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Abstract Understanding users’ needs is crucial to building and maintaining
high quality software. Online software user feedback has been shown to contain
large amounts of information useful to requirements engineering (RE). Previ-
ous studies have created machine learning classifiers for parsing this feedback
for development insight. While these classifiers report generally good perfor-
mance when evaluated on a test set, questions remain as to how well they
extend to unseen data in various forms.

This study evaluates machine learning classifiers’ performance on feedback
for two common classification tasks (classifying bug reports and feature re-
quests). Using seven datasets from prior research studies, we investigate the
performance of classifiers when evaluated on feedback from di↵erent apps than
those contained in the training set and when evaluated on completely di↵erent
datasets (coming from di↵erent feedback channels and/or labelled by di↵erent
researchers). We also measure the di↵erence in performance of using channel-
specific metadata as a feature in classification.

We find that using metadata as features in classifying bug reports and fea-
ture requests does not lead to a statistically significant improvement in the ma-
jority of datasets tested. We also demonstrate that classification performance
is similar on feedback from unseen apps compared to seen apps in the majority
of cases tested. However, the classifiers evaluated do not perform well on un-
seen datasets. We show that multi-dataset training or zero shot classification
approaches can somewhat mitigate this performance decrease. We discuss the
implications of these results on developing user feedback classification models
to analyse and extract software requirements.
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1 Introduction

Software product quality is deeply tied to user satisfaction and the extent
to which the product meets the users’ needs[12]. To that end, Requirements
Engineering (RE) is considered key to developing high-quality software which
meets users’ needs [4,26]. Recent research has found explicit online software
user feedback (such as app reviews, Tweets, and forum posts) to be a rich
source of information for understanding users’ needs and the software require-
ments associated with those needs. For example, Pagano et al. showed that
more than 30% of 1100 manually analysed reviews on mobile app stores con-
tained requirements relevant data that can then be leveraged by developers
to improve their product [27]. Similarly, feedback channels such as Twitter
posts [15], forum posts [36], Reddit posts [1], Facebook posts [34], and Steam
reviews [22], have also been shown to contain helpful insights to guide the
development and maintenance of software.

Studies have proposed classification methods to automate the ingestion
and analysis of this feedback to help identify software requirements [16,17,
18,28]. These methods are largely underpinned by machine learning models
which require manually labelled example data to train on. Human annotators
give labels such as “bug report” or “feature request” to each piece of feedback.
These feedback-label pairs are then used as a training dataset to train a model
to label feedback into one of these classes automatically.

The utility of these classifiers is multifaceted. Proposals have been made
for using classifiers to help developers understanding their users’ requirements
by integrating user feedback into the development cycle. An example of this
is MARA (Mobile App Review Analyzer), which classifies app store reviews
into “feature request” and “bug report”, and these reviews are then used to
inform software design and maintenance [18]. Commercial solutions, such as
MonkeyLearn1, also exist. In addition to aiding software teams to identify
requirements, these classifiers can also be used in research studies. The classi-
fiers can be trained on labelled training data and applied to large unlabelled
datasets. This can enable researchers to study the requirements relevant char-
acteristics of a large set of feedback, for example as was done by Nayebi et al.
analysing user feedback on Twitter [25].

1 https://monkeylearn.com/
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Despite classifiers’ widespread use throughout the literature, questions re-
main as to how e↵ective they are at classifying user feedback for a given soft-
ware project if they have not been trained on a representative sample of manu-
ally labelled feedback about that project. Tizard et al. demonstrated that the
popular ARDOC (App Reviews Development Oriented Classifier) user feed-
back classifier, which has been trained on user feedback from app store reviews,
does not perform well when applied to forum post feedback [36]. Many of these
classification techniques also rely on using feedback channel metadata (e.g.,
app review rating) as input features for classifiers - metadata which may not
be available when applying such a classifier to another channel. While much
user feedback can be similar across the RE literature (e.g. bug reports can be
found across app reviews [18,28], Tweets [25,13], forum posts [36], and Reddit
posts [19]), it can also be given for di↵erent reasons and by di↵erent people
depending on the feedback channel[35]. It is therefore unknown how di↵erent
these feedback sources are, making it unclear as to how a classifier trained on
one channel would perform on another. Applying classifiers to feedback from
unseen apps (i.e. apps of which none of its feedback was included in the clas-
sifier’s training set) has also not been explicitly explored within the literature,
which makes it unclear as to how they would perform on this unseen app feed-
back. If these classifiers are not able to correctly classify feedback from new
apps and new channels to a reasonably satisfactory degree, then they only
have limited practical use in supporting the software development cycle.

We investigate the robustness of user feedback classifiers over separate
apps, domains, and features. To do this, we focus on three aspects of user feed-
back classifier training: training and testing both with and without metadata-
based features, training and testing on separate apps, and training and testing
on separate datasets.

Firstly, feedback metadata such as review ratings and app categories have
also been used in many studies as a feature in classification. However, the
e↵ect of including metadata in classification on performance across multiple
datasets is not fully known. Indeed, few studies examine the e↵ect of each
type of metadata to isolate the e↵ect of metadata on overall performance.
Therefore, we train classifiers both using and not using metadata as features
to determine the change in performance with their inclusion. Understanding
the relative importance of metadata on feedback classification informs how
applicable they are to di↵erent sources which may have di↵erent metadata
available.

Secondly, many reported classification performance statistics are based on
training and evaluating on user feedback from the same app, which leaves the
expected performance of these classifiers on unseen apps unclear. Therefore,
this study examines the di↵erence in classification performance between mod-
els trained and tested on feedback from separate apps, and trained and tested
on the same apps. This is done to investigate how well models can classify
feedback from unseen apps.

Finally, many public datasets of user feedback exist from prior studies.
These datasets contain feedback from various feedback channels (e.g. app store
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reviews, tweets, forum posts) and are labelled using various label sets. How-
ever, these datasets often contain labels that are similar as labels in the other
datasets (e.g. “bug”, “bug report”, and “error” labels from three separate
datasets). One labeller’s definition of, for example, a bug report may di↵er
from another’s. Therefore, we evaluate whether a classifier trained on the la-
bels of one dataset transfer to labelling another dataset. This will provide an
understanding on the ability of user feedback classification models to generalise
to new domains or slightly di↵erent labelling schemas.

These aims resulted in the following three research questions:

– RQ1: How does training and testing with metadata a↵ect classification F1
scores?

– RQ2: How does training and testing on feedback from separate apps a↵ect
classification F1 scores?

– RQ3: How does training and testing on feedback from separate datasets
a↵ect classification F1 scores?

We answer these questions by evaluating the classification performance of
state-of-the-art text classifiers under di↵erent data configurations using seven
datasets from the literature. We find that using metadata as a feature in a
classifier tends not to improve classification of bug reports and feature re-
quests in the majority of cases. We also find little di↵erence in classification
performance between feedback from seen and unseen apps, but a large drop
in performance on unseen datasets.

