
Understanding the Impact of APIs Behavioral Breaking

Changes on Client Applications

DHANUSHKA JAYASURIYA, University of Auckland, New Zealand

VALERIO TERRAGNI, University of Auckland, New Zealand

JENS DIETRICH, Victoria University of Wellington, New Zealand

KELLY BLINCOE, University of Auckland, New Zealand

Libraries play a significant role in software development as they provide reusable functionality, which helps

expedite the development process. As libraries evolve, they release new versions with optimisations like new

functionality, bug fixes, and patches for known security vulnerabilities. To obtain these optimisations, the

client applications that depend on these libraries must update to use the latest version. However, this can

cause software failures in the clients if the update includes breaking changes. These breaking changes can

be divided into syntactic and semantic (behavioral) breaking changes. While there has been considerable

research on syntactic breaking changes introduced between library updates and their impact on client projects,

there is a notable lack of research regarding behavioral breaking changes introduced during library updates

and their impacts on clients. We conducted an empirical analysis to identify the impact behavioral breaking

changes have on clients by examining the impact of dependency updates on client test suites. We examined a

set of java projects built using Maven, which included 30,548 dependencies under 8,086 Maven artifacts. We

automatically updated out-of-date dependencies and ran the client test suites. We found that 2.30% of these

updates had behavioral breaking changes that impacted client tests. Our results show that most breaking

changes were introduced during a non-Major dependency update, violating the semantic versioning scheme.

We further analyzed the effects these behavioral breaking changes have on client tests. We present a taxonomy

of effects related to these changes, which we broadly categorize as Test Failures and Test Errors. Our

results further indicate that the library developers did not adequately document the exceptions thrown due to

precondition violations.

CCS Concepts: • Software and its engineering → Reusability; Software libraries and repositories;

Maintaining software; Software evolution.

Additional Key Words and Phrases: software libraries, software dependency, breaking changes, software

evolution, behavioral breaking changes

ACM Reference Format:

Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe. 2024. Understanding the Impact of

APIs Behavioral Breaking Changes on Client Applications. Proc. ACM Softw. Eng. 1, FSE, Article 56 (July 2024),

24 pages. https://doi.org/10.1145/3643782

Authors’ addresses: Dhanushka Jayasuriya, University of Auckland, Auckland, New Zealand, djay392@aucklanduni.ac.nz;

Valerio Terragni, University of Auckland, Auckland, New Zealand, v.terragni@auckland.ac.nz; Jens Dietrich, Victoria

University of Wellington, Wellington, New Zealand, jens.dietrich@vuw.ac.nz; Kelly Blincoe, University of Auckland,

Auckland, New Zealand, k.blincoe@auckland.ac.nz.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART56

https://doi.org/10.1145/3643782

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-6172-0472
HTTPS://ORCID.ORG/0000-0001-5885-9297
HTTPS://ORCID.ORG/0000-0001-9019-6550
HTTPS://ORCID.ORG/0000-0003-4092-9706
https://doi.org/10.1145/3643782
https://orcid.org/0000-0001-6172-0472
https://orcid.org/0000-0001-5885-9297
https://orcid.org/0000-0001-9019-6550
https://orcid.org/0000-0003-4092-9706
https://doi.org/10.1145/3643782

56:2 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

1 INTRODUCTION

Software libraries evolve rapidly, releasing new versions comprising new functionality, improve-
ments, or bug fixes [8, 45]. These functionalities are exposed as Application Programming In-
terfaces (APIs) to be used by clients [64]. The API declares a contract established between the
library and the client, that needs to be managed by both parties [5]. When the libraries release new
versions, clients that depend on these libraries must keep the dependencies up-to-date to benefit
from the changes in these new releases. However, updating dependencies can be difficult if the
update breaks the API contract and contains backward incompatible changes known as Breaking
Changes (BCs) [24, 52]. Previous research has indicated that the cost associated with addressing
potential breaking changes can lead to client developers being hesitant to update their project
dependencies [17, 33, 39, 40, 43, 61, 65]. BCs related to source and binary incompatibilities, known
as syntactic BCs, are visible immediately if the application encounters compilation errors or issues
arise while loading client code and library binaries. Behavioral BCs (BBCs), also known as semantic
BCs, can only become apparent if the application compiles successfully but behaves differently than
expected, which could lead to incorrect results or unsatisfactory performance [6, 18, 45]. Therefore,
it is helpful for developers of the client projects if the libraries indicated the potential contract
violations between two versions which introduce BBCs.

The practice of semantic versioning [50] is commonly employed by developers of software
libraries to indicate whether a version includes backward-compatible changes compared to its
previous version. Semantic versioning involves three parts: major, minor, and patch versions.
Typically, minor and patch version releases are expected to maintain compatibility with previous
versions. However, prior research has revealed instances where open-source libraries fail to comply
with this versioning scheme, introducing BCs even in minor and patch releases [14, 17, 19, 24, 37].
Therefore, it is crucial to understand the potential impact BCs have on clients that utilize them.

Some studies investigated the impact of Syntactic BCs on client projects when updating their
dependencies [4, 29, 30, 45, 51, 64]. Other researchers have primarily focused on identifying BCs
arising from Syntactic BCs between two software library versions [21, 32, 41, 51]. There is limited
research explicitly detecting the Behavioral BCs between two library versions [11, 42, 66]. Some
prior research has focused on detecting Syntactic and Behavioral BCs impacting clients on JavaScript
projects [43, 60]. Two techniques SENSOR [63] and CompCheck [67] were introduced to detect
BBCs that manifest as Test Failures, which could potentially impact Java Clients. These studies
primarily focus on the detection of BBCs. However, it is important to know how BBCs impact
clients and how these impacts manifest. Previous research has not explored in-depth the effects
of BBC manifestation on client tests and the origin of these issues, focusing on all dependencies
connected to a client project.
Hence, our research aims to address this gap by identifying the impact of Behavioral BCs on

client projects by examining how dependency updates affect client tests, how BBCs manifest, and
their origin. Focusing on client tests might not provide the entire impact of BBCs on clients if tests
do not cover all library functionalities invoked. However, it will be a starting point to understand
the degree of impact of BBCs on clients and how better test coverage will help identify BBCs during
dependency updates.

