
Understanding Breaking Changes in the Wild
Dhanushka Jayasuriya

University of Auckland

Auckland, New Zealand

djay392@aucklanduni.ac.nz

Valerio Terragni

University of Auckland

Auckland, New Zealand

v.terragni@auckland.ac.nz

Jens Dietrich

Victoria University of Wellington

Wellington, New Zealand

jens.dietrich@vuw.ac.nz

Samuel Ou

University of Auckland

Auckland, New Zealand

sou323@aucklanduni.ac.nz

Kelly Blincoe

University of Auckland

Auckland, New Zealand

k.blincoe@auckland.ac.nz

ABSTRACT

Modern software applications rely heavily on the usage of libraries,

which provide reusable functionality, to accelerate the develop-

ment process. As libraries evolve and release new versions, the

software systems that depend on those libraries (the clients) should

update their dependencies to use these new versions as the new

release could, for example, include critical fixes for security vul-

nerabilities. However, updating is not always a smooth process, as

it can result in software failures in the clients if the new version

includes breaking changes. Yet, there is little research on how these

breaking changes impact the client projects in the wild. To identify

if changes between two library versions cause breaking changes

at the client end, we perform an empirical study on Java projects

built using Maven. For the analysis, we used 18,415 Maven arti-

facts, which declared 142,355 direct dependencies, of which 71.60%

were not up-to-date. We updated these dependencies and found

that 11.58% of the dependency updates contain breaking changes

that impact the client. We further analyzed these changes in the

library which impact the client projects and examine if libraries

have adhered to the semantic versioning scheme when introducing

breaking changes in their releases. Our results show that changes in

transitive dependencies were a major factor in introducing breaking

changes during dependency updates and almost half of the detected

client impacting breaking changes violate the semantic versioning

scheme by introducing breaking changes in non-Major updates.

CCS CONCEPTS

• Software and its engineering → Reusability; Software li-

braries and repositories;Maintaining software; Software evo-

lution.

KEYWORDS

software libraries, software dependency, breaking changes, soft-

ware evolution

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598147

ACM Reference Format:

Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly

Blincoe. 2023. Understanding Breaking Changes in the Wild. In Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, United States. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598147

1 INTRODUCTION

Software libraries can be an invaluable asset to client projects, pro-

viding reliable source code that saves development costs [8, 18, 28].

Like any other software, these libraries also evolve, releasing new

versions [36]. It is crucial for the client projects to update their

dependencies to the latest versions to access improved features and

avoid potential risks associated with outdated software dependen-

cies [5, 32].

However, updating a dependency to the latest version could also

cause software failures in the client projects if the new version

includes backward incompatible changes, also known as Breaking

Changes (BCs). For example, deleting or renaming an artifact, like

a method or class, being used by the client would cause BCs. BCs

are often categorized as source, binary, and behavioral [13]. Source

BCs cause compilation errors, binary BCs cause linkage errors, and

behavioral BCs cause the software to behave differently at run time.

Semantic versioning [37] is the most common approach followed

by library developers to inform dependent clients whether a new

version is backward compatible with the previous version [14, 32,

39, 48]. This versioning scheme uses a three-digit number format of

Major.Minor.Patch, and requires the Minor and Patch releases to

be backward compatible. However, research has found that libraries

often violate the semantic versioning scheme and introduce BCs

under Minor or Patch releases [18, 32, 39].

Prior research analyzed BCs introduced between library ver-

sions [15, 26, 29, 39]. However, it is also important to examine the

impact of BCs on the client projects, since not all BCs will cause

failures in the clients, for example, if the change is in part of the

code not used by the client. Raemaekers et al. [39] and Ochoa et

al. [32] examined the impact of BCs on client projects, but their

analysis was limited to binary BCs, so did not include a compre-

hensive impact of both source and binary breaking changes. These

studies also focused on BCs that occur in adjacent library versions,

which may underestimate the impact on real clients who are likely

to be more than one release behind [27, 41, 44].

In this study, we examine the impact of both source and binary

BCs on client projects, and we also examine the BCs that clients

https://doi.org/10.1145/3597926.3598147
https://doi.org/10.1145/3597926.3598147

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe

would be faced with “in the wild” by examining the set of BCs they

would face if they chose to update to the latest available stable

version from the version they currently depend on. We perform a

large-scale empirical analysis of Java projects which use Maven as

their build tool. We analyzed 18,415 Maven artifacts, which declare

142,355 dependencies related to 7,454 Maven libraries. We were

guided by the following four research questions:

RQ1: To what degree are the dependencies in open-source

repositories up-to-date? We examined how many clients have

kept their dependencies up-to-date based on the latest versions

available. We also classify the updates available as Major, Minor,

and Patch updates to understand the level of update required.

RQ2: How often do client-impacting BCs occur in the wild?

For the clients with outdated dependencies, we updated the declared

dependencies to the latest stable version available. After the update,

we verified if the update introduced BCs to the clients and deter-

mined the percentage of clients affected by BCs. We investigated

the exact library version in which the client-impacting BCs were

introduced.

RQ3: What are the common types of client-impacting

source BCs? For a sample of the client-impacting BCs, we an-

alyze in depth the reason for the BC to understand the types of BCs

that impact the clients.

RQ4: Are client-impacting source BCs introduced in non-

Major library releases?We classify the versions which introduced

BCs in client projects according to the semantic versioning level

and report the results also based on the type of BC for some of the

common types of client-impacting BCs.

To the best of our knowledge, this is the first large-scale study

to examine the impact of both source and binary BCs on client

projects.

Our results show that 11.58% clients would encounter BCs if

updating their dependencies to the latest stable version of a library.

We find that transitive dependency changes are a leading cause for

client-impacting BCs, indicating better support is needed for help-

ing project maintainers to become aware of the impact of changes

in their own dependencies on their client projects. In addition, it

was observed that 41.58% of the BCs that affected clients occurred

during non-Major dependency updates. This highlights the need

for library developers to exercise greater caution in their version-

ing practices and selecting the changes introduced in each library

release.

2 BACKGROUND

This section gives the background of this work, which aims at

studying the impact of source and binary BCs on client projects.

Libraries consist of logically grouped functionality exposed as

APIs, to be utilized by client projects. Like any other software, li-

braries also evolve and release new versions. Each version might,

for example, add or modify features, fix bugs, or improve the per-

formance and security of the library. A dependency specifies the

version or range of versions of a library that the client code relies

on.

Libraries can also be clients of other libraries. As such, a client

can have two types of dependencies: direct and transitive. Direct

dependencies are declared in the client’s build configuration and

are required for the project to build because the client code “di-

rectly” invokes the library’s API. Transitive dependencies (also

called indirect) are not declared in the client’s build configuration

but are required for its direct dependencies to build and run [25].

Since transitive dependencies will also have their own direct de-

pendencies, this creates a dependency tree, creating many levels of

transitive dependencies.

Breaking changes (BCs) are changes made to a software library

that might introduce incompatibilities in clients that were built

using an earlier version of the library. Whether a BC will create

incompatibilities with a particular client depends on whether the

client’s code is using the APIs that are affected by the change. BCs

can be broadly defined into two categories syntactic and behavioral

(semantic) BCs. Behavioral BCs lead to behavioral incompatibilities,

which change the behaviour of the client code when running with

the newer library version. Behavioral incompatibilities can only be

detected at runtime and require extensive test suites. In this study,

we focus on syntactic BCs only.

Syntactic BCs can be further divided into: source and binary

BCs. Source BCs lead to source incompatibilities, which are ex-

posed at compile time. The client source code must be modified

to use the new version of the library. Binary BCs lead to binary

incompatibilities, which are exposed at load time when linking

the application and library binaries [20]. Both source and binary

incompatibilities are related to syntactical changes applied to the

API, which can typically be detected through static analysis. For

example, source and binary BCs include changes made to an API

signature, adding or removing super types of a class, or deleting a

method, class, or an entire package.

While often syntactic BCs are both source and binary incom-

patible, there are subtle differences. For instance, Figure 1 shows a

source BC made in the ch.qos.logback:logback-core library be-

tween version 1.1.0 and 1.1.1, which throws a new exception. For

this change, clients must either catch or rethrow this newly thrown

exception. Unless the client is doing this already (for instance, by

catching Exception), this will result in a compilation error. However,

since throws clauses are not part of the method descriptor used

during linking, this update remains binary compatible (though it

can cause a crash at runtime if unhandled exceptions are thrown).

