4 reports preliminary re-
sults. Section 5 discusses the interpretation of results, threats to
validity, future work, and implications for researchers. The paper
concludes in Section 6.

2 BACKGROUND AND RELATEDWORK
2.1 TD Interest Decomposition as ‘New Code

Cost and Rework Cost’
The decomposition of TD Interest into New Code Cost and Rework
Cost for software code-related types of TD (Code, Design, and Ar-
chitectural TD) was introduced in Perera et al., [6]. As reported by
the authors, the concepts received multiple mappings from the ana-
lyzed quantification approaches in their Systematic Mapping Study.
For example, ’Impact of god class on quality attributes (i.e., defect

https://doi.org/10.1145/3593434.3593490
https://doi.org/10.1145/3593434.3593490


EASE ’23, June 14–16, 2023, Oulu, Finland Perera, et al.

likelihood and change likelihood)’ from one study and ‘Penalty
incurred by Debts’ from another study were mapped to ‘New code
cost associated with TD’ and ‘Rework cost associated with TD’.
The observations made by Perera et al., motivate an interesting line
of research to explore TD Interest decomposition in terms of New
Code and Rework costs. Their work is based on the Conceptual
Model introduced in their study which identified New Code Cost
and Reworks Cost as constituents of TD Interest. We perform an
empirical study based on open-source data which will complement
their work and suggest future research directions for researchers.

2.2 Empirical Studies investigating the
relationship between TD and Lines of Code

2.2.1 Relation between TD Items and source-code changes. Sas et.
al. [8], performed a study on 31 open-source Java systems to study
if the frequency and size of changes correlated with the presence of
Architectural Smells (ASs). They found that source-code artifacts
such as files and packages that were affected by ASs changed more
frequently than the artifacts that were not affected by ASs. They
also found that the size of the change is significantly higher in
smelly artifacts than in non-smelly ones. Themetrics they employed
in their study were: Change Has Occured (CHO), Percentage of
Commits a Class has Changed (PCCC) and TACH which is also
called the change size or code churn that is the sum of added,
deleted and twice the changed lines. However, they did not study
the different types of changes (added or deleted lines) individually.
Furthermore, their study was limited to a selected set of ASs —
Cyclic Dependency, Hub-Like Dependency, Unstable Dependency
and God Component. Our study is different from theirs with respect
to the study goal as well as in terms of the variables we study (more
details in Section 3).

2.2.2 Relation between TD Density and New Code. Digkas et. al.
[5], investigated the relation between the amount of TD Density of
new code and existing code. They investigated whether additions,
deletions, and modifications of methods are responsible for changes
in the TD Density (the effort to remediate TD divided by lines of
code — the remediation effort was measured by SonarQube). They
propose writing clean new code as a complementary strategy to
refactoring to reduce the TD density over time. However, their
goal was different from ours, they studied the cleanness of the
new code and if it has the potential to reduce TD. In our study, we
examine the relationship between New Code Cost and Rework Cost
associated with TD to determine if they can be constituents of TD
Interest, i.e., the consequence of accumulating TD. Furthermore,
we examine New Code and Rework with respect to different Issue
Types such as New Features and Bugs. Bugs can be a form of extra
work accumulated due to the presence of TD in the software system.

3 STUDY DESIGN AND METHODOLOGY
3.1 Research Question
Although our long term goal is to investigate the relationship be-
tween TD, New Code Cost and Rework Cost, that might require
defining heuristics for New Code Cost and Rework Cost with re-
spect to different granularities in software code (e.g., code level,
design level, and architecture level). In this initial study, which is

the first of a series of studies, we begin by examining the data as
it is without defining heuristics for New Code Cost and Rework
Cost. Therefore, we refined the research question for this study
as follows: RQ1: Is there a relationship between Code Smells,
Added and Deleted Lines of Code?

As mentioned in Section 1, our selection of TD Items for this
study are Code Smells reported by SonarQube1. However, in this
initial study we do not investigate which files are specifically af-
fected by the Code Smells and if they are prone to incur TD interest
i.e., TD Interest Probability [2], this is to be incorporated in a future
study. We rather focus on the difference of Code Smells between
commits (Code Smells Diff) and the Density of Code Smells (Code
Smell Diff divided by the total lines of code pertaining to that com-
mit) in this study. We answer RQ1 by investigating if there is a
relationship between Code Smell Diff and Code Smell Density with
Added Lines and Deleted Lines of Code.