We did not limit our study to examining only adjacent library updates like most other research
conducted to analyze the impact of BCs on clients [33, 54, 62] as clients are most likely more
than one version behind the latest stable version. Furthermore, research shows that clients with
outdated dependencies would probably update to the latest Major version available, indicating that
versions in between are often skipped [57]. Hence, we followed a more comprehensive approach
and updated the client’s dependencies to the latest stable versions, allowing us to create a realistic

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:3

environment that more closely mirrors the actual dependency update practices followed by client
projects. We conduct an empirical analysis on 8,086 Maven built Java client projects that contain
tests suites. The research questions we addressed through the work are as follows:

RQ1: How often are client-impacting BBCs captured through client tests? Using the data
set we have prepared, we analyzed how often BBCs impact client projects by detecting test failures
and errors introduced during client dependency updates. This will give us a primary understanding
of how BBCs impact client projects.

RQ2: What types of effects do BBCs have on client tests?We identify how BBCs can impact
client tests differently. This enables us to build a taxonomy of effect based on how the changes
impact the client tests. This taxonomy serves as a resource for the client developers to understand
the different types of failures and errors a BBC can have on client tests.
RQ3: Where does the BBC-related impact originate? Based on the identified failing tests,

we analyzed if the Test Errors originated within the library-related code, if the changed result or
issue passed down to the client code, or if it originated from other client dependencies or Standard
Java code. The origin of Test Errors will help client developers decide if they could handle the
incompatibility raised due to the BBC.
RQ4: Do runtime exception messages effectively guide developers in handling BBCs?

Finally, we analyzed if the precondition-related exceptions thrown during a Major dependency
update guide the client developers on how they can overcome issues related to BBCs.
To our knowledge, this is the first comprehensive analysis conducted to study the impact and

manifestation of BBCs during dependency updates and where the BBC-related issues are raised.
Among the 30,548 dependency updates applied for client projects, we identified that 2.30% resulted

in failing client tests. However, this number is likely underestimating the true impact of BBCs
because we cannot guarantee that the client’s test cases cover all the dependency functionalities the
client utilizes. Nevertheless, it is noteworthy that client tests capture the BBCs that actually impact
clients, implying that no effective false positive results are generated from this approach [53].
The analysis of these dependency updates led to four main findings:
1) Most of the detected BBCs (48.35%) are introduced during minor updates of dependencies and

18.27% during patch updates. This confirm that the semantic versioning scheme is often violated
by library developers.
2) Among the analyzed failing tests, the majority (59.35%) trigger Test Errors (e.g., runtime

or checked exceptions) and 40.65% trigger Test Failures (e.g., assertion violations). This means
that 59.35% of failing tests can expose the BBCs without executing the assertion oracles of the
client test. Therefore, many BBCs (triggered as Test Errors) could be effectively exposed using
test generator tools [25, 47] and would not require assertion oracles. Indeed, current test generators
are very effective at increasing code coverage but not at generating assertion oracles that verify
the intended program behavior [2].
3) A non-negligible amount (18.78%) of the Test Errors originated from other dependencies

connected to a client or the updated library, making it difficult for the clients to handle these BBCs
introduced during dependency updates effectively.
4) Library developers have not provided adequate documentation in the runtime exceptions of

the BBCs introduced since almost all precondition exceptions were not raised at the API surface,
and half of these exceptions did not contain enough information to handle them.

2 BACKGROUND

This section provides the context for our research, which is focused on investigating how Behavioral
Breaking Changes (BBCs) affect client projects.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:4 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

Libraries are an important part of the modern software development as they provide reusable
functionalities that help accelerate the development process. These libraries also evolve like any
other software application and release new versions of the libraries that will bring new features,
feature enhancements, and issue and vulnerability fixes. When a client utilizes the library function-
ality, it will depend on a specific version or range of versions, defined as a dependency on the
client application. Therefore, as the libraries evolve, it is essential for clients to frequently update
their dependencies to benefit from them and maintain the security of the overall ecosystem of the
project [12, 48, 57].
There are two ways in which dependencies are associated with a client application: directly

or transitively (indirectly). Dependencies explicitly declared in the project and necessary for the
application’s build process are referred to as Direct Dependencies. If a direct dependency of
the client itself has its own direct dependency that it requires, that dependency is a Transitive
Dependency for the client [31]. Since the client can access the functionalities of the transitive
dependency (as it is bundled with the direct dependency), some clients may directly utilize this
functionality [29].

