
Quantifying Requirements Technical Debt: A
Systematic Mapping Study and a Conceptual Model

Judith Perera, Ewan Tempero, Yu-Cheng Tu, Kelly Blincoe
The University of Auckland, New Zealand

jper120@aucklanduni.ac.nz, {e.tempero, yu-cheng.tu, k.blincoe}@auckland.ac.nz

Abstract—Requirements Technical Debt (RTD) is a research
area where the Technical Debt (TD) metaphor is used to capture
the consequences of sub-optimal decisions made concerning
Requirements. Understanding the quantification of RTD is key to
its management. To facilitate this understanding, we model the
quantification of RTD. Our work is grounded in the literature
found via a Systematic Mapping Study (SMS) and informed
by prior work modeling the quantification of TD for software
code-related TD types. This paper reports on the SMS and
the development of our model, the RTD Quantification Model
(RTDQM). The key observation from our work is that, although
RTD is similar in most aspects to TD in software code, it also has
its own components. Requirement artifacts have a feedback loop
involving the User to precisely capture User Needs. RTD Interest
(i.e., additional costs due to sub-optimal decisions concerning
Requirements) can incur during both Requirements Engineering
and Implementation activities. Furthermore, RTD can incur
regardless of the presence of software code-related TD. Similar
to benefits accrued by refactoring software code, rectifying RTD
can also accrue benefits.

Index Terms—Requirements Technical Debt Quantification,
Systematic Mapping, Conceptual Model

I. INTRODUCTION

Software Requirements play a crucial role in the develop-
ment of a software product — gathering requirements right
and delivering the product that offers the best value to the end-
users is essential for the success of a software product [7], [14].
However, stakeholders involved in Requirements Engineering
(RE) activities (e.g., business analysts, requirements engineers)
and developers implementing the requirements into features
of a software product can make sub-optimal decisions either
deliberately or inadvertently during RE and implementation
activities. Requirements Technical Debt (RTD) captures the
consequences (in terms of costs) of such sub-optimal decisions
made concerning requirements. To manage RTD, it must be
quantified [1]. However, there is little evidence in the literature
on how RTD can be quantified [1], [3]. Therefore, as a means
to better understand the quantification of RTD, we establish a
theoretical foundation for this problem by focusing on RTD
and its quantification in this paper.

We first conducted a Systematic Mapping Study (SMS) to
identify what the existing literature proposes on RTD and
its quantification. We then developed a conceptual model,
the RTD Quantification Model (RTDQM), the main con-
tribution of this paper, to capture the concepts related to
RTD quantification and the relationships between them. The
model concepts and relationships are grounded in the literature

identified through the SMS and are additionally informed by
prior work of Perera et al. [25] who developed a model1 for
the quantification of software code-related types of TD such
as code, design, and architectural TD2 (discussed in Section
II). Our study answers the following Research Questions:

• RQ1: What can we learn about quantifying RTD from
approaches proposed in RTD literature? — answered
via the SMS

• RQ2: How can we model the quantification of RTD? —
answered via the development of the conceptual model

Findings for RQ1 revealed that different authors discuss
different definitions of RTD and there is no commonly agreed
definition nor a commonly agreed way to quantify RTD,
which led us to formally define RTD and then model RTD
quantification via RQ2. The model’s development enabled a
deeper understanding of RTD and its quantification. The key
observation is that, although RTD is similar to CTD in some
aspects, it also has its own components. RTD Items can be
introduced during RE or Implementation activities regardless
of the presence of CTD. Different from CTD, RTD has a
feedback loop involving the User. RTD Interest can incur extra
costs associated with RE as well as Implementation. Similar
to benefits accrued by refactoring code, rectifying RTD can
also accrue benefits.

The paper begins by providing background and discussing
related work in Section II, then reports on the SMS Methodol-
ogy and Results in Sections III and IV. Section V describes the
methodology for developing RTDQM and describes RTDQM
in Section VI. Section VII discusses what we learned from the
development of the model, threats to validity, implications to
researchers and practitioners, and future work. The paper is
concluded in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Technical Debt (TD), TD Management and Quantification

Technical Debt (TD) captures the consequences of sub-
optimal decisions made during the development of a software
product [13], [24]. These sub-optimal decisions could be
made throughout the software development lifecycle, from
requirements engineering to product maintenance [27]. Li et
al. [21], identified that TD Management (TDM) is important in
the implementation and maintenance of software. According

1The Technical Debt Quantification Model (TDQM) [25].
2Code-related types of TD will be referred to as CTD here onward.



to the authors, the TDM process includes activities such
as Identification, Measurement (Quantification), Prioritization,
Repayment, and Monitoring. They define measurement or
Quantification as the activity of analyzing and quantifying the
costs and efforts required to assist in decision-making in TDM.

The work of Perera et al. [25], identified during their SMS
that quantification approaches proposed in the literature lack
consensus. Therefore, the authors developed a Conceptual
Model based on findings from the mapping study and the
work of Avgeriou et al. [4] to model the quantification of
CTD. They theoretically validated their model by applying it
to quantification approaches that were not initially used in the
development of the model by conducting a second iteration of
their mapping study and applying the model to the approaches
quantifying CTD. Furthermore, the authors introduced an
Approach Comparison Matrix to be able to compare and
evaluate different quantification approaches based on their
Conceptual Model [25]. In their future work and implications
to researchers, they proposed investigating the quantification
of non-code-related TD types which we chose to investigate
in our study focusing on RTD quantification.

B. RTD, RTD Management (RTDM) and Quantification

Compared to CTD, RTD is a relatively new area with
less literature on the topic [1], [22]. Furthermore, there is
no consensus yet if RTD can be considered a type of TD
[19]. However, by observing the literature available, we are
confident that it is a type of TD and that it needs to be given at-
tention similar to any other type of TD since the consequences
of RTD can similarly impact software development like any
other type of TD. Few studies highlight the importance of
managing RTD, e.g., Ernst et al. [14], Lenarduzzi et al. [19],
and Frattini et al. [15]. Below, we discuss the most relevant
related work in RTD research.

Ernst et. al, presents the earliest definition on RTD (in
2012) — the distance between the optimal requirements spec-
ification and the actual system implementation, under domain
assumptions and constraints [14]. According to Ernst et. al,
RTD describes tradeoffs on what requirements the develop-
ment team ought to prioritize. The authors state that product
value is measured in satisfied requirements and that RTD is
incurred when requirements are prioritized in a way they do
not deliver the most value to the customer [14]. Their tool,
RE-KOMBINE, helps compare the current implementation to
new proposed implementations. In their work, quantification
of RTD is measured as the distance between the different
proposed solutions and the current implementation.

Lenarduzzi and Fucci provide a more comprehensive def-
inition of RTD by extending the definition of RTD by Ernst
to include upstream activities involving the elicitation of
requirements and their translation into specifications [19].
They give three definitions of RTD described as three types
of RTD: Type 0, 1, and 2, based on Incomplete Users’
needs, Requirement Smells, and Mismatch implementation,
respectively. Furthermore, the authors propose strategies for

the Identification, Quantification, and Payback of RTD (this
study is discussed further in Section IV).