We followed recommendations given by Ralf et al. for repository
mining to perform our study. Repository mining is, "a study that
quantitatively analyzes a dataset extracted from a platform hosting
of structured or semi-structured text (e.g a source code repository)"
[7]. The units of analysis are source-code commits, Jira issues per-
taining to the commits, and Code smells identified using SonarQube
for the same set of commits. See Figure 1 for the Overview of the
Methodology. We perform statistical tests on the dataset before and
after classifying commits based on Issue Types obtained from Jira.
Therefore, we define two sub-research questions to complement
RQ1 as follows:

• RQ1.1: Is there a relationship between Code Smells Diff
and Density with Added and Deleted Lines of Code?

• RQ1.2: Is there a relationship between Code Smells Diff
and Density with Added and Deleted Lines of Code for
different Issue Types?

3.2 Data Collection
3.2.1 Data Sources. We obtained data from 3 data sources: Commit
history from projects on GitHub, Issue Tracker data from Jira, and
Code Smells through static code analysis performed by SonarQube1.
It is a tool used widely in academia as well as industry for the
purpose of detecting Code Smells.

3.2.2 Tool Support. As illustrated in Figure 1, we utilize Pydriller —
a Python Framework that supports mining software repositories [9]
and SonarQube1 as the main tools to help with the data extraction.
The rest of the automation for data extraction and pre-processing
tasks was done by writing Python scripts.

3.2.3 Selection of GitHub projects. We selected projects from the
Apache Software Foundation as they have reputed standards re-
garding the maintenance of their projects as open-source software.
They also maintain Jira as an Issue tracker and the commits usually
refer to a Jira Issue Key, which means that we have access to issue
tracker data pertaining to the commits. The criteria we used to se-
lect projects were: the project should be active and last for a few years,
should be written in the Java programming language, and should
be of considerable size and complexity. In this paper, we report on
the initial study performed on one selected project — the Apache
1https://docs.sonarqube.org/

https://docs.sonarqube.org/


Understanding the relationship between TD, New Code Cost and Rework Cost EASE ’23, June 14–16, 2023, Oulu, Finland

Figure 1: Overview of the Methodology

Hadoop Common Project2 which is a collection of common utilities
and libraries that support other Hadoop modules in the Apache
Hadoop Framework.

3.3 Data Extraction, Pre-Processing and
Creation of the Dataset

3.3.1 Data Extraction. Data that was gathered from each data
source were compiled into a single dataset to be able to conduct
the analysis. We first extracted the latest 500 consecutive commits
for the Apache Hadoop Common Project at the time of conducting
the study (February 2023). We then collected data related to the
commits e.g., commit hash, authors, the number of modified files,
names of the files, type of modification, methods modified in those
files, and lines of added and deleted code. Then from Jira we extracted
data such as the Jira key, Issue Type, Issue Status, and Resolution.
Afterward, we extracted Code Smells for the commits under analy-
sis via the SonarQube1 tool by running the tool for each commit
hash. The complete list of variables extracted from the different
data sources can be seen in Table 1.

3.3.2 Data Pre-processing. Data was pre-processed at two stages
prior to the analysis: once after extracting commits fromGitHub and
then prior to compiling the final dataset after extracting data from
Jira and SonarQube. In the first pre-processing stage we removed
the commit records that did not contain a Jira Issue Key since we
had the need to classify commits based on the Issue Type in Jira —
New Feature, Bug, Improvement, Test, Wish, Task and Sub-task. In
the second stage of pre-processing, we aggregated the file-level
data to the commit level, for example, the added and deleted lines
of code. For Code Smells, we computed the Code-Smell-Diff which
is the difference between the Code Smells in the code base for
each commit that we analyzed. We also computed the Code Smell
Density which is the Code Smell Diff divided by the Total Lines
2https://hadoop.apache.org/

of Code that pertain to that commit. We then classified commits
based on the Jira Issue Type. The motivation behind this was to
understand if the relationships change depending on the Issue
Type the developers worked on. We included commits where the
linked Jira Issues were in Status ‘Closed’ with Resolution ‘Fixed’
and excluded any Duplicates.

3.3.3 Dataset. The complete list of variables in the dataset can be
seen in Table 1. This includes the data extracted from the three data
sources as well as data obtained via pre-processing (or aggregation).