Breaking changes (BCs) are the code changes made to a new library version that can potentially
introduce compatibility issues for client projects developed using a previous library version as the
new library version violates contracts. Not all BCs will impact a client, and whether or not a BC
results in compatibility issues for a specific client depends on whether that client’s code directly or
indirectly calls the affected APIs or code during its execution. BCs can be broadly classified into two
categories: syntactic and behavioral (semantic) BCs. Syntactic BCs, as the name implies, involve
changes to the syntax of the library code, leading to compatibility issues on the client side. These
syntactic changes can be further divided into Source and Binary BCs. Source BCs are identified
during compilation, while Binary BCs are detected at load time when linking the client code with
the library binaries. Syntactic changes can be identified with great accuracy using static analysis
tools.
Behavioral Breaking Changes (BBCs) are the code changes made to a new library version

that alter the expected behavior of the API of the library in a way that may cause existing client
applications to break, malfunction, or behave unexpectedly. These changes are API contract vi-
olations related to either the preconditions, postconditions, or invariants that are bound to the
methods syntactically or semantically [5]. Figure 1 shows a BBC in org.jsoup:jsoup when updat-
ing between versions 1.7.3 and 1.8.1. The change introduces an extra conditional statement that can
change the content of the StringBuilder object accum, which will be passed on to other internal
library methods that would finally affect the end result of the library API.
These behavioral changes are hard to capture using static analysis techniques as they rely on

more approximation and abstraction. Exposing the BBCs dynamically by running test cases is
precise. However, the dynamic analysis might undermine some of the issues since it might not cover
all possible input and environment conditions the program executes under, which would accurately
represent the program’s behavior [23]. Therefore, library developers must communicate to clients
using their library the nature of the changes (breaking or compatible) included in their release. For
this purpose, the library developers follow the Semantic Versioning1 scheme to convey to their
clients the nature of changes in the release. According to this scheme, BCs can only be introduced
during a Major update while Minor and Patch updates must maintain backward compatibility.

1https://semver.org/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:5

878 904 private static void appendWhitespaceIfBr(Element element, StringBuilder accum) {

@@ -1074,8 +1100,13 @@ void outerHtmlHead(StringBuilder accum, int depth, Document.OutputSettings out)

1074 1100 .append(tagName());

1075 1101 attributes.html(accum, out);

1076 1102

1077 - if (childNodes.isEmpty() && tag.isSelfClosing())

1078 - accum.append(" />");

1103 + // selfclosing includes unknown tags, isEmpty defines tags that are always empty

1104 + if (childNodes.isEmpty() && tag.isSelfClosing()) {

1105 + if (out.syntax() == Document.OutputSettings.Syntax.html && tag.isEmpty())

1106 + accum.append('>');

1107 + else

1108 + accum.append(" />"); // in html, in xml

1109 + }

1079 1110 else

Fig. 1. Behavioral BC under org.jsoup:jsoup library when updating from version 1.7.3 to version 1.8.1

RQ3: BBCs Origin

Extract Initial Failure Point

Library Client

Test

Library

Other

Library

Standard

Java

17,611

Maven

Artifacts

Succ.

8,086

Artifacts

20,711

GitHub

Java

Repos

Libraries.io

Compile

Succ.

Test Suite

Execution

Update Dep &

Compile

Succ.

RQ1: BBC Impact on Client Tests

30,548 Dep. Updates

Update & Test Execution

1,668 Dep. Updates

Fail

RQ2: Effect of BBC

Update & Execute Tests for all

Dep. versions

Develop Taxonomy

Extract Initial Failure

Point

V1.0.2V1.0.1

FailSucc Succ Fail

V1.0.3 V1.2.0 V3.0.0

Crash Logs

Deduplicate & Extract BB Logs

Categorize Test

Failure or Error

RQ4: Runtime Exception

Messages

BBCs in Major

Updates

Adequate Exception

Message

Exception At API

Surface

Yes

Yes

Adequate BBC

Documentation

Categorize Test

Failure or Error

Fig. 2. Overview of the study

3 STUDY DESIGN AND RESULTS

This section describes the design, analysis, and results of this study. Figure 2 provides an overview
of the study, which includes the step-by-step processes followed to gather answers for each research
question. We considered the Maven artifacts used in this experiment as the clients for the analysis.
We executed the test suites of these clients with the dependency declared by the project, which
we will refer to as the current dependency. Then, we updated the dependency to the latest stable
version to determine the impact of Behavioral Breaking Changes (BBCs) on client tests. Using
the crash logs of the failed test cases, we analyzed the different effects a BBC will have on tests,
leading us to a taxonomy of effect. Then, we studied the origin of the failing tests to understand
where the issues were initiated. Finally, we evaluated whether library developers adhered to proper
documentation practices when releasing BBCs to understand if this documentation is sufficient
for client developers to handle the issues caused by BBCs at the client end. The scripts, data, and
results obtained for the study are available in the replication package [28].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:6 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

3.1 Experiment Setup

We selected Java projects as the focus of our study for two main reasons. Firstly, Java ranks within
the top five most popular programming languages (as of February 2024 [55]). Secondly, due to its
static typing, we can unambiguously separate syntactic and behavioral breaking changes, with
the behavioral ones being the focus of our study. Similarly to other research conducted in this
area [1, 15, 26, 29], we selected subjects from the Libraries.io data set [59], which monitors over nine
million open-source libraries available under 32 package managers. For the repositories available
in the Libraries.io dataset, we applied the first filter of selecting Java projects, which are the client
repositories for our research. Further, using the GitHub API2 we filtered the repositories to contain
a minimum of five stars and that are not fork repositories, to maintain the quality of the repositories
selected for the research as done by previous research in the field [1, 15, 26, 29]. This provided
us with 20,711 Java repositories, in which we considered client projects that rely on third-party
libraries for their dependencies. From these repositories we again filtered the ones using Maven
as their build automation tool as their dependencies can be easily retrieved from the pom.xml file,
which contains the necessary configuration. We decided not to include Gradle-built projects in our
analysis because the repositories we used were created prior to 2020, a period when Gradle was
still in the process of gaining popularity [49].
Next, we selected projects that compile successfully and contain passing test cases. Therefore,

we first selected any repositories that compiled successfully with either Java 8 or Java 11. There
were 3,524 and 325 projects that compiled in Java 8 and Java 11 respectively (3,839 in total). We
chose these two Java versions because, between 2014 and 2021, the period the repositories had
commit activities, they were the only versions supported by Oracle’s Long-Term Support service.
A Maven project may adhere to a parent-child structure arrangement, where a parent project

can contain multiple child projects. Each Maven project is uniquely identified using the GAV

coordinates, which are theGroupId (G), denoting the organization or group responsible for creating
the dependency; the ArtifactId (A), denoting the artifact within the group; and the Version (V),
indicating the specific version of the artifact. Therefore, from theseMaven repositories, we identified
20,169 unique Maven artifacts. However, not all parent Maven artifacts contained a folder with
source code in them to evaluate tests, and therefore, we excluded them from the analysis, resulting
in 17,611 clients for analysis.

