
Identifying Refactoring Opportunities for Large Packages by Analyzing

Maintainability Characteristics in Java OSS

Haris Mumtaz⇤,1, Paramvir Singh2, Kelly Blincoe1

Abstract

The source code of a Java-based software system is often structured into packages. When packages are large, they often
carry maintainability quality issues. In the literature, there is a lack of empirical evidence on the specific maintainability
issues that occur when packages become too large. Our study fills this gap by performing relationship analysis of package
size with respect to internal maintainability characteristics (coupling, cohesion, and complexity) using package-level
metrics collected from 111 open-source Java projects provided in Qualitas Corpus. Our results show significantly higher
maintainability issues in large packages as indicated by the maintainability metrics. We also report strong relationships of
package size with cohesion (represented by the number of connected components in a package) and complexity (measured
by the number of internal relationships in a package). Based on these strong associations with package size, we show that
these cohesion and complexity metrics can be used to identify large package refactoring opportunities. Furthermore, we
also discuss why some maintainability metrics (e.g., coupling metrics) may not be useful for refactoring large packages.

Key words: Package Maintainability, Package Smells, Package Metrics, Empirical Analysis, Open-Source Software

1. Introduction

Software developers on large software systems need to
work in parallel and often independently. Splitting the
software into modules (subsystems) is one way to enable
this independent development [1]. Building a software sys-
tem based on a non-modular design can cause issues when
the size of the system becomes large [1]. Therefore, a high-
level abstraction design is required that can structure a
system into modules. In Java software development, the
source code is structured into classes, which are further
grouped into “packages” [2]. A package may be created to
group semantically related classes or to represent a compo-
nent (module or subsystem) of a system [3]. The purpose
of collecting the classes into packages is to have a clean
structure of the classes for easy access and better maintain-
ability [3]. Therefore, the packages should be structured
in such a way that the package size is maintainable [3].

Software smells are sub-optimal structural patterns in
the software and are often indicators of technical debt [4].
If smells are not removed, debt will continue to accumu-
late causing high maintenance costs [5]. Software smells
can occur at di↵erent levels of granularity—architecture,
design, and code. Package smells reflect the sub-optimal

⇤Corresponding author
Email addresses: hmum126@aucklanduni.ac.nz (Haris

Mumtaz), p.singh@auckland.ac.nz (Paramvir Singh),
k.blincoe@auckland.ac.nz (Kelly Blincoe)

1Department of Electrical, Computer, and Software Engineering
at the University of Auckland, New Zealand

2School of Computer Science at the University of Auckland, New
Zealand

patterns at the architecture level (i.e., package structure)
of a software product [3]. One of the package smells is the
“large package”, which relates to the size characteristic.
The number of classes (regardless of their visibility and
abstractness) in a package is a common measure for pack-
age size [3]. In case a package has too many classes, where
maintaining the package becomes a problem, the package
has a large package smell [3]. The problem of the large
package is similar to the “large class” code smell [6]. A
large class is likely to have many associations with other
classes because of the large number of method calls [6];
similarly, a large package could have many associations
(i.e., coupling) with other packages. On a similar note,
classes that are not communicating with each other within
a package show that such classes have di↵erent respon-
sibilities [7]. These issues are related to the insu�cient
modularization smell because abstractions (in this case,
packages) are not fully decomposed [8]. Due to the lack of
proper decomposition, the size of the packages may not be
manageable and can also cause comprehension issues. Ac-
cording to Suryanarayana et al. [8], the e↵ective modular-
ization is to “decompose abstractions (packages) to man-
ageable size”. This suggests that package size should be
maintained to avoid issues like insu�cient modularization
in the package structure. However, the literature lacks in
providing the empirical evidence for identifying refactoring
opportunities for package size optimization.

Previous package-level research has investigated tech-
niques to improve the internal quality characteristics, such
as coupling and cohesion [9, 7, 2, 10]. For instance, tech-
niques have been proposed to improve package structure

Preprint submitted to Elsevier April 30, 2023

This is a post-peer-review, pre-copyedit version of this article.This is a post-peer-review, pre-copyedit version of this article. The final authenticated version is available online at: http://doi.org/10.1016/j.jss.2023.111717

by managing the package coupling and cohesion [9, 7],
predicting package maintainability and testability using
coupling metrics [2], and refactoring large packages us-
ing coupling-based impacts (unstable dependencies) [10].
Most of these techniques focus on improving the coupling
between the packages and enhancing cohesion within the
packages through “move class” refactoring. However, hav-
ing only good coupling or good cohesion in the package
structure does not mean that package size is maintainable.
In addition, there are other issues, such comprehension and
communication issues, that are associated with large pack-
ages [1, 3]. Therefore, identifying refactoring opportunities
focused on package size is equally important.

Larger entities in the software (e.g., large package, large
class, large method) are often associated with more main-
tainability problems [1]. In the context of this study, the
size measure (i.e., number of classes) only reveal the large
packages in the software and not su�cient to explain how
the refactoring of large packages should be approached.
Therefore, additional measures (metrics) are needed to
assist the refactoring process. For example, connected
components (ConnComp), a package cohesion metric, in-
dicates the number of disjoint clusters of connected classes
in a package. If a large package has more connected com-
ponents, its size can be reduced by splitting the package
into multiple packages, with each component in a separate
package [3, 11]. In this example, the connected compo-
nents (ConnComp) metric assisted the refactoring of large
packages, which size metric alone cannot guide. However,
not all maintainability metrics could be used for identify-
ing refactoring opportunities. Therefore, how do we know
know what are the maintainability metrics that could be
useful for refactoring large packages? This can be achieved
by examining the relationships between maintainability
metrics and package size metric because those metrics that
are strongly associated with package size can be considered
for package size improvement.

To the best of our knowledge, there is a lack of empirical
evidence on identifying refactoring opportunities focused
on package size and investigating the package metrics for
such purpose. Therefore, in this study, we investigate
the relationships between package size and internal main-
tainability characteristics (using previously-employed and
well-known coupling, cohesion, and complexity metrics)
with the objective of identifying the strongly associated
metrics with package size. The benefit of such analysis is
that the maintainability metrics that are strongly related
with package size can be used as indicators of maintain-
ability issues in large packages because a single thresh-
old for large package identification may not be accurate
in every case. We performed a preliminary analysis to
show that, in our dataset, packages with almost similar
size (i.e., having slightly di↵erent number of classes) have
di↵erent maintainability metrics, meaning exhibiting dif-
ferent maintainability issues. We select 30 classes in a
package as a base because the literature assumes that when
the number of classes in a package exceeds 30, the package

can be considered large [12]. Therefore, the other pack-
ages for the analysis will be either with 29 classes or 31
classes. After selecting all the packages with these number
of classes (29, 30, and 31), we computed the mean values
of the maintainability metrics. The mean values of the
maintainability metrics are listed in Table 1. A coupling
metric (Ce) indicates that on average the coupling issues
were less when the packages have 31 classes as compared
to packages with 29 classes. Furthermore, the cohesion (as
indicated by ConnComp metric) got worse as the package
size increased from 29 classes to 31 classes. Finally, first,
the average complexity (indicated by R metric) increased,
when classes increased (i.e., from 29 to 30) in the packages;
whereas, the average complexity got better when another
class was added to the packages (i.e., from 30 to 31). This
preliminary analysis on our dataset suggests that packages
with almost similar sizes can behave di↵erently by exhibit-
ing di↵erent maintainability issues. Therefore, only relying
on package size for refactoring may not be always beneficial
and measurements beyond size will be useful for impact-
ful refactoring. Moreover, the metrics can help identifying
appropriate refactoring opportunities for package size de-
composition. Before we perform such analysis, using the
metrics, we empirically show the extent of the maintain-
ability issues (associated with di↵erent package sizes) to
express why refactoring of large packages is needed in the
first place. Although it is commonly understood and the-
oretically discussed that large components in the software
are usually more prone to maintainability issues, there is
no empirical evidence that shows the extent of the main-
tainability issues associated with large packages. There-
fore, before identifying refactoring of large packages, we
empirically show whether and to what extent large pack-
ages su↵er from maintainability issues.

Our empirical investigation is driven by two research
questions:

RQ1 — What is the extent of maintainability issues
(as indicated by the maintainability metrics) with respect
to di↵erent package sizes (large, moderate, and small)?

RQ2 — What are the maintainability characteristics
(metrics) useful for identifying refactoring opportunities
for large packages?

To answer RQ1, we examine the di↵erences across large,
moderate, and small packages in the internal maintainabil-
ity characteristics measured using all of the package-level
metrics proposed by Martin [12] (measuring coupling, co-
hesion, and complexity—also listed in Table 3). The dif-
ferences are examined using the Kruskal-Wallis test, de-
scriptive statistics (central tendency statistics—min, max,
mean, and median), and risk ratio. This analysis explains
the severity of the maintainability issues in relation to the
concrete package size thresholds (i.e., large, moderate, and
small packages). The classification of large, moderate,
and small packages is identified using distribution anal-
ysis. The threshold-based size classification is only used in
RQ1 because it is needed to show the extent of the main-

2

Table 1: Varied behavior of maintainability metrics in marginally di↵erent-sized large packages

Coupling* Cohesion* Complexity*

Package size Ce Ca H ConnComp R

29 classes (21 packages) 25.76 53.09 1.52 11.19 49
30 classes (21 packages) 25.47 21.23 2.23 11.28 71.2
31 classes (22 packages) 21.36 22.18 1.67 17.45 56

*The definition of the metrics can be found in Table 3

tainability issues associated with di↵erent package sizes,
primarily with large packages. To address RQ2, we inves-
tigate the linear relationship of package size with main-
tainability characteristics by performing correlation anal-
ysis, regression analysis, and e↵ect size measurement using
the same package-level metrics (presented by Martin [12]).
The empirical analysis is conducted using a collection of
111 open-source Java projects compiled in Qualitas Cor-
pus [13].