Frattini et. al [15], emphasizes the inadequacy of exploring
the debt metaphor in the context of RE. As a result they
develop an initial analytical theory as a first guide towards
further research in the area. The authors organized concepts
related to practitioners’ understanding and managing of RTDM
into 23 falsifiable propositions and additionally provide expla-
nations to these propositions [15]. Their work is derived from
interview and survey data. Our work, in contrast, is grounded
in the existing literature found via a SMS and complements
their work through the development of our model, RTDQM.

C. Secondary Studies on RTD Quantification

Although multiple secondary studies have been conducted
for other types of TD, we found only one secondary study
directly discussing RTD, a recent systematic literature review
by Melo et al. [22]. The authors discussed the causes of
RTD, strategies to identify and manage it, and metrics to
support the measurement. However, the 66 primary studies
that resulted in their query did not exclusively focus on RTD.
Hence, the metrics they were proposing for measurement were
too based on prior work on other TD types rather than prior
work on RTD. For example, one of the studies listed as
‘quantification approach’ in their study, the work by Nogroho
et al., [23], is not focused on RTD. Compared to their study,
our SMS focuses on studies discussing RTD exclusively, and
we specifically focus on the quantification of RTD based on
findings from prior work on RTD. Primary studies included in
our work extend the study period covered in Melo et al.,’s
work (ours includes studies from 2020-2022 additionally).
Our goal is different from theirs; ours was to conceptually
model the quantification of RTD based on what we learned
about RTD quantification from existing literature while theirs
was to investigate which evidence helps to strengthen the TD
requirements management process.

D. Definitions of RTD from Secondary Studies

We examined RTD definitions given in previous secondary
studies where RTD was mentioned. Li et al. [21] and Melo et
al. use the early definition given by Ernst et al. [14]. Alves
et al. [2] refer to a similar definition; they define RTD as
trade-offs made by the development team with respect to what
requirements and how to implement them. Requirements that
are partially implemented, requirements that are implemented
but not for all cases, and requirements that are implemented
but do not fully satisfy non-functional requirements such as
security or performance, are given as examples for RTD by
the authors. Behutiye et al. [5] describe RTD as trade-offs in
the requirements specification that are consequences of inten-
tional, strategic decisions for immediate gains or unintentional
changes in the context that have an impact on future costs
of the project. Definitions of RTD derived from the primary
studies in our SMS can be found in Table III.



III. SMS — METHODOLOGY

We followed recommendations given by Kitchenham et al.
[18] and Petersen et al. [26] to conduct the SMS which
answers the following research question:

• RQ1: What can we learn about quantifying RTD from
approaches proposed in RTD literature?

A. Search Strategy

We used SCOPUS as the primary database to build our
search query. The final search query (See Figure 1) was then
tailored to other databases according to their functionality.
The final query contained the following search terms and
synonyms: Requirements Technical Debt, quantify, measure,
forecast, predict, assess, estimate, calculate, amount, value,
impact, principal, interest, metric, time, cost.” Additionally,
we used the phrase ‘Technical Debt in User Stories’ to capture
papers that did not use the phrase ‘Requirements’ but still
referred to RTD. We avoided using the term ‘Technical Debt’
on its own, to avoid articles that did not focus on RTD but
on other TD types. We applied the query to the title, abstract,
keywords, and full text to increase the possibility of finding
all relevant articles. Digital databases IEEEXplore, ACM,
and Science Direct were selected based on recommendations
by Brereton et al. [9]. SCOPUS was selected following the
recommendations by Cavacini [10]. Duplicates were removed
before screening articles for inclusion.

(ALL (”Requirements Debt”) OR ALL (”Requirements Technical
Debt”) OR ALL (”Technical Debt in Requirements”) OR ALL
(”Technical Debt in Requirements Engineering”) OR ALL (”Tech-
nical Debt in Software Requirements”) OR ALL (”Technical Debt
in User Stories”)) AND (quantif* OR measur* OR forecast* OR
predict* OR assess* OR estimate* OR calculat* OR impact* OR
amount OR valu* OR principal OR interest* OR metric* OR time
OR cost*) AND (LIMIT-TO (DOCTYPE , ”cp”) OR LIMIT-TO
(DOCTYPE , ”ar”)) AND (LIMIT-TO (LANGUAGE , ”English”))

Fig. 1. Final Search Query for SCOPUS

I1 Discusses the quantification of RTD or provides some
direction in quantifying RTD

Inclusion I2 Discusses quantifiable characteristics for RTD
I3 Discusses metrics and tools concerning RTDM

E1 Not in English
E2 Full text inaccessible

Exclusion E3 Talks, doc symposiums, posters, tutorials, proceedings
E4 Secondary or Tertiery Studies
E5 Not RTD
E6 Not peer reviewed

TABLE I
INCLUSION AND EXCLUSION CRITERIA

B. Article Screening and Selection

Article screening and selection were performed following
the adaptive depth reading approach suggested in Petersen et
al. [26] starting from the title and then continuing through
the abstract, conclusion, and at last, reading the full text.
Additionally, we applied the inclusion/exclusion criteria listed

in Table I. The first author screened the articles and whenever
doubt was encountered, they were discussed with the other
authors during meetings.

Articles that described an approach to quantifying RTD or
at least provided some direction in quantifying RTD, were
included. Articles that described quantifiable characteristics
such as: principal, interest, interest probability, uncertainty, or
units of measurement in terms of time, cost, or effort, were
included. We also included articles discussing metrics and
tools concerning RTDM. We excluded articles that were not
in English, the full text was inaccessible and did not discuss
RTD. Only peer-reviewed conference and journal articles were
included as they are considered high quality.

C. Forward and Backward Reference Snowballing

Forward and Backward reference snowballing [28] was
performed on the final set of articles to avoid the possibility of
missing relevant articles. Backward snowballing was guided
by the related work sections in the articles. Forward snow-
balling was conducted in SCOPUS, the most comprehensive
and largest database among the databases we queried.

D. Data Extraction, Analysis and Synthesis

The first author performed data extraction, analysis and
synthesis following recommendations given by Petersen et al.
[26] and Braun and Clarke [8] and discussed them with the
other authors during meetings. Data extraction was done by
following the adaptive depth reading approach to read the
article’s title, abstract, and conclusion scanning for keywords,
and then reading, in detail, the sections of the article where
relevant information was found and finally, reading the full
text. The thematic analysis approach recommended by Braun
and Clarke [8] was followed for data analysis and synthesis. It
is an effective method for identifying, analyzing, and reporting
patterns and themes within data [8]. The high level themes
resulted from the analysis were: Definitions of RTD, Concepts
related to RTD quantification, Metrics, Tools and supported
RTDM Activities, RTDM Strategies, Causes, Indicators and
Consequences of RTD, and Challenges associated with RTD.
SMS results are reported under these themes in Section IV.