To identify the impact of BBCs for these projects, we did not use static analysis techniques since
they tend not to be precise [23], and precision is essential to many engineers [22, 53]. In order to
achieve higher precision in static analysis techniques, complexity often increases, and the analysis
quickly becomes unscalable [27, 35]. Further, static analysis can also be unsound [36, 58]. Static
analysis can scale much better for syntactic BCs because it only has to look at the type system
(mainly method signatures in declarations and call sites). Since running test cases to detect BBC is
precise, we relied on client tests for BBC detection. Testing, however, under-approximates the issues,
i.e. we will miss some and underreport incompatible changes. But all changes reported are actual
changes a client may encounter, whereas in the static analysis, we would detect incompatibilities
not corresponding to actual program behavior.
Therefore, for the projects that compiled successfully, we checked if they contained test suites

by running the mvn test command and identifying if it generated surefire-reports, which are the
reports generated for the executed unit tests under the respective project’s target folder. We selected
8,086 clients that contained tests and passed all test cases. It is worth mentioning that out of the
total number of considered clients, 43.25% (7,618) did not contain a test suite. The remaining 10.83%

2https://docs.github.com/en/rest

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:7

(1,907) clients did have test suites, but they contained at least one failing test case. Consequently,
we did not include them in the analysis.

We used the mvn versions:display-dependency-updates command on the selected clients to
identify potential outdated dependencies. While extracting outdated dependencies, we implemented
a rule to exclude releases labeled as ‘alpha,’ ‘beta,’ ‘SNAPSHOT,’ and ‘RC,’ as these versions are
considered unstable, according to the Maven Central Repository site and prior studies [45, 46].
We updated the outdated dependencies one at a time using a script to the latest stable version

available. If compilation errors occurred during the update process, we excluded them, considering
them as dependency updates that cause syntactic BCs. Therefore, for the next steps, we considered
the dependencies of the clients that successfully compiled when updated to the latest stable version.

3.2 RQ1: BBC Impact on Clients

In this section, we answer RQ1: “How often are client-impacting BBCs captured through client
tests?”

3.2.1 Method. In the following steps, we use the clients unaffected by Syntactic BCs during a
dependency update.
Extract Failing Tests: After updating the dependencies on the client, we executed client tests to
assess whether they were affected by the dependency update. For the test suites that failed when
a dependency was updated, we ran the test suite ten times to filter out tests that are potentially
flaky [34, 38]. After filtering the flaky test failures, we considered the remaining failing tests as
being directly impacted by the BBC in the updated dependency. Multiple versions could exist
between the current and the latest versions, to retrieve the exact version in which a BBC was
introduced we examined the versions between the current declared dependency and the latest
version. For this purpose, we collected all library versions released between the current and latest
versions by querying the Maven Central Repositories. 3 For the clients with test suite failures,
when updated to the latest dependency version, we incrementally updated the dependency version
starting from the version immediately after the current one until the version that first caused the
test suite to fail was detected. We used the version that first introduced the BBC to analyze the
impact of the BBC on client projects.
Deduplicate Tests and Extract Tests for BBCs: We observed that some failing tests were related
to linkage-related issues arising from binary incompatibilities. Therefore, to calculate the impact
of BBCs, we excluded the failures related to binary incompatibilities and selected dependency
updates that contained at least one failing test related to a BBC. We further excluded failing tests
related to Maven build and test engine issues. To determine if the test failure was related to a binary
incompatibility, Maven build error, or a test engine issue, we extracted the individual test failures
with their crash logs to make this decision. For this, we used the surefire reports generated for each
unit test class under the project target folder when tests are executed for Maven projects. These
reports contain details on all tests passing and failing. Using these reports, we extracted all failing
tests, along with their test name and the crash log generated.

For some clients, when the dependency was updated, it resulted in one failing test, but for some
clients, multiple tests failed. Therefore, we deduplicated the multiple failing tests to determine if
each failure was due to the same or different reasons by using the crash logs. As some crash logs
contained a few lines while others contained multiple lines, which also consisted of multiple Caused
by statements, we needed to detect the initial point at which the failure occurred to deduplicate the
failing tests. According to the Java documentation, the low-level exception will occur at the last

3https://mvnrepository.com/repos

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:8 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

Caused by statement in the crash log.4 Following this guideline, the initial point of the crash log
was determined. Next, we excluded the client-related code from the crash logs to make it generic
since crash statements would contain each test-specific method invocation. We also excluded
the line numbers for the remainder of the crash logs statements. Next, the first five statements
of the crash logs were compared with the crash logs of the tests that failed in the same client
during the same dependency update. The idea of using the first five lines of a crash log is similar
to the equivalence functions used in research on crash reproduction such as EvoCrash [56] and
Botsing [16]. We used the normalized Levenshtein distance technique to measure the text similarity
in the crash logs. If the crash logs had a difference threshold of less than 5%, we considered them
related to the same BBC, following Bartz et al. [3], which reported that normalized edit distance
between 0-20% provides better crash log similarity. Therefore, if the difference was greater than
the threshold, we considered them related to different BBCs.
After deduplicating the crash logs, we created a script to divide them into Test Failures and

Test Errors. Test Failures are signaled by assertion errors and can be extracted from the crash
logs by identifying if the first line contains keywords such as ’Assertion’, ’AssertionFailedError’,
’Assert’ or ’ComparisonFailure’. For the Test Failureswe extracted the Exception or Errors raised,
by detecting the initial point of the crash log.