Figure 2 shows a change which specializes the return type of a

method in the net.sourceforge.owlapi:owlapi-distribution li-

brary between version 4.3.1 and 5.0.0. This change is strengthen-

ing a postcondition, and is therefore source compatible. Callers are

expecting a Collection to be returned, and as List is a subtype of Col-

lection, the contract is upheld and the code will compile. However,

in bytecode, the return type is part of the method descriptor used to

identify a method during linking, and therefore the change is binary

incompatible. More precisely, clients compiled with the old version

will encounter a NoSuchMethodError when being executed with

the new version of the library without being recompiled first [34].

These libraries require a mechanism to indicate to the clients

using their APIs what changes (e.g., BCs) are included in each new

Understanding Breaking Changes in the Wild ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

50 - public String transform() {

58 + public String transform() throws ScanException {

51 59 StringBuilder stringBuilder = new StringBuilder();

Figure 1: Binary compatible but Source Breaking Change

ch.qos.logback:logback-core when updating from version

1.1.0 to 1.1.1. (https://github.com/qos-ch/logback/compare/v_

1.1.0...v_1.1.1)

95 - @Nonnull

96 - public Collection<Clause> getClauses(String tag) {

97 - Collection<Clause> cls = new ArrayList<>();

119 + public List<Clause> getClauses(@Nullable String tag) {

120 + List<Clause> cls = new ArrayList<>();

Figure 2: Source compatible but Binary Breaking Change

under net.sourceforge.owlapi:owlapi-distribution when up-

dating from version 4.3.1 to 5.0.0. (https://github.com/owlcs/

owlapi/compare/owlapi-parent-4.3.1...owlapi-parent-5.0.0)

version. For this, library developers often follow the semantic ver-

sioning scheme [32]. Semantic Versioning
1
provides a standard

way of communicating the types of changes in a new version of

a library, which makes it easier for developers to understand how

their software will be affected by a library update. The system

is based on a three-part numbering scheme: Major.Minor.Patch.

The numbers are assigned and incremented based on the following

rules:

• Major version: Incremented if there are changes that are

not backward compatible with previous versions.

• Minor version: Incremented if new features are added that

are backward compatible with previous versions. This in-

cludes adding new functionality, improving existing features,

or making non-BCs to the API.

• Patch version: Incremented if backward-compatible bug

fixes or minor changes are introduced.

This study analyses Java projects that use Apache Maven [19]

as their build automation tool. Project Object Model (POM) is the

fundamental unit of work in Maven, allowing the tool to handle

the project’s build and documentation from a central location. The

pom.xml file handles this task and contains the project’s metadata,

dependencies, and additional configurations. One of its core features

is dependency management, which will automatically download

the required software artifacts and any of its transitively dependent

artifacts from a remote repository and store them in a local repos-

itory. Maven Central
2
is the most popular remote repository,

which maintains millions of software artifacts.

A Maven artifact can follow a parent-child structure where a

parent can contain multiple child artifacts. Each software artifact

is uniquely identified by GAV coordinates, which are the groupid

(G), representing the organization or group that created the de-

pendency, the artifactid (A) representing the identifier for the

artifact within the group, and the version (V), which is the version

of the artifact. This coordinate could also include a classifier that

1
https://semver.org/

2
https://search.maven.org/

distinguishes the artifacts built using the same pom.xml but varying

in terms of the functionality provided by the underlying code. The

coordinates can also include a scope attribute that will determine

at which life-cycle phase (build, runtime, test) the dependency is

added to a project’s classpath. The dependencies are declared in

the <dependencies> section in the client’s pom.xml file. Listing 1

illustrates how a dependency is defined within the pom.xml file in

a client.

<dependency>

<groupId>org.yaml</groupId>

<artifactId>snakeyaml</artifactId>

<scope>compile</scope>

<classifier>android</classifier>

<version>1.30</version>

</dependency>

Listing 1: A Dependency Block in a pom.xml file

3 STUDY DESIGN AND RESULTS

This section describes the study’s design for data collection and

analysis. Figure 3 provides an overview of the steps we followed in

the study. We collected repositories containing Maven artifacts and

analyzed their dependency usage. Next, we updated the outdated

dependencies one at a time and compiled the artifacts. For each

dependency that failed to compile, we extracted the compiler failure

and mapped it with the change in the library which caused this

incompatibility. We also used a static analysis tool to capture the

client-impacting syntactic BCs. Finally, we analyzed how library

updates at different semantic version levels introduce these impact-

ful BCs. The study results, data, and scripts used to acquire and

analyze the data are available in the replication package [23].

3.1 Experiment Setup

3.1.1 Artifact Collection: For the study, we examine Java reposi-

tories as Java is one of the popular statically typed programming

languages and since there are many static analysis tools developed

for Java that can detect both source and binary BCs.

We collected the repositories for the analysis using the Libraries.-

io dataset [43], following similar research done in this area [1,

11, 22]. We used these repositories as the client projects for our

study. To ensure the quality of the repositories, we used the GitHub

API
3
to select repositories with at least five stars and that are not

a fork repository following similar research in this area [22, 30].

Next, we cloned the repositories selected to the local machine on

June 2021, giving us 20,711 repositories. We then selected only

the repositories that had configured Maven as their build tool by

searching for projects inside the repositories that maintained a

pom.xml file, resulting in 7,019 repositories for the study.

We consider only repositories that currently successfully compile

so that we can identify BCs through new compilation errors when

manually updating dependency versions in our analysis of RQ2.

The compilation of the projects was time-consuming as it required

resolving the dependencies to the local repository. We did not

change the Maven local repository settings when resolving the

3
https://docs.github.com/en/rest

https://github.com/qos-ch/logback/compare/v_1.1.0...v_1.1.1
https://github.com/qos-ch/logback/compare/v_1.1.0...v_1.1.1
https://github.com/owlcs/owlapi/compare/owlapi-parent-4.3.1...owlapi-parent-5.0.0
https://github.com/owlcs/owlapi/compare/owlapi-parent-4.3.1...owlapi-parent-5.0.0

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe

Artifact Collection

101,927 Dep.Updates
suggested

RQ1: Dependency
Up-to-dateness

mvn display-dependency-
updates

Latest dep. versions
suggested

BCs between
library versions
(Japicmp tool)

BCCompiler
Error

Map

RQ3: Common BCs

Crash Log

RQ4: Library Compliance to
Semantic Versioning Scheme

Major Minor Patch

X.Y.Z
Update and Recompile Dep. for all

versions

RQ2: Impact of BCs

V1.0.1 V1.0.2 V2.0.1

FailSucc

V1.0.3 V1.2.0

Succ Fail

Fail

3,399
Maven
Repos

Compile

Succ.

18,415
Artifacts

20,711
GitHub

Java
Repos

Libraries.io

Compile

Succ.

SuccSucc
CompileUpdate

No
BCs

Libraries with BCs

% %%

Figure 3: Overview of the Study

dependencies to prioritize the project-specific repository settings if

configured in an individual project’s pom.xml file. If local repository

settings were configured for a project, these would take precedence

over the project’s pom.xml file, and Maven would download the

dependencies from the specified repositories.

We compiled the projects using Java 8 and reran the failing

projects using Java 11. We selected these Java versions because as

of June 2021, when the repositories were cloned, these two Java

releases and Java 7 were the only releases that received Long-Term

Support from Oracle. Since Java 7 was released in 2011, and most

of the projects we analyzed had the last commit to the project after

2011, we assumed that most of the projects would use Java 8 or 11.

After compiling the Maven projects using the Maven command,

3,211 and 188 repositories (3,399 repositories in total) were suc-

cessfully built on Java 8 and Java 11, respectively. Even though the

number of projects built on Java 11 was few, it increased the total

number of successfully built projects by 9%. Following the same

procedure, we then compiled each Maven artifact with a unique

GAV coordinate contained within these 3,399 repositories, resulting

in 18,415 Maven artifacts that successfully compiled. These Maven

artifacts will be the clients that we use for analysis. Hence, for the

purpose of this research, we will examine the dependencies speci-

fied in these clients and assess the individual impact of updating

each dependency, following a similar approach as conducted in a

prior study [21].