This paper first outlines the previous work related to user feedback clas-
sification in Section 2. The datasets used in this work are then detailed in
Section 3 and the method used to train the classifiers is explained in Section 4.
The results of the evaluation on these datasets is described in Section 5, and
the implications of these results are described in Section 6. Finally, threats to
validity are considered in Section 7.

The replication package for this work can be found online2.

2 Related work

This section first details the e↵ect that Requirements Engineering (RE) has on
software quality, before exploring the applications of machine learning in RE
within the literature. Finally, it gives examples of previous studies regarding
the evaluation of di↵erent machine learning techniques in RE.

2.1 Software quality and requirements engineering

The benefits gained from RE have been shown to be integral to software qual-
ity. Many models exist within the literature that include RE to improve soft-
ware quality [4,5]. The practice of RE has also been shown to be beneficial,

2 https://doi.org/10.5281/zenodo.5733504
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with Damian and Chisan demonstrating that productivity, quality, and risk
management were all improved when e↵ective RE was done within a commer-
cial software project [8]. Similarly, Radliński showed that multiple RE factors
had a positive, statistically significant e↵ect on software quality factors within
a literature dataset of thousands of software projects [29]. A survey of devel-
opers also showed that teams that used RE approaches were much more likely
to say that their product’s capabilities fit their customers’ needs well and that
end users found their products easy to use than those which did not [20]. Other
RE-adjacent concepts such as requirements traceability have also been shown
to positively impact software quality [30].

2.2 Machine learning in requirements engineering

Machine learning has become a common tool used within the requirements
engineering literature for supporting the creation of requirements. Approaches
like the one proposed by Cleland-Huang et al. [7] have been made to inte-
grate automated text classifiers into the requirements engineering process. The
MARA model, developed by Iacob et al. [18] focuses on developing require-
ments from the ingestion of online user feedback using such a text classifier.
These classifiers have become prevalent throughout the literature, with a sys-
tematic literature review by Lim et al. showing that 38 out of 63 studies
which did user feedback analysis based on manually labelled data used ma-
chine learning to classify this feedback [21]. One of the potential reasons for
this popularity is the reported high classification performance of some of these
machine learning models.

Work from Maalej et al. [23], Panichella et al. [28], and Stanik et al. [33] all
report bug report classification F1 scores of app reviews higher than 0.75, with
Maalej et al. reporting as high as 0.9. However, Stanik et al. also report a bug
report classification score of 0.59 in Tweets, with Nayebi et al. also reporting
lower feature request classification F1 scores of 0.67 [25]. These diverse values
highlight that the expected classification performance can vary dramatically
depending on data source, classification method, and evaluation method. This
underscores the need to rigorously compare and standardise techniques for
both training and evaluating classification models.

2.3 Comparisons of classification techniques

There are several studies within the literature that compare techniques used
for classifying user feedback. Work by Aurajo et al. evaluated the performance
of four classical machine learning classifiers on classifying user feedback from
one dataset using both term frequency derived features and features from deep
pre-trained language models, showing that deep pre-trained language models
generate superior text embedding features compared to frequency-based fea-
tures for classification [2]. Similarly, Henao et al. demonstrated the increase in
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performance in user feedback classification when using pre-trained language
models over both classical models as well as other deep models [17]. Hadi
and Fard proposed a study where the classification accuracy of pre-trained
language models is compared against that of previously constructed classifiers
from the literature as well as exploring the e↵ect of self-supervised pre-training,
binary classification, multi-class classification, and zero-shot settings on clas-
sification performance [16]. Dhinakaran et al. showed that models trained on
training data that was chosen randomly were found to consistently under-
perform more sophisticated training data selection techniques, such as active
learning [10]. Di Sorbo et al. investigated the correlation between app review
rating and feedback type classifier prediction, finding that predictions of “prob-
lem discovery” from the ARDOC classifier were negatively correlated with the
app rating, whereas predictions of “feature request” were uncorrelated [11].
As can be seen, there has been extensive work evaluating which text-based
features and machine learning models are best to use when classifying user
feedback. Some work has also been done to improve the data-e�ciency of
training a classifier. What remains unclear is how di↵erent training and eval-
uation methods a↵ect the evaluation result of these classifiers (particularly
on out-of-domain data), and how features apart from text a↵ect classification
performance.

This study adds to the literature by exploring the e↵ect of several machine
learning techniques to highlight where and when user feedback classifiers can
and cannot be used in the real world. Firstly, the use of metadata for classi-
fication across multiple domains is evaluated to determine its e↵ect on user
feedback performance. Secondly, evaluating on seen and unseen app reviews is
evaluated, in order to determine how well user feedback classifiers perform in
classifying feedback for an unseen app. Finally, classifiers trained and tested
on separate datasets are evaluated so as to determine how well classifiers can
be applied to similar data.

3 Datasets

To measure di↵erent training and evaluation techniques, seven unique datasets
from six studies were used in our evaluation. The datasets studied vary in size,
feedback label set, and feedback channel, coming from app reviews, Twitter,
and forum posts. This variance among datasets was chosen partly to evalu-
ate how well these classifiers perform across di↵erent domains and di↵erent
labellers. The selection of these datasets was done by first studying a broad
collection of previous work on user feedback, with any that linked to a publicly
available user feedback dataset then being further considered. Then, only those
datasets that had manually labelled user feedback (i.e. not classifier labelled)
which contained classes analogous to either “bug report” or “feature request”
were used within our investigation.

From these seven datasets, it was found that all seven shared a “bug report”
or similar class, and six shared a “feature request” or similar class. Therefore,
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ID Domain Size
No.

apps

Bug

label (%)

Feature

label (%)

Meta-

data

Bug

F1

Feature

F1

A Reviews 1,565 27
Error
(30.2%)

None None NR NA

B Reviews 4,385 7
Bug
report
(22.6%)

User
request
(9.2%)

Rating 0.81 0.51

C Reviews 1,438 48
Bug
(9.5%)

Feature
(12.4%)

Rating 0.88 0.85

D Reviews 2,986 705
Bug
(25.5%)

Feature
(11.1%)

Rating,
App
category

0.9 0.72

E Reviews 707 14
Bug
(69.3%)

Feature
(22.9%)

None NR NR

F Forums 2,652 2
Apparent
bug
(15.3%)

Feature
request
(4.4%)

Post
position,
Topic

0.725
to

0.728
0.83

G Twitter 3,907 10
Bug
(27.1%)

Feature
(24.2%)

None 0.78 0.66

Table 1 Details of the 6 datasets used in our evaluation. (NR - not reported)
“No. apps” is the number of unique apps contained within the dataset. “Bug label (%)” is
the name of the bug report label in the dataset and the percentage of that dataset which
has this label. “Feature label (%)” is the name of the feature request label in the dataset
and the percentage of that dataset which has this label.

comparison of classification across datasets was done on a binary basis for these
two classes. This section describes each dataset, with Table 1 summarizing and
comparing the broad statistics of each dataset.