3.2.2 Results. To determine the number of dependency updates containing BBC, we used 30,548
dependencies declared under 8,086 client projects.
Impact of BBCs:We updated these dependencies to the latest stable versions and observed that
1,668 which is 5.46% of these updates contained a failing test(s). However, these failures were related
to both BBC and Binary incompatibilities. Therefore, after excluding these Binary incompatibility-
related impacts, the total BBC-related impacts was 704, which is 2.30% of the total dependency
updates.
Semantic Version Compliance: By examining the version numbers that introduced the BBCs
and comparing them with the current version that is defined in the client project, we assessed
if the library versions aligned with the principles of the semantic versioning scheme. Table 1
summarizes the BBCs introduced during different semantic version levels. Our findings indicate
that most BBCs emerged during Minor updates, accounting for 48.35% of the instances of Behav-
ioral Breaking (BB) versions. When considering both Minor and Patch BB versions, it becomes
evident that non-Major updates played a substantial role, contributing to around two-thirds of
the breaking versions. However, when extracting these statistics, we should also consider the
total number of dependency updates applied at each semantic level. The total number of Minor
updates was higher than the updates at the other semantic levels, and this could be a reason
for Minor updates having the majority of the BB versions. When considering the total updates
impacted by a BBC at each semantic level, Major updates reported 3.52% and was higher than
the BB updates reported for the non-Major semantic levels. There were another eight depen-
dency updates that introduced BBC under the same semantic version, which means the Major,
Minor, or Patch numbers did not change. However, the version’s build number changed which
is an identifier for a particular build following the pattern Major:Minor:Patch:BuildNumber. For
example, 2.0-M3 -> 2.0-M5 of library com.thoughtworks.qdox:qdox, 5.8.0-M1 -> 5.8.0 of library
org.junit.jupiter:junit-jupiter-engine.
These BB versions were extracted based on the first version to introduce the BBC. However,

multiple versions might have been released between the current version and the BB version.
Therefore, we looked at how many Major, Minor, and Patch versions did not introduce any BBCs
between the current and the BBC version. When counting the successful releases, we looked

4https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:9

Table 1. BBC introduced at each Semantic Versioning Level

Update Version level Total number of updates Updates impacted by BBC
Distribution of BBC impact % of impacted updates based

across the semantic levels on total updates of that level

Major 6,584 232 33.38% 3.52%
Minor 14,856 336 48.35% 2.26%
Patch 7,945 127 18.27% 1.60%

at Major, Minor, and Patch BB updates separately as Minor and Patch would not contain Major

updates, and furthermore Patch would not contain any Minor updates.
Figure 3 displays all successful update releases when the BBCs were introduced under Major,

Minor, and Patch updates separately. Among the Major updates that included BBCs, 70.69% did not
have any other successful Major updates between the current and the BB versions, which means
the remaining 29.31% had at least one or more successful Major updates. Of these instances, 23.71%
had just one successful Major update between the current and the BB versions. Additionally, 57.76%
of these updates did not contain successful Minor updates, and 35.78% did not contain successful
Patch updates between the current and the BB versions. The highest number of successful Major
updates between the current and BB versions was nine, which occurred once, contributing to 0.43%,
while the highest number of Minor and Patch updates were 27 and 219, respectively.

For the Minor updates that contained BBCs, 59.52% did not have any successful Minor updates
between the current and the BB versions, and thus the remaining 40.48% contained at least one
successful Minor update. Of these instances, 20.54% contained one successful Minor update, while
the highest number of successful Minor updates was 51, which occurred only for one instance.
52.08% of these Minor updates, which introduced a BBC, did not contain any successful Patch
updates between the current and BB versions. For the Patch updates that contained BBCs, 70.08%
did not have any successful Patch updates between the current and the BB versions. The highest
number of successful Patch updates between the current version and the breaking update was 27.
At the same time, three was the most common number of successful Patch updates between the
current and the BBC-introducing update, contributing to 6.30%.
Scope of BBCs: From these libraries that caused BBCs in the client application, we analyzed in
which scope the library is connected to the client. Suppose the library is used for the compilation
or runtime of the client for its functional usage. In that case, it will be defined either as a compiler,
a runtime, or a provided scope dependency in the Maven configuration. Suppose the dependency
is only needed for the compilation or runtime of the tests in the client project. In that case, they
will be listed as a test scope dependency in the Maven configuration. We categorized them as
test and non-test-related dependencies. Based on the scope of the BBC introducing dependencies,
399 (56.67%) were non-test related dependencies, and 305 (43.32%) were test-related dependencies.
Therefore, the data set we used for the analysis consisted of a similar amount of both test scope
and non-test scope dependencies.

Answering RQ1: How often are client-impacting BBCs captured through client tests? We
observed that 2.30% of the dependency updates contained failing tests introduced due to BBCs.
Moreover, our findings indicate that a significant portion of these BBCs were introduced
through Non-Major updates.

3.3 RQ2: Effects of BBC

In this section, we answer RQ2: “ What types of effects do BBCs have on client tests?”