3.4 Classification based on Issue Types
The commits in our dataset were classified according to the different
Issue Types in Jira reported for theApacheHadoopCommon project
(See Table 2). The highest percentage of Issues reported among the
analyzed commits were Bugs. Although the main Issue Types were
New Feature, Bug, Improvement, Test, Wish and Task, we also
saw that some commits were done using the Jira Issue Key for
sub-tasks as well. However, we focus on the main Issue Types:
‘New Feature’, ‘Bug’, ‘Improvement’ and ‘Test’ in this paper. The
reasoning behind this is to focus on the main development activities
— Implementation, Bug Fixing, Improvements, and Testing.

3.5 Statistical Analysis
We performed statistical analysis to determine the relationships
between Code Smell Diff and Code Smell Density with Added and
Deleted lines of code for all commits and for different Issue Types
after classifying commits based on the Issue Type (Results are dis-
cussed in Section 4, Tables 3 and 4). However, it is worth men-
tioning that we were interested only in the correlations and we
did not intend to test causality in this study. First, we performed
the Shapiro-Wilk test [4] to determine the Normality of our data.
Since our data was not Normally Distributed, we then opted for the
Spearman Rank Correlation test [4]. We interpret the correlations

https://hadoop.apache.org/


EASE ’23, June 14–16, 2023, Oulu, Finland Perera, et al.

Datasource Variables

Github commit his-
tory/PyDriller

Commit Hash, Commit Message, Commit Author and Date, Parents, Num. of Modified Files, List of Mod. Files,
per Mod. File: [Change Type, List of Modified Methods, NLOC, File Path, Added LOC, Deleted LOC]

Jira Issue Key, Issue Summary, Issue Type, Issue Status and Resolution
SonarQube Num. of Code Smells per Commit
Pre-processing Num. of Modified Java Files, List of Mod. Java Files, per Mod. Java File: [Change Type, List of Modified Methods,

NLOC, File Path, Added LOC, Deleted LOC], Issues with Status ‘Closed’ and Resolution ‘Fixed, Code Smells
Diff per Commit, Code Smell Density per Commit (Code Smell Diff/NLOC * 100)

Table 1: Variables in Dataset

Issue Type Number of
Commits

Percentage out of 359
Analyzed Commits

Min—Max
Added LOC

Min—Max
Deleted LOC

Min—Max Code
Smell Diff

Min—Max Code
Smell Density

New Feature 12 3.34 1 — 1702 0 — 147 (-6) — 29 (-0.00268) — 0.00994
Bug 123 34.26 0 — 921 0 — 131 (-10) — 13 (-0.01170) — 0.10811
Improvement 117 32.59 0 — 9318 0 — 13717 (-23) — 62 (-0.04237) — 0.03396
Test 3 0.84 4 — 167 0 — 5 0 — 7 0 — 0.01666
Wish 2 0.56 1 — 28 1 — 2 0 — 0 0 — 0
Task 15 4.18 3 — 130 1 — 215 (-5) — 0 (-0.00267) — 0
Sub-task 87 24.23 0 — 11238 0 —2709 (-38) — 550 (-0.075) — 0.11017

Table 2: Number and Percentage of Commits Classified based on Issue Types, Min and Max Added and Deleted Lines of Code,
Min and Max Code Smell Diff and Code Smell Density | in Italics — Issue Types focused in this paper, in Bold — Highest or Max
among all Commits | positive values indicate increase, minus values indicate decrease

as follows: 0–0.19 as negligible, 0.20–0.29 as weak, 0.30–0.39 as mod-
erate, 0.40–0.69 as strong, and equal or greater than 0.70 as very
strong [4]. The null and alternative hypotheses were formulated
to test the relationship between Code Smell Diff and Code Smell
Density with Added and Deleted lines of code. e.g., Null Hypothesis
(H0) — There is no relationship between Code Smell Diff and Added
Lines of Code, Alternative Hypothesis (H1) — There is a relationship
between Code Smell Diff and Added Lines of Code. The results are
considered statistically significant if the p-value is less than 0.05
(i.e., p < 0.05) implying that the null hypothesis can be rejected.

4 PRELIMINARY RESULTS
4.1 RQ1.1: Code Smell Diff, Density Vs Added,

Deleted Lines (all Commits)
Table 3 shows the results obtained for the Spearman Rank Corre-
lation [4] for the relationships between Code Smell Diff and Code
Smell Density with Added Lines and Deleted Lines of Code, for all
commits. Among the results obtained, all relationships had a Negli-
gible correlation except for the relationship between Code Smells
Diff and Added Lines of Code that had aWeak (Positive) correlation.
Since p < 0.05, the correlation is statistically significant. Therefore,
the null hypothesis can be rejected. This can be interpreted as, the
difference of Code Smells (increase since positive correlation) being
associated with the addition of lines of code to the code base and
vice-versa regardless of the type of development by which code is
being added to the code base, e.g., whether it is implementing new
features, fixing bugs, doing an improvement, or writing new tests.