The datasets included in this analysis are taken from replication packages
linked in:

– Dataset A from Ciurumelea et al. [6]3

– Dataset B from Guzman et al. [14]
– Dataset C from Maalej et al. [23]
– Dataset D from Scalabrino et al. [32]4

– Dataset E from Scalabrino et al. [32]4

– Dataset F from Tizard et al. [36]
– Dataset G from Williams et al. [37]

Each dataset consists of publicly available user feedback which has been
scraped from the internet, before being manually labelled by the researchers
of their respective studies. The smallest of these datasets has 707 pieces of
feedback, while the largest has 4,385. The datasets span three distinct user

3 This dataset contains feedback that is labelled as “Error”. While the classification of
this class of feedback is not reported on in the paper, we use this class as our bug report
class.

4 The replication package contains two datasets referring to research questions 1 and 3
from this study, of which the latter is a pre-filtered set of feedback (filtered to contain
only requirements relevant feedback) used to measure clustering performance, rather than
classification. Therefore, while no classification metrics are reported for this RQ3 dataset
(Dataset E), we still use it for training and testing models.
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RQ Training configuration Trained on Tested on

RQ1
Single mixed

Dataset ↵ mixed
train and validation sets

Dataset ↵
mixed test set

Single separated
Dataset ↵ separated
train and validation sets

Dataset ↵
separated test set

RQ2
Single out-of-dataset

Dataset ↵ mixed
train and validation sets

Dataset �
mixed test set

Leave one out
Dataset ↵, �, �
mixed train
and validation sets

Dataset �
mixed test set

RQ3
Single mixed
(text and metadata)

Dataset ↵ mixed
train and validation sets
(text and metadata)

Dataset ↵
mixed test set
(text and metadata)

Table 2 Example permutations of datasets for RQ1, RQ2, and RQ3 for example datasets
↵, �, �, and �.

feedback domains: app store reviews, forum posts, and tweets. The maximum
number of distinct apps within a dataset was 705, while the smallest was two.

4 Method

To answer our research questions, we created training, validation and test sets
applicable to each experiment, before using the training and validation sets
to train state of the art text classifiers. Finally, we evaluated these models on
test sets to get performance scores for each experiment.

)HHGEDFN�IURP�DSSV�9��:��; )HHGEDFN�IURP�DSS�< )HHGEDFN�IURP�DSS�=

7UDLQ������RI�DSSV� 9DOLGDWLRQ������ 7HVW������

)HHGEDFN�IURP�DSSV�9��:��;��<��= )HHGEDFN�IURP�DSS�9��;��< )HHGEDFN�IURP�DSS�9��:��<��=

7UDLQ������RI�DOO�IHHGEDFN� 9DOLGDWLRQ������ 7HVW������
0L[HG�FRQILJXUDWLRQ

6HSDUDWHG�FRQILJXUDWLRQ

Fig. 1 Diagram visualising how the train, validation, and test splits are created for both
the mixed and separated datasets of RQ2.

4.1 Data handling

Within this study, the performance of classifiers on feedback from apps that it
had not been trained on is analysed, and as such, the information as to which
app a piece of feedback came from is needed for each dataset. For this reason
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each dataset was cleaned so that any rows which did not have an app identifier
(i.e. are null) were dropped. This only a↵ected dataset C, where some rows
did not contain app identification data, and accounted for 1,821 out of 3,259
(55.9%) rows within that dataset, leaving 1,438 pieces of feedback from that
dataset to use in our experiments.

Two di↵erent configurations of generating train, validation and test data
splits were then used for each dataset, and these were named “mixed” and
“separated”. The “mixed” data splits were created by randomly splitting all
feedback across the dataset into a 64:16:20 (train : validation : test) split.
These ratios were chosen to be an initial 80:20 (train+validation : test) split
before splitting the train + validation set with a further 80:20 split. This
random splitting of data into train, validation, and test sets is current standard
practice throughout the user feedback classification literature.

The “separated” data splits were generating by randomly sampling apps
within a dataset and assigning them to either the train, validation, or test
split. All feedback for a given app was put into the same data split. Again,
we aimed for a 64:16:20 (train : validation : test) ratio while ensuring each of
these splits contained data from di↵erent apps. By sampling at the app level
instead of the feedback level, we are not able to guarantee that the amount of
feedback in each split strictly adheres to the 64:16:20 ratio, but we mitigate
this potential discrepancy by using cross validation in all our experiments.
Cross validation in our experiments splits the data into 5 random variations of
the train, validation, and test partitions of the overall dataset, and the mean
of the metrics across each variation are then taken as our evaluation metrics.
Multiple samples of this partition reduce the likelihood that one skewed par-
tition impacts the final evaluation metrics. “Separated” data splits were not
created for Dataset F because it included only two apps, and so contained
too few distinct apps to split into train, validation, and test sets. A visual
depiction of how these two configurations were created can be seen in Fig. 1.

The “mixed” and “separated” configurations were achieved by using Sci Kit
Learn’s Shu✏eSplit and GroupShu✏eSplit respectively. Cross validation was
used to generate 5 distinct data folds for each dataset, and reported metrics
in our results are the mean over these 5 folds.

4.2 Model

4.2.1 Training machine learning models

We trained machine learning models based on state-of-the-art pre-trained lan-
guage models, which have been shown to achieve higher classification perfor-
mance than other models [17]. These models require text input to be tokenized
before they can be trained.

Tokenization
To train and evaluate deep pre-trained language model based classifiers, we

first tokenized all feedback text. Each piece of feedback was broken down into
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a series of token IDs, which each corresponding to either a word or a part of a
word from a learned vocabulary. This was done to e�ciently encode text into
a set of one-hot-vectors while maintaining the model’s ability to handle pre-
viously unseen words. Tokenization was done using Huggingface’s Tokenizers
library in Python 5 using the “bert-base-cased” version of the “BertTokenizer”
tokenizer, which has a vocabulary size of 28,996 unique tokens. This results
in the creation of input IDs, an attention mask, and token type IDs for every
piece of feedback. Each piece of feedback is also prepended by a [CLS] token
and appended by a [SEP] token to denote the start and end of a piece of
text. These values are then fed into the model for training or inference. We
supply metadata tags to the model in the form of special tokens. All possible
metadata tokens (i.e. those contained in train, validation, and test splits) are
passed to the tokenizer when it is initialized such that it does not tokenize
these features and that all metadata tags are valid input IDs when running
training and inference.

Model training
The pre-trained language model used in our experiments was the “distilbert-

base-cased” version of the “BertForSequenceClassification” model from Hug-
gingface’s Transformers6 library in Python. This model variant was chosen due
to it’s relative high performance on general natural language tasks compared
to larger language models [31] and because a smaller model allowed for more
reasonable training times for the high number of models created within the
constraints of this study.

The BertForSequenceClassification model generates a binary class proba-
bility for each piece of feedback. This is done by inputting the token IDs derived
from the feedback as described in section 4.2.1 into a pre-trained transformer
based language model, which outputs a fixed length vector at each token posi-
tion. The vector values at the first token position (i.e. the [CLS] token position)
were then passed to one linear neural network layer of two nodes which rep-
resent “true” and “false” for the class that we were training on. The output
of these logits was finally passed to a softmax layer, which normalises the
input logits such that they sum to 1 to generate probabilities for the “true”
and “false” binary class. The equation for this calculation can be found in
Equation 1.