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:10 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

7
0

.6
9

%

2
3

.7
1

%

3
.8

8
%

1
.2

9
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.4

3
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

5
7

.7
6

%

1
6

.8
1

%

6
.4

7
%

2
.1

6
%

2
.1

6
%

3
.4

5
%

1
.7

2
%

2
.1

6
%

2
.1

6
%

2
.1

6
%

0
.4

3
%

0
.0

0
%

0
.0

0
%

0
.4

3
%

0
.4

3
%

0
.0

0
%

1
.7

2
%

3
5

.7
8

%

3
.4

5
%

5
.6

0
%

8
.1

9
%

5
.6

0
%

2
.1

6
%

3
.0

2
%

3
.8

8
%

2
.5

9
%

1
.7

2
%

0
.4

3
%

0
.8

6
%

0
.4

3
%

2
.1

6
%

0
.0

0
%

5
.6

0
%

1
8

.5
3

%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+

P
e

rc
e

n
ta

g
e

o
f

Li
b

ra
ri

e
s

Number of Successful Updates

Major

Minor

Patch

5
9

.5
2

%

2
0

.5
4

%

7
.4

4
%

2
.6

8
%

2
.0

8
%

0
.6

0
%

0
.6

0
%

0
.6

0
%

0
.8

9
%

0
.3

0
%

1
.4

9
%

0
.0

0
%

0
.3

0
%

0
.0

0
%

0
.0

0
%

0
.3

0
%

2
.6

8
%

5
2

.0
8

%

2
.6

8
%

4
.7

6
%

5
.0

6
%

4
.7

6
%

3
.2

7
%

5
.9

5
%

2
.6

8
%

3
.2

7
%

1
.4

9
%

0
.3

0
%

2
.9

8
%

1
.7

9
%

1
.1

9
%

0
.3

0
%

0
.0

0
% 7
.4

4
%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+

P
e

rc
e

n
ta

g
e

 o
f

Li
b

ra
ri

e
s

Number of Successful Updates

Minor

Patch

7
0

.0
8

%

0
.7

9
%

0
.0

0
%

6
.3

0
%

1
.5

7
%

5
.5

1
%

2
.3

6
%

0
.0

0
%

0
.7

9
%

2
.3

6
%

1
.5

7
%

3
.1

5
%

0
.0

0
%

1
.5

7
%

0
.7

9
%

0
.0

0
%

3
.1

5
%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+

P
e

rc
e

n
ta

g
e

 o
f

Li
b

ra
ri

e
s

Number of Successful Updates

Patch

A

B

C

Fig. 3. A. Successful Releases between the Current and Breaking versions when the BBC was introduced

in a Major Update B. Successful Releases between the Current and Breaking versions when the BBC was

introduced in a Minor Update C. Successful Releases between the Current and Breaking versions when the

BBC was introduced in a Patch Update

3.3.1 Method. For this research question, we looked at how BBCs can be detected by analyzing
client tests, which will provide insights into how BBCs affect clients. For this analysis, we used
all failing tests related to a BBC extracted in RQ1. Under RQ1, we categorized the Failing tests as
Test Failures and Test Errors, and under this section, we further categorize them to build a
Taxonomy of Effect.

Categorizing Failing Tests: The Test Failures were divided into Test Assertions and
Program Assertions. Test assertions occur when the actual outcome of a method under test
is not the same as the expected outcome after the dependency is updated. If the library methods in-
voked through the test execution process were updated and changed the output, it would contribute
to changing the final output of the client code. A sample crash log of a Test Assertion failure is pro-
vided in Figure 4. Under this example for the org.sonatype.restsimple:restsimple-sitebricks
client, when the com.google.inject.extensions:guice-servlet dependency is updated from
version 3.0 to 4.0, the test expects the method to return 200, while the result after the dependency
update returns 404.
Developers use program assertions as conditional checks inside methods to verify that the

execution flow of the program is correct. These are different from test-related assertions, as test
assertions would evaluate the result of an execution flow, while code-related assertions verify the
program conditions that are needed for execution during the execution process. Program assertions
can be introduced either as an Assert condition or explicitly throwing an Assertion Error.
Figure 5 displays a program assert extracted from the org.needle4j:needle4j client code. The
client code raised this assertion error when the com.h2database:h2 dependencywas updated from

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:11

java.lang.AssertionError: expected:<200> but was:<404>

 at org.testng.Assert.fail(Assert.java:89)

 at org.testng.Assert.failNotEquals(Assert.java:480)

 at org.testng.Assert.assertEquals(Assert.java:118)

 at org.testng.Assert.assertEquals(Assert.java:365)

 at org.testng.Assert.assertEquals(Assert.java:375)

 at org.sonatype.restsimple.sitebricks.test.addressBook.AddressBookSitebricksTest.testPost(AddressBookSitebricksTest.java:106)

Fig. 4. Test Assertion failure in client org.sonatype.restsimple:restsimple-sitebricks when

com.google.inject.extensions:guice-servlet dependency was updated from version 3.0 to 4.0

java.lang.AssertionError: unable to clean tables [NEEDLE_TEST_ADDRESS]

 at org.needle4j.db.operation.hsql.HSQLDeleteOperation.deleteContent(HSQLDeleteOperation.java:142)

 at org.needle4j.db.operation.h2.H2DeleteOperationTest$H2DeleteOperationForTest.deleteContent(H2DeleteOperationTest.java:162)

 at org.needle4j.db.operation.hsql.HSQLDeleteOperation.tearDownOperation(HSQLDeleteOperation.java:53)

 at org.needle4j.db.DatabaseTestcase.after(DatabaseTestcase.java:152)

 .

 .

 .

 at org.apache.maven.surefire.booter.ForkedBooter.runSuitesInProcess(ForkedBooter.java:153)

 at org.apache.maven.surefire.booter.ForkedBooter.main(ForkedBooter.java:103)

Fig. 5. Program Assert in client org.needle4j:needle4j when com.h2database:h2 dependency was updated

from version 1.3.170 to 1.4.178

version 1.3.170 to 1.4.178. Due to the changes in the library, the client code could not clean the
database tables successfully.
We wrote a script to determine whether the assertion was test-related or program-related.