Based on our results, for RQ1, we observe that the main-
tainability issues (indicated by the metrics) are signifi-
cantly higher in large packages in comparison with moder-
ate and small packages. This indicates that large packages
carry significantly more maintainability issues. In terms
of RQ2, although the regression results indicate a strong
association of package size with the three maintainability
characteristics (coupling, cohesion, and complexity met-
rics), we observe that package cohesion (represented by
the number of connected components formed by the classes
or interfaces in the package—ConnComp metric [12]) and
package complexity (measured through the number of re-
lationships between classes/interfaces in the package—R
metric [12]) have the greatest e↵ect. Therefore, these
maintainability metrics can be more useful for identify-
ing the refactoring opportunities for large packages. It is
also worth mentioning that, theoretically, coupling is con-
sidered to be degraded in the large entities of a software
(large packages, large class, long method); however, our re-
sults reveal the contrary (i.e., large packages do not su↵er
from additional coupling).

The main contributions of our empirical analysis are as
follows:

1. Our analysis contributes to the refactoring aspect of the
package structure by identifying the usefulness of pack-
age cohesion (connected components—ConnComp) and
complexity (number of relationships—R) metrics for
refactoring large packages using a well-known set of
Java projects compiled in Qualitas Corpus.

2. A replication package3 containing package-level metrics
(in CSV format) of 111 open-source Java projects from
the Qualitas Corpus dataset is provided. The package
also includes the python script used for our data analy-
sis. Our replication package can also be useful in future
research to analyze the quality (size, coupling, cohesion,
and complexity) of Java packages.

3https://figshare.com/s/714099c8686d05e88631

2. Related Work

Previous research has substantially studied the main-
tainability of software systems, covering various artifacts
(e.g., architecture, design, and source code). The main-
tainability of software design and source code has been in-
tensively researched, describing several methods for exam-
ining the relationships between di↵erent internal maintain-
ability characteristics (size, coupling, cohesion, and com-
plexity). Since the analysis methods (for design and source
code) can be applicable for software architecture, we first
describe the previous work related to the maintainabil-
ity of software design and source code (Section 2.1). Next,
we describe the literature on the maintainability of object-
oriented architecture by presenting the techniques focusing
on software packages (Section 2.2).

2.1. Design and Code Maintainability

Several researchers have investigated the maintainabil-
ity in software design and source code using internal qual-
ity characteristics, such as size, coupling, cohesion, com-
plexity [14, 15, 16, 17, 18, 19, 20, 21]. Dallal [14] em-
pirically studied the relationship between internal class
quality characteristics (size, cohesion, and coupling) and
class maintainability using statistical methods, such as
descriptive statistics, univariate regression, and multi-
variate regression. Li and Henry [16] also investigated
class-level quality metrics for inheritance, coupling, cohe-
sion, complexity, and size to build prediction models for
maintainability. The results of these studies suggested a
strong correlation between the quality metrics and class
maintainability. Likewise, using the data from Li and
Henry’s [16] prior study, other studies employed di↵erent
statistical methods to develop maintainability prediction
models [17, 18, 19]. These studies also reached the same
conclusion as by Li and Henry [16].

Similarly, Dagpinar and Jahnke [20] applied univariate
and multivariate regression analysis to predict class main-
tainability using object-oriented metrics related to size,
inheritance, cohesion, and coupling. Their results showed
that size and e↵erent coupling measures are significantly
correlated with maintainability, suggesting that these mea-
sures can be used for refactoring large classes. Further-
more, Rizvi and Khan [21] explored the relationship be-
tween maintainability and internal characteristics (e.g.,
size and complexity) and reported a high correlation be-
tween them. Lastly, there is some literature that discussed

3

various metrics suitable for analyzing the maintainability
quality (related to coupling, cohesion, and complexity) at
the design-level of software projects [22, 23].

It can be observed that various statistical analysis, es-
pecially regression analysis, have been applied to investi-
gate the relationship of di↵erent maintainability aspects to
identify refactoring opportunities at the design and code
level. In this study, we also examine such relationships to
identify refactoring opportunities for large packages using
multiple statistical methods (including regression analysis)
by analyzing Java packages.

2.2. Architecture Maintainability

Some techniques have been proposed to analyze the
package maintainability by investigating the package-level
quality aspects, such as coupling and cohesion. For in-
stance, Abdeen et al. [9] proposed a technique to improve
package coupling and cycles by optimizing the dependen-
cies between packages. Their technique indirectly modified
the package sizes (within the predefined constraints) by
moving the classes among packages to have better coupling
(using e↵erent coupling (Ce) and a↵erent coupling (Ca)
of packages) and cohesion (dependencies between classes
of a package). Another study also used e↵erent coupling
(Ce) and a↵erent coupling (Ca) to modularize the package
structure using coupling (dependencies between classes of
the packages) [7]. Chantian and Muenchaisri [10] refac-
tored large packages using community detection. Their
technique used e↵erent (Ce) and a↵erent (Ca couplings
only to monitor the impact of refactoring on the coupling
aspect. Almugrin et al. [2] predicted package maintainabil-
ity and testability using coupling-related metrics. Abreu
et al. [24] applied a clustering-based technique to popu-
late software modules (packages) with classes having high
cohesion, and non-relation classes were extracted from the
packages. Furthermore, Briand et al. [15] reported a strong
association between package-level coupling metrics (e↵er-
ent (Ce) and a↵erent (Ca)) with project maintainability.
Finally, a couple of methods have been proposed that are
based on genetic algorithms to distribute classes into pack-
ages so that the internal package dependencies (cohesion)
can be enhanced [25, 26]. It can be seen that, in terms of
package coupling analysis, the proposed techniques have
used the metrics (e↵erent (Ce) and a↵erent (Ca couplings)
to modularize the software packages [9, 7]. The techniques
reduced the e↵erent (Ce) and a↵erent (Ca) couplings by
moving classes between the packages (i.e., reducing de-
pendencies between packages). While these techniques fo-
cused on modularizing packages, they did not specifically
aim to reduce package size; therefore, large packages are
still possible.

Although the improvement of the coupling character-
istic indirectly changes the package size, the coupling
metrics have not been explicitly studied for identifying
their relationship with package size. In addition, it may
be possible that both the coupling metrics (e↵erent—Ce
and a↵erent—Ca) show di↵erent levels of association with

package size. Therefore, the strengths of the relationships
of package size with both the coupling metrics individu-
ally need to be established. In this study, we investigate
the relationship of package size with coupling character-
istic measured using e↵erent coupling (Ce) and a↵erent
coupling (Ca) metrics.

Similarly, cohesion improvement methods also indirectly
impact the package size; however, the existing techniques
have not studied their relationship. Similar to the coupling
aspect, Chantian and Muenchaisri [10] applied the con-
cept of communities measured using cohesion metrics—
relational cohesion (H) and connected components (Con-
nComp)—however, they only assessed the impact of refac-
toring large packages on the cohesion aspect. Based on the
cohesion metrics, they employed Louvain algorithm [27] to
identify communities (each community represented by a
group of classes having strong cohesion) in the relationship
graph of a package. Briand et al. [15] studied the relation-
ship of package-level cohesion metrics with project main-
tainability and reported their strong association. Their
cohesion metrics are similar to relational cohesion (H) and
connected components (ConnComp); however, they used
di↵erent terminologies (e.g., ratio of cohesive interactions).
In this study, we examine the relationship of cohesion char-
acteristic with package size using cohesion metrics (Con-
nComp and H).

Lastly, only one of the existing package improvement
techniques considered the complexity aspect [25]. Seng et
al. [25] focused on subsystems decomposition by optimiz-
ing metrics and heuristics based on a good modularized
design. In addition, they adopted a di↵erent metric suit-
able for computing the complexity of subsystems. In our
study, we analyze the relationship of complexity character-
istic (measured using R metric) with package size. Lastly,
besides only relying on structural aspects to remodularize
the software packages, Mkaouer et al. [28] used various fac-
tors, such as structural, semantical, and history-based, to
remodularize the package structure. Their multi-objective
search-based method help improving the package structure
while minimizing the changes and maintaining the seman-
tic information.

Overall, it can be observed that most of the package
maintainability techniques focus on enhancing the pack-
age coupling and cohesion aspects. However, identifying
refactoring opportunities focused on package size and in-
vestigating the package metrics for such purpose are not
empirically studied. Our analysis fills this gap through a
relationship study of package size with three maintainabil-
ity aspects (coupling, cohesion, and complexity) by exam-
ining package-level metrics collected from a large set of
open-source Java projects.

3. Empirical Study Design

Our study design is driven by the experimental guide-
lines provided by Wohlin et al. [29] and Runeson and

4

Höst [30]. In this section, we first describe our study scope
followed by our study plan.