Softmax(xi) =
exp(xi)P
j exp(xj)

(1)

Where Softmax(xi) is the probability for class i (either true or false), exp(xi)
is the exponential of the logit output of the linear layer for class i, andP

j exp(xj) is the sum of the exponentials of the logits of both true and false.
These modules of language model, linear layer, and softmax layer form

the model that we use as our classifier in all of our experiments. At training
time, the output probabilities of a given piece of feedback (whether it is or is

5 https://huggingface.co/docs/tokenizers
6 https://huggingface.co/transformers
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not a bug report, feature request etc.) is then compared to the true label of
that piece of feedback. The di↵erence between the probabilities and the true
label is then back propagated through the model, updating the weights of the
language model and linear layer such that it trains to our training data. At
evaluation time, the model’s output probabilities of each piece of feedback in
the validation and testing set are converted into labels by choosing the most
probable class (true or false) based on the softmax output. For example, if
a bug classifier outputs that a piece of feedback is 60% likely a bug report
(and so 40% that it is not a bug report), then we consider that the model
has predicted that this feedback is a bug report, and then we compare this
label to the true label using evaluation metrics such as F1 score (described in
Section 4.3).

Each model is trained for 500 steps with a batch size of 128 (128 pieces
of feedback training the model at each step). Every time all feedback has
been used to train the model (i.e. each epoch) the model is evaluated on
the validation set. The weights of the model at the epoch with the highest
associated F1 score on the validation set were loaded after training and saved
for use in evaluating on the test set. The choice of training for 500 steps was
made as it was observed that both the smallest and largest datasets had safely
peaked in validation set F1 score by that point.

A Trainer object from Huggingface’s Transformers was used to train the
model, into which we set a training batch size of 128. All other hyperparam-
eters were left as default for the Trainer (initial learning rate = 5e-05, weight
decay = 0, adam beta 1 = 0.9, adam beta 2 = 0.999, adam epsilon = 1e-08) as
there was little observed di↵erence in performance when these were changed.

4.2.2 Zero shot classifier

A zero shot classifier model is a text classifier that does not require any train-
ing data before being used. In our work, we use the “bart-large-mnli” model
developed by Facebook as our zero shot model due to its performance and
popularity on the HuggingFace model portal7. This model was not explicitly
trained to classify user feedback, but has been designed to classify text without
pre-training on class-labelled training data (hence “zero-shot”) by leveraging
the entailment prediction abilities of natural language inference models, as pro-
posed by Yin et al. [38]. Therefore, this classifier relies on the textual content
of the label as well as the text content of the feedback, and so requires model
labels to categorise text into. For the text input for the zero shot classifier, we
use the phrase “bug report” for classifying bug reports, and “feature request”
for classifying feature requests. This classifier outputs a classification proba-
bility score between 0 and 1, rather than a simple label. We set our probability
threshold at 0.5, and so predict a piece of feedback as a bug report or feature
request if the zero shot classifier outputs a greater than 50% probability for
that label.

7 https://huggingface.co/models?pipeline_tag=zero-shot-classification
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Fig. 2 Diagram visualising how the training and testing is done using text, and text with
metadata for datasets in RQ1.

4.3 Evaluation metrics

Each dataset was evaluated using the F1 metric. The equation for this metric
can be found in equations 2, 3, and 4, with “No. True Positives” being the
number of bug reports or feature requests that were correctly classified, “No.
False Positives” is the number of pieces of feedback that were classified as a bug
report or feature request, but actually were not, and “No. False Negatives” is
the number of pieces of feedback that were classified as not being a bug report
or feature request, but actually were.

precision =
No. True Positives

No. True Positives+No. False Positive
(2)

recall =
No. True Positives

No. True Positives+No. False Negative
(3)

F1 = 2.
precision . recall

precision+ recall
(4)

This metric provides a good measure of how well a class is being correctly
labelled due to it balancing recall and precision, and is less sensitive to class
imbalances in the data compared to the accuracy metric.

Statistical significance between the performances of di↵erent classifier types
were determined by using an independent two-sample t-test on the F1 metrics
all folds of cross validation for one given test dataset.

4.4 Training and evaluation

4.4.1 Metadata (RQ1)

To determine the di↵erence in performance of classifiers that use both meta-
data and text against those which use only text, we train two di↵erent models
for every fold of every dataset, one which just receives feedback text as input,
and one which also receives feedback metadata. As in RQ2, the “Single dataset
- mixed” splits of data were used for these evaluations. A visual representation
of this training and evaluation can be found in Fig. 2.
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Metadata was added as a feature to the model by prepended feedback text
with metadata tags before being passed to the model, in order to allow the
classifier to process the metadata information with the feedback textual infor-
mation within the deep layers of the language model. Continuous metadata
such as the number of followers of a tweet author was binned into 5 quintiles
such that individual binned categories could be learned by the model, rather
than requiring a new metadata token for each unique continuous value, which
would make generalisation almost impossible. Metadata tags were then gener-
ated using the format as specified in Equation 5, such that an app review that
has an associated rating of 3 stars would be prepended with the tag “[META-
DATA rating 3]” or a forum post written by the thread original author would
have the tag “[METADATA is original thread author TRUE]”.

[METADATA + metadata column name + + metadata value + ] (5)

Each metadata tag is added to the text tokenizer as a special token so as to
prevent it from being broken up upon tokenization. We trained models using
all metadata available to us from their datasets. This includes metadata that
was used as features when making classifiers in the original studies associated
with these datasets. App review metadata included app rating (a simple rating
of an app on a 5 point scale) and the category of the app. Forum post meta-
data consisted of the position of the comment within the forum post thread
(with 0 being the original post in the thread, 1 being the first reply, etc.), a
boolean of whether the comment author is the author of the thread’s original
post, the topic of the forum, and the level of the user (i.e. the user’s experience
level on the forum). Twitter metadata contained the number of total favorites
the Tweet author has, the number of followers of the Tweet author, the num-
ber of people the author follows, the number of media tweets the author has
made, whether the Tweet is a reply to someone else, and whether the user
is verified by Twitter (usually reserved for public figures). Full details of all
metadata used for each dataset can be found in Table 3. After training on
a given train and validation set, each model was evaluated on the respective
test set. “Text only” denotes the evaluation results of the model which was
trained and tested using only text features. “Text and metadata” denotes
the evaluation results of the model which was trained and tested using both
text and metadata features.