3.2 RQ1: Dependency Up-To-Dateness

In this section, we answer RQ1: “To what degree are the dependen-

cies in open-source repositories up-to-date?”

3.2.1 Method: For the 18,415 clients, we extracted 142,355 direct

dependencies using Maven commands. To identify if these direct

dependencies are up-to-date, we checked if new versions were

available for them using the display-dependency-update Maven

command. This command provides the latest versions for the depen-

dencies that are outdated. These latest versions that are suggested

could be either a Major, Minor, or Patch update. Some of the depen-

dencies suggested through this command included ‘alpha’, ‘beta’,

‘SNAPSHOT’, and ‘RC’ versions, which are not stable releases ac-

cording to the Maven Repository site and previous studies [32, 33].

Table 1: Dependency Updates Suggested Based on the Seman-

tic Versioning Level

Update Version

level

Number of updates Percentage of updates

Major 31,464 22.10%

Minor 46,376 32.58%

Patch 22,818 16.02%

Therefore, we omitted these unstable versions when considering

the latest versions for the libraries. For this study, we did not take

into account the analysis of Java as a dependency and the potential

impact of version changes on client projects, as Java versions are

widely recognized as being backward compatible [10]. Therefore,

for the research, we maintain the Java version as a constant based

on in which it was successfully compiled on.

For the outdated dependencies, to understand the degree of out-

datedness, we developed scripts to determinewhether the suggested

dependency version would require a Major, Minor, or Patch update.

3.2.2 Results: Considering the current versions and the latest

versions suggested for each dependency, we found that 71.60% of

the dependencies in these clients were not up-to-date. This is closer

to the findings of Salza et al. [41], who reported that 63% of the

external libraries are never updated in mobile applications.

Table 1 gives a summary of the updates suggested at each seman-

tic versioning level. Considering the total dependencies extracted

from the clients, Maven suggested a Major update for 22.10% of

the dependencies, a Minor update for 32.58%, and a Patch update

for 16.02% of the dependencies.

Another 537 updates recommended could not be programmat-

ically identified as to what semantic versioning level it could be

categorized because they did not follow the correct semantic ver-

sioning scheme. Examples of some of the unclassified version up-

dates are 9+181-r4173-1 -> 9-dev-r4023-3, 1.r.69-SNAPSHOT ->

1.r.69.20210929, 2.0.B1 -> 2.0.M1. Based on these results, depen-

dency updates were suggested for 11,744 artifacts which shows

that 43.79% artifacts had at least one outdated dependency. This is

similar to the study by Wang et al. [44], who found that 54.9% of

projects do not update half of their dependencies.

Understanding Breaking Changes in the Wild ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Answering RQ1: To what degree are the dependencies in
open-source repositories up-to-date? According to our anal-

ysis, 71.60% of the dependencies in open-source projects were

not up-to-date. For 22.10% of the dependencies, a Major update

was available, and for 32.58% and 16.02%, respectively, Minor

and Patch updates were suggested. Based on the artifacts used

for the analysis, 43.79% had at least one outdated dependency.

3.3 RQ2: Impact of BCs

In this section, we answer RQ2: “How often do client-impacting

BCs occur in the wild?”

3.3.1 Method: The next step in the research was to identify the

BCs introduced by APIs on client projects. We will consider all

Major, Minor, and Patch updates suggested in the previous section

because previous research concludes that BCs are introduced not

only in Major but in Minor and Patch versions as well [5, 32, 38].

We first identified BCs introduced due to source incompatibilities in

APIs. We updated the declared version of the dependencies in the

pom.xml to the latest versions suggested by Maven and checked

if the dependency update causes compilation errors. If the update

does cause a compilation error, it can signify that the new version

could contain a BC. We updated the dependencies to the latest

available stable version to mimic real world dependency updating.

If a project is updating an outdated dependency, it would more

likely select the latest stable release and not to the next adjacent

version.

We developed a script to update one outdated dependency at a

time in the pom.xml file and compile the client. We did this process

for each outdated dependency in each client. We could not auto-

matically update 31,464 dependencies, which is 22.10% of the total

dependencies, for reasons such as the dependency or its version

not being defined in the pom.xml or the dependency version being

declared as a constant value which affects the entire project version

and its dependencies. When updating the dependencies for clients

defined inside a parent client, the dependency could be declared

either in the child pom.xml file or the parent pom.xml file. There-

fore, based on where the dependency update was applied, the script

compiled either the child client or both the parent and child clients

to verify if the dependency update was causing compilation errors.

Using the execution log, we determined if the client compiled

successfully or not for each dependency update. Based on the build

status, if the build was successful, no source BCs were encountered

during the dependency update. Therefore, we marked it as ’Success-

ful’, and if the build failed, we marked it as ’Fail’. However, all these

build failures might not be related to source BCs introduced by the

libraries. There could be scenarios were a group of dependencies

are updated together since the dependency version is defined as

a common property for them and if latest version is not available

for all the libraries this would cause the build to fail. Therefore, to

identify if the build failure was related to the latest version being

unavailable and to find the exact version the build failure was in-

troduced, we recompiled the failed clients for the library versions

between the current and latest. For each dependency update that

encountered build failures, we wanted to identify the first version

that introduced this compilation error to identify when the BC was

first introduced and at which semantic versioning level. For this, we

collected all version numbers released by a library between the cur-

rent and the suggested breaking version using Maven Central [33]

repositories. Starting from the version after the current version, we

updated the declared dependency version and recompiled, one by

one, up to the latest version until the version that introduced the

BC was encountered.

To verify whether the BCs could also be identified through a

static analysis tool, we used the japicmp tool, which detects the

syntactic BCs introduced between two library versions. We selected

this tool since it has been used in prior research [31, 32] and the

tool’s GitHub repository
4
is continuouslymaintained, having its last

commit in March 2023 (as of May 2023). This tool takes two versions

of a jar file and runs a static analysis on the changes between the two

versions. It then classifies the changes as compatible or incompatible

and determines whether they are source and binary incompatible.

Since the japicmp tool requires the jar files of the libraries to

identify the syntactic BCs, we created a script to download all the

dependency jars from the Maven Central repositories using the

version numbers extracted previously. Then for each library, we

passed the adjacent library versions through the japicmp tool to

calculate the total source and binary BCs introduced through each

version update. Next, we counted all the source and binary BCs

to identify the total BCs that the versions introduced but did not

impact the clients.

To automatically detect if the BCs extracted from the japicmp

tool impact the clients, we identified the library functionality used

by these clients and checked if those functionalities contain BCs. To

identify the library calls used in the clients, we used the ASM Frame-

work [7]. ASM analyzed the bytecode generated for the clients and

extracted all the functional calls. Thenwe determined the functional

calls external to the clients while excluding the inbuilt Java func-

tionality. We mapped the external functional calls with the relevant

dependency by identifying all dependencies connected to the clients

using the Maven dependency tree. The dependency tree provided

both direct and transitive dependencies used by the clients and at

which level the transitive dependencies are connected to the client.

If the same library existed in different versions at different levels of

the dependency tree, we used the dependency mediation [19] tech-

nique to map the external call with the nearest dependency to the

client. This approach mapped all external calls to the dependencies

connected with the client.

We then matched the external calls of a library with all the

reports generated by the japicmp tool for each adjacent library

version to detect if BCs were detected for those calls. We only

considered the library calls made to the direct dependencies for the

analysis since this research only focuses on the impact of the BCs

raised through direct dependencies.

3.3.2 Results: Table 2 presents the number of dependencies that

could be automatically updated based on the total outdated depen-

dencies extracted under RQ1. Out of all outdated dependencies

69.50% of the dependencies could be automatically updated. This

contained both successful and failed dependency updates. Out of

the total dependency updates that could be automatically applied,

56,003, which is 79.05% of the updates, were successful, while 14,837,

4
https://github.com/siom79/japicmp

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe

Table 2: Dependency Update Results

Dependency Up-

date

Occurrence Percentage

Unable to update 31,085 30.49%

Successful 56,003 54.94%

Fail 14,837 14.56%

which is 20.97% of the updates, failed. Then we recompiled the de-

pendency updates that failed, attempting to use all library versions

between the current declared version and the latest available ver-

sion to identify which is the first version to cause a failure. After

recompiling the clients for versions between the current and the

latest, the breaking version of the library was the latest version

available for 12.58% dependency updates and was a version before

the latest for 87.42% of the dependency updates.