3.1. Study Scope

The goal of our empirical study is to analyze the main-
tainability metrics for the purpose of identifying refactor-
ing opportunities for large packages with respect to pack-
age maintainability from the viewpoint of software devel-
opment in the context of open-source software projects.

3.2. Study Plan

In this section, we describe the objects (i.e., open-source
projects), variables (i.e., metrics), variables collection (i.e.,
metrics collection), and data analysis methods of our em-
pirical study.

3.2.1. Open-Source Projects
In this study, we use the Qualitas Corpus [13] (originally

curated by Tempero et al. [31]) that provides a collection
of 111 compiled open-source Java projects (having 752 ver-
sions in total). The corpus can also be found on GitHub4.
Qualitas Corpus has 16,509 packages, over 200,000 com-
piled classes, and above 18.5 million lines of code. The
projects in the corpus are of varying sizes and belong to dif-
ferent domains (e.g., tool, middleware, parser, IDE, etc.).
In addition, the status of majority of the projects is ac-
tive—there are some projects that are in Dormant state
(i.e., temporarily inactive). The statistics of the dataset
used in this study are presented in Table 2. The corpus
has been used in many studies to analyze software quality
and the relationship among metrics [32, 33], which is also
accomplished in this study (i.e., investigating the relation-
ships between package size and maintainability character-
istics (metrics)); therefore, making the Qualitas Corpus
suitable for our analysis. The smallest project has one
package, and the largest one contains 1508 packages (over
5100 classes and 40k methods). For some projects, the
Qualitas Corpus has multiple versions; in such cases, we
select the first (base) version of the project in our analysis.

3.2.2. Metrics
To investigate the relationships between package size

and internal maintainability characteristics (coupling, co-
hesion, and complexity), package-level variables are re-
quired that measure these aspects. Therefore, we employ
all the package-level metrics (related to coupling, cohesion,
and complexity) presented by Martin [12]. To represent
the package size, we employ the metric by Lippert and
Roock [3]. For control variables, we use package size met-
rics presented by Lorenz and Kidd [34]. There are other
popular maintainability metrics presented by Lanza and
Marinescu [22] and Bansiya and Davis [23]; however, they
measure the design-level quality aspects (e.g., quality at

4https://github.com/JavaQualitasCorpus

Table 2: Statistics of the projects under analysis

Projects 111

Versions 752

Packages 7,156

Classes

Min — 0
Mean — 9.82
Max — 1091
Total — 70,331

Methods

Min — 0
Mean — 98.2
Max — 23,684
Total — 7,02,849

Domains

Tool — 30
Middleware — 19

Testing — 11
Visualization — 10

Parser — 9
Database — 8
Graphics — 7

SDK — 6
IDE — 5

Games — 3
Programming — 3

Status

Active — 76.5%
Dormant — 20.7%
Inactive — 2.7%

the class-level). Therefore, these metrics are not fitted for
our analysis. The package-level metrics we select are also
suitable because they measure the quality characteristics
we are interested in and have been used successfully in
the previous studies [9, 7, 2, 10]. Both classes and in-
terfaces, where applicable, are considered for computing
the package metrics. The package size is represented by
the number of classes (NumCls) in the package—the more
the classes in the package, the bigger the package will be.
Coupling is measured using two standard measures, ef-
ferent coupling (Ce) and a↵erent coupling (Ca). Com-
plexity is measured using the number of relationships (R)
metric that is based on the concept of Control (Informa-
tion) Flow Metric between software entities (e.g., modules,
classes, methods) [35]. Cohesion is considered using the
relational cohesion (H) and connected components (Con-
nComp) metrics. Here “component” represents a graph
of connected classes and interfaces in a package. Rela-
tional Cohesion (H) considers the number of relationships
(R) metric to compute the internal relationships in the
package. We include two additional metrics (independent
variables) related to package size—number of operations
in the classes (NumOpsCls) and number of classes in sub-
packages (NumCls tc)—as control variables in our regres-
sion model. The package metrics are briefly explained in
Table 3.

3.2.3. Metrics Collection
To collect the required metrics, we employ two software

tools. We use Enterprise Architect5, a popular tool that

5https://sparxsystems.com/products/ea/index.html

5

Table 3: Description of the package-level metrics considered in this study

Metric Attribute Description

Number of classes (NumCls) Size Number of classes in the package [3].
Number of operations in the classes (NumOpsCls)† Size Number of operations (methods) in the classes of the package [34].
Number of classes in sub-packages (NumCls tc)† Size Number of classes in the packages and its sub-packages [3].
E↵erent coupling (Ce) Coupling Number of external classes/interfaces that the package depends on [12].
A↵erent coupling (Ca) Coupling Number of external classes/interfaces that depend on the package [12].
Relational cohesion (H) Cohesion Average number of internal relationships per class/interface in the

package [12].
Connected components (ConnComp) Cohesion Number of connected components formed by the classes/interfaces of

the package [12].
Number of relationships (R) Complexity Number of relationships between classes/interfaces that are internal to

the package [12].

†Metric used as a control variable in the regression model

can model, design, and test software systems [36, 37], to
reverse-engineer the source code of software projects to
obtain a high-level representation of packages and classes.
Next, we use SDMetrics6, a widely employed tool to mea-
sure software design characteristics [38, 39, 40]. The ra-
tionale of choosing SDMetrics is the support provided to
collect the metrics of our interest. The following steps
(also depicted in Figure 1) are involved in the collection of
the required metrics:

1. Reverse-engineer the source code of a project using En-
terprise Architect to obtain a high-level project repre-
sentation because we are interested in package struc-
ture.

2. Export the high-level representation of the project’s
source code in XMI format (required format for SD-
Metrics) using the Enterprise Architect’s export func-
tionality.

3. Upload the XMI of the project to the SDMetrics tool.

4. Calculate and export (in CSV format) the package-level
metrics of the project.

3.2.4. Data Analysis Methods for RQ1
To examine the maintainability metrics (related to cou-

pling, cohesion, and complexity) with respect to di↵erent
package sizes, we first classify large, moderate, and small
packages. The literature assumes that if the number of
classes in a package exceeds 30, the package is large [12].
Another study reported that more than 28 classes in a
package is a large package [41]. In addition, a package
with only a few classes (either one or two) is considered
a small package [12]. However, to be confident that our
package size classifications hold true for the projects an-
alyzed in this study, we classify the large, moderate, and
small packages by applying distribution analysis on the
number of classes (NumCls) in the packages of 111 open-
source Java projects.

6https://www.sdmetrics.com/index.html

Many techniques analyzed the distribution of the metric
values of the benchmark data (set of software projects) to
filter the values that are uncommonly used by the develop-
ers [42, 43, 44, 41, 45, 46, 47, 48]. Such uncommon values
were used as a break-point to classify low-quality compo-
nents in the software. For instance, Alves et al. [42] used
quantiles to identify the metrics values for di↵erent quality
levels (high, moderate, and low). Although the objective
of our study is not to report any thresholds, we adopt
the quantile-based technique (by Alves et al. [42]) only
for classifying package sizes (large, moderate, and small)
for this study. We applied the quantile-based technique
by looking at the distribution of the number of classes in
the packages (NumCls metric) across the 111 open-source
Java projects in our dataset. Alves et al. [42] reported
90% quantile as very high risk; therefore, we also use the
90% quantile as a break-point to filter the packages with
high risk (i.e., large packages). Low quantile values cap-
ture the small metric values with very low variability [42];
therefore, we use the 25% quantile to classify the packages
with only a few classes (i.e., small packages). Everything
in between (25%–90%) are considered moderate packages.

Statistical Test and Descriptive Statistics. Using
the internal maintainability metrics, we perform Kruskal-
Wallis H -tests and compute descriptive statistics. Each
H -test has a trio sample (e.g., cohesion values from large,
moderate, and small packages) to identify whether the
di↵erence is significant or not. Moreover, the descrip-
tive statistics provide some indication of the di↵erences
in the maintainability issues associated with large, moder-
ate, and small packages. For all the maintainability met-
rics (except relational cohesion (H)), high values represent
bad quality. Therefore, if large packages have high values
of the maintainability metrics, it will suggest that such
packages have more maintainability issues.

Risk Ratio. In the case of coupling metrics, we per-
form additional analysis based on the threshold values cat-
aloged by Filó et al. [41]. The coupling thresholds, given
by Filó et al. [41], are also based on the Qualitas Cor-
pus—the set of projects used in this study. The thresholds
are proposed in terms of good, bad, and regular coupling
ranges. The “good” coupling range corresponds to the

6

DATA COLLECTION

Enterprise Architect

Reverse-engineer
source code

SDMetrics

Compute package
metricsXMI representation

input outputoutput input

Metrics in CSV
Source code

inputinput

RQ1 Methods

o Kruskal-Wallis H-test
o Descriptive Statistics
o Risk Ratio

RQ2 Methods

o Correlation Analysis
o Regression Analysis
o Effect Size

DATA ANALYSIS

Figure 1: Study design.

most commonly used coupling values in practice; “bad”
range encapsulates the coupling values that are uncom-
monly adopted by the developers; and, finally, “regular”
coupling range represents the values that are neither too
frequent nor rare [41]. The thresholds are listed in Table 4.
Based on these threshold ranges, we calculate the risk ra-
tios (RR) for both of the coupling measures (e↵erent (Ce)
and a↵erent (Ca))—in terms of good, bad, and regular—
using equation 1 (presented by Zhang and Yu [49]).