4.4.2 Unseen Apps (RQ2)

In order to determine the di↵erence in performance between evaluating on
feedback from unseen apps compared to seen apps, we trained models on the
cross validation folds of each dataset’s training and validation sets for both
“separated” and “mixed” configurations, for evaluation on their respective test
sets. In our results, we denote these models as “Single dataset - separated”
and “Single dataset - mixed”.
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Dataset Metadata

A App rating (numeric)
B App rating (numeric)
C App rating (numeric)

D
App rating (numeric),
App category (categorical)

E App rating (numeric)

F

Post position within forum thread (numeric),
Is commenter original thread author (boolean),
Forum topic (categorical),
User level (categorical)

G

No. of favorites (numeric),
No. of followers (numeric),
No. of friends (numeric),
No. of statuses (numeric),
No of media tweets (numeric)
Is tweet a reply (boolean)
Is user verified (boolean)

Table 3 List of metadata used for datasets in RQ3

4.4.3 Unseen datasets (RQ3)

To find the classification ability of classifiers trained on one dataset before
being applied to another, we used the models trained on “Single dataset -
mixed” splits from RQ2 as the literature standard is to evaluate classifiers on
mixed-app dataset splits. These were then evaluated on each dataset except the
one that it was trained on. In our results, “Train A-F” denotes the models
which have been trained on one of these datasets and is then evaluated on
all others. In addition, we also trained a “leave-one-out” (denoted “LOO”)
model for each data split, where all datasets except one were used to train a
model, and then evaluated on the excluded dataset. A visual representation of
how this training was done can be found in Fig. 3.
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Fig. 3 Diagram visualising how the training and testing is done on di↵erent datasets in
RQ2.
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Bug classification Feature request classification

Dataset
Text

only

Text

and

Metadata

T-test

stat.

Text

only

Text

and

Metadata

T-test

stat.

A 0.764 0.817 -2.059 - - -
B 0.725 0.761 -3.270 * 0.468 0.475 -0.168
C 0.357 0.432 -1.481 0.544 0.535 0.171
D 0.856 0.857 -0.155 0.653 0.669 -0.698
E 0.875 0.878 -0.172 0.642 0.687 -0.791
F 0.455 0.522 -1.985 0.270 0.463 -5.102 **
G 0.704 0.722 -1.235 0.597 0.605 -0.367

Table 4 F1 score results for classifying bug reports and feature requests in RQ3 both using
and not using metadata based features. Student’s independent t-test scores are also given
with statistically significant di↵erences shaded and highlighted with asterisks (* p<0.05, **
p<0.01, *** p<0.001).

Due to the fact that a majority of datasets in our evaluation contain app
reviews (Datasets A-E), we also trained an “app review only” leave-one-out
classifier which is the same as the above described leave-one-out classifier,
but is not trained on Dataset F or G. This was done to evaluate the transfer
abilities of a classifier between datasets but on feedback from the same feedback
channel.

For further context, a zero-shot text user feedback classification model
(denoted “Zero shot”), as was proposed by Hadi and Fard [16], was also
evaluated on each dataset to provide a performance benchmark.

A visual summary of how these three research questions were answered can
be found in Table 2.

5 Results

This section first presents the results of training and testing using metadata
(RQ1). It then presents the results from training and testing on mixed and sep-
arated apps within datasets (RQ2). Finally, it presents the results of training
and testing on separate datasets (RQ3).

5.1 Using metadata features to classify (RQ1)

Table 4 details the mean F1 scores of RQ1 classifiers both including and ex-
cluding metadata features to classify feedback into bug reports and feature
requests.

For bug reports, we find all datasets have higher F1 scores when metadata
and text is used to classify compared to when only text is used. However, only
one of these di↵erences (dataset B) increases between models were statistically
significant with a p-value of <0.05.

Similarly for feature requests, we find that for 5 out of the 6 datasets stud-
ied, models which use metadata and text achieve a higher F1 score than just
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Bug classification Feature request classification

Dataset

Single

dataset

separated

Single

dataset

mixed

T-test

stat.

Single

dataset

separated

Single

dataset

mixed

T-test

stat.

A 0.664 0.764 -2.137 - - -
B 0.680 0.725 -3.252 * 0.399 0.468 -2.087
C 0.339 0.357 -0.325 0.501 0.544 -0.639
D 0.868 0.856 0.716 0.659 0.653 0.341
E 0.683 0.875 -3.504 ** 0.443 0.642 -2.580 *
G 0.688 0.704 -0.837 0.528 0.597 -3.227 *

Table 5 F1 score results for classifying bug reports and feature requests in RQ2 using both
“separated” and “mixed” data splits. Student’s independent t-test scores are also given
with statistically significant di↵erences shaded and highlighted with asterisks (* p<0.05, **
p<0.01, *** p<0.001).

using text. Again, only one (datasets F) of these di↵erences were statistically
significant to a p-value of 0.05.

Overall, we can see either a slight increase or no change in the performance
of classifiers when metadata and text are used together compared to when text
alone.

Answer to RQ1 - How does training and testing with metadata
a↵ect classification F1 score? Training on metadata results does not result
in a statistically significant increase in classification F1 score on the majority
of datasets tested.

5.2 Mixed vs. separated apps within data splits (RQ2)

Following from our results in RQ1, we do not use metadata in our classification
experiments for RQ2 and RQ3. Table 5 details the mean F1 scores of classifiers
from RQ2 for classifying bug reports and feature requests.

For the models which were trained on only one dataset, it can be seen that
app-separated splits have a lower F1 score than mixed-app splits for 5 out
of the 6 bug report datasets and 4 out of the 5 feature request datasets. For
bug reports, two of these di↵erences (B and E) were statistically significant to
p<0.05, while for feature requests, two (E and G) were significant. Moreover,
we see that only one of these di↵erences is significant to p<0.01 over these 11
di↵erences.

Answer to RQ2 - How does training and testing on feedback from
separate apps a↵ect classification F1 score? We find that in most cases,
there is a small increase in classification F1 score when evaluating classifiers
on feedback on the same apps that are contained in their training data. How-
ever, we find that only a minority (4/11) of datasets exhibited a statistically
significant di↵erence between being split along app lines compared to being
split randomly. We therefore find that there is not necessarily always a jump in
performance when evaluating on feedback from the same apps as was available
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A B C D E F G

Train A 0.413 0.315 0.430 0.595 0.140 0.301
Train B 0.628 0.311 0.716 0.690 0.267 0.425
Train C 0.540 0.551 0.585 0.668 0.173 0.408
Train D 0.330 0.465 0.278 0.541 0.158 0.391
Train E 0.467 0.364 0.185 0.399 0.203 0.439
Train F 0.191 0.177 0.108 0.282 0.161 0.212
Train G 0.645 0.581 0.324 0.624 0.817 0.317
Train LOO 0.694 0.704 0.422 0.781 0.792 0.344 0.493
Zero shot 0.653 0.645 0.360 0.712 0.743 0.394 0.692
Single dataset - mixed 0.764 0.725 0.357 0.856 0.875 0.455 0.704

Table 6 F1 scores for classifying bug reports in RQ2. Details the performance of being
trained on one dataset and tested on another, as well as the performance of the “leave-one-
out” (LOO) model, the zero-shot model, and the model trained on the same dataset as it
is tested on. Note that the “Single dataset - mixed” model has been trained on in-domain
data (i.e. the training set associated with the test dataset).