4.2 RQ1.2: Code Smell Diff, Density Vs Added,
Deleted Lines (different Issue Types)

See Table 4 for the results obtained for the Spearman Rank Correla-
tion [4] for different Issue Types (commits classified based on Issue
types in Jira).

The Strong, Positive correlation between Code Smell Diff and
Added Lines of Code for New Features can be interpreted as, the
difference (increase) of Code Smells being associated with the ad-
dition of lines of code to the code base and vice-versa, during the
activity of implementing new features. This can indicate that more
Code Smells can be added to the codebase during the implemen-
tation of New Features with the addition of new code (increase of
Added Lines). The association between Code Smells Diff and Added
Lines can also be an indication that some extra work may be done
by developers due to the presence of TD i.e., Code Smells in the
code base resulting in more Added Lines in subsequent commits.
However, this correlation is not statistically significant (p > 0.05).
Therefore, the null hypothesis can not be rejected. This can be due
to the nature of the project we have selected or due to the size of
the dataset. We are interested to see results for this correlation for
different GitHub projects and for a larger dataset in future work.

The Strong, Negative correlation between Code Smell Diff and
Deleted Lines of Code for Features can be interpreted as, the reduc-
tion of Code Smells being associated with the deletion of lines of
code to the code base and vice-versa, during the activity of imple-
menting new features. This can indicate that the removal of Code
Smells can happen during feature implementation while some code
is being deleted due to the implementation. For Code Smell Density



Understanding the relationship between TD, New Code Cost and Rework Cost EASE ’23, June 14–16, 2023, Oulu, Finland

Relationship SpearmanRankCorr. Strength p-Value

Code Smell Diff — Added Lines 0.21047 Weak (Positive) 0.00005
Code Smell Diff — Deleted Lines -0.14441 Negligible 0.00620
Code Smell Density — Added Lines 0.15512 Negligible 0.00325
Code Smell Density — Deleted Lines -0.19596 Negligible 0.00019

Table 3: Spearman Rank Correlations between Code Smell Diff and Code Smell Density with Added Lines and Deleted Lines (all
commits) | in Bold — p-Value < 0.05 (statistically significant result)

Issue Type Relationship SpearmanRankCorr. Strength (Direction) p-Value

New Feature Code Smell Diff — Added Lines 0.49478 Strong (Positive) 0.10198
Code Smell Diff — Deleted Lines -0.41884 Strong (Negative) 0.17536
Code Smell Density — Added Lines 0.27762 Weak (Positive) 0.38230
Code Smell Density — Deleted Lines -0.25808 Weak (Negative) 0.41801

Bug Code Smell Diff — Added Lines 0.13035 Negligible 0.15072
Code Smell Diff — Deleted Lines -0.07983 Negligible 0.38010
Code Smell Density — Added Lines 0.05021 Negligible 0.58129
Code Smell Density — Deleted Lines -0.11088 Negligible 0.22211

Improvement Code Smell Diff — Added Lines 0.36753 Moderate (Positive) 0.00004
Code Smell Diff — Deleted Lines -0.05456 Negligible 0.56075
Code Smell Density — Added Lines 0.33016 Moderate (Positive) 0.00030
Code Smell Density — Deleted Lines -0.09543 Negligible 0.30821

Test Code Smell Diff — Added Lines 0.5 Strong (Positive) 0.66667
Code Smell Diff — Deleted Lines -0.5 Strong (Negative) 0.66667
Code Smell Density — Added Lines -0.5 Strong (Negative) 0.66667
Code Smell Density — Deleted Lines 0.5 Strong (Positive) 0.66667

Table 4: Spearman Rank Correlations between Code Smell Diff and Code Smell Density with Added Lines and Deleted Lines
(different Issue Types) | in Bold — p-Value < 0.05 (statistically significant result)

the correlations areWeak, Positive, andWeak, Negative, respectively
for the relationships with Added Lines and Deleted Lines. The pos-
itive correlation between Code Smell Density and Added Lines
indicates that the presence of Code Smells per line of code in the
modified files in the commit is associated with the addition of lines
of Code in the commit and vise-versa. The negative correlation
between Code Smell Density and Deleted Lines indicates that the
presence of Code Smells per line of code in the modified files in
the commit is negatively associated with the deletion of lines of
Code and vise-versa. However, since the results are not statistically
significant the null hypothesis can not be rejected.