RR =
CIl(bad)
CIs(bad)

(1)

where CIl(bad) is the cumulative incidence of the large
packages having coupling in bad range, whereas, CIs(bad)
represents the cumulative incidence of the small packages
having coupling in bad range. CIl(bad) and CIs(bad) are
calculated using equations 2 and 3, respectively.

CIl(bad) =
Number of large packageswith bad coupling

Total number of large packages
(2)

CIs(bad) =
Number of small packageswith bad coupling

Total number of small packages
(3)

Using the same equations 1, 2, and 3, the risk ratios are
calculated for good and regular ranges of coupling metrics;
and also, for moderate packages. Since we could not find
the threshold ranges for cohesion and complexity metrics
(employed in this study), we could not compute the risk
ratio for these characteristics.

3.2.5. Data Analysis Methods for RQ2
Correlation Analysis. To identify the linear rela-

tionships between package size and three maintainability
characteristics (coupling, cohesion, and complexity), we
calculate the correlation using the package-level metrics.

However, to decide which correlation method is suitable
for analysis, we test whether our data is normally dis-
tributed or not. Therefore, we apply Shapiro-Wilk test
for checking the normality of our dataset. The output of
the Shapiro-Wilk test suggests that the distribution of our
dataset is not normally distributed. The results of the test
are summarized in Table 5. Since our data is not normally
distributed, we compute the Spearman’s correlation [50].
According to Prion and Haerling [50], the Spearman’s cor-
relation (strength of the relationship) is interpreted as fol-
lows: 0–0.20 as negligible, 0.21–0.40 as weak, 0.41–0.60
as moderate, 0.61–0.80 as strong, and 0.81–1.00 as very
strong.

Regression Analysis. We build a regression model to
show the significance of the relationships between pack-

Table 4: Thresholds for classifying di↵erent coupling quality levels

Metric Good Bad Regular

E↵erent coupling (Ce) 6 > 16 6 < Ce 16
A↵erent coupling (Ca) 7 > 39 7 < Ca 39

Table 5: Shapiro-Wilk test for normality distribution

Metric Coe�cient

Number of classes (NumCls) 0.25***

E↵erent coupling (Ce) 0.51***

A↵erent coupling (Ca) 0.21***

Connected components (ConnComp) 0.32***

Relational cohesion (H) 0.61***

Number of relationships (R) 0.16***

Number of operations in classes (NumOpsCls)† 0.15***

Number of classes in sub-packages (NumCls tc)† 0.13***

* p <0.05, ** p <0.01, *** p <0.001
† Metric used as a control variable in the regression model

7

Table 6: Pairwise Variance Inflation Factor (VIF) for identifying collinearlity between a pair of metrics

Metric Ce Ca ConnComp H R NumOpsCls NumCls tc

E↵erent coupling (Ce) — 1.16 1.32 1.31 1.18 1.25 1.06
A↵erent coupling (Ca) — — 1.07 1.15 1.17 1.12 1.07
Connected components (ConnComp) — — — 1.05 1.10 1.69 1.07
Relational cohesion (H) — — — — 1.38 1.13 1.03
Number of relationships (R) — — — — — 2.09 1.07
Number of operations in classes (NumOpsCls)† — — — — — — 1.08
Number of classes in sub-packages (NumCls tc)† — — — — — — —

† Metric used as a control variable in the regression
model

Table 7: Collective Variance Inflation Factor (VIF) scores for iden-
tifying collinearlity between all the metrics

Metric VIF

E↵erent coupling (Ce) 1.71
A↵erent coupling (Ca) 1.31
Connected components (ConnComp) 2.13
Relational cohesion (H) 1.66
Number of relationships (R) 2.93
Number of operations in classes (NumOpsCls)† 3.57
Number of classes in sub-packages (NumCls tc)† 1.15

† Metric used as a control variable in the regression model

age size (dependent variable) and maintainability met-
rics (independent variables) related to coupling, cohesion,
and complexity. We also include two control variables
(as described in Section 3) in our regression model. Be-
fore performing the regression analysis, we check whether
any collinearity exists between the independent variables.
For that, we calculate the Variance Inflation Factor (VIF)
of the independent variables (including control variables).
VIF checks if the behavior of an independent variable is
influenced by its correlation with the other independent
variables in the regression model. The VIFs are computed
in pairs (shown as a matrix in Table 6) and collectively
(presented in Table 7). We find that the VIF values are
small, suggesting that no such collinearity exists between
the independent variables; therefore, we build the regres-
sion model.

E↵ect Size. To show the strength of the relationships
of the maintainability metrics in our regression model, we
express their global and local e↵ect sizes using Cohen’s f2

measure [51]. The importance of reporting e↵ect size is
that it is more practical and independent of the sample
size [52]. The global e↵ect size is computed using the fol-
lowing equation (where R2 is the coe�cient of determina-
tion):

f2 =
R2

1�R2
(4)

Another variation of Cohen’s f2 measures the local ef-
fect size of each independent variable in the regression
model. Since we have multiple maintainability metrics
(variables), we also compute their local e↵ect sizes using

the following equation:

f2 =
R2

AB �R2
A

1�R2
AB

(5)

Where B is the variable of interest, such as coupling
metric (Ce), cohesion metric (H), etc., and A is the set of
all other variables, depending on what B is. For interpret-
ing the e↵ect size, according to Cohen’s guidelines [53],
f2�0.02 represents small e↵ect size; f2�0.15 represents
medium e↵ect; and f2�0.35 represents a large e↵ect size.

4. Analysis Results

In this section, we present the results of our empirical
analysis in terms of our RQs.

4.1. Maintainability Issues in Di↵erent Package Sizes
(RQ1)

The distribution of the number of classes in the pack-
ages is presented in Figure 2 (outliers are excluded to ease
readability). It can be seen that the distribution is long-
tail, where most of the packages have a small number of
classes. By specifying the 90% quantile, we receive the
metric (number of classes in the package—NumCls) value
22. Therefore, we consider any package having classes
more than 22 as a large package. The red line (on the right
in Figure 2) shows the break-point (i.e., 22 classes in the
package at 90% quantile). The plot shows that the high-
risk metric values (i.e., beyond 90%—right side of the red
line) rarely occur in the projects. Similarly, at 25% quan-
tile, the yielded value is 2, which means that 25% of the
packages contain either one or two classes. Therefore, we
consider any package having one or two classes as a small
package. To show this in Figure 2, another red line (left
side) is drawn at 25% quantile. To summarize, by analyz-
ing the distribution of package sizes, the large, moderate,
and small packages are identified as follows:

• Large package: Number of classes in the package >
22.

• Small package: Number of classes in the package = 1
OR 2.

8

Figure 2: Distribution of the number of classes in the packages of the analyzed projects. The vertical red lines are drawn at 25% quantile
(number of classes is 2) and 90% quantile (number of classes equals 22).

• Moderate package: Number of classes in the package
> 2 AND 22.

By applying these package classification rules, out of
total of 7,156 packages, we obtain 695 large (comprises
36,156 classes), 4,048 moderate (contains 31,005 classes),
and 2,242 small (has 3,170 classes) packages. The remain-
ing 171 are packages with no classes. These 171 pack-
ages have only interfaces that is why they are counted as
empty in terms of number of classes. We also validated
this by manually looking at the quarter of these 171 pack-
ages to confirm that these 171 packages actually have in-
terfaces only. It is worth mentioning that although 695
large packages (out of 7,156) is a small percentage, the
classes within these large packages are more than moder-
ate and small packages combined, suggesting a large num-
ber of classes will be a↵ected by the maintainability issues
associated with large packages. The descriptive statistics
of the maintainability metrics, in Table 8, indicate more
maintainability issues (except in relational cohesion (H))
in large packages than in small packages because high val-
ues represent low maintainability. For instance, in large
packages, a↵erent coupling (Ca) has maximum and me-
dian values significantly higher than that in moderate and
small packages. In the case of relational cohesion (H), the
median value is slightly lower in moderate and small pack-
ages, meaning the relational cohesion (H) is better in large
packages. We performed additional analysis of relational
cohesion (H) in large and small packages to further under-
stand this behavior. First, based on the number of classes
(more than 22), we found that there are 695 large packages
in our dataset. After that, we found those instances where
the relational cohesion (H) is 1 or higher (suggesting that
the package has good internal communication). As a re-

sults, out of 695 large packages, 458 packages exhibit good
relational cohesion (H). This means that as the number of
classes is increasing in the packages, the communication
between the classes within the packages is getting better
(i.e., developers are adding mostly those classes that are
needed in the package). Similarly, we selected 928 small
packages (having 2 classes) and found that 587 packages
have no internal communications (i.e., their relational co-
hesion (H) is worse). This means that the classes in small
packages are working independently. One possible reason
for this could be that small packages are being created to
store classes that do not quite “fit” into any package, this
could be a reason for them not having any internal com-
munication. Future work could perform qualitative anal-
ysis to understand the reasons for this more deeply. Our
Kruskal-Wallis tests also show the significant di↵erences
in the maintainability metrics (for coupling, cohesion, and
complexity) when comparing di↵erent package sizes. In
all the cases, we obtain high H -scores and p-values less
than 0.001 (see Table 8), indicating the statistically signif-
icant di↵erences in the maintainability measures of large,
moderate, and small packages.