B C D E F G

Train B 0.147 0.450 0.439 0.156 0.213
Train C 0.138 0.159 0.148 0.056 0.237
Train D 0.314 0.154 0.211 0.119 0.176
Train E 0.000 0.000 0.000 0.000 0.000
Train F 0.055 0.007 0.028 0.036 0.021
Train G 0.314 0.213 0.356 0.356 0.127
Train LOO 0.406 0.281 0.527 0.445 0.148 0.274
Zero shot 0.385 0.296 0.365 0.479 0.153 0.522
Single dataset - mixed 0.468 0.544 0.653 0.642 0.270 0.597

Table 7 F1 scores for classifying feature requests in RQ2. Details the performance of being
trained on one dataset and tested on another, as well as the performance of the “leave-one-
out” (LOO) model, the zero-shot model, and the model trained on the same dataset as it
is tested on. Note that the “Single dataset - mixed” model has been trained on in-domain
data (i.e. the training set associated with the test dataset).

in training, and that in a majority of cases tested, such a jump is statistically
insignificant.

5.3 Testing on separate datasets (RQ3)

Table 6 and Table 7 details the mean F1 scores of separate-dataset classifiers
from RQ3 for classifying bug reports and feature requests, respectively.

As can be seen for both bug report and feature request classification, F1
score for any one given test dataset can vary wildly depending on the dataset
of the training data. For bug report classifiers, we observe that the classifier
trained only on dataset G training data (tweet user feedback) performs best
on 4 of the 6 test datasets it is applied to. For feature request classifiers, the
classifier trained only on dataset B (app review data) performs best on 4 of
the 5 datasets it is applied to. The classifier trained in dataset F (forum data)
performs worst on all test datasets it is applied to compared to other classifiers
for bug reports. The classifier trained in dataset E (app reviews) performs
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Label type Classifier A B C D E

Bug reports
App LOO 0.633 0.654 0.418 0.744 0.771
LOO 0.694 0.704 0.422 0.781 0.792

Feature requests
App LOO NA 0.378 0.206 0.495 0.422
LOO NA 0.406 0.281 0.527 0.445

Table 8 F1 scores of leave-one-out (LOO) and app review only leave-one-out (App LOO)
classifiers across the five app review evaluation datasets

worst on all test datasets for feature requests. Overall, every classifier trained
on one dataset and evaluated on a separate dataset achieves lower classification
performance compared to models trained and tested on the same dataset.

In comparison to the models trained on only one (di↵erent) dataset, the
leave-one-out classifier performs best on 6 of the 7 bug report datasets and
5 out of 6 feature report datasets that it is applied to. Compared to the
model trained and tested on the same dataset (“Single dataset - mixed”),
the leave-one-out classifier performs slightly worse on all but one dataset.
An independent t-test between the leave-one-out and the “Single dataset -
mixed” bug report classifier performances results in p-values of 0.122, 0.139,
0.194, 0.000, 0.027, 0.011, and 0.001 for Datasets A-G. The p-values for feature
request classification performance are 0.225, 0.001, 0.013, 0.011, 0.002, 0.000
for datasets B-G. Therefore, we find that in a majority of cases, the di↵erence
in classification performance between the leave-one-out classifier and the in-
domain trained model is statistically significant to p<0.05.

Table 8 shows the compared F1 scores of both the leave-one-out classifier
and the app review only leave-one-out classifier. We can see that the app only
classifier performs similarly, but slightly worse, than the full leave-one-out
classifier across all datasets.

The zero-shot classifier performs better than any of the single-dataset out-
of-dataset for 5 out of the 7 bug report datasets and 4 out of the 6 feature
request datasets. The zero shot model exceeds the performance of the leave-
one-out models for the test sets of Dataset F and G (forum posts and tweets)
for bug reports, and 4 out of 6 datasets (C, E, F, and G) for feature requests.
Therefore, zero shot models perform best relative to other models on datasets
of distinct feedback channels. An independent t-test between the zero shot
classifier and the “Single dataset - mixed” classifier performances results in
p-values of 0.001, 0.000, 0.952, 0.000, 0.000, 0.098, and 0.141 for Datasets A-
G, respectively. The p-values for feature request classification performance are
0.053, 0.003, 0.000, 0.020, 0.000, 0.003 for datasets B-G. As with the leave-one-
out classifier, we find that in a majority of cases, the di↵erence in classification
performance between the zero shot classifier and the in-domain trained model
is statistically significant to p<0.05.

Table 9 shows the recall and precision alongside the F1 scores for the
zero shot classification of both bug reports and feature requests. While we
have chosen 0.5 as our probability threshold between true and false labels in
the zero shot classification evaluation, we find that recall is much higher than
precision for feature requests in all datasets, indicating that a higher threshold
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Label type Metric A B C D E F G

Feature

request

Recall NA 0.890 0.522 0.779 0.731 0.739 0.870
Precision NA 0.246 0.208 0.239 0.359 0.085 0.373
F1 NA 0.385 0.296 0.365 0.479 0.153 0.522

Bug

report

Recall 0.518 0.660 0.391 0.681 0.634 0.447 0.712
Precision 0.884 0.630 0.336 0.748 0.898 0.354 0.673
F1 0.653 0.645 0.360 0.712 0.743 0.394 0.692

Table 9 Precision, recall and F1 score of zero shot classification for both bug reports and
feature requests

value may result in a higher F1 score. However, we do not find this trend to
be as clear in bug report classification, with only four out of seven datasets’
recall exceeding the precision.

Answer to RQ3 - How does training and testing on feedback from
separate datasets a↵ect classification F1 scores Training and testing a
user feedback classifier on feedback from separate datasets results in overall
lower performance than training and testing on the same dataset. However,
this lower performance can be improved upon by models trained on multiple
datasets or by zero-shot text classification models.

6 Discussion

This section discusses the results of this work and their implications. Firstly,
the e↵ect of training and testing on separate apps is discussed. Then the e↵ect
of training and testing on separate datasets is described. Finally, the e↵ect of
using metadata in user feedback classifiers is analysed.

6.1 RQ1 - Classifying with metadata

Our findings for RQ1 are that classification performance is modestly, but not
significantly, improved when using metadata. This finding is in contrast to
previous findings which reported the use of metadata on feedback classifica-
tion, in which metadata was shown to have a positive impact on classification
performance [23,36]. We theorise that this may be due to the fact that the
state-of-the-art classifiers that we used contain millions of parameters [9], com-
pared to very few parameters available in the classical machine learning models
used in these earlier works. With this increased capacity, our model may be
better able to infer metadata from the text itself (for example low review
ratings would also be associated with more negative sentiment in the text),
which means that having this information explicitly provided would not have
much of an e↵ect on the final prediction. We therefore recommend that the
use of metadata as a feature should be reviewed within text-based software
engineering machine learning tasks with the advent of new, very capacious
language models such as BERT (Bidirectional Encoder Representations from
Transformers). Without the use of what appears to be largely superfluous
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metadata, these models are better able to be applied to di↵erent feedback and
to new feedback channels, where metadata may di↵er.