The Moderate, Positive correlation for the relationship between
Code Smell Diff and Added Lines of Code and the relationship
between Code Smell Density and Added Lines of Code for Issue
Type ‘Improvement’ both indicate that there is a positive associa-
tion between the variables (results are statistically significant since
p<0.05). According to our dataset, the Issue Type ‘Improvement’
can indicate two types of improvements: improvements to Fea-
tures and improvements to the code (i.e. Refactoring). During these
improvements, either the introduction or the reduction of Code
Smells could happen. For example, new Code Smells can be added
to the codebase when improving Features. Although the intention
of refactoring is to remove Code Smells, it can also possibly add
new Code Smells. Hence, the positive correlations.

The Strong, Positive correlation between Code Smell Diff and
Added Lines of Code for Tests can be interpreted as there is an
association between the difference (increase) of Code Smells and the
addition of Lines of code. Developers may need to write relatively
more new Lines of Code to accommodate new Tests while there
are more Code Smells. There can also be extra work for developers
having to remove (delete) lines of code while there are more Code
Smells as indicated by the Strong, Positive correlation between Code
Smell Diff and Deleted Lines of Code. However, the number of
commits classified as ‘Test’ Issue Type are only 3 in this dataset
(See Table 2). Therefore, it is difficult to make conclusions based on
a small sample size.

5 DISCUSSION
5.1 Results for Bug Issue Type
All correlations were Negligible for the Issue Type ‘Bug’ although
Bugs were the most frequent in the dataset (123 commits). This
can be explained using Table 2. See the Max values for Added
and Deleted Lines of Code for the different Issue Types. Added
Lines: for New Feature it is 1702, for Improvement it is 9318 and
for Bug it is 921. Similarly, for Deleted Lines: for New Feature it is
147, for Improvement it is 13717 and for Bug it is 131. Usually, the
amount of code changed during Bug fixes is less compared to the



EASE ’23, June 14–16, 2023, Oulu, Finland Perera, et al.

amount of code changed during the implementation of features or
improvements (i.e., the amount of code developers write or remove
for Bug fixes is not as high as for New Features or Improvements).
Therefore, Negligible correlations are expected for Bug Issue Type.

5.2 Interpretation of Results for RQ1
In this initial study, we explore the relationships between Code
Smell Diff (increase or decrease of Code Smells between commits)
and Code Smell Density (ratio of Code Smell Diff over Total Lines of
Code pertaining to a commit) with Added and Deleted lines of code.
The reasoning behind choosing to investigate Added and Deleted
Lines of Code as a first study is because they are the building blocks
of New Code and Rework. For any type of change made in the code
either writing new code or doing rework will comprise of adding
new lines of code or deleting existing lines of code. Furthermore,
Git records the changes to software code in terms of added lines of
code (+) and deleted lines of code (-).

Results for the Spearman Rank Correlation for all commits re-
sulted in aWeak Positive statistically significant correlation between
Code Smell Diff and Added Lines of Code indicating that Added
Lines of Code are associated with the increase of Code Smells. Cor-
relations for different Issue Types resulted in Strong correlations
that are not statistically significant. However, two correlations for is-
sue Type ‘Improvement’ both Moderate and Positive were statistically
significant — the correlation between Code Smells Diff and Added
Lines and the correlation between Code Smell Density and Added
Lines. These correlations indicate that there are associations
between Code Smells Diff and Added Lines, and between
Code Smell Density and Added Lines in our dataset. These
findings suggest that we should examine other GitHub projects as
well as a larger sample of commits, perhaps spanning a longer time
span to get better coverage of data.

5.3 Threats to Validity
We do not discuss the ‘typical’ threats to validity in this paper
due to space limits and the study being on-going. We discuss an
observation that might have affected our results. Although we
collected and classified data for Issue Types New Feature, Bug,
Improvement, Test, Wish, Task, and Sub-Task, in this paper we
focused on the findings for the main Issues Types ’New Feature,
Bug, Improvement and Test’. We did not focus on the Issue Type
’Sub-task’. We understand that this choice might have affected the
discussion of results as some developers might have committed
their changes via sub-tasks instead of using the main Issue Key in
the commit message even if their commit was pertaining to the
main Jira Issue. This explains the highest Max values for Added
Lines and Deleted Lines for Issue Type ‘Sub-task’ in Table 2. Our
future work will consider linking sub-tasks to their main Issues.