IV. SMS — RESULTS (RQ1)

Below we report the results derived from 7 articles included
out of 87 articles obtained from the digital databases.

A. Demographics

Publications resulting from the SMS range from 2012 -
2022. The publication venues vary from different conferences
to workshops. The oldest (2012) and most cited (27 in SCO-
PUS) publication is by Ernst et al. The next highest cited
article is by Abad et. al, published in 2015 (See Table II).

B. RTD Definitions

The earliest definition of RTD was given by Ernst et al.
[14] in Table II), which was discussed earlier in Section
II. Lenarduzzi et al. [19], introduced a more comprehensive
definition including 3 types of RTD incurred during upstream



Title Pub
Year

Authors, Citation Venue Citations

P1 Using real options to manage Technical Debt in Requirements Engineering 2015 Abad et. al, [1] RE 18
P2 Towards a Holistic Definition of Requirements Debt 2019 Lenarduzzi et. al, [19] ESEM 7
P3 Integrating Traceability Within the IDE to Prevent Requirements Documentation Debt 2018 Charalampidou et. al, [12] SEAA 2
P4 Requirements debt: causes, consequences, and mitigating practices 2022 Bonfim et. al, [7] SEKE 0
P5 A novel approach to measure confidence and uncertainty in assurance cases 2019 Belle et. al, [6] REW 2
P6 On the perceived harmfulness of requirement smells: An empirical study 2020 Lenarduzzi et. al, [20] CEUR 0
P7 On the role of requirements in understanding and managing technical debt 2012 Ernst et. al, [14] MTD 27

TABLE II
DEMOGRAPHICS: PUBLICATION YEAR, AUTHORS, CITATION AND VENUE — NUM OF CITATIONS FROM SCOPUS

activities such as identification and formalization of require-
ments apart from the debt incurred during the implementation
of requirements (See Table III). While they introduce two other
types of RTD, 0, and 1, their type 2 is similar to Ernst et
al,’s (P7) initial definition. Abad et al. [1], define RTD as
trade-offs in the System Requirements Specification (SRS) that
result from intentional strategic decisions or unintentionally
due to changes in the context. Charalampidou et al., [11]
define RTD as insufficient or incomplete requirements and
outdated requirements, which are similar to type 1 in P2
and type 2 in P2 (and P7), respectively. Bonfim et al., [7]
(P4) define RTD as failures in SRS, which again aligns with
type 2 in P2 (and P7). Belle et al. [6], define RTD as poor
or partial implementation of requirements into features, this
is also similar to type 2 in P2 (and P7). Therefore, we
see that most of these studies use variations of the initial
definition provided by Ernst et al. (P7) while some definitions
refer to type 1 in P2. Type 0 in P2 seems to be used
only in their study currently. However, P2 provides the most
comprehensive definition so far and it is important to capture
type 0 as well since RE activities begin by capturing User
Needs (as further discussed in our model). However, we see
that the aspect of intentional and unintentional decisions that
is captured in Abad et al., is yet missing in P2’s definition.
Based on our findings, we synthesize the following definition
for RTD: ”Requirements TD captures the consequences of
sub-optimal decisions made concerning requirements, either
deliberately (for strategic gains) or inadvertently (due to
changes in context) , during the identification, formalization,
and implementation of requirements.”

C. Concepts related to RTD Quantification

We identified 57 concepts related to RTD quantification
from the primary studies. Based on Pererea et al. [25] we cate-
gorized them into categories: process or time, cost, benefit, and
probability which contained 32, 16, 1, 2 concepts, respectively.
The list of concepts can be found in our Replication Package3,
we do not report them here due to space limits. Section VI and
Table VIII describe the abstracted set of concepts that went
into the conceptual model developed for RQ2.

D. Metrics, Tools and supported RTDM Activities

We aimed to capture approaches that made an effort toward
quantifying RTD. Five approaches (See Table IV) found in

3Replication Package: doi.org/10.5281/zenodo.7563045

RTD Definition
P1 Discusses definitions borrowed from Alves et al. and Ernst et al.,

and give their own definition by explicitly incorporating the main
characteristics of TD (time-dependent, interest, context/environment
dependent) to those definitions: “The trade-offs in requirements spec-
ification that are consequences of the intentional strategic decisions
for immediate gains or unintentional changes in the context that have
an impact on the future cost of the project”.

P2 Provides a holistic definition of RTD, defining three sub-types of RTD:
Type 0, 1, 2, which include debt incurred during the identification,
formalization, and implementation of requirements.
Type 0 — Incomplete or neglected Users’ needs: Incurred when User
needs expressed in feedback channels are neglected; when not all user
needs are captured within a channel and when one or more relevant
channels are not considered.
Type 1 — Requirement Smells: Incurred when a requirements engineer,
business analyst, or developer formalizes user needs into the specifi-
cation. e.g., Linguistic constructs that can indicate a violation of the
ISO29148 standard for Requirements quality.
Type 2 — Mismatch implementation: Captures the mismatch between
stakeholders’ goals framed in the SRS and the actual system im-
plementation. Incurred when developers implement a solution to a
requirement problem or when the requirements framed in the SRS
changes while the implementation does not change accordingly.

P3 Requirements documentation debt: Insufficient or incomplete require-
ments: Pieces of specifications, e.g., Use cases, User stories, SRS), that
are loped either at low quality or do not describe the system under
development, and Outdated requirements: Cases in which specifica-
tions have been developed at an appropriate level of quality in the
early releases of the system but subsequently are not updated with
new requirements or changes in existing ones.

P4 Failures in the SRS, characterizing the distance between the desired
specification of requirements and the actual implementation of these
requirements in the system

P5 Poor/partial implementation of requirements into a feature(s), and
compromises made regarding the specific requirements by a develop-
ment team with regards to what to implement and how to implement.

P6 Uses the definition of Type 1 in P2
P7 Tradeoffs on what requirements the development team ought to prior-

itize. — The distance between the optimal solution to a requirements
problem and the actual solution, with respect to some decision space.

TABLE III
RTD DEFINITIONS

our SMS focused mainly on this RTDM Activity (P1, P2,
P5, P6, and P7). P1, P2, P5, and P7 introduced metrics
to quantify RTD (See Table V). P2, P5, and P6 discussed
RTD quantification along with other RTDM Activities such as
Identification, Repayment, Prioritization and Debt Reduction
or Prevention. P3 and P7 introduced tools. P3 proposed a
tool-based approach to enable debt Monitoring and Prevention
while P7 introduced RE-KOMBINE, a tool that helps compare
one implementation to new proposed implementations based
on different prioritizations of requirements. P4 investigated
the causes and effects of RTD and actions to minimize RTD



within an agile context. Although P3 and P4 approaches
did not directly facilitate RTD quantification, they provided
some guidance to be able to quantify RTD. Hence, they were
included in our study results.