The risk ratios of the coupling metrics (in good, bad, and
regular ranges) are described as follows (also presented in
Table 9):

• E↵erent Coupling (Ce): For good e↵erent coupling,
we receive risk ratios of 0.28 (for moderate packages)
and 0.19 (in terms of small packages), suggesting a sig-
nificantly low likelihood that large packages have good
e↵erent coupling (see Table 9). On the other hand, the
likelihood of bad e↵erent coupling in large packages is
nearly five times (RR value is 4.78) higher compared
to moderate packages and many-fold (RR valus is very

9

Table 8: Descriptive statistics of maintainability metrics with respect to large, moderate, and small packages

Large packages Moderate packages Small packages

Metric Ideal
value

H -test Min Max Median Min Max Median Min Max Median

E↵erent coupling (Ce) Lower 1825.04*** 0 192 18 0 240 5 0 73 1
A↵erent coupling (Ca) Lower 1185.35*** 0 1488 15 0 760 1 0 609 0
Connected components (ConnComp) Lower 2918.14*** 1 393 13 1 56 3 1 55 1
Relational cohesion (H) Higher 169.17*** 0.01 23.1 1.6 0.03 20.5 1 0.18 7 1
Number of relationships (R) Lower 2809.99*** 0 4815 64 0 534 5 0 140 0

* p <0.05, ** p <0.01, *** p <0.001

high—43.89) compared to small packages. Finally, sim-
ilar likelihood behavior is observed in regular coupling
(see Table 9).

• A↵erent Coupling (Ca): Similar behavior is ob-
served in the a↵erent coupling (Ca), where we obtain
a risk ratio of 0.47 and 0.4 for moderate and small pack-
ages, respectively, meaning large packages have a lower
likelihood of having good a↵erent coupling (Ca) (see Ta-
ble 9). On the contrary, the risk ratio of bad a↵erent
couplings (5.3 and 21.89 for moderate and small, respec-
tively) suggests a significantly higher likelihood of bad
a↵erent coupling in large packages. Likewise, the risk ra-
tio for regular a↵erent coupling indicates over four times
(RR is 4.52) more coupling risk in large packages than
in small packages (see Table 9).

Large packages have significantly higher values of
coupling, cohesion, and complexity metrics. This in-
dicates maintainability issues in large packages and
call the need for their refactoring.

4.2. Identifying Metrics Useful for Refactoring Large
Packages (RQ2)

Our regression model produces an R2 value of 0.81 (with
a p-value less than 0.001 and intercept 3.09—see Table 10,
showing the overall significance of the relationship between
package size and maintainability metrics (coupling, cohe-
sion, and complexity). Based on the R2, the global e↵ect
size (computed using equation 4) of the regression model
is 4.37. Since e↵ect size (f2) is greater than 0.35 [53],
the global e↵ect size is significantly large. However, we
notice that the individual relationships and e↵ect sizes
(calculated using Spearman’s correlation and local e↵ect
size, respectively) of package size with these maintainabil-
ity metrics show varied behavior (described in the rest of
this section). The results are also summarized in Table 12.

4.2.1. Size and Coupling
Spearman’s correlations suggest moderate and weak re-

lationships of e↵erent coupling (Ce) and a↵erent coupling
(Ca), respectively, with package size. The correlations of
coupling metrics are listed in Table 11. However, when

controlled for the number of operations in the classes (Nu-
mOpsCls) and the number of classes in the sub-packages
(NumCls tc), our regression model shows negligible asso-
ciations of coupling metrics with package size, given their
small coe�cient values and no e↵ect sizes (see Table 10).
It is also worth noting that the a↵erent coupling (Ca)
(that has a weak correlation) has negative coe�cient in
the multiple regression model. As explained by Falk and
Miller [54], this behavior occurs when the relationship be-
tween the dependent and independent variables is weak
that the di↵erence in the signs reflects random variation
around zero.

4.2.2. Size and Cohesion
Spearman’s correlations indicate that the cohesion

(measured by the number of connected components—
ConnComp) is strongly associated with package size,
whereas, for the other cohesion (computed by the aver-
age number of internal relationships—H), the relation-
ship is negligible. The correlations can be found in Ta-
ble 11. Our regression analysis confirms the strong rela-
tionship of cohesion (ConnComp) with package size be-
cause of its high coe�cient value and medium e↵ect size
(see Table 10). However, the coe�cient of relational co-
hesion (H) in the regression analysis is negative, which
reflects its linear decrease in relation to the package size
increase. The negative coe�cient for relational cohesion
(H) practically makes more sense because internal pack-
age relationships (between classes and interfaces) are de-
creasing (i.e., low relational cohesion) as the package size
increases [12]. However, the e↵ect size of relational cohe-
sion (H) is small (f2 is 0.03).

4.2.3. Size and Complexity
Finally, the Spearman’s correlation value suggests a

strong relationship between package size and complexity
metric (R)—see Table 11. However, it is not confirmed by
the regression analysis as the coe�cient value of complex-
ity metric (R) is small; still, its e↵ect size is medium (see
Table 10).

For refactoring large packages, package cohesion
(measured through ConnComp metric) and complex-
ity (computed using R metric) characteristics could

10

Table 9: Risk ratios of couplings in large packages with respect to moderate and small packages

Risk ratios w.r.t. moderate packages Risk ratios w.r.t small packages

Coupling Good Bad Regular Good Bad Regular

E↵erent coupling (Ce) 0.28*** 4.78*** 1.01*** 0.19*** 43.89*** 4.16***

A↵erent coupling (Ca) 0.47*** 5.30*** 1.85*** 0.4*** 21.89*** 4.52***

* p <0.05, ** p <0.01, *** p <0.001

Table 10: Regression analysis and e↵ect size measurements

Metric Coe�cient E↵ect size (f2)

E↵erent coupling (Ce) 0.045*** 0.00
A↵erent coupling (Ca) -0.005* 0.00
Connected components (ConnComp) 0.802*** 0.24
Relational cohesion (H) -1.64*** 0.03
Number of relationships (R) 0.077*** 0.20
Number of operations in the classes (NumOpsCls)† 0.029*** 0.30
Number of classes in sub-packages (NumCls tc)† 0.006*** 0.00

R2 equals 0.81 with an intercept of 3.09
* p <0.05, ** p <0.01, *** p <0.001
†Metric used as a control variable in the regression model

be used as they have shown significant relationships
with package size.

5. Discussion and Validity Threats

This section discusses the results and threats to validity
of this study.

5.1. Discussion

Refactoring large packages solely based on size (i.e.,
number of classes—NumCls) may not always result in an
optimal package structure. Even though our results show
that large packages are more likely to have maintainability
issues, it may be possible that not all large packages
have maintainability issues as measured by the metrics
in our analysis. For instance, a large package will not
have cohesion issues if all the classes in it (even too
many) are cohesive (i.e., all the classes forming only
one connected component—ConnComp). In our dataset,
we found 42 such instances of large packages, where
the packages have only one connected component (Con-
nComp); for example, org.apache.batik.anim.values,
org.apache.cassandra.db.marshal, and
org.apache.cayenne.merge. This analysis also hints
that there could be other large packages that may have
good coupling or complexity. This means that metrics,
besides size-related, also matter for large package refac-
toring, and the assumption of refactoring packages solely
because they are large may not be always beneficial. In
this section, we discuss the maintainability metrics (iden-
tified by our empirical analysis) that can help identify
refactoring opportunities for large packages.

Our empirical study identifies the maintainabil-

ity metrics useful for refactoring large packages

and aligns with the prior arguments made in the

literature on the importance of large package mod-

ularization. Although it is a common understanding that
maintainability characteristics can be used for optimizing
the overall package structure, there was a lack of empiri-
cal evidence on identifying the specific metrics useful for
optimizing the package size. In addition, as also revealed
by our results, not all maintainability metrics can be used
for refactoring large packages. For instance, our results
bring empirical evidence that maintainability metrics (re-
lated to cohesion and complexity) can be used for iden-
tifying refactoring opportunities for large packages; how-
ever, coupling metrics (Ce and Ca) may not be beneficial.
Our identification of the metrics (beneficial for refactor-
ing) is based on their strong association with package size
and considerable e↵ect size; for instance, package cohesion
(ConnComp) and complexity (R) metrics.

Refactoring of large packages also aligns with the prior
arguments made in the literature on why the modulariza-
tion of large packages is beneficial for independent software
development and e↵ective communication among develop-
ers [12]. In the literature, it is discussed that large pack-
ages can discourage the development team from working
independently [12]. In addition, they can negatively im-
pact the communication and coordination in the develop-
ment team because if many developers are working on a
single package, there might be communication hindrances
and coordination issues among them (i.e., lacking com-
municability and socio-technical congruence) [12]. The
ine↵ective communication and coordination in the devel-
opment teams can introduce sub-optimal socio-technical
patterns in the organizational structure commonly known
as “community or social smells” [55]. For example, if mul-

11

Table 11: Spearman’s correlation between package size and maintainability metrics

Metrics Correlation

Package size (NumCls) and e↵erent coupling (Ce) 0.57***

Package size (NumCls) and a↵erent coupling (Ca) 0.39***

Package size (NumCls) and connected components (ConnComp) 0.69***

Package size (NumCls) and relational cohesion (H) 0.14***

Package size (NumCls) and number of relationships (R) 0.70***

* p <0.05, ** p <0.01, *** p <0.001

Table 12: Summary of the relationship results of package size metric with maintainability metrics

Analysis method Ce Ca ConnComp H R

Correlation analysis Moderate Weak Strong Negligible Strong
Regression analysis Weak Weak Strong Strong (-ve) Weak
E↵ect size None None Medium Small Medium

tiple developers are working on the smaller packages (that
are dependent on a larger package), the communication
between the developers might create a bottleneck e↵ect
(radio silence community smell [55]) because all the com-
munication passes through the developer(s) working on the
large package.