After analyzing the crash logs of these build failures, only 8,207,

which is 55.31% of the total build failures, contained a compilation

error in the crash log. This means that based on the total depen-

dency updates that failed and were successful, source BCs were

encountered for 11.58% of the dependency updates. The amount of

client-impacting source BCs is higher than found in previous re-

search [32, 39] which used the adjacent library versions to identify

impactful Binary BCs. It should be noted that this count includes

all unique dependencies, but in some cases, dependencies will be

bundled together (for example, a set of dependencies with a shared

groupid that are released together and must be updated together).

In some cases, a version parameter will be used in the pom.xml file

to ensure these sets of clients are updated together. There were 1,611

of the compilation errors that could be considered repetitive due to

counting each unique dependency rather than considering these as

a set. If we remove these compilation errors from the total number

of source BCs, we still find 9.31% dependency updates impact on

client projects, which is higher than previous research [32, 39]. For

the build failures which did not produce compilation errors, manual

analysis of a subset of these failures found that they were related

to unresolved dependency and maven configuration issues.

For the updates that contained compilation errors in the crash

log, we counted all the successful compilations when updating all

adjacent versions before encountering a build failure. Considering

these successful dependency updates with the number of times

compilation errors occurred during dependency updates, we find

that source BCs resulted in 4.35% of the updates when considering

all versions. This value represents the possibility an artifact will

encounter a source BC when updated to the adjacent version. This

is similar to the previous studies by Ochoa et al. [32] and Xavier

et al. [46], who updated dependencies to the adjacent versions and

reported results of 7.9% and 2.54% as client impacting binary BCs,

respectively. However, these may not be realistic numbers since

projects are more likely to update to the latest stable version when

performing dependency updates.

Using the library calls made by the client and the japicmp tool

output, we next checked if the version that the japicmp tool reports

as containing source BCs is similar to the breaking version captured

through extracting compilation errors. We did this to understand if

the japicmp tool provides consistent results compared to the results

we received through compiling the clients. 18.53% of the dependen-

cies that reported source BCs due to compiler errors were identified

by the japicmp tool as well. For 13.90% instances, the japicmp tool

reported source BCs before the compilation error occurred, and

for 4.81% instances after the compilation error occurred. Therefore,

the results from the japicmp tool do not align with the results we

received through identifying compilation errors. This is mainly

because the tool analyses the BCs in isolation and not the entire

artifact when making the decisions.

We next extracted source and binary BCs using the japicmp tool

for all the dependencies that could be automatically updated. For the

dependencies analyzed, the tool reported 9,221 binary BCs, which

is 13.01% of the total dependency updates, and 11,444 source BCs

which is 16.15% of the total dependency updates. The source BCs

detected through the japicmp tool are higher than the source BCs

detected by compiling the artifacts. This could be due to reasons

like the japicmp tool reporting a BC if the Superclass of a class

changed, even if the functionality inside the new Superclass is the

same as the previous Superclass and does not impact the client.

Another example is when a set of classes is removed from a library

and added as a dependency to the library, this will be reported as a

BC since the classes were removed. But in reality, those classes are

still available for the client as a transitive dependency. Therefore

some of the BCs reported by the japicmp tool are false positives.

Answering RQ2: How often do client-impacting BCs occur in
the wild? After updating a dependency in an artifact and com-

piling, the build failed for 11.58% of the dependency updates.

When we updated the dependencies incrementally to adjacent

versions and accounted for all successful client compilations

for versions, BCs were encountered for 4.35% of the depen-

dency updates. The BCs reported by the japicmp tool were

higher than the BCs detected through analyzing compilation

errors, but some of the BCs reported through the japicmp tool

are false positives because the tool does not evaluate the con-

text of how the BC functionality is used in the client code and

only considers the change in isolation when reporting BCs.

3.4 RQ3: Common BCs

In this section, we answer RQ3: “What are the common types of

client-impacting source BCs?”

3.4.1 Method: For the client impacting syntactic BCs extracted in

the previous RQ, we performed a manual analysis to identify the

change in the library which caused the client to fail compilation.

When extracting compiler error messages, we disregarded the

code-specific information such as the message location and refer-

ence information so that the same error messages could be classified

together. The code-specific informationwas replacedwith a ’...’ nota-

tion for tracking purposes. For example: ’package org.osgi.util.tracker

does not exist’ was extracted as ’package ... does not exist’. Fol-

lowing this approach, we extracted 105 types of compiler error

messages. In one crash log, there were scenarios where multiple

compiler error messages were present, and the same compilation

error message was present in different locations in the client code.

Understanding Breaking Changes in the Wild ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

These compilation error messages were counted as different in-

stances as they could relate to different library changes. The total

number of compilation errors was 94,737.

Next, for the manual analysis, we sampled the compilation error

messages with a confidence interval of 95% and an error rate of

5% [45] which provided a sample size of 380. We used stratified

sampling to create a balanced sample set covering all types of

compiler error messages for the analysis. For the sample selected,

we created a data set including the following details: the crash log,

the line number in the crash log, the compilation error message, the

dependency with its versions, the output of the japicmp tool, the

GitHub URL for the client project, the class in which the compiler

error occurred, and the Git-Diff Web URL link for the particular

library versions.

To conduct the manual analysis, we followed the thematic anal-

ysis approach, which helps to identify patterns in qualitative anal-

ysis [9]. We developed codes to use for labeling the data, which

would represent different types of syntactic BCs in the libraries.

We followed an integrated approach [9] in developing the codes,

where we started the analysis with a set of predefined codes and

derived other codes while conducting the analysis. We created

the predefined codes based on the different types of syntactic BCs

introduced between two library versions identified by previous

researchers [5, 15, 46] and an article published by IBM [12]. We

created 101 predefined codes, categorized under Package, Interface,

and Class levels.

Two of the authors, both familiar with Java programming, con-

ducted the manual analysis to detect the change causing the compi-

lation error. As O’Connor et al [35] recommends in their study to

apply multiple coding between 10-25% of the data, we decided to

use 20% of the data previously sampled for manual analysis by both

coders. This gave us a sample size of 68 records which we selected

using stratified sampling technique so that different compilation

error messages were included in the sample set.

First, to get familiar with the codes and check the agreement on

the coding, we randomly picked four samples for coding from the

initially sampled data which are not included in the 68 sampled

for multi coding. Each coder labeled the samples independently

and checked the agreement. If more than one sample was labeled

differently, then the agreement would be less than 75%, which

will be below acceptable [47]. After the first coding round, the

agreement was below acceptable; therefore, we discussed the issues

we encountered in coding and how we extracted the coding values.

We then repeated the process again until there was an agreement

of more than 75% and both coders were familiar with the coding

process.

After getting familiar with the coding process, the coders did

the multi-coding separately on the 68 records sampled. To calculate

the inter-rater reliability on the coded values, we used Cohen’s

Kappa coefficient, a statistical measure for calculating the inter-

rater reliability of qualitative data [17]. This algorithm considers the

two coders’ agreement and random agreement when calculating

the Kappa score. For the multi-coded values, we received a Kappa

score of 0.68, which was a substantial agreement based on the

interpretation of the Kappa score value. Therefore, since it took

around 5-10 minutes to analyze one record in the sample, only one

Table 3: Top Ten Compilation Errors which had the most

Occurrences

Compiler Error Occurrence Percentage

cannot find symbol 54,194 57.20%

package ... does not exist 20,405 21.53%

method does not override or implement a

method from a supertype

3,186 3.36%

incompatible types: ... cannot be converted to 2,403 2.54%

cannot access 2,333 2.46%

reference to ... is ambiguous 1,722 1.82%

static import only from classes and interfaces 1,587 1.68%

no suitable method found for 1,075 1.13%

is not abstract and does not override abstract

method

890 0.94%

method ... cannot be applied to given types 871 0.92%

of the authors coded the rest of the samples in the manual analysis

set, and the results received are presented in the following section.

3.4.2 Results: The ten compilation error messages that occurred

the most are listed in Table 3. This shows that some compilation

error messages are more frequent than other types.