However, these approaches focus on different aspects of
quantification. For example, P1 applies real options theory
to quantify the Net Present Value (NPV) of a SRS and P5
measures the uncertainty of a given feature being supported by
a system while P2 proposes measuring Principal and Interest;
Principal as the cost to formalize requirements, cost to fix
Requirements Smells, and cost to compare the current imple-
mentation with a set of possible changes (also P7), and the
Interest as the extra effort related to the current development
stage and the harmfulness of Requirement Smells (also P6).
The conceptual model we developed answering RQ2, helps
understand how these different concepts discussed in the dif-
ferent approaches map to the concepts of RTD quantification
(See Section VI, detailed mappings in Replication Package3).

Approach Description Supported
RTDM
Activities

P1 Applies the real options theory to quantify require-
ments decisions in the form of their Net Present
Value (NPV) by considering uncertainty in require-
ments selection, schedule and final cost. A Positive
number for NPV indicates that the current require-
ments specification does not take on RTD.

Quantification

P2 Extends Ernst et al.’s RTD definition to include
upstream activities involving the elicitation of re-
quirements and their translation into specifications.
Defines how to identify, quantify, and payback RTD
for RTD types, 0, 1, 2.

Identification,
Quantifi-
cation,
Repayment

P3 A tool-based approach to prevent requirements docu-
mentation TD during RE. Integrates the SRS into the
IDE enabling real-time traces between requirements
and code.

Monitoring,
Prevention

P4 Investigates the causes that incur RTD and actions
that can minimize and or avoid them in the context
of agile software development.

Prevention,
Reduction

P5 Focuses on RTD incurred for a given feature as
the extent to which that feature is not implemented.
Relies on an uncertainty measure to assess RTD
accrued for a specific feature (i.e., to assess the extent
to which that feature is not entirely supported by
the system). If the INCIDENCE value is above a
particular threshold for the top claim of the case,
then there is sufficient certainty that the feature is
supported by the system.

Quantification

P6 Performs a live study surveying RE experts to gain
further insights on the issues taking place at this
stage and how they fit in their definition of RTD
Type 1: Requirement Smells, an indicator for a
quality violation of a requirements artifact. Aims to
understand and compare the perceived harmfulness
of requirement smells from a theoretical and practical
perspective.

Reduction/
Prevention,
Quantifica-
tion

P7 Introduces a tool that helps compare one implemen-
tation to new proposed implementations to reduce
RTD.

Prioritization,
Quantifica-
tion

TABLE IV
RTDM APPROACHES AND SUPPORTED RTDM ACTIVITIES

E. Proposed RTDM Strategies
Table VI shows strategies to managing RTD proposed in

the primary studies. P2 provides Strategies for identifying,

Metrics
P1 Initial value of selected requirements in terms of the market payoff

in market-driven or the product value in product-driven software
development projects, Standard deviation of the rate of return on the
value of the selected requirements over time, Net value of the option,
Conditional value of the option, Cost of exercising the option (devel-
opment cost), Present value of each node, Risk-adjusted probability,
Current interest rate for a set of selected requirements over a specific
time period, Net present value of the existing options

P2 Principal, Interest
P5 INCIDENCE (or Weighted Assurance Confidence), Uncertainty (based

on INCIDENCE) — to measure RTD incurred for a given feature,
Num. of Evidence Items (NOI), thresholds for INCIDENCE, extent
to which experts estimate that a child node contributes to the proof of
its parent node

P7 Distance, Interest or cost of neglecting the debt
TABLE V

RTD METRICS

RTDM Strategies
P2 Type 0 — Identification: Leverage techniques for automatically classi-

fying and summarizing user feedback and recommending new features
based on it, Quantification: Consider that implementing a neglected
need in a later stage can be more expensive and which components
need to be changed to address the RTD, Payback: Once the neglected
user need is identified, formalize and include it in the SRS
Type 1 — Identification: (semi) automatic detection within SRS, Quan-
tification: Consider different negative impacts that each requirement
smell can have on activities relying on SRS, Payback: Removing a
problematic language construct leading to ambiguity while maintaining
the original goal of the SRS
Type 2 — Identification: Identify based on approaches for traceability
between SRS and source code, Quantification: Determine the amount
of change between the current implementation and the SRS, Payback:
Implementation of the best new solution matching the updated SRS

P3 Avoid insufficiently specified requirements through communication,
avoid over-engineering requirements, limit the number of incomplete
requirement specifications by assuring completeness of requirements
through the verification of requirements by multiple stakeholders,
alleviate accumulation of RTD due to lack of requirements to code
traceability, prompt update of requirement specifications to prevent
accumulation of outdated requirements

P4 Practices to reduce or mitigate RTD: meeting requirements elicitation,
helping requirements analysis, supporting the implementation of SRS,
requirements validation, assisting requirements management

P7 Tracking requirements throughout the software development lifecycle
TABLE VI

RTDM STRATEGIES

quantifying and repaying RTD Types 0, 1, 2. P3 describes
how to avoid insufficiently specified requirements or outdated
requirements and promotes verification of requirements by
multiple stakeholders. P4 emphasizes the need to validate and
manage requirements while P7 emphasizes the importance of
tracking requirements throughout the software lifecycle.

F. RTD Causes, Indicators and Consequences of RTD

Similar to any TD type, RTD can be incurred or caused
intentionally or unintentionally. Inefficiencies in identifying
Requirements (P2), inefficiencies in the Requirements spec-
ification or Requirement Smells (P2, P3), and sub-optimal
implementation of Requirements (P2, P3) can happen due
to negligence or deliberate choice to not do so. If a system
does not satisfy one or more non-functional requirements,
this could also be a cause of RTD (P5). See Table VII,
causes and indicators. P3 and P4 describe the consequences



Causes and Indicators of RTD
P2 Neglecting user needs, Missing to capture User feedback from one or

more user feedback channels, Ambiguities introduced during formal-
ization of requirements (Requirement smells), Implementing a sub-
optimal solution to a requirements problem

P3 Insufficient and incomplete requirements missed due to the lack of
requirements-to-code traceability, Documentation inefficiencies oc-
curred intentionally or unintentionally (e.g., selecting not to apply
a rigorous documentation process, documents are not sufficiently
maintained due to tight schedules, developers not documenting re-
quirements properly due to time limitations), Inconsistent management
of requirements from different stakeholders

P5 Requirements that are only partly implemented, Requirements that
are implemented but do not support all cases, Requirements that are
implemented but in a manner that does not entirely fulfill all desired
non-functional requirements (e.g., security, performance)

P7 Inadequate or poorly conducted requirements elicitation and analysis
TABLE VII

CAUSES AND INDICATORS OF RTD

of RTD. P3 states that consequences can take the form of an
extra burden on maintenance tasks. Furthermore, incomplete or
insufficient requirements could lead to inefficiency in project
progress tracking, communication with customers on bug-
fixing progress being hindered and testers not being aware
of the requirements that need to be tested. P4 describes that
the absence of a good requirements process may cause the
RE steps to fail and that will generate consequences such as
misunderstood, omitted, ill-defined, and poorly specified re-
quirements in the RE phase and functional and non-functional
requirements not being met in the implementation phase due
to bad specification (i.e., not everything that was requested
is delivered to the customer). P7 states that poorly conducted
requirements elicitation can lead to building the wrong product
that does not meet customer satisfaction.