We have shown that metadata does not a↵ect performance significantly
across a majority of datasets in the classification of bug reports and feature
requests, but it is an open question as to how metadata would a↵ect other
classes of feedback. It is for future work to investigate a fuller picture as to
which classes benefit most and least from use of metadata in their prediction.

6.2 RQ2 - Mixed vs. separated apps within data splits

Our results show an increase in F1 score when using the mixed configuration
(random sampling across data splits allowing the same app to have feedback in
both training and testing sets) over the separated configuration (di↵erent apps
in the training and testing sets) in 9 of the 11 cases evaluated. We theorise
that we obtain these results because training on feedback from one app allows
the classifier to better model that app’s feedback, making it better able to
predict the class of similar feedback from that app. However, we only find
a minority of these di↵erences are statistically significant, meaning that we
do not conclude that training and testing on the same app’s feedback has a
meaningful e↵ect on classification performance in aggregate. We observe that
the three datasets which do exhibit statistical di↵erences (Datasets B, E, and
G) all have a smaller number of apps per dataset compared to the datasets
with no statistical di↵erences (Datasets A, C, and D). We postulate that this
could be due to the fact that a greater number of apps within the training
data allows for a classifier to better generalise to new apps, and to not overfit
to the apps it has been trained on. However, we do not find this trend to be
robust, with only one dataset (Dataset E) displaying a statistically significant
di↵erence across both classification tasks studied (classifying bug reports and
feature requests). Therefore, it is for future work to evaluate the e↵ect of the
number of apps included in the training data on classifier generalisability to
new apps.

Overall, we found little di↵erence between evaluating a classification model
on feedback from unseen apps compared to evaluating on feedback from the
same apps that it was trained on. This finding is made across both models
classifying bug reports and feature requests. This result suggests that model
evaluation as is currently carried out within the literature (i.e. not specifying
that train, validation, and test splits must contain feedback from separate
apps) can be seen to be a good predictor of performance of a classifier on unseen
apps from within a dataset. This hints at potential real-world applicability of
these models in that they could be used on feedback from unseen new apps
(but crucially from the same channel and data-gathering process) without a
significant expected drop in performance.

Another outcome of these experiments is that the classification F1 score can
range from high (greater than 0.8) to low (less than 0.5). When a classifier has
low absolute classification performance, their utility in finding requirements
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is limited. This finding highlights the fact that automatic classification using
current technology is not universally useful across all feedback datasets. The
fact that many of these values are slightly lower than their literature quoted
values could possibly be due to the fact that we decided against doing extensive
hyperparameter tuning when training our classifiers. Reasoning and discussion
of this is given in Section 7. Finally, the lower classification performance across
most of the datasets for classifying feature requests compared to bug reports
is a trend that can be broadly seen throughout the literature, and calls into
question exactly why a bug report is so much easier to identify (from a machine
learning perspective) compared to a feature request.

6.3 RQ3 - Testing on unseen datasets

In RQ3, we found that a model trained on one dataset and then applied to
another dataset achieves worse performance than a model trained and tested
on the same dataset. This is not a surprising finding, given that class balance
and labelling methods vary slightly between datasets. However, it raises an
important question: How informative are the predictions of these models when
used in the real world? A dataset of user feedback for a given software project
is not guaranteed to have a certain class balance, and a given researcher or
developer is not guaranteed to consider a piece of feedback to contain a bug
or feature request in the same way that the training data labellers did.

Our results with the leave-one-out models show better performance, in
contrast. While the leave-one-out models perform worse than models trained
and tested on the same data, they perform better and are more consistent
compared to models trained on one dataset. The leave-one-out models also
perform better compared to the zero shot classifier except for feedback from
an unseen channel (tweets and forum posts) at training time. This indicates
that while leave-one-out classifiers are useful, zero shot classifiers are more
appropriate for classifying feedback from unseen feedback channels. Of partic-
ular note is the fact that in some cases, either the leave-one-out classifier or
zero-shot classifier performs better than or not statistically significantly worse
than the in-domain classifier for both bug report and feature request classi-
fication. This hints at the fact that in some cases, there may actually be no
need to do in-domain training, and that zero-shot or out-of-domain pre-trained
classifiers may su�ce for classifying user feedback. Future work could assess
exactly in which situations this would be most e↵ective, and how this could
be implemented.

It is also an open question as to how an ensemble of the leave-one-out and
zero shot classifiers would perform in our evaluation. Such a classifier could
potentially combine the strengths of both classifiers to be robust to feedback
from unseen feedback channels while maintaining performance on app reviews.
It remains for future work to determine the e↵ectiveness of such an approach.

We also find that the zero-shot classification probability threshold may be
too low for feature request classification. In this work, we decided to set our
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probability threshold to 0.5 as a true “zero shot” classification configuration.
We assume no prior knowledge of which threshold would be most appropriate
for a given dataset, but we observe that for feature request classification, this
threshold may be too low across all datasets, and thus may be generalisable
to feature request classification more generally. It is for future work to explore
which probability threshold is most e↵ective at correctly classifying di↵erent
types of user feedback.

Another result of this work is that the leave-one-out classifier trained only
on app review data performed worse than the leave-one-out classifier trained
on all other available datasets. This highlights the importance of more and
potentially more varied data for generating classifiers that generalise across
datasets.

These results suggest that user feedback analysis tools will achieve highest
performance if before use they first require a sample of labelled user feedback
from the developer who intends to use the tool (i.e. use in-domain training
data). This could be done through an active learning approach, such as was
explored by Magalhães et al. [24], in order to limit the amount of labelled data
required. However, a tool that requires no further labelled data before being
used can still achieve good performance if it is either: trained using a labelled
feedback dataset from the same feedback channel; or a zero-shot text classifier
if no such dataset exists.

With these results, we recommend that future creators of user feedback
analysis tools train a classification model using as much labelled user feedback
as possible, especially using data from the same channel as its intended use-
case. If such a dataset does not exist and is prohibitively expensive to create,
then we recommend using zero-shot classification models instead.

In order to aid future user feedback analysis tools, we make bug report
and feature request classifiers available for use on the Huggingface channel.
We aim to make these available with a link upon publication.

6.4 Implications for RE practitioners

These results help the developers of RE tools to better understand exactly
when, where, and how they can use their automated classifiers for engineering
better requirements, and ultimately enable RE practitioners to develop better
software.

With this work, RE tool developers know that including metadata in a user
feedback classifier is not essential for improved classification performance.

These results also show that practitioners can often use out-of-the-box
tools (i.e. classifiers that do not need the user to provide their own training
data before they can be used) without a massive loss in classification accuracy
compared to a classifier trained on data the requirements engineer provided.
This could potentially increase the agility of these classifiers, as they would
not require a development cycle to prepare and train them, and thus could be
used on feedback quickly.
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Since these classifiers are not trained on their user’s data, they will be
less prone to overfitting that data. Thus, if the nature of the user feedback
for a given product suddenly changes (i.e. the data distribution diverges to
that of the training data), then these classifiers may be more robust to this
change compared to traditionally trained classifiers. An ability to adapt to
new situations would certainly make these tools more useful to requirements
engineers, because times where feedback suddenly changes (e.g. a development
team suddenly get swamped with angry Tweets because of a buggy update)
is when these classifiers are most useful in the context of RE.