Through the manual analysis, we noticed that there were five

types of compiler error messages related to Groovy classes and an-

other five that were not reproducible. This reduced the Java-related

compiler error messages to 96. The labels derived through the man-

ual analysis gave us more insight into BCs in the libraries, which

impact the artifacts during dependency updates. These changes in-

cluded the library being compiled in a different Java version which

is incompatible with the artifact, a dependency of the library be-

ing modified, or the deprecated annotation being introduced to an

interface, class, or method. Another reason for encountering BCs

was the incompatibility of another library when the dependency

is updated individually. The type parameter changes (generics in

Java) we encountered during the analysis were introduced in the

article by IBM [12]. However, it was discussed as a limitation under

the research by Ochoa et al. [32].

The most common reason for the compilation error was transi-

tive dependency changes which occurred 20.36% of the time. This

occurred when the artifacts under analysis depended on the de-

pendencies of its direct dependencies. Therefore, when the depen-

dencies of the direct dependencies were updated, the artifact using

those transitive dependencies was not compatible with the change.

An incompatibility with another library when a single dependency

was updated, and an incompatibility with the used Java version

occurred 3.89% and 3.45% of the time, respectively.

The top ten changes in the library which caused source incompat-

ibilities and their occurrence percentage are mentioned in Table 4.

According to the results, changing the result type of a method
5
in a

class is a common change across libraries which introduced source

incompatibilities to client artifacts. Changes such as deleting an

API package or a class also significantly impacted the clients.

Based on the analysis, we also notice that the same BC impacts

artifacts differently based on how it has been used. For example,

the ’Change result type of method in class’ BC can affect a client

in different ways based on how the method’s return value is used.

5
The term ’changing the result type’ was taken from [12] and can be also referred to

as ’changing the return type’ of a method.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe

Table 4: Top ten changes in libraries which causes Source

Incompatibility with its percentage of occurrence

Library Change Occurrance %

Change result type of method in class 5.68%

Delete API package 5.09%

Delete class 3.89%

Rename API package 2.10%

Delete type parameters from class 2.10%

Decrease access of constructor in class 2.10%

Delete method from class 1.79%

Delete interface method 1.50%

Delete interface 1.50%

Delete checked exceptions thrown from

method in class

1.50%

It can be used in a conditional statement comparison, a loop itera-

tion, a method invoked based on the value, or passed as another

method’s return value. In all these scenarios, if the type of the

value changes, it will cause the client to be affected. Also, if this

method was overriden by a class in the client it will be affected.

Therefore, understanding the context of how the dependency is

used is essential for the dependency update process.

During the analysis, we found it challenging to identify the

reason for some of the records by only considering the syntactic

changes which could occur. For 16 of the samples (4.97%) analyzed,

which were related to code generation libraries, the incompatibility

was not due to a syntactic BC introduced between the two versions

of the library. However, when analyzing the source code changes

between the two library versions, we understood it was due to

changes in the underlying logic related to the code generation

process within the client’s code base during compilation. Therefore,

changes in code generation libraries that lead to syntactic BCs

in clients might differ from other library changes which cause

syntactic BCs hence will not be detected as a BC when using static

analysis tools. For another 22 samples(6.83%), we could not identify

the reason which caused the incompatibility, and we assume it

could be related to a transitive dependency change.

Since transitive dependency changes were a significant factor

in introducing syntactic BCs in clients, we analyzed the transitive

dependency usage in clients. Given in Figure 4 is a dependency

tree generated for the client ‘org.opennms.newts:newts-metrics-

reporter’. According to the dependency tree, this client has two di-

rect dependencies, five transitive dependencies at level one, and six

more transitive dependencies at level two. One of the direct depen-

dencies is ‘org.opennms.newts:newts-api’ version 2.0.1-SNAPSHOT.

‘com.google.guava:guava’ version 23.0 is a direct dependency of

‘org.opennms.newts:newts-api’, which in return becomes a transi-

tive dependency to the client.

In Figure 5, we have captured a code snippet in ‘org.opennms.-

newts:newts-api’ client, which is invoking the com.google.common.-

collect.Lists. newArrayList() method defined in the ‘com.google.-

guava:guava’ version 23.0. This is a use of transitive dependency

functionality in a client source code. The usage of transitive depen-

dencies can cause syntactic BCs for different reasons. For instance,

BCs would occur if this transitive dependency was removed by the

[INFO] --- maven-dependency-plugin:2.10:tree (default-cli) @ newts-metrics-reporter ---
[INFO] org.opennms.newts:newts-metrics-reporter:jar:2.0.1-SNAPSHOT
[INFO] +- org.opennms.newts:newts-api:jar:2.0.1-SNAPSHOT:compile
[INFO] | +- com.google.guava:guava:jar:23.0:compile
[INFO] | | +- com.google.code.findbugs:jsr305:jar:1.3.9:compile
[INFO] | | +- com.google.errorprone:error_prone_annotations:jar:2.0.18:compile
[INFO] | | +- com.google.j2objc:j2objc-annotations:jar:1.1:compile
[INFO] | | \- org.codehaus.mojo:animal-sniffer-annotations:jar:1.14:compile
[INFO] | +- com.google.inject:guice:jar:4.0:compile
[INFO] | | +- javax.inject:javax.inject:jar:1:compile
[INFO] | | \- aopalliance:aopalliance:jar:1.0:compile
[INFO] | +- org.slf4j:slf4j-api:jar:1.7.12:compile
[INFO] | +- org.apache.commons:commons-jexl3:jar:3.1:compile
[INFO] | \- org.slf4j:jcl-over-slf4j:jar:1.7.12:runtime
[INFO] \- io.dropwizard.metrics:metrics-core:jar:3.1.1:compile Direct Dep

Direct Dep.
Transitive Dep. Level 1

Transitive Dep. Level 1

Transitive Dep. Level 2

Transitive Dep. Level 2

Transitive Dep. Level 1

Figure 4: Dependency Tree of ’org.opennms.newts:newts-

metrics-reporter’ Maven artifact

public void report(SortedMap<String, Gauge> gauges, SortedMap<String, Counter> counters,
SortedMap<String, Histogram> histograms, SortedMap<String, Meter> meters,
SortedMap<String, Timer> timers) {

Timestamp timestamp = Timestamp.fromEpochMillis(clock.getTime());

List<Sample> samples = Lists.newArrayList();

for (Map.Entry<String, Gauge> entry : gauges.entrySet()) {
reportGauge(samples, timestamp, entry.getKey(), entry.getValue());

}

for (Map.Entry<String, Counter> entry : counters.entrySet()) {
reportCounter(samples, timestamp, entry.getKey(), entry.getValue());

}

}

com.google.common.collect.Lists.newArrayList()

Figure 5: ’org.opennms.newts:newts-api’ artifact using

functionality of ’com.google.guava:guava’ by invoking

com.google.common.collect.Lists.newArrayList() method

Figure 6: Bar Chart representing maximum level of Transi-

tive Dependency usage in client projects

dependency declaring it or a new version of the transitive depen-

dency, which contains BCs, is updated by the dependency declaring

it.

Therefore, to understand to what extent the artifacts use transi-

tive dependencies’ functionality directly, we conducted an analysis

to determine if it is common for artifacts to use transitive dependen-

cies and to which level of transitive dependencies are used by the

clients. For this we used the process explained under section 3.3.1

to extract the direct usage of transitive dependencies.

According to the data we received for transitive dependency

usage conducted on the clients, 61.24% of all clients directly used

at least one transitive dependency. Figure 6 displays a bar chart

with the percentage of artifacts using transitive dependencies at

Understanding Breaking Changes in the Wild ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

different levels. According to this chart, 57.44% of the artifacts used

transitive dependencies at level one. It was also recorded that 2.95%

of artifacts that used transitive dependencies at level one utilized

more than ten unique transitive dependencies at that level. Even

though level two and level three transitive dependencies were not

as frequently used as level one, they reported 25.91% and 7.70% of

usage, respectively.

We tracked the transitive dependency usage up to level ten, but

none of the clients used transitive dependencies beyond level seven.

Two clients utilized transitive dependencies at level seven, contribut-

ing to 0.01% of the total clients analyzed. We found that an client

that uses a transitive dependency at level three does not always use

transitive dependencies at the prior levels. Also, some clients that

did not use direct dependencies’ functionality used transitive de-

pendencies’ functionality. These results on transitive dependency

usage in clients help us understand why most incompatibilities

during dependency updates were linked to transitive dependency

changes. Kikas et al. also confirm that transitive dependency usage

is popular in software ecosystems such as Javascript [25].