G. Challenges associated with RTD

Multiple challenges in the field of RE associated with RTD
were derived from the studies. Common themes were: there is
yet no consensus in the research community on whether RTD
is a type of TD (P1, P2, P6), lack of formalization of RTD (P1,
P2, P6), the inherent uncertainty in Requirements (P1, P7) —
e.g., uncertainties about customer (or market) requirements,
project context and environment, and the feasibility, cost, and
duration of developing each requirement [1], and difficulties in
monitoring and traceability of Requirements (P3, P7) — e.g.,
the effort of keeping requirements updated is high since it is
difficult to identify which requirements can be affected when
the source code is changed [11], and only a few teams usually
track Requirements [14]. Our study contributes to some of
these challenges by establishing a formal definition for RTD
as well as conceptualizing RTD quantification.

V. MODELLING RTD QUANTIFICATION —
METHODOLOGY

Perera et al. [25], developed a model (TDQM1), for the
quantification of TD types related to software code such as
Code, Design and Architectural debt (CTD2). Observing the
impact of TD introduced by non-code related artifacts such as
Requirements can have on subsequent downstream software

development activities motivated us to develop a model to
conceptualize the quantification of RTD. The development of
the conceptual model, RTD Quantification Model (RTDQM)
answers the following Research Question:

• RQ2: How can we model the quantification of RTD?
– RQ2.1: What are the concepts sufficient to model

the quantification of RTD?
– RQ2.2: What are the relationships that can be

identified among those concepts?
RTDQM (Figure 2) was developed in part by examining

what constitutes RTD quantification informed by its code-
related counterpart in Perera et al.’s work and in part by
examining the literature captured via our SMS. Perera et al.,’s
work has also been informed by literature captured via a SMS
and by past models of TD, e.g., Avgeriou et al.’s work [4].

We examined primary studies in our SMS to extract various
concepts related to RTD quantification. As discussed in Sec-
tion IV, 57 concepts were initially extracted from the papers
which were then abstracted into 14 concepts that went into
the model for RTD quantification after multiple iterations of
grouping together related concepts into themes and examining
them with reference to the TDQM concepts and their themes
— process or time, cost, benefit, and probability. These themes
were recurrent among the concepts extracted in our study for
RTD quantification as well. Perera et al.’s TDQM and their
Approach Comparison Matrix, developed for the comparison
of quantification approaches, were useful in the development
of our model for RTD quantification. By utilizing TDQM we
could easily identify the counterparts for RTD quantification
among the concepts and the comparison matrix increased the
efficiency in the process of mapping concepts from the litera-
ture to abstracted concepts (Replication Package3). However,
while some concepts for RTD quantification were informed
by both the literature found in our SMS and TDQM, some
concepts were informed by the literature only (see Table VIII).

Relationships between the RTD quantification concepts
were also inspired by TDQM as well as derived from the
literature found in our SMS. For example, the three RTD
types described by Lenarduzzi et al. [19], informed the re-
lationships in our model between the concepts RTD Item and
RE Step, and RTD Item and Implementation Step describing
the introduction of RTD Items during these steps (RE Step
includes capturing User needs and producing Requirement
specifications). Relationships related to costs and benefits were
mainly informed by TDQM [25], for example, the relation-
ships between the costs and benefits of rectifying a RTD Item
and the Interest incurred by a RTD Item.

The process of extracting concepts from literature, cate-
gorizing and grouping them together, and mapping them to
abstract concepts was performed by the first author. Concepts
and the mappings were examined by the other authors, and
where there was disagreement, they were discussed and re-
solved during meetings. This was done in multiple iterations
before the model concepts were finalized. Figure 2 illustrates
the concept map for the RTD Quantification Model (RTDQM).



RTD Quantification Concept Informed by Literature Informed by TDQM
density (d) groundness (g) TDQM counterpart

User Need 4 4 -
Requirements Engineering Step 3 3 Development Step
Total Cost of a RE Step 3 3 Total Cost of a Dev. Step
(Formalized) Requirement 7 14 Feature
RTD Item 5 12 TD Item
RTD Rectifying Step 1 3 TD Refactoring Step
Cost of Rectifying (or remediating) 4 7 Cost of Refactoring
RTD Interest 5 11 TD Interest
New Code Cost associated with RTD 3 6 New Code Cost associated with TD
Rework Cost associated with RTD 3 6 Rework Cost associated with TD
RE Cost associated with RTD 1 1 -
Benefit of Rectifying 0 0 Benefit of Refactoring
Benefit of taking RTD 1 1 Benefit of taking TD
RTD Interest Probability 1 1 Interest Probability

TABLE VIII
RTD QUANTIFICATION CONCEPTS — D - NUM. OF SOURCES, G - NUM. OF CONCEPTS EXTRACTED FROM A SOURCE THAT RELATES TO A RTD CONCEPT

Fig. 2. Left of dashed line: Concept Map for RTDQM (Our work), Right: Connection to TDQM, Perera et al.’s work [25]

RTDQM can be connected to TDQM (See Figure 2). This will
complement Perera et al.’s work by showing the modeling of
RTD and CTD Quantification together in one model.

Table VIII lists the 14 RTDQM concepts along with two
metrics we adopted from Junior et al. [16] to provide some hint
on which concepts are grounded in the literature. The density
(d) metric shows how many sources support the concept —
the number of papers that inform or validate a concept in
our model. The groundedness (g) metric indicates how many
excerpts or concepts extracted from a source are related to one
RTD quantification concept in our model.

VI. MODELLING RTD QUANTIFICATION — RESULTS
(RQ2)

A. Modelling RTD Quantification

The Technical Debt Quantification Model (TDQM) devel-
oped by Perera et al. [25], captured the important concepts

related to TD Quantification for CTD and illustrated the
relationships between those concepts. Modeling RTD quantifi-
cation in our work resulted in the RTD Quantification Model
(RTDQM) that captures the important concepts related to RTD
quantification and illustrates the relationships between them
(See Figure 2 Concept Map for RTDQM, and Table VIII, First
column: RTD Quantification Concepts, Last column: code-
related counterparts from TDQM [25]).

1) Modelling RE Step and how it connects to the Implemen-
tation of Features: User needs for a software product that must
be developed are (usually) captured through a Requirements
Engineering (RE) Step which incurs a cost, the Total Cost of
a RE Step (similar to a Development Step incurring a Total
Cost of Development in TDQM). The RE Step produces one
to many formalized Requirements. A Feature (the output of
an Implementation Step in TDQM) is the implementation of
either a single or multiple functional requirements according



to Belle et al. [6]. This is indicated by the relationship between
the formalized Requirement and Feature in Figure 2.