First, we marked the assertions thrown or originated from any of the classes in the following
testing libraries JUnit5, Hamcrest6, TestNG7, Mockito8, EqualsVerifier9 as Test Assertions. Next,
if the class generating the assertion contained the Keyword ‘test’, we assumed that the assertion
was raised under a Test-related class and hence would be part of the Test assertions. For the
remaining assertions, one author manually verified if they were valid Program Assertions and
discussed them with the other authors to ensure impartiality.
Categorizing Test Errors: We categorized the rest of the crash logs that did not include asser-
tions under the Test Errors. To determine the different errors generated, we had to extract the
error or the exceptions thrown at the initial point of the crash log. Figure 6 shows a IllegalState-
Exception thrown when client org.apache.dubbo:dubbo-filter-cache updates its dependency
com.hazelcast:hazelcast from 3.11.1 to 4.0. We categorized the exceptions extracted based on
the Java Throwable subclass Exceptions and Errors, and the Exceptions we further divided into
Checked Exceptions and Runtime Exceptions.

The Exceptions extracted from the crash log also included custom exceptions defined by the client
or a library. Therefore, we needed to extract their superclass details to determine if these custom ex-
ceptions were Checked or Runtime exceptions. If the superclass belonged to java.lang.Exception
or any of its subclasses not extending java.lang.RuntimeException, we classified it as a Checked
Exception. 10 If the Exception inherits from java.lang.RuntimeException, we categorized it as a
Runtime Exception.

5https://junit.org/junit5/
6https://hamcrest.org/JavaHamcrest/
7https://testng.org/doc/
8https://site.mockito.org/
9https://jqno.nl/equalsverifier/
10https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:12 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

javax.cache.CacheException: Error opening URI [hazelcast]

 at com.hazelcast.cache.impl.AbstractHazelcastCachingProvider.getCacheManager(AbstractHazelcastCachingProvider.java:134)

 at com.hazelcast.cache.impl.AbstractHazelcastCachingProvider.getCacheManager(AbstractHazelcastCachingProvider.java:163) .

 .

 .

 at org.apache.maven.surefire.booter.ForkedBooter.main(ForkedBooter.java:418)

Caused by: java.lang.IllegalStateException: Unable to connect to any cluster.

 at com.hazelcast.client.impl.connection.nio.ClientConnectionManagerImpl.doConnectToCluster(ClientConnectionManagerImpl.java:397)

 at com.hazelcast.client.impl.connection.nio.ClientConnectionManagerImpl.connectToCluster(ClientConnectionManagerImpl.java:346)
Exception Origin

Exception Type

Fig. 6. IllegalStateException thrown in client org.apache.dubbo:dubbo-filter-cache during

com.hazelcast:hazelcast dependency update from 3.11.1 to 4.0

Taxonomy of Effect

Test Failure

40.65% (425)

Test Error

59.35% (618)

Test Assertions

99.29% (421)

Program Assertions

0.71% (3)

Errors

3.24% (20)

Checked Exceptions

28.96% (179)

Runtime Exceptions

67.15% (415)

Resource Errors

0.65% (4)

Fig. 7. Taxonomy of Effect on client Tests due to BBCs

3.3.2 Results. For the 704 dependency updates in clients, we captured 1,043 tests after the dedupli-
cation applied in RQ1. We divided these tests based on the assertions and the exceptions.

A total of 425 BBC effects were caused by Test Failures, contributing to 40.65% of the tests. 618
BBC effects were caused by Test Errors, which contributed to 59.35% of the tests. This outcome
indicates that more than half of the failing tests could be identified using test generation tools
without the need for assertion oracles. Despite being highly proficient at enhancing code coverage,
test generators lack efficacy in generating assertion oracles for verifying the intended program
behavior. Based on these Test Failures and Test Errors, we built a Taxonomy of Effects for
client tests caused by BBCs introduced between library versions. Figure 7 displays the contribution
of the Test Errors and Test Failures and the different types of Errors and Failures that occurred.
Test Failures: From the Test Failures, almost all assertions were Test Assertions except for
three, which were related Program Assertions. Therefore, Test Assertions covered 99.29% of
the Failing tests while Program Assertions covered 0.71% of the Failing tests.
Test Errors: We categorized the Test error effects as Runtime Exceptions, Checked Exceptions,
Errors, and Resource Errors.
Runtime Exceptions: Runtime Exceptions were the most common category of Test Errors,
constituting 67.15% of the total Test Errors. Among these, the most frequently encountered Runtime
Exception was NullPointerException, accounting for 30.84% of all Runtime Exceptions. The sec-
ond most common Runtime Exception category was Custom Exceptions, defined by clients or
libraries. We observed 15 types of Runtime Exceptions, and Table 2 provides details of the five
most commonly observed Runtime Exceptions. Based on the top Runtime Exceptions observed,
Null Pointer, Illegal State, and Illegal Argument Exceptions, we can conclude that most of these
test errors occurred due to precondition violations introduced by the BBCs.
Checked Exceptions: According to our observations, the second common category of Test

Errors consists of Checked Exceptions, accounting to 28.96% of the total Test Errors. We ob-
served 18 distinct types of Checked exceptions, and Table 3 provides the most common Checked

Exceptions observed. The most common Checked Exception was the Custom Exceptions defined
under the clients of the libraries, which contributed to 51.40% of the total Checked Exceptions.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:13

Table 2. Most Common Runtime Exception effects due to BBCs on client Tests

Runtime Exceptions Number of Occurrence Percentage Out of All Runtime Exceptions

java.lang.NullPointerException 128 30.84%
Custom Runtime Exceptions 107 25.78%
java.lang.IllegalStateException 69 16.63%
java.lang.IllegalArgumentException 51 12.29%
java.lang.ClassCastException 17 4.10%