Answering RQ3: What are the common types of client-
impacting source BCs? The manual analysis showed that

changes in transitive dependencies were the most common

reason for syntactic BCs during dependency updates. The ex-

periments conducted to verify the transitive dependency usage

in clients showed that 61.24% of the clients had used transi-

tive dependencies in their code. The top two changes in a

library that introduces syntactic BCs are changing the result

type of a method in a class and deleting an API package. The

other library changes, which raised syntactic BCs, could not

be derived as having a significant contribution than the others.

3.5 RQ4: Library Compliance to the Semantic

Versioning Scheme

In this section, we answer RQ4: “Are client-impacting source BCs

introduced in non-Major library releases?”

3.5.1 Method: Based on the library versions which introduced

syntactic BCs, we ran an analysis to check if the libraries have

introduced BCs under non-Major updates in their releases and

analyzed the common syntactic BCs introducted at each semantic

versioning level. We also looked at how BCs introduced by direct

and transitive dependencies are spread across different versions

under the semantic version levels.

3.5.2 Results: Table 5 summarizes the number of BCs that impact

the clients at each semantic level. 58.41% of the BCs were intro-

duced during a Major update. 33.49% and 8.09% of the BCs were

introduced during a Minor and Patch update, respectively. There-

fore non-Major updates contributed to almost half of the observed

BCs.

From the sampled data that was manually analyzed, 147 records

were Major updates, 138 were Minor updates, and 45 were Patch

updates. During Major updates that introduced incompatibilities

changing the result type of a method in a class, deleting a class, re-

naming an API package, and deleting an API package were common

Table 5: Update level in libraries and the number of impacted

artifacts

Update Level Number of Impacting Artifacts Percentage

Major 4,742 58.41%

Minor 2,719 33.49%

Patch 657 8.09%

Table 6: Distribution of BC introduced by Direct and Transi-

tive Dependencies at each Semantic Versioning Level

Source of BC

Semantic Version Level

Major Minor Patch

Direct Dependency 48.68% 37.72% 13.60%

Transitive Dependency 38.57% 54.28% 7.14%

BCs impacting clients. For a Minor update causing incompatibilities,

the most significant BCs were deleting an API package, changing a

static method to a non-static method in a class, and changing the

result type of a class method. No BC contributed significantly to

the incompatibilities during Patch updates.

We further analyzed how the BCs introduced by direct and tran-

sitive dependencies were spread across different semantic version

levels. Table 6 shows that Major updates contain BCs introduced

by direct dependencies more commonly than non-Major updates.

While BCs introduced by transitive dependencies are common un-

der non-Major updates. Although the semantic version scheme

provides rules for introducing BCs at Major releases for libraries,

many developers will be unaware of the BCs introduced by transi-

tive dependencies.

Answering RQ4: Are client-impacting source BCs introduced
in non-Major library releases? Major-level updates contained

the highest number of BCs when updating dependencies in

clients. However, non-Major updates contributed to 41.58% of

the BCs, violating the semantic versioning principle. When

considering the BCs introduced by transitive dependencies,

non-Major versions contained the most BCs.

4 DISCUSSION

In this section, we discuss the findings of the study based on the

observations of our results.

In the analysis for RQ1, we found that most of the dependencies

used in the open-source repositories in our dataset were not up-

to-date. Therefore, the client projects using these dependencies

do not fully utilize the libraries’ features and might also contain

vulnerable code fixed by libraries in their later versions. This aligns

with prior research and illustrates that better tools are needed to

support project maintainers in keeping their dependencies up-to-

date, particularly when BCs exist in the new versions.

While many of the BCs did not affect the client projects, we found

that a significant number (12%) of the BCs would impact client

projects according to RQ2. However, many of the BCs detected by

the static analysis tools would not impact the client projects, and

relying only on the output of static analysis tools is not reliable

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe

for understanding how the dependency updates will impact the

clients. One reason is because the static analysis tools we used did

not consider the impact of transitive dependencies, which were the

leading cause of syntactic BCs in our analysis under RQ3. Tools

also need to consider the context of how the dependency is used

when suggesting potential BCs. The current tool suggested false

positives which are BCs that actually do not impact the clients.

Previous research [3, 16, 40] has highlighted this problem with

static analysis tools, leading to a decrease in developers’ trust and

confidence in their effectiveness. Thus, better support is needed for

project maintainers to understand the impact of changes in all of

their dependencies, including the transitive dependencies.

RQ3 further showed that deleting an entire API package was

the second most common BC between library versions. However,

current static analysis tools provide a lower-level of granularity

when reporting changes in the libraries, indicating if a field, method,

or class were removed for example. These tools could be improved

to report the BCs at the appropriate level of granularity to help

project maintainers better understand and resolve BCs.

While we saw under RQ4, that BCs that impact clients were more

common in Major releases, which would be anticipated by devel-

opers based on the semantic versioning scheme, we saw transitive

dependencies were more likely to introduce client-impacting BCs

in non-Major releases, where client projects would not expect BCs.

This further illustrates the need for better awareness of potential

BCs in transitive dependencies.

We can draw several practical implications from our study. Li-

brary developers should be vigilant when introducing changes

during non-Major updates, as BCs should not be introduced during

these release versions. However, our study reports that many BCs

exist in non-Major updates.

Client developers should think carefully if they want to directly

use transitive dependencies, as using them leads to many BCs dur-

ing dependency updates. Further, we also found that a BC will affect

clients differently based on how the breaking functionality has been

used in their code. Therefore, when fixing incompatibilities related

to BCs, the client developers must consider the context in which

the functionality is used. When applying dependency updates in

isolation, they must consider whether that dependency depends on

another dependency or vice-versa. Because if a dependency is up-

dated in isolation, it might be incompatible with other dependencies

in the artifact.

For researchers, investigating techniques to capture clients’ tran-

sitive dependency usage and how they contribute towards BCs

during dependency updates will be a much-needed research area,

as our results show that changes in transitive dependencies were a

significant factor in introducing BCs during dependency updates.

5 THREATS TO VALIDITY

One threat to construct validity of the research is how we selected

successfully compiled artifacts for the analysis. When compiling the

artifacts, we could not use the Maven compile command as some ar-

tifacts relied on the binaries of other artifacts in the same repository.

Hence, we had to use the Maven install command when building

the repositories. Therefore, initially, when selecting projects for our

analysis, the projects that compiled but could not be packaged into

an executable had to be omitted. We, therefore, could have missed

some types of BCs that occurred in these projects.

Another threat to construct validity is that some transitive depen-

dency calls might be missed through our analysis. For example, this

could occur, when a client class (A) defines a superclass (B) from its

direct dependencies, and that superclass (B) inherits features from

another superclass (C) of one of its direct dependencies (transitive

to the client). In such cases, we have not accounted for the transitive

dependency calls at that level of granularity. If the client’s direct

dependency removed its direct dependency or if class C in the above

scenario was removed from the dependency this would also cause

an incompatibility to the client using the library. Thus, we could

have underestimated the impact of transitive dependencies.

A threat to internal validity is the number of BCs reported due

to an incompatibility with another library. This category of BCs

could increase due to updating one dependency at a time. If a group

of dependencies had to be updated together since they depend on

one another, the approach we followed to update one dependency

at a time would cause incompatibilities among the dependencies.

However, some artifacts used one variable to define the dependency

version for these dependent dependencies and referred to that vari-

able when declaring each dependency version in the pom.xml, so

the version was updated together for these groups.

An external threat to validity for this study is generalizing the

results for other languages. We studied Java projects using Maven

as its build tool. We used more than 18,000 Maven artifacts fil-

tered based on quality factors. These artifacts used more than 9,000

unique Java libraries which we used for the analysis. Nevertheless,

as with other empirical research in this area [21, 32, 39], the find-

ings of this research cannot be generalized to other languages. Our

study was also limited to analyzing projects that could successfully

compile in Java 8 or 11, and our study did not capture specific in-

compatibilities for other Java versions. However, only 3.45% of the

incompatibilities were related to an incompatible Java version, so it

is unlikely that using additional Java versions would have changed

the results significantly.

6 RELATEDWORK

To the best of our knowledge, this is the first large-scale study to

examine the impact of both source and binary BCs on client projects.

We now discuss the closest related work on library evolution and

BCs.