2) Modelling RTD Items: Following the 16162 model [4],
Perera et al., modeled CTD as TD Items in TDQM. RTD
could be modeled similarly as RTD Items. The difference is,
a CTD Item is a software code artifact (e.g., Code Smell,
Design Smell, Architectural Smell) whilst a RTD Item is a
Requirement artifact (e.g., Requirement Smell, Insufficient or
Incomplete requirements, Outdated requirements) [11], [19],
[20]. Similar to CTD, RTD could also be introduced either
deliberately or inadvertently, either during RE (e.g., when
capturing User Needs or when Specifying Requirements in
the Specification, illustrated by the relationship ‘RE Step
introduces RTD Item’ — These instances are described as
RTD Types 0 and 1 by Lenarduzzi et al. [19] and by Char-
alampidou et al, as Requirements Documentation Debt [11])
or during Implementation (e.g., mismatch implementation,
missing features, partially satisfied requirements, illustrated by
the relationship ‘Implementation Step introduces RTD Item’—
described by Lenarduzzi et al. as Type 2, also by Ernst et al.,
Belle et al., and Abad et al. [1], [6], [14], [19], [20]).

3) Modelling RTD Rectifying Step and Cost of Rectifying
RTD: In TDQM, a CTD Item can be eliminated via a Refac-
toring Step that incurs a Refactoring Cost. Similarly, an RTD
Item can be eliminated or rectified via a RTD Rectifying Step
and incurs a Cost of Rectifying RTD. RTD can be rectified
either during RE if identified early on before implementation
or during Implementation if identified during that stage. Lenar-
duzzi et al. [19] describe the Cost of Rectifying RTD as: Cost
to formalize and implement the neglected needs, Cost to fix the
Requirement Smells within a SRS and the Cost of comparing
the current implementation with the set of possible changes.
Abad et al. [1], describe it as the Cost of exercising the option.

4) Modelling RTD Interest and RTD Interest Probability:
Similar to the extra or additional cost that is the consequence
of the presence of CTD Items (i.e., TD Interest) a RTD Item
can incur a RTD Interest that could occur prior to the imple-
mentation phase, e.g., as an extra cost to clarify an ambiguous
formalization of a Requirement during Requirements Specifi-
cation or as an extra cost to conduct additional interviews
with Users (RE Costs associated with RTD) or during the
implementation phase, e.g., as an extra cost to implement
a workaround for a mismatch implementation (Rework Cost
associated with RTD, New Code Cost associated with RTD)
[1], [7], [14], [19]. Interest components are further described
below. However, there is a probability associated with the
Interest since some requirements might not make a difference
if unmet, for example, RTD Items pertaining to an unused
feature will not incur Interest [1].

5) Modelling RTD Interest components: In TDQM, Perera
et al., decomposed the Implementation Cost of a Feature and
CTD Interest into constituents, New Code Cost and Rework
Cost (i.e., costs incurred due to having to write new code or
do rework). We saw the need to similarly decompose RTD
Interest as well since RTD can also impact software code and
there might be instances where new code must be written as

well as instances where rework must be done. For example,
if the Requirements change while the implementation is done,
then presumably, the code has to change, and some of those
changes will require writing new code while some will require
changing existing code. The existing code may have no CTD
at all. Therefore, this cost differs from the CTD Interest
constituents, New code cost associated with CTD, and Rework
cost associated with CTD. In other words, RTD Interest
can occur regardless of the presence of CTD. New Code
Cost associated with RTD and the Rework Cost associated
with RTD model the cascading impact that can incur in the
implementation phase due to RTD Items introduced in the RE
phase or as the extra work to compensate for RTD introduced
as a mismatch implementation during the implementation
phase. Lenarduzzi et al., [19] discuss RTD Interest in terms
of extra effort related to the current development stage, or the
implementation of the selected change to address the amount
of change between the current implementation and the SRS,
which we see as examples for RTD Interest constituents New
Code Cost associated with RTD and Rework Cost associated
with RTD.

However, RTD Interest can have other constituents, such as
extra costs incurred during the RE Step that we refer to as ‘RE
Costs associated with RTD’, e.g., the extra cost to perform
additional interviews with Users in case the captured User
Needs are incomplete. Since Requirements are separate from
code (i.e., RE is separate from Implementation), this cost is
not represented by New code cost or Rework cost. The extra
costs in the RE phase could also occur due to a mismatch
implementation (RTD introduced by the implementation) if
this means having to do extra interviews with Users for
feedback. Lenarduzzi et al. [20] refer to the cost related to the
harmfulness of Requirement Smells, this can possibly incur
all three constituents of RTD Interest.

6) Modelling Benefit of Rectifying RTD and Benefit of
taking RTD: Taking RTD can be beneficial in the short term
(Benefit of taking RTD) as it allows faster delivery to market to
gain a competitive advantage by delivering the most wanted
set of Features i.e., Minimum Viable Product (MVP) [15],
[17]. However, accumulating RTD can be detrimental in the
long run as it could impact the downstream activities such
as the development phase as well and in such instances, the
developers might end up developing the wrong product for
their customer that might have to be scrapped completely
[14]. Therefore, it would be more beneficial in the long
run to rectify RTD early on, during the early stages of the
product development lifecycle prior to implementation. The
benefit accrued by rectifying RTD is modeled as ’Benefit
of Rectifying RTD’, this was informed by the ‘Benefit of
Refactoring’ in TDQM [25] (See Table VIII). However, this
concept is not captured in the literature.

VII. DISCUSSION

A. Quantifying CTD vs RTD

The development of RTDQM enabled comparison between
the quantification of CTD and RTD (Table VIII, First vs Last



columns). We discuss the observations below.
CTD captures the consequences of sub-optimal decisions

made during the development of a software product that con-
cerns the software code [13], [25]. In contrast, RTD captures
the consequences of sub-optimal decisions made concerning
Requirements. However, RTD can occur during RE or during
Implementation (RTD Types 0, 1, 2 [19]). Concepts for both
RTD and CTD quantification can be categorized into: process
or time, costs, benefits, and probability (themes derived from
Perera et al. [25]). These concepts and their relationships help
understand TD quantification for both CTD and RTD and,
therefore, can be helpful in TDM decision-making for both
types of TD. The main differences between the concepts for
CTD and RTD can be observed in Table VIII; ‘User Need’
and ‘RE Cost associated with RTD’ are the concepts that were
identified for RTD in addition to what was informed by TDQM
developed for CTD by Perera et al. [25].

Examples of CTD Items include software code-related ar-
tifacts such as Code Smells, Design Smells, and Architec-
tural Smells. RTD Items can take the form of ambiguous
or low-quality requirements or Requirement Smells (P2, P6,
P7), insufficient or incomplete requirements (P3), outdated
requirements (P3), neglected or missed user needs (P2), in-
consistencies in the SRS (P4), inconsistencies in functional
and non-functional requirements (P4), absence of requirements
(P4), accumulated requirements in the backlog (P4), partially
implemented requirements (P1, P5), and unmet requirements
(P4) [1], [6], [7], [12], [14], [19], [20]. Like CTD, RTD could
also be incurred inadvertently or through deliberate choice
(P1, P3) either during RE activities (e.g., when capturing
user needs or when specifying requirements in the SRS)
or during Implementation (e.g., mismatch implementation,
missing features, partially satisfied requirements) [1], [6], [12],
[14], [19], [20]. According to Abad et al. (P1) [1], trade-
offs in requirements specification can be consequences of
intentional, strategic decisions made in pursuit of immediate
gains. Charalampidou et al. [11] state that documentation
inefficiencies can occur intentionally by selecting not to apply
a rigorous documentation process or unintentionally due to
insufficient maintenance of documents, e.g., developers not
documenting requirements properly due to time limitations.