Refactoring large packages based on cohesion

metric (ConnComp). Based on the results, if a large
package needs refactoring, more focus should be given on
improving the package cohesion by reducing the connected
components (measured by ConnComp metric) because a
low number of connected components indicates good co-
hesion. We discuss this cohesion-based refactoring strat-
egy that has been previously applied by Martin [3] and
Palomba et al. [11]. The refactoring is reducing the con-
nected components by splitting the package into multi-
ple packages [3, 11]. For instance, if a package has three
connected components (represented by the groups of con-
nected classes), each component can be extracted into
a package, forming three packages. Then, each package
would only contain the coupled classes (i.e., classes com-
municating with each other), fulfilling the single responsi-
bility principle. As a result, the packages would be bet-
ter semantically structured with improved package sizes.
When a package has ideally only one connected compo-
nent or less connected components (in general), it is an
indication that package size has improved in terms of its
cohesion. Software practitioners can benefit from this
result by keeping the number of connected components
(ConnComp) to a minimum—less connected components
(ConnComp) means they can maintain better cohesion,
and can eliminate unnecessary classes in the package (i.e.,
improved package size). The practical usefulness of this
result can be amplified if tool developers can include the
visualization of the connected components using graphs to
ease the identification of the clusters of classes that are not
communicating with each other. Once such clusters are vi-
sually identified, the developers can refactor by splitting
the package into multiple packages, where each package
contains a cluster. Potentially, refactoring can also be en-

abled visually in the tools.

Refactoring large packages based on complexity

metric (R). Based on the strong association of the com-
plexity metric (R) with package size, it can also be used
for identifying refactoring needs of large packages. Again,
the refactoring strategy is adopted from the existing litera-
ture [56, 8]. The complexity-based refactoring would likely
need to occur in two phases because the increase in the
complexity (number of relationships (R)) indicates that
coupling between classes of the packages is also increasing
(i.e., “feature envy” design smell) [56]. Therefore, first,
“move method” refactoring should be applied to reduce
the method calls (relationships) between the classes or in-
terfaces of a package (i.e., removing the “feature envy”
smell) [8]. With “move method” refactoring, each class
will be responsible for executing a particular functionality
(i.e., expressing the single responsibility principle). Sec-
ond, “extract class” refactoring can be applied to move
the uncoupled (non-cohesive) classes to a new package
resulting in reduced package sizes [8]. Once the num-
ber of relationships (R) in a package is in a manageable
state (i.e., not many), it is an indication that the package
size is optimized in terms of its complexity. Again, the
complexity-based refactoring can help practitioners per-
form informed and timely refactoring of large packages so
that they can maintain package sizes. Furthermore, tool
builders can incorporate the complexity metric (number of
relationships—R) in their tools to assist their users in ap-
plying the “move method” and “extract class” refactoring
strategies.

So far in this discussion, we have demonstrated how the
two strongly correlated metrics can be used for refactoring
large packages. However, future work could include other
package metrics (measuring coupling, cohesion, and com-
plexity) to gain additional insights into their usefulness
for package size optimization. In addition, literature has
emphasized on modularized packages for improved socio-
technical congruence and communicability in the software
projects. Therefore, future work could also examine how
the large packages impact the socio-technical aspects of the

12

software projects. Lastly, this study only focuses on iden-
tifying refactorings for large packages; future work could
investigate the metrics useful for refactoring small pack-
ages.

Another important aspect is the trade-o↵ between mod-
ular disruption and package quality improvement that
could be considered while refactoring large packages. Mod-
ular disruption considers the number of elements or mod-
ules that need to be moved or merged [57] (i.e., the more
the movement of classes between packages, the more dis-
ruption happens in the overall package structure). There-
fore, developers need to decide whether they are willing
to undertake the disruption of architecture (as a result of
refactoring large packages) in comparison to the quality
gains. By utilizing appropriate metrics to identify main-
tainability issues in package structure, some disruption will
likely occur. However, over time, the disruption is likely
to be reduced since less changes will be required to pack-
age structure after its initial optimization. Future work
should empirically validate the disruptions and improve-
ments as the software projects evolve over time. In addi-
tion, future work can apply methods (e.g., multi-objective
search-based approach [57]) to help developers find a bal-
ance between disruption and package improvement caused
by refactoring.

Refactoring large packages based on coupling

metrics may not be beneficial. Based on our results,
we found that the coupling metrics (Ce and Ca) may not
be helpful in optimizing the package size. The rationale for
this lies in the refactoring strategy of large packages based
on coupling. Usually coupling of packages is improved
by “moving classes” between packages. This means that,
on one side, where the package size is reduced by moving
the classes, on the other side, the sizes of other packages
(where the classes are moved) are increasing. Therefore,
the overall e↵ect of the change in the package structure
(size-wise) is not that impactful; however, the coupling
is improved. The refactoring strategies, based on our co-
hesion (ConnComp) and complexity (R) metrics, rely on
“extracting classes”” to new packages, resulting in overall
modularized package structure.

Our regression model suggests that large pack-

ages may not su↵er from additional coupling; how-

ever, based on the raw values of e↵erent (Ce) and

a↵erent couplings (Ca), our findings also suggest

that large packages may be more unstable. This
indicates that dependencies with unstable large packages
may lead to more instability in the package structure be-
cause instability is the ratio of e↵erent coupling (Ce) to
total coupling (Ce + Ca) [12]. When e↵erent coupling
(Ce) is greater than a↵erent coupling (Ca), the instabil-
ity will be higher in the package. Ideally, the instability
value should be close to zero, indicating a stable pack-
age [12]. A completely unstable package has an instability
value of 1 [12]. Our results indicate that, as the pack-
age size grows, the number of external classes or interfaces
that the package depends on (i.e., e↵erent coupling (Ce))

increases at a greater rate than the number of external
classes or interfaces that depend on the package (i.e., af-
ferent coupling (Ca)). The risk ratios (in Table 9) also
indicate this behavior as we notice large packages having
more likelihood to su↵er from e↵erent coupling (Ce) issues
than a↵erent coupling (Ca). By performing additional
analysis, we found that nearly half of the large packages
(based on more than 22 classes) has instability value 0.6 or
more, suggesting that e↵erent coupling (Ce) issue is more
evident than a↵erent coupling (Ca) issue in large pack-
ages. To give a specific example, in Apache Ant project,
org.apache.tools.ant.filters package is a large one with 32
classes and has an instability value of 0.818, meaning the
package is highly unstable. This is happening because the
package has e↵erent coupling (Ce) value of 27 which is
significantly higher than a↵erent coupling (Ca) value of 6.
Similarly, we observe a likewise behavior in another large
package in Hibernate project. We notice a high e↵erent
coupling (Ce) value of 60 in org.hibernate.event.internal
package which made this package an unstable one (insta-
bility value is 0.895). This additional in-depth analysis
suggests that large packages are more unstable. Ideally,
the package structure should have a mix of stable and un-
stable packages because, in case all the packages are stable,
the system will be rigid (unchangeable) [12]. Therefore,
the plan to action could be that the package structure
should have high-level architecture and design decisions
into stable packages (e↵erent coupling (Ce) will be mini-
mal in stable packages), while, volatile functionality should
be placed into unstable packages (the packages with min-
imal a↵erent coupling (Ca)).

Empirical analysis is needed to identify appropri-

ate thresholds for the maintainability metrics that

are strongly associated with packages size to assist

refactoring decisions. Large packages can be refactored
to the degree where maintainability metrics fall into good
or, at most, regular (acceptable) ranges. In the literature,
we could only find the threshold ranges of the coupling
metrics (e↵erent (Ce) and a↵erent (Ca)) [41]. However,
our results show that these coupling metrics have zero ef-
fect size in relation to the package size; therefore, they
are not useful for identifying the refactoring opportuni-
ties in large packages. Future work could conduct empir-
ical studies to determine threshold ranges (good, regular,
and bad) of the maintainability metrics that are useful
for package size maintenance (e.g., cohesion—ConnComp
and complexity—R). Future work could also focus on inte-
grating these maintainability metrics into the development
tools that will assist the developers in choosing the pack-
ages that they should consider refactoring.

5.2. Threats to Validity

We explain the validity threats of our empirical study in
terms of following four categories (as presented by Wohlin
et al. [58]).