Table 3. Most Common Checked Exception effects due to BBCs on client Tests

Checked Exceptions Number of Occurrence Percentage Out of All Checked Exceptions

Custom Exceptions 92 51.40%
java.io.IOException 16 8.94%
java.sql.SQLException 12 6.70%
java.io.FileNotFoundException 7 3.91%
java.net.SocketException 7 3.91%

Table 4. Error related Effects due to BBCs

Error Type Number of Occurrence Percentage Out of All Errors

java.util.ServiceConfigurationError 8 40.00%
Custom Error 8 40.00%
java.lang.VerifyError 4 20.00%

Notably, IOException and FileNotFoundException occur among the top five Checked Exceptions,
indicating that issues linked to input and output streams due to BBCs in libraries had an evident
impact in generating Checked Exceptions.
Errors: A total of 20 Errors affected the client tests, accounting for 3.24% of all Test Errors.
Table 4 provides the three types of Errors that were reported. The most frequently encountered
Errors were the java.util.ServiceConfigurationError, and the custom errors declared by
either clients or libraries. We investigated the changes that occurred between the library versions
to determine the cause of the ServiceConfigurationError and found that they were related to
the changes introduced under the META-INF service directory, which consists of the service
configuration details of the Maven projects.
Resource Errors: The final category of effects of BBCs under Test Errors is related to issues
raised due to insufficient resources for the test execution, which we categorized as Resource

Errors. These types of errors were not quite common. However, there were three different types
of Exceptions raised, which are all related to the expected result not being returned within the
anticipated timeframe. org.junit.runners.model.TestTimedOutException was raised twice for
different clients, and this contributed to 50% of the total resource-related errors raised since the total
errors in this category were four errors. java.net.SocketTimeoutException exception was raised
in one instance, and the other exception was a custom exception com.jayway.awaitility.core.-

ConditionTimeoutException raised by a library-related code. Even though resource-related issues
raised due to BBCs during library update were uncommon, it is important to highlight that they
exist and can potentially introduce performance issues in client projects.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:14 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

Answering RQ2: What types of effects do BBCs have on client tests? Our Analysis concludes
that BBCs can broadly have two effects on client tests: Test Failures and Test Errors. Most
of the effects were caused by Test Errors, accounting for 59.35% of the effects, and most of
these errors were raised as Runtime Exceptions. The other categories of Test Error effects
are Checked Exceptions, Errors, and Resource Errors. Test Failures were categorized
into Test Assertions and Program Assertions, with the vast majority of assertions being
related to test-related assertions.

3.4 RQ3: Origin of BBC Impact

In this section, we answer RQ3: “Where does the BBC-related impact originate?”

3.4.1 Method. Based on the results we have obtained for the effect of BBCs, we conducted an
analysis to determine the source of these effects. Specifically, we wanted to determine whether the
origin of these BBC effects could be traced back to the client’s code or if they were in code related
to libraries. If the origin exists in either of these two locations, it would assist clients in handling
the BBCs.

We created a script to read the crash log and extract the initial point of the Test Failure or Test
Error. If there were any Caused by statements, we extracted the block of crash log statements after
the last Caused by statement, or if it did not contain any Caused by statements, then we used the
entire crash log for the next steps. Then, we extracted the first line containing class details and the
method of where the failure originated. As previously provided in Figure 6, the exception that was
thrown during the test execution was a IllegalStateException, and the exception originated from
the ClientConnectionManagerImpl class under the doConnectToCluster method in line number
397. Similarly, we extracted the first line containing the class details and the method of where an
assertion occurred for assertion-related Test failures.

Next, we followed the subsequent steps to identify the origin of these Exceptions and Errors. We
extracted all Java classes under the client project and then verified if the method that originated the
test failure was included in the client-related classes. If there was a match, the failure originated
at the client’s end. Otherwise, to determine if it was related to the updated library or any other
direct or transitive dependency of the client, we extracted the jar files of the libraries. Using mvn

dependency:copy-dependencies command, we downloaded all jar files of the libraries for a project.
By extracting the classes in a jar file, we could detect if the class that originated the test failure
was included under the jar file. We first did this by matching the class with the classes under the
updated library. If it was not a match, we matched it with classes of the other libraries connected
with the project. Then, based on the client’s Maven dependency tree, we detected if the library
was a direct or transitive dependency to the client. If it was a transitive dependency, we further
checked if the dependency was connected to the client through the updated library or a different
direct dependency. If the class was included under a library that was not the updated library, we
looked at the scope of the library to determine if it was used as a test-related library for the project.
If the test failure originated class was not included within the client’s codebase or any associated
library classes, we checked whether the class was part of any Java built-in classes.

When identifying the origin of the test failure for exceptions, we looked at whether the exception
thrown was explicitly defined in the code or if it was an implicit exception. For this step, if the
exception was thrown from the client code, we created a script to read the particular source file
of the class and detect if the line the exception is thrown from contained a throws statement
with the particular exception reported. If the exception was reported under a library code, we had
to process the binary code of the jar file to determine if any library-related class files explicitly

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:15

Table 5. Origin of Test Errors

Origin Number of Occurrence Percentage

Library Updated 146 23.66%
Client 144 23.34%
Standard Java Library 92 14.91%
Library used for Testing 86 13.94%
Other Direct Dependency 79 12.80%
Transitive Dependency 33 5.33%
Dependency of the Updated Library 4 0.65%

defined the exception. For this purpose, we used the ASM Framework [10], a bytecode analysis
and manipulation framework commonly used even within the OpenJDK ecosystem. ASM analyzed
the bytecode of the particular class in the jar file, and we checked if the method under which the
exception was thrown contained an instantiation of the exception class. If the method contained
an instantiation of the exception, then we considered that the exception was explicitly defined.

3.4.2 Results. Based on the method explained, we created scripts and extracted the origin