The cost to eliminate a CTD Item is referred to as the
‘Refactoring Cost’ while RTD can have a similar counterpart
(P2, P7), the cost to rectify RTD that can be incurred either
before or during the implementation stage [14], [19]. If an
ambiguous Requirement is corrected during the formalization
of Requirements by involving the user to acquire feedback
during Requirements validation, the cost is incurred before
the Implementation phase. However, if ambiguities in Require-
ments are not resolved before developing software, rectifying
such RTD can be difficult as it might involve challenges
such as the difficulties in tracing requirements during the
Implementation phase (P3) [11].

Similar to the benefit accrued by taking CTD there can be
strategic benefits of taking RTD as well (P1) [1], [2]. However,
these benefits can differ, although the end goal (achieving

faster delivery to market) is the same for both types of TD.
There are also benefits of rectifying RTD, similar to benefits
gained by refactoring software code. For example, fixing
ambiguous requirements early on can pay off immediately by
preventing the impact on development, this benefit is captured
by ‘Benefit of Rectifying RTD’. However, this concept is not
captured in the literature, our model captures it.

CTD Interest impacts the implementation and maintenance
activities and does not impact upstream activities such as RE.
In contrast, RTD Interest can impact both upstream (e.g., RE
activities) and downstream activities (e.g., implementation or
maintenance activities) of the software product development
life cycle (P1, P2, P3, P4, P7) [1], [11], [14], [19], [20].
RTD can have additional consequences, e.g., having to do
additional interviews with Users to validate newly emerged
requirements and having to clarify an ambiguous require-
ment in the specification; these involve costs associated with
RE activities only (P2) [19]. RTD Interest incurred during
the development stage (P1, P2, P7), e.g., to implement a
workaround to compensate for a neglected user need, can
be more expensive than resolving such issues earlier in the
software development life cycle, which is the downside to
accumulating RTD [1], [14], [19]. Furthermore, RTD can
lead to other issues such as inefficiency in project progress
tracking (P3), hindered communication with customers on
bug-fixing progress (P3), and testers being not aware of the
requirements that need to be tested (P3), causing an extra
burden for software maintenance tasks [11]. Poorly conducted
requirements elicitation (P4, P7) can also lead to building
the wrong product that does not meet customer satisfaction
[7], [14]. Bonfim et al. (P4) [7] describe this situation as
unmet functional and non-functional requirements due to bad
specification, and not everything requested is being delivered.

CTD and RTD both involve a probability of incurring
Interest (P1), meaning, CTD Items or RTD Items may or may
not incur Interest depending on the situation [1]. Some CTD
Items might not interfere with the current development and not
incur Interest. Similarly, some RTD Items might not impact
the current release of the product.

A Development Step in TDQM involves a total cost, the
Total Cost of a Development Step [25]. Similarly, a RE Step
in RTDQM will incur a Total Cost of RE Step (P1, P2, P4) [1],
[7], [19]. However, compared to artifacts related to software
code, Requirement artifacts have a feedback loop involving the
User to precisely capture User Needs (P2, P3, P6, P7) [11],
[14], [19], [20]. Hence, the User is key in determining the
optimal set of requirements for developing a software product.
This is not the case with the quality of the software code.
Delivering value to the customer is the main goal of developing
a software product; therefore, managing RTD is equally as
important as managing CTD.

However, RTD involves some additional challenges com-
pared to CTD that are inherent to Requirements; these include
the inherent uncertainty in Requirements, i.e., requirement
changes (P1) and difficulties with traceability of Requirements
during the implementation phase (P3) [1], [11]. Lack of trace-



ability increases the effort of keeping requirements updated
since it is difficult to identify which requirements can be
affected when the source code is changed, and vise-versa [11].

B. Threats to Validity of the Mapping Study

Threats to identification of primary studies could apply to
the SMS search phase. However, we are confident that we
mitigated this by conducting an extensive search in 4 major
databases: SCOPUS, ACM, IEEE, and ScienceDirect. The
search query was initially developed and tested in SCOPUS
before being tailored to other databases. We used keywords,
their synonyms and wildcards (*) to capture possible variations
of the keywords, plurals and verb conjugations. We applied the
search query to the title, abstract, keywords, and full-text to
increase the probability of finding all relevant articles and did
not limit our search to a particular period. Furthermore, we
conducted Forward and Backward Reference Snowballing on
the final set of articles so that any missing articles could still
be found during snowballing.

C. Threats to Validity of Modelling the Quantification of RTD

RTDQM was informed by the literature found via our
SMS conducted focusing on the quantification of RTD and
additionally informed by TDQM, Perera et al.’s work [25].
Therefore, we are confident that RTDQM sufficiently captures
what is required to model the quantification of RTD. Perera
et al.’s work was also informed by literature derived from
a SMS and past models of TD (e.g., 16162 model [4]).
According to the authors, most of the important parts of
their model (concepts and relationships) were captured by
many quantification approaches that the model was applied
to, in a study they theoretically validated TDQM by applying
it to quantification approaches that were not used in the
development of the model (e.g., Cost of Refactoring, TD
Interest, and TD Item were captured by 21, 21, and 16 TD
quantification approaches, respectively) [25]. Their model did
not change after that study. Hence, the authors were confident
that TDQM sufficiently captured what is required to model
the quantification of code-related TD types. In our case,
additionally, a case study conducted by Frattini et al. [15]
complements our findings. However, RTD is an under-studied
research area [19]. Therefore, we see the need to validate our
work through case studies which we will do in future work.

Three researchers were involved in the development of
RTDQM. The first author conducted the SMS and then de-
veloped RTDQM based on the results obtained from the SMS
and being informed by TDQM. RTDQM was developed in
iterations and was discussed with the other two researchers
who validated the SMS results and the concepts and relation-
ships in the model during those iterations. Disagreements were
resolved during meetings between the researchers. Another
researcher who was not involved in the development of the
model did a final review providing feedback. These steps
reduced researcher bias in the process.

D. Implications to Researchers, Practitioners, Future Work

The main contribution of our work is the RTDQM model
that conceptualizes RTD quantification illustrating the con-
cepts related to RTD quantification and the relationships
between them. The value of having RTDQM is that it reveals
aspects of RTD that are not directly visible. One such aspect
is the constituents of RTD Interest; RE Costs associated
with RTD, New code cost associated with RTD, and Rework
cost associated with RTD. Another aspect is the benefit of
rectifying RTD, which is similar (conceptually) to the benefit
of refactoring CTD. Another aspect is the feedback loop in-
volved with the user when capturing user needs, different from
TD types related to software code. Another use of RTDQM
is that it provides a common model to compare different
RTD quantification approaches proposed in the literature. The
model can also be used as a reference point to develop new
quantification approaches.