Library evolution studies Library evolution and stability have

been widely studied in the literature due to their importance in

software development [15, 26, 29, 46]. Changes introduced during

library evolution were categorised by Dig et al. as Breaking and

non-Breaking Changes, and the BCs were further categorized as

syntactic and semantic BCs [15]. They found that 80% of all BCs are

introduced through syntactic BCs [15]. In another study, Dietrich

et al. analysed a set of libraries and all their adjacent versions and

found that 75% of the versions contain BCs [13]. Research has found

that the frequency of BCs between adjacent library versions has

increased over time [46]. These studies illustrate the prevalence of

BCs in libraries and also inspired us to focus on syntactic BCs.

Since BCs can cause failures in clients, it is important for clients

to be made aware when BCs are introduced. BCs should ideally

be documented in changelogs and release notes [4, 6], but prior

Understanding Breaking Changes in the Wild ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

research has found that less than 50% of BCs are documented [26].

Since a lot of BCs are not documented, clients need to know when

it is safe to upgrade. The semantic versioning scheme provides an-

other way for library developers to indicate when new versions con-

tain BCs. However, studies have found that libraries do not strictly

follow the semantic versioning principles, introducing breaking

changes also in non-Major releases [14, 24, 38, 39]. Our research

confirms these findings by providing further evidence that BCs are

introduced in Minor and Patch releases. However, these studies all

focused on the BCs introduced between library versions without

considering the impact of these BCs on their clients. Differently,

our study analyses the impact of BCs on client projects.

BCs impact on client projects Some recent research has investi-

gated how syntactic BCs introduced during library evolution impact

their clients [2, 24, 46]. Xavier et al. [46] and Bavota et al. [2] re-

ported that only 2.54% and 5% of the clients in their dataset were

impacted due to BCs, respectively. However, these studies estimated

the impact of BCs by considering the import statements of library

functionality in the client code, which can overestimate the impact

for certain BCs and overlook BCs that cannot be traced through

direct imports. Jezek et al. studied binary BCs in client projects

and found that only 12 clients were impacted due to binary BCs,

indicating that client-impacting binary BCs are relatively rare [24].

Similarly, Ochoa et al. [32] reported that 7.9% of clients are poten-

tially impacted by binary BCs. On the other hand, Raemaekers et

al. [39] reported that BCs do have a significant impact in client

environments, but they experimented by injecting each BC one

by one into the older library version, which may overestimate the

impact of real dependency updates. Similar to our work, these stud-

ies analysed the impact of BCs on client projects. However, Jezek

et al. [24], Raemaekers et al. [39] and Ochoa et al. [32] focused

on only binary BCs, while our study considered both source and

binary BCs. In addition to also considering source BCs, we also

did not only focus on updates to adjacent versions of the library

like all previous research, which may not represent the version

projects would realisticly select when performing dependency up-

dates. Therefore, our results revealed that syntactic BCs can have a

more significant impact on clients than what previous studies have

previously reported.

BC detectors Tools have been created to detect BCs between two

library versions. RefDiff [42] and ApiDiff [5] both classify break-

ing and non-BCs in Java libraries based on the syntactic changes

applied to its source code. However both these tools focus on 13

refactoring operations, which does not cover all syntactic BCs.

Static analysis tools such as Clirr
6
, SigTest

7
, Japicmp, JapiChe-

cker, JapiTool
8
, and Revapi

9
use both source and binary code

analysis to identify incompatibilities between two API versions.

All these tools extract potential BCs between library versions

from the libraries perspective, therefore they can providemany false

positives for clients who likely use only a subset of the functionality

provided by the library. Ochoa et al. [32] developed Maracas to

automatically identify the breaking declarations that are used in

the client code using a static analysis technique. This tool has

6
https://clirr.sourceforge.net/

7
http://wiki.apidesign.org/wiki/SigTest

8
https://packages.debian.org/stretch/devel/japitools

9
https://revapi.org/revapi-site/main/index.html

limitations that impact its BC detection capability. For example,

it is unable to detect inheritance hierarchies, overridden methods,

and exception handling. Our approach reported BCs irrespective

of whether static analysis tools identified backward compatibility

(BC) issues or not. By doing so, our findings are not influenced by

the detection limitations of existing tools, distinguishing our work

from the previous study [32]. This approach yielded novel insights

and results. Notably, we discovered that transitive dependencies

are the primary contributors to BCs in clients. BC detectors are

unable to identify BCs introduced by transitive dependencies since

they typically analyze multiple versions of a single library.

7 CONCLUSION

In this paper, we conduct an empirical analysis of BCs that are

encountered when updating software dependencies using 142,355

direct dependencies declared in 18,415 clients (Maven artifacts).

Through this study, we looked at the outdated dependencies in

clients and concluded that 71.60% of the dependencies used in the

clients were not up-to-date with the latest version available for

that library. These outdated dependencies were distributed among

43.79% of the clients. When updating these dependencies to the

latest version available, 11.58% failed to update as they contained

BCs that impacted the artifact. The most common BC in the library

that caused incompatibilities in a client was changing the result

type of a method in a class. The most common change that caused

incompatibilities in a client was transitive dependency changes

between library versions. Based on the dependency update failures

at each semantic version level, non-Major updates contained 41.58%

of BCs changes, violating the semantic versioning principle.

In our future work, we aim to broaden our research scope by

analyzing Java projects that utilize Gradle as their build tool. Ad-

ditionally, we intend to explore similar methodologies in other

statically-typed programming languages to identify the impact of

BCs introduced by their libraries. Our focus will also shift towards

investigating transitive dependency usage and the BCs they in-

troduce in artifacts. Another important future work is to study

the impact of behavioral BCs on clients, which is an understudied

problem.

ACKNOWLEDGMENTS

This work was supported by the Marsden Fund Council from Gov-

ernment funding, administered by the Royal Society Te Apārangi.

The work of the third author was supported by a gift by Oracle

Labs Australia. In addition, the authors wish to acknowledge the

Centre for eResearch at the University of Auckland for their help

in facilitating this research (http://www.eresearch.auckland.ac.nz).

REFERENCES

[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical Anal-

ysis of Security Vulnerabilities in Python Packages. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 446–457.
https://doi.org/10.1109/SANER50967.2021.00048

[2] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and

Sebastiano Panichella. 2013. The Evolution of Project Inter-Dependencies in a

Software Ecosystem: The Case of Apache (ICSM ’13). IEEE Computer Society,

USA, 280–289. https://doi.org/10.1109/ICSM.2013.39

[3] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few

Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.

Commun. ACM 53, 2 (feb 2010), 66–75. https://doi.org/10.1145/1646353.1646374

https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1145/1646353.1646374

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe

[4] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You broke

my code: understanding the motivations for breaking changes in APIs. Empirical
Software Engineering 25, 2 (2020), 1458–1492. https://doi.org/10.1007/s10664-

019-09756-z

[5] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff:

Detecting API breaking changes. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 507–511. https:

//doi.org/10.1109/SANER.2018.8330249

[6] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. Why and

how Java developers break APIs. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 255–265. https:

//doi.org/10.1109/SANER.2018.8330214

[7] Eric Bruneton, Eugene Kuleshov, Andrei Loskutov, and Rémi Forax. 2022. ASM.

https://asm.ow2.io/

[8] Joel Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measur-

ing Dependency Freshness in Software Systems. In MOBILESoft 2015 : second
ACM International Conference on Mobile Software Engineering and Systems (2015
IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE),
Vol. 2). IEEE Press„ 109–118. https://doi.org/10.1109/ICSE.2015.140

[9] Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic

Synthesis in Software Engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement(ESEM). IEEE, 275–284. https://doi.org/10.

1109/ESEM.2011.36

[10] Joe Darcy. 2021. Kinds of Compatibility. https://wiki.openjdk.org/display/csr/

Kinds+of+Compatibility

[11] Alexandre Decan and Tom Mens. 2021. What Do Package Dependencies Tell Us

about Semantic Versioning? IEEE Transactions on Software Engineering 47, 6 (6

2021), 1226–1240. https://doi.org/10.1109/TSE.2019.2918315

[12] Jim des Rivières. 2017. Evolving Java-based APIs 2. https://wiki.eclipse.org/

Evolving_Java-based_APIs_2

[13] Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An em-

pirical study into evolution problems in Java programs caused by library up-

grades. In 2014 Software Evolution Week - IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE). 64–73. https:

//doi.org/10.1109/CSMR-WCRE.2014.6747226

[14] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.