7 Threats to validity

One threat to the validity of this work is that the results of this study many
not generalise to the classification of other feedback classes. This study only
examined the performance of classification models on classifying feedback into
the binary labels of “Bug report” or “No bug report” and “Feature request”
or “No feature request”. These two labels were chosen due to the fact that
they were the only two consistent labels across multiple datasets. Being able
to automatically detect bug reports and feature requests from users is one
of the key promises of utilizing online user feedback for requirements engi-
neering [18]. Furthermore, the abundance of these labels in various literature
datasets highlights how useful these labels are considered to be. Therefore,
focusing on the task of classifying bug reports and feature requests can still
be seen to be valuable to those looking to engineer requirements using user
feedback. It is for future work to replicate this research on other label types.

When using di↵erent datasets in our experiments for RQ3, we considered
each individual dataset to be independent of each other dataset, and thus
“unseen” to the classifier at prediction time. However, some datasets do share
apps within their dataset (i.e. two datasets can contain feedback from the same
app). The dataset which contains the most shared apps is Dataset B, where
three of the seven apps (Picsart, Dropbox, and WhatsApp) are shared with
other datasets: Dataset C (Picsart and WhatsApp), Dataset D (Picsart and
Dropbox), and Dataset G (WhatsApp). These apps make up a minority of the
feedback (1857/4385 ⇡ 42.3%) contained within Dataset B. When considering
the impact of this overlap for training the leave-one-out classifiers, the feedback
from these three apps make up a small minority (⇡ 2.8%) of feedback within
the combined datasets A, C, D, E, F and G, which was used for training.
Since this is a minority of the classifier training dataset, coupled with the
fact that we do not find compelling evidence that training and testing on
feedback from the same app within datasets is useful across a majority of
cases tested in RQ2, means that we do not expect this to have a large e↵ect
on the validity of our findings in RQ3. We also observe the leave-one-out
classifier exhibiting comparatively the same classification accuracy di↵erential
compared to the single dataset, zero shot and in-domain classifiers that are
observed in other datasets, indicating little classification improvement is made
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by partially training on feedback from the same apps. However, we do consider
that this could be a factor in the relatively good performance of the leave-one-
out classifiers, and we leave it for future work to investigate the e↵ect of shared
apps on classification performance of inter-dataset classifiers more thoroughly.

Beyond the results in RQ2, we also consider the impact of comparing the
results of classifiers trained on datasets with a varied number of both apps and
feedback. While we do not observe a meaningful di↵erence between results in
any of the research questions related to dataset size, we do still consider that
dataset size could have an e↵ect on the generalisability of RE classifiers. Since
all of our datasets have between hundreds and thousands of pieces of feedback,
we cannot know if a dataset with several orders of magnitude more labelled
feedback may perform better at classifying requirements on unseen datasets.
While datasets of this size are not currently publicly available within the RE
literature, it remains possible that a very large corpus of noisily labelled data
could be created to train a classifier, at which point the generalisability of
said classifier could be fundamentally di↵erent to those examined in our work.
Therefore, while the experiments in this work do not find any e↵ect of dataset
size on the transfer performance of RE classifiers, it remains for future work to
further investigate this further, particularly with respect to very large datasets.

As stated in section 4.1, we were not able to guarantee the 64:16:20 training
: validation : testing data split ratio for the separated configuration compared
to the mixed configuration due to the constraint of not having feedback from
the same app in both splits of feedback. This could threaten the validity of
our results in RQ2 due to the fact that the separated configuration data splits
could be highly skewed compared to the mixed configuration. We mitigate this
hazard in two ways - firstly, by removing datasets with too few apps to be able
to e↵ectively split into the 64:16:20 split (notably Dataset F, which has only 2
apps), and secondly by performing five fold cross validation so that potential
discrepancies in dataset split size are averaged out over five runs.

Another potential threat to the validity of this work that we did not carry
out any data balancing when creating our classifiers. Multiple studies within
the literature, including those associated with datasets used in this work [23,
36], carried out data balancing before training their classifier. This is done to
counteract the fact that user feedback may have classes of interest which are
a small minority of overall feedback, and so a model is unable to learn the
characteristics of this class if most of its training data is from other classes.
However, studies on datasets outside of the domain of user feedback classifica-
tion have shown that classifiers can perform well even when trained on highly
unbalanced data [3]. Moreover, Henao et al. demonstrated that undersampling
when training a deep language model has no major impact on the F1 score of
the classifier [17]. It is for this reason that we decided against balancing our
data, and it is for future work to fully explore the impact of data balancing
on user feedback classification.

A final threat to validity considered was the lack of hyperparameter tuning
done for any one model, which may have led to lower absolute classification
performance. While optimising the hyperparameters for any one app or dataset
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may have led to marginal performance gains, we found that in early exper-
iments changing hyperparameters has little impact on overall classification
performance. Our research questions also focused on the relative di↵erences
between machine learning treatments, rather than absolute values, and so we
would expect that any performance improvements that would be introduced
by hyperparameter tuning would not a↵ect our overall conclusions. Further-
more, one of the aims of this work was to investigate how well models apply
to unseen data domains. Tuning hyperparameters for the model’s training do-
main may overfit it and disadvantage it when applied to out-of-domain data.
It is for this reason we decided against extensive hyperparameter tuning.

8 Conclusion

The technical quality of software is meaningless if it does not meet the needs of
its intended users. Requirements engineering (RE) o↵ers a way to gather the
requirements of users, and has been shown to improve software quality gener-
ally. This work builds on the RE literature in understanding and automatically
processing online user feedback for use in developing and maintaining software.
Previous work has shown that it is possible to create text classifiers that can
automatically detect bug reports, feature requests, and other requirements rel-
evant information in user feedback for use in the software development cycle.
This work contextualises these past results, and informs the future improve-
ment of these classifiers. This has led to three broad contributions.

Firstly, we demonstrate that classification of both bug reports and fea-
ture requests do not notably benefit from metadata (app ratings, forum post
position, etc.) as features.

Secondly, we showed that there can be a small drop in classification per-
formance when applying trained classifiers to feedback from unseen apps for
some datasets. However, this trend was found to be statistically insignificant
across the majority of datasets tested.

Finally, this paper demonstrated the classification performance of mod-
els which had not been trained on the dataset of given test set. We found
that in the scenario where no data from a specific dataset is used to train a
classifier, training a model on multiple other datasets achieves better perfor-
mance than training on any one dataset alone. Moreover, we found that these
multiple-dataset models are most applicable to datasets in which it contains
feedback from channels which the model has been trained on (app reviews).
We found that for other channels (tweets and forums), which did not have
another dataset to represent it in the training data, zero-shot classification
models performed better.

Overall, these three results can inform the creation of better user feedback
analysis tools so that, ultimately, developers will better understand the needs
of their users and create higher quality software.

We have made the replication package for this study available online8.

8 https://doi.org/10.5281/zenodo.5733504
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