In future work, we will investigate how practitioners quan-
tify RTD in practice: if they are aware of the costs and
benefits associated with RTD (i.e., model concepts) and if
metrics support the quantification and, in turn, the management
of RTD. We will investigate how practitioners engage in
RE, the implementation of features, and if they are aware
of the introduction of RTD during these activities and the
consequence of accumulating RTD (i.e., RTD Interest). Also,
the costs of rectifying, benefits of rectifying, and benefits of
taking RTD in situations such as when delivering a MVP.
Such a study will increase the awareness of RTD and the
importance of RTDM among practitioners while our current
work contributes towards the same among researchers.

VIII. CONCLUSION

We formally defined Requirements Technical Debt (RTD)
and developed a conceptual model for RTD quantification. Our
work is grounded in the literature obtained via our Systematic
Mapping Study (SMS) and informed by prior work. The
key observation from the development of our model is that,
although RTD is similar in many aspects to TD related to
software code (CTD), it has its own components. RTD can
incur extra costs (RTD Interest) that impact upstream, e.g.,
Requirements Engineering (RE), and downstream, e.g., Imple-
mentation, Maintenance activities in the software development
life cycle. Compared to CTD, RTD has a feedback loop
involving the User. Therefore, precisely capturing User Needs
and accurately formalizing them as Requirements is important
to minimize the accumulation of RTD. It is also essential
to monitor and not deviate from the Requirements during
Implementation. Furthermore, RTD can incur regardless if
there is CTD in the software code. Similar to benefits gained
from refactoring software code, rectifying RTD can also accrue
benefits. The conceptual model helps compare different RTD
quantification approaches and serves as a reference for de-
veloping new RTD quantification approaches. In future work,
we will investigate if practitioners are aware of the costs and
benefits associated with RTD (i.e., model concepts) and how
they quantify and manage RTD in practice.



ACKNOWLEDGMENT

This research was funded by the New Zealand Ministry of
Business, Innovation and Employment via The Science for
Technological Innovation (SfTI) National Science Challenge
Veracity Technology Spearhead.

REFERENCES

[1] Z. S. H. Abad and G. Ruhe, “Using real options to manage technical
debt in requirements engineering,” in 2015 IEEE 23rd International
Requirements Engineering Conference. IEEE, 2015, pp. 230–235.

[2] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola, F. Shull,
and C. Seaman, “Identification and management of technical debt:
A systematic mapping study,” Information and Software Technology,
vol. 70, pp. 100–121, 2016.

[3] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in 2014 Sixth
International Workshop on Managing Technical Debt. IEEE, 2014,
pp. 1–7.

[4] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),” in
Dagstuhl Reports, vol. 6, no. 4, 2016.

[5] W. N. Behutiye, P. Rodrı́guez, M. Oivo, and A. Tosun, “Analyzing the
concept of technical debt in the context of agile software development:
A systematic literature review,” Information and Software Technology,
vol. 82, pp. 139–158, 2017.

[6] A. B. Belle, T. C. Lethbridge, S. Kpodjedo, O. O. Adesina, and M. A.
Garzón, “A novel approach to measure confidence and uncertainty
in assurance cases,” in 2019 IEEE 27th International Requirements
Engineering Conference Workshops. IEEE, 2019, pp. 24–33.

[7] V. D. Bonfim and F. B. V. Benitti, “Requirements debt: causes, conse-
quences, and mitigating practices.”

[8] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[9] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of systems and software,
vol. 80, no. 4, pp. 571–583, 2007.

[10] A. Cavacini, “What is the best database for computer science journal
articles?” Scientometrics, vol. 102, no. 3, pp. 2059–2071, 2015.

[11] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“Assessing code smell interest probability: a case study,” in Proceedings
of the XP2017 Scientific Workshops, 2017, pp. 1–8.

[12] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, and N. Tsiridis,
“Integrating traceability within the ide to prevent requirements doc-
umentation debt,” in 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 2018, pp. 421–428.

[13] W. Cunningham, “The WyCash portfolio management system,” Pro-
ceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA, vol. Part F1296, no. October,
pp. 29–30, 1992.

[14] N. A. Ernst, “On the role of requirements in understanding and managing
technical debt,” in 2012 Third International Workshop on Managing
Technical Debt. IEEE, 2012, pp. 61–64.

[15] J. Frattini, D. Fucci, D. Mendez, R. Spı́nola, V. Mandić, N. Taušan,
M. O. Ahmad, and J. Gonzalez-Huerta, “An initial theory to understand
and manage requirements engineering debt in practice,” Information and
Software Technology, vol. 159, p. 107201, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584923000551

[16] H. J. Junior and G. H. Travassos, “Consolidating a common perspec-
tive on technical debt and its management through a tertiary study,”
Information and Software Technology, p. 106964, 2022.

[17] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE software, vol. 14, no. 5, pp. 67–74, 1997.

[18] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in software
engineering–a tertiary study,” Information and software technology,
vol. 52, no. 8, pp. 792–805, 2010.

[19] V. Lenarduzzi and D. Fucci, “Towards a holistic definition of require-
ments debt,” in 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2019, pp. 1–5.

[20] V. Lenarduzzi, D. Fucci, and D. Mendéz, “On the perceived harmfulness
of requirement smells: An empirical study,” in Joint 26th International
Conference on Requirements Engineering: Foundation for Software
Quality Workshops, Doctoral Symposium, Live Studies Track, and Poster
Track, Pisa; Italy, vol. 2584. CEUR-WS, 2020.

[21] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, pp. 193–220, 2015.

[22] A. Melo, R. Fagundes, V. Lenarduzzi, and W. B. Santos, “Identification
and measurement of requirements technical debt in software develop-
ment: A systematic literature review,” Journal of Systems and Software,
p. 111483, 2022.

[23] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Proceedings of the 2nd workshop on managing
technical debt, 2011, pp. 1–8.

[24] J. Perera, “Modelling the quantification of technical debt,” in Companion
Proceedings of the 2022 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for
Humanity, 2022, pp. 50–53.

[25] J. Perera, E. Tempero, Y.-C. Tu, and K. Blincoe, “Quantifying technical
debt: A systematic mapping study and a conceptual model,” arXiv
preprint arXiv:2303.06535, 2023.

[26] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-
ping studies in software engineering,” in 12th International Conference
on Evaluation and Assessment in Software Engineering, 2008, pp. 1–10.

[27] N. Rios, M. G. de Mendonça Neto, and R. O. Spı́nola, “A tertiary study
on technical debt: Types, management strategies, research trends, and
base information for practitioners,” Information and Software Technol-
ogy, vol. 102, pp. 117–145, 2018.

[28] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software
engineering, 2014, pp. 1–10.