13

5.2.1. Conclusion Validity

This validity threat refers to the ability to draw correct
conclusions regarding the relationship between the depen-
dent and independent variables [58]. In our study, a threat
to conclusion validity is related to the large package classi-
fication. We considered large packages as those with 22 or
more classes, which is the largest 10% of packages in our
dataset. We do not claim this to be an exact threshold
because packages that are close in size to 22 (e.g., 21 or
20 classes) may also be considered large packages. How-
ever, since our goal was to compare large packages with
other packages, some cut o↵ was needed. We have shown
there are di↵erences in large packages using 22 classes as
a cut o↵ in the set of analyzed projects. However, other
threshold value for large packages (or package classification
in general) may produce di↵erent outcome. The statistical
analysis also showed significant di↵erences in package sizes,
indicating the validity of the employed thresholds. How-
ever, future studies can investigate whether similar large
package issues exist in slightly smaller packages. Lastly,
despite employing well-known statistical methods in our
analysis, there could still be a possibility that the relation-
ships identified through the methods are prone to biasness.

5.2.2. Construct Validity

The construct validity deals with the accurate represen-
tation of the theoretical concepts in the dependent and in-
dependent variables [58]. To mitigate this, we used a set of
metrics that are the most commonly studied in the litera-
ture. For instance, the coupling metrics (e↵erent (Ce) and
a↵erent(Ca)) have been widely employed in many studies
to measure the coupling attribute [9, 7, 2, 10]. Similarly,
other considered metrics have been widely used. However,
the use of other metrics in the analysis may yield addi-
tional insights into the relationship between package size
and its maintainability.

Another construct validity threat is related to the met-
ric (number of classes—NumCls) used for measuring the
package size. This metric only counts the number of classes
that are directly in the package (i.e., excluding the classes
in sub-packages). This conceptualization of package size
is commonly used in the literature [3, 10]. Therefore, we
also employed the package size metric that gives the count
of classes that are directly in the package. However, it
can be argued that the classes in sub-packages might be
related to the main package. Therefore, future work could
examine how the sizes of sub-packages impact the main-
tainability of packages. Lastly, the properties (related
to coupling, cohesion, and complexity) of packages may
vary depending on the project type. For instance, when
packages are structured based on features, strong cohesion
would be expected; whereas, when packages represent a
service layer, lower cohesion would be expected. Future
work could investigate the optimal package structures for
di↵erent project types.

5.2.3. Internal Validity

This validity threat means that the changes in the de-
pendent variable are caused by the changes in the inde-
pendent variable [58]. In our empirical study, an inter-
nal validity threat is related to the imprecise measurement
of the variables because if variables are measured impre-
cisely, there could be error-in-variable bias. To mitigate
this, we automated the measurement of the metrics using
well-known tools. Another internal threat is related to the
collinearity between the independent variables. To miti-
gate this, we measured the Variance Inflation Factor (VIF)
of the maintainability metrics to ensure no multicollinear-
ity exists between them.

5.2.4. External Validity

The external validity is related to the generalization of
the experimental results [58]. The quantity of projects is
usually a common threat to external validity. To miti-
gate this, we employed a large set of open-source projects
belonging to a well-known set of Java projects compiled
in Qualitas Corpus. The Qualitas Corpus have di↵erent
types of Java projects (e.g., analysis tools, management
tools, parsers, and drivers), making the corpus appropri-
ate representative of the Java projects [13, 31]. However,
we cannot claim that our results can generalize beyond our
dataset. The inclusion of additional projects can examine
the generalization of the results. In addition, we consid-
ered only open-source Java projects; therefore, the inclu-
sion of commercial-based Java projects may produce ad-
ditional insights (from the industry perspective). Further-
more, our focus was on the analysis of Java package struc-
ture; therefore, we only considered Java-based projects.
Software projects developed using other languages (e.g.,
C# and C++) can verify whether our results generalize
to other software ecosystems.

6. Conclusion

In this paper, we analyzed the package maintainability
issues (by employing the package-level metrics) associated
with di↵erent package sizes and identified potential refac-
toring opportunities for large packages. We performed the
analysis by investigating the relationships between pack-
age size and three internal maintainability characteristics
(coupling, cohesion, and complexity) using the package-
level metrics collected from a set of 111 open-source Java
projects compiled in the Qualitas Corpus.

Our analysis of the maintainability metrics showed that
large packages are more vulnerable to maintainability is-
sues in comparison with moderate and small packages. In
addition, based on the coupling metrics, we reported that
large packages can be more unstable. These results sug-
gest the importance of refactoring large packages. Based
on the relationships and e↵ect sizes, we found that some
maintainability metrics can be more useful for identifying
refactoring opportunities for large packages. For instance,

14

we showed that the strong correlations and moderate e↵ect
sizes of cohesion (ConnComp) and complexity (R) met-
rics with package size can be used for refactoring large
packages. These maintainability metrics could also be in-
tegrated into development tools to enable automated and
visual refactoring.

Future work could include other metrics related to cou-
pling, cohesion, and complexity to gain additional insights
into their relationships with package size. In addition,
development tools can integrate the strongly correlated
metrics to assist the developers in identifying when the
large packages should be refactored. Lastly, we recom-
mend investigating the relationship of large packages with
the socio-technical issues in the software projects.

References

[1] D. L. Parnas, On the criteria to be used in decompos-
ing systems into modules, in: Pioneers and Their Contribu-
tions to Software Engineering, Springer, 1972, pp. 479–498.
doi:10.1145/361598.361623.

[2] S. Almugrin, W. Albattah, A. Melton, Using indirect cou-
pling metrics to predict package maintainability and testa-
bility, Journal of Systems and Software 121 (2016) 298–310.
doi:10.1016/j.jss.2016.02.024.

[3] M. Lippert, S. Roock, Refactoring in large software projects:
Performing complex restructurings successfully, John Wiley &
Sons, 2006.

[4] D. Falessi, R. Kazman, Worst smells and their worst reasons, in:
IEEE/ACM International Conference on Technical Debt, 2021,
pp. 45–54. doi:10.1109/TechDebt52882.2021.00014.

[5] S. Malakuti, J. Heuschkel, The need for holistic techni-
cal debt management across the value stream: Lessons
learnt and open challenges, in: /ACM International
Conference on Technical Debt, 2021, pp. 109–113.
doi:10.1109/TechDebt52882.2021.00021.

[6] K. Beck, M. Fowler, G. Beck, Bad smells in code, Refactoring:
Improving the design of existing code 1 (1999) (1999) 75–88.

[7] A. Ampatzoglou, A.-A. Tsintzira, E.-M. Arvanitou, A. Chatzi-
georgiou, I. Stamelos, A. Moga, R. Heb, O. Matei, N. Tsiridis,
D. Kehagias, Applying the single responsibility principle in in-
dustry: Modularity benefits and trade-o↵s, in: Proceedings of
the Evaluation and Assessment on Software Engineering, ACM,
2019, pp. 347–352. doi:10.1145/3319008.3320125.

[8] G. Suryanarayana, G. Samarthyam, T. Sharma, Refactoring for
software design smells, ACM SIGSOFT Software Engineering
Notes 40 (2015). doi:10.1145/2830719.2830739.

[9] H. Abdeen, S. Ducasse, H. Sahraoui, I. Alloui, Automatic pack-
age coupling and cycle minimization, in: Proceedings of the
16th Working Conference on Reverse Engineering, IEEE, 2009,
pp. 103–112. doi:10.1109/WCRE.2009.13.

[10] B. Chantian, P. Muenchaisri, A refactoring approach for too
large packages using community detection and dependency-
based impacts, in: Proceedings of the World Sympo-
sium on Software Engineering, ACM, 2019, pp. 27–31.
doi:10.1145/3362125.3362132.

[11] F. Palomba, M. Tufano, G. Bavota, R. Oliveto, A. Marcus,
D. Poshyvanyk, A. De Lucia, Extract package refactoring in
aries, in: In Proceedings of the IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, Vol. 2, IEEE, 2015,
pp. 669–672.

[12] R. C. Martin, Agile software development: principles, patterns,
and practices, Prentice Hall, 2002.

[13] R. Terra, L. F. Miranda, M. T. Valente, R. S. Bigonha, Qual-
itas.class corpus: A compiled version of the qualitas corpus,
ACM SIGSOFT Software Engineering Notes 38 (5) (2013) 1–4.
doi:10.1145/2507288.2507314.

[14] J. Al Dallal, Object-oriented class maintainability pre-
diction using internal quality attributes, Information
and Software Technology 55 (11) (2013) 2028–2048.
doi:10.1016/j.infsof.2013.07.005.

[15] L. C. Briand, S. Morasca, V. R. Basili, Measuring and as-
sessing maintainability at the end of high level design, in:
Conference on Software Maintenance, IEEE, 1993, pp. 88–87.
doi:10.1109/ICSM.1993.366952.

[16] W. Li, S. Henry, Object-oriented metrics that predict maintain-
ability, Journal of Systems and Software 23 (2) (1993) 111–122.
doi:10.1016/0164-1212(93)90077-B.

[17] K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, Application
of artificial neural network for predicting maintainability us-
ing object-oriented metrics, International Journal of Computer,
Electrical, Automation, Control and Information Engineering
2 (10) (2008) 3552–3556.

[18] Y. Zhou, H. Leung, Predicting object-oriented software main-
tainability using multivariate adaptive regression splines, Jour-
nal of Systems and Software 80 (8) (2007) 1349–1361.
doi:10.1016/j.jss.2006.10.049.