5.4 Future Work and Implications for
Researchers

In future work, we plan to expand our dataset by adding more
projects following our project selection criteria given in Section
3.2.3. Furthermore, we plan to experiment with different heuristics
for New Code and Rework and to incorporate the time spent work-
ing on an Issue reported in Jira so that we could compute the New

Code Cost and Rework Cost in terms of effort spent by the develop-
ers. Thereby we can investigate if this could contribute towards the
end goal of being able to make informed decisions regarding TD
Management. Researchers can contribute to this goal by exploring
different algorithms to compute the time or effort spent on New
Code and Rework. Another way to extend our study is by defining
New Code and Rework for different granularities e.g., design, archi-
tectural level, investigating the relationships with Design Smells
and Architectural Smells. It is also worth examining which files are
affected by the TD Items and incorporating TD Interest Probability
(probability of an implementation being affected by a TD Item) [2].

6 CONCLUSION
We performed an empirical study on the commit history of an open-
source software project analyzing commits, Jira Issues linked to
commits, and Code Smells from SonarQube to examine the rela-
tionship between Code Smell Diff and Density with Added and
Deleted lines of code. Preliminary results suggest that there is some
association between Code Smells Diff and Density and Added Lines
of Code as indicated by the statistically significant correlations for
Issue Type ’Improvement’ and between Code Smell Diff and Added
Lines of Code for all commits. This shows that there is potential to
continue this research goal.

REFERENCES
[1] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016. Man-

aging technical debt in software engineering (dagstuhl seminar 16162). In Dagstuhl
Reports, Vol. 6.

[2] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and
Paris Avgeriou. 2017. Assessing code smell interest probability: a case study. In
Proceedings of the XP2017 Scientific Workshops. 1–8.

[3] Ward Cunningham. 1992. The WyCash portfolio management system. Proceed-
ings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA Part F1296, October (1992), 29–30. https://doi.org/10.1145/
157709.157715

[4] Christine P Dancey and John Reidy. 2017. Statistics without maths for psychology.
Pearson London.

[5] George Digkas, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, and Paris
Avgeriou. 2020. Can Clean New Code reduce Technical Debt Density? IEEE
Transactions on Software Engineering 48, 5 (2020), 1705–1721.

[6] Judith Perera, Ewan Tempero, Yu-Cheng Tu, and Kelly Blincoe. 2023. Quanti-
fying Technical Debt: A Systematic Mapping Study and a Conceptual Model.
arXiv:2303.06535 [cs.SE]

[7] Paul Ralph, Sebastian Baltes, Domenico Bianculli, Yvonne Dittrich, Michael
Felderer, Robert Feldt, Antonio Filieri, Carlo Alberto Furia, Daniel Graziotin, Pinjia
He, Rashina Hoda, Natalia Juristo, Barbara A. Kitchenham, Romain Robbes, Daniel
Méndez, Jefferson Seide Molléri, Diomidis Spinellis, Miroslaw Staron, Klaas-Jan
Stol, Damian A. Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan,
and Sira Vegas. 2020. ACM SIGSOFT Empirical Standards. CoRR abs/2010.03525
(2020). arXiv:2010.03525 https://arxiv.org/abs/2010.03525

[8] Darius Sas, Paris Avgeriou, Ilaria Pigazzini, and Francesca Arcelli Fontana. 2022.
On the relation between architectural smells and source code changes. Journal of
Software: Evolution and Process 34, 1 (2022), e2398.

[9] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 908–911.

https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://arxiv.org/abs/2303.06535
https://arxiv.org/abs/2010.03525
https://arxiv.org/abs/2010.03525

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 TD Interest Decomposition as `New Code Cost and Rework Cost'
	2.2 Empirical Studies investigating the relationship between TD and Lines of Code

	3 Study Design and Methodology
	3.1 Research Question
	3.2 Data Collection
	3.3 Data Extraction, Pre-Processing and Creation of the Dataset
	3.4 Classification based on Issue Types
	3.5 Statistical Analysis

	4 Preliminary Results
	4.1 RQ1.1: Code Smell Diff, Density Vs Added, Deleted Lines (all Commits)
	4.2 RQ1.2: Code Smell Diff, Density Vs Added, Deleted Lines (different Issue Types)

	5 Discussion
	5.1 Results for Bug Issue Type
	5.2 Interpretation of Results for RQ1
	5.3 Threats to Validity
	5.4 Future Work and Implications for Researchers

	6 Conclusion
	References