2019. Dependency Versioning in the Wild. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). 349–359. https://doi.org/10.

1109/MSR.2019.00061

[15] DannyDig and Ralph Johnson. 2006. HowDoAPIs Evolve? A Story of Refactoring:

Research Articles. Journal of software maintenance and evolution: Research and
Practice 18, 2 (3 2006), 83–107. https://doi.org/10.1002/smr.328

[16] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (jul 2019), 62–70.

https://doi.org/10.1145/3338112

[17] Khaled El Emam. 1999. Benchmarking Kappa: Interrater agreement in software

process assessments. Empirical Software Engineering 4 (1999), 113–133.

[18] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018.

Efficient Static Checking of Library Updates. In 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2018). Association for Computing Machinery,

791–796. https://doi.org/10.1145/3236024.3275535

[19] The Apache Software Foundation. 2023. Apache Maven Project. https://maven.

apache.org/

[20] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith,

and Gavin Bierman. 2021. The Java language specification. Oracle America, Inc.

[21] Nicolas Harrand, Amine Benelallam, César Soto-Valero, François Bettega, Olivier

Barais, and Benoit Baudry. 2022. API beauty is in the eye of the clients: 2.2 million

Maven dependencies reveal the spectrum of client–API usages. Journal of Systems
and Software 184 (2022), 111134. https://doi.org/10.1016/j.jss.2021.111134

[22] HaoHe, Runzhi He, HaiqiaoGu, andMinghui Zhou. 2021. A Large-Scale Empirical

Study on Java Library Migrations: Prevalence, Trends, and Rationales (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 478–490.

https://doi.org/10.1145/3468264.3468571

[23] Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly

Blincoe. 2023. Replication Package for Understanding Breaking Changes in the
Wild. https://doi.org/10.5281/zenodo.7978507

[24] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs Break - An

Empirical Study. 65, C (sep 2015), 129–146. https://doi.org/10.1016/j.infsof.2015.

02.014

[25] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure

and Evolution of Package Dependency Networks. In 14th International Conference
on Mining Software Repositories (Buenos Aires, Argentina) (MSR ’17). IEEE Press,

102–112. https://doi.org/10.1109/MSR.2017.55

[26] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. 2019. Clas-

sification of Changes in API Evolution. In 2019 IEEE 23rd International En-
terprise Distributed Object Computing Conference (EDOC). 243–249. https:

//doi.org/10.1109/EDOC.2019.00037

[27] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro

Inoue. 2018. Do Developers Update Their Library Dependencies? Empirical
Software Engineering 23, 1 (2 2018), 384–417. https://doi.org/10.1007/s10664-017-

9521-5

[28] Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. 2020. Detect-

ing Locations in JavaScript Programs Affected by Breaking Library Changes. Proc.
ACM Program. Lang. 4, OOPSLA (11 2020), 1–25. https://doi.org/10.1145/3428255

[29] Anders Møller and Martin Toldam Torp. 2019. Model-Based Testing of Break-

ing Changes in Node.Js Libraries. In 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Ma-

chinery, New York, NY, USA, 409–419. https://doi.org/10.1145/3338906.3338940

[30] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. 2020.

Using Others’ Tests to Identify Breaking Updates. In 17th International Conference
on Mining Software Repositories (Seoul, Republic of Korea) (MSR ’20). Association
for Computing Machinery, New York, NY, USA, 466–476. https://doi.org/10.

1145/3379597.3387476

[31] Lina Ochoa, Thomas Degueule, and Jean-Rémy Falleri. 2022. BreakBot. In

ACM/IEEE 44th International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). ACM. https://doi.org/10.1145/3510455.3512783

[32] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. 2022. Break-

ing Bad? Semantic Versioning and Impact of Breaking Changes in Maven Central:

An External and Differentiated Replication Study. Empirical Softw. Engg. 27, 3
(may 2022), 42 pages. https://doi.org/10.1007/s10664-021-10052-y

[33] Fernando Rodriguez Olivera. 2022. MVN Repository: repository stats. https:

//mvnrepository.com/repos

[34] Oracle. n.d.. Java Virtual Machine Specification: Chapter 5. Loading, Linking, and
Initializing. https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html

[35] Cliodhna O’Connor and Helene Joffe. 2020. Intercoder Reliability in Qualitative

Research: Debates and Practical Guidelines. International Journal of Qualitative
Methods 19 (2020), 1609406919899220. https://doi.org/10.1177/1609406919899220

[36] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and

Fabio Massacci. 2018. Vulnerable Open Source Dependencies: Counting Those

That Matter. In 12th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (Oulu, Finland) (ESEM ’18). Association
for Computing Machinery, New York, NY, USA, Article 42, 10 pages. https:

//doi.org/10.1145/3239235.3268920

[37] Tom Preston-Werner. n.d. Semantic Versioning 2.0.0. https://semver.org/

[38] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2014. Semantic Version-

ing versus Breaking Changes: A Study of the Maven Repository. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 215–224. https://doi.org/10.1109/SCAM.2014.30

[39] S. Raemaekers, A. van Deursen, and J. Visser. 2017. Semantic versioning and

impact of breaking changes in the Maven repository. Journal of Systems and
Software 129 (2017), 140–158. https://doi.org/10.1016/j.jss.2016.04.008

[40] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera

Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (mar 2018), 58–66. https://doi.org/10.1145/3188720

[41] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea De Lucia,

and Filomena Ferrucci. 2018. Do Developers Update Third-Party Libraries in

Mobile Apps? (ICPC ’18). Association for Computing Machinery, New York, NY,

USA, 255–265. https://doi.org/10.1145/3196321.3196341

[42] Danilo Silva and Marco Tulio Valente. 2017. RefDiff: Detecting Refactorings in

Version Histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 269–279. https://doi.org/10.1109/MSR.2017.14

[43] Inc Tidelift. 2022. Libraries.io - The Open Source Discovery Service. https://libraries.
io/data

[44] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,

Yijian Wu, and Yang Liu. 2020. An Empirical Study of Usages, Updates and Risks

of Third-Party Libraries in Java Projects. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 35–45. https://doi.org/10.1109/

ICSME46990.2020.00014

[45] Thomas H. Wonnacott and Ronald J. Wonnacott. 1991. Introductory Statistics.

[46] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical

and impact analysis of API breaking changes: A large-scale study. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 138–147. https://doi.org/10.1109/SANER.2017.7884616

[47] Zach. 2021. What is Inter-rater Reliability. https://www.statology.org/inter-rater-

reliability/

[48] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen,

and Yang Liu. 2022. Has My Release Disobeyed Semantic Versioning? Static

Detection Based on Semantic Differencing (ASE ’22). Association for Computing

Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.

3556956

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/SANER.2018.8330214
https://asm.ow2.io/
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1109/ESEM.2011.36
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
https://doi.org/10.1109/TSE.2019.2918315
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3236024.3275535
https://maven.apache.org/
https://maven.apache.org/
https://doi.org/10.1016/j.jss.2021.111134
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.5281/zenodo.7978507
https://doi.org/10.1016/j.infsof.2015.02.014
https://doi.org/10.1016/j.infsof.2015.02.014
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3379597.3387476
https://doi.org/10.1145/3379597.3387476
https://doi.org/10.1145/3510455.3512783
https://doi.org/10.1007/s10664-021-10052-y
https://mvnrepository.com/repos
https://mvnrepository.com/repos
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html
https://doi.org/10.1177/1609406919899220
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1145/3239235.3268920
https://semver.org/
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3196321.3196341
https://doi.org/10.1109/MSR.2017.14
https://libraries.io/data
https://libraries.io/data
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/SANER.2017.7884616
https://www.statology.org/inter-rater-reliability/
https://www.statology.org/inter-rater-reliability/
https://doi.org/10.1145/3551349.3556956
https://doi.org/10.1145/3551349.3556956

	Abstract
	1 Introduction
	2 Background
	3 Study Design and Results
	3.1 Experiment Setup
	3.2 RQ1: Dependency Up-To-Dateness
	3.3 RQ2: Impact of BCs
	3.4 RQ3: Common BCs
	3.5 RQ4: Library Compliance to the Semantic Versioning Scheme

	4 Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