[19] M. O. Elish, K. O. Elish, Application of TreeNet in pre-
dicting object-oriented software maintainability: A compar-
ative study, in: 13th European Conference on Software
Maintenance and Reengineering, IEEE, 2009, pp. 69–78.
doi:10.1109/CSMR.2009.57.

[20] M. Dagpinar, J. H. Jahnke, Predicting maintainability with
object-oriented metrics-an empirical comparison, in: Pro-
ceedings of the 10th Working Conference on Reverse En-
gineering, IEEE Computer Society, 2003, pp. 155–155.
doi:10.1109/WCRE.2003.1287246.

[21] S. Rizvi, R. A. Khan, Maintainability estimation model for
object-oriented software in design phase (MEMOOD), Journal
of Computing 2 (4) (2010) 26–32.

[22] M. Lanza, R. Marinescu, Object-oriented metrics in practice:
Using software metrics to characterize, evaluate, and improve
the design of object-oriented systems, Springer Science & Busi-
ness Media, 2007. doi:10.5555/1965070.

[23] J. Bansiya, C. G. Davis, A hierarchical model for object-oriented
design quality assessment, IEEE Transactions on software engi-
neering 28 (1) (2002) 4–17.

[24] F. B. e Abreu, M. Goulao, Coupling and cohesion as
modularization drivers: Are we being over-persuaded?, in:
Proceedings of the 5th European Conference on Software
Maintenance and Reengineering, IEEE, 2001, pp. 47–57.
doi:10.1109/CSMR.2001.914968.

[25] O. Seng, M. Bauer, M. Biehl, G. Pache, Search-based improve-
ment of subsystem decompositions, in: Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation,
2005, pp. 1045–1051. doi:10.1145/1068009.1068186.

[26] M. Harman, R. M. Hierons, M. Proctor, A new representation
and crossover operator for search-based optimization of software
modularization, in: Proceedings of the 4th Annual Conference
on Genetic and Evolutionary Computation, Vol. 2, 2002, pp.
1351–1358. doi:10.1.1.144.5252.

[27] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast
unfolding of communities in large networks, Journal of Sta-
tistical Mechanics: Theory and Experiment 2008 (10) (2008)
P10008.

[28] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh,
K. Deb, A. Ouni, Many-objective software remodularization us-
ing NSGA-iii, ACM Transactions on Software Engineering and
Methodology 24 (3) (2015) 1–45.

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
A. Wesslén, Experimentation in software engineering, Springer
Science & Business Media, 2012.

[30] P. Runeson, M. Höst, Guidelines for conducting and reporting
case study research in software engineering, Empirical Software
Engineering 14 (2) (2009) 131–164.

[31] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, J. Noble, The qualitas corpus: A curated collec-
tion of java code for empirical studies, in: 2010 Asia Pacific

15

Software Engineering Conference, IEEE, 2010, pp. 336–345.
doi:10.1109/APSEC.2010.46.

[32] V. Sales, R. Terra, L. F. Miranda, M. T. Valente,
Recommending move method refactorings using depen-
dency sets, in: Proceedings of the 20th Working Con-
ference on Reverse Engineering, IEEE, 2013, pp. 232–241.
doi:10.1109/WCRE.2013.6671298.

[33] B. L. Sousa, M. A. Bigonha, K. A. Ferreira, M. Gerais, A tool
for detection of co-occurrences between design patterns and bad
smells, Tech. rep., Programming Language Lab (2017).

[34] M. Lorenz, J. Kidd, Object-oriented software metrics: A prac-
tical guide, Prentice-Hall, Inc., 1994. doi:10.5555/177063.

[35] S. Henry, D. Kafura, Software structure metrics based on in-
formation flow, IEEE transactions on Software Engineering (5)
(1981) 510–518.

[36] F. Matthes, S. Buckl, J. Leitel, C. M. Schweda, Enterprise
architecture management tool survey, Technische Universität
München, 2008.

[37] V. A. Anacleto, A UML profile for documenting the component-
and-connector view of software architectures, Journal of Com-
puter Science & Technology 8 (1) (2008) 21–26.

[38] R. Samli, Z. B. G. Aydın, U. O. Yücel, Measurement in soft-
ware engineering: The importance of software metrics, in: Ap-
plications and Approaches to Object-Oriented Software Design:
Emerging Research and Opportunities, IGI Global, 2020, pp.
166–182. doi:10.4018/978-1-7998-2142-7.ch007.

[39] L. C. Briand, J. Wüst, Empirical studies of quality models in
object-oriented systems, Advances in Computers 56 (2002) 97–
166. doi:10.1016/S0065-2458(02)80005-5.

[40] L. C. Briand, J. Daly, V. Porter, J. Wust, A compre-
hensive empirical validation of design measures for object-
oriented systems, in: Proceedings of the 5th International
Software Metrics Symposium, IEEE, 1998, pp. 246–257.
doi:10.1109/METRIC.1998.731251.

[41] T. G. Filó, M. Bigonha, K. Ferreira, A catalogue of thresh-
olds for object-oriented software metrics, Proceedings of the 1st
International Conference on Advances and Trends in Software
Engineering (2015) 48–55.

[42] T. L. Alves, C. Ypma, J. Visser, Deriving metric thresholds
from benchmark data, in: Proceedings of the IEEE Interna-
tional Conference on Software Maintenance, IEEE, 2010, pp.
1–10. doi:10.1109/ICSM.2010.5609747.

[43] M. Aniche, C. Treude, A. Zaidman, A. Van Deursen, M. A.
Gerosa, SATT: Tailoring code metric thresholds for di↵erent
software architectures, in: Proceedings of the IEEE 16th Inter-
national Working Conference on Source Code Analysis and Ma-
nipulation, IEEE, 2016, pp. 41–50. doi:10.1109/SCAM.2016.19.

[44] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes,
H. C. Almeida, Identifying thresholds for object-oriented soft-
ware metrics, Journal of Systems and Software 85 (2) (2012)
244–257. doi:10.1016/j.jss.2011.05.044.

[45] F. A. Fontana, V. Ferme, M. Zanoni, A. Yamashita, Auto-
matic metric thresholds derivation for code smell detection, in:
Proceedings of the IEEE/ACM 6th International Workshop on
Emerging Trends in Software Metrics, IEEE, 2015, pp. 44–53.
doi:10.1109/WETSoM.2015.14.

[46] D. M. Le, D. Link, A. Shahbazian, N. Medvidovic, An
empirical study of architectural decay in open-source soft-
ware, in: Proceedings of the IEEE International Confer-
ence on Software Architecture, IEEE, 2018, pp. 176–17609.
doi:10.1109/ICSA.2018.00027.

[47] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo,
E. Cirilo, P. Jamshidi, C. Kastner, Evaluating domain-specific
metric thresholds: An empirical study, in: Proceedings of the
IEEE/ACM International Conference on Technical Debt, IEEE,
2018, pp. 41–50. doi:10.1145/3194164.3194173.

[48] G. Vale, E. Fernandes, E. Figueiredo, On the proposal
and evaluation of a benchmark-based threshold derivation
method, Software Quality Journal 27 (1) (2019) 275–306.
doi:10.1007/s11219-018-9405-y.

[49] J. Zhang, F. Y. Kai, What’s the relative risk?: A method of

correcting the odds ratio in cohort studies of common outcomes,
Jama 280 (19) (1998) 1690–1691. doi:10.1001/jama.280.19.1690.

[50] S. Prion, K. A. Haerling, Making sense of methods and
measurement: Spearman-Rho ranked-order correlation coe�-
cient, Clinical Simulation in Nursing 10 (10) (2014) 535–536.
doi:10.1016/j.ecns.2014.07.005.

[51] A. S. Selya, J. S. Rose, L. C. Dierker, D. Hedeker, R. J. Mermel-
stein, A practical guide to calculating cohen’s f2, a measure of
local e↵ect size, from PROC MIXED, Frontiers in Psychology
3 (2012) 111. doi:10.3389/fpsyg.2012.00111.

[52] G. M. Sullivan, R. Feinn, Using e↵ect size—or why the p value is
not enough, Journal of graduate medical education 4 (3) (2012)
279–282. doi:10.4300/JGME-D-12-00156.1.

[53] J. Cohen, Statistical power analysis for the behavioral sciences,
Academic Press, 2013. doi:10.4324/9780203771587.

[54] R. F. Falk, N. B. Miller, A primer for soft modeling, University
of Akron Press, 1992.

[55] D. A. Tamburri, F. Palomba, R. Kazman, Exploring
community smells in open-source: An automated ap-
proach, IEEE Transactions on software Engineering (2019).
doi:10.1109/TSE.2019.2901490.

[56] K. Nongpong, Feature envy factor: A metric for automatic fea-
ture envy detection, in: Proceedings of the 7th International
Conference on Knowledge and Smart Technology, IEEE, 2015,
pp. 7–12. doi:10.1109/KST.2015.7051460.

[57] M. Paixao, M. Harman, Y. Zhang, Y. Yu, An empirical study of
cohesion and coupling: Balancing optimization and disruption,
IEEE Transactions on Evolutionary Computation 22 (3) (2017)
394–414. doi:10.1109/TEVC.2017.2691281.

[58] C. Wohlin, M. Höst, K. Henningsson, Empirical research
methods in software engineering, in: Empirical Methods and
Studies in Software Engineering, Springer, 2003, pp. 7–23.
doi:10.1007/978-3-540-45143-32.

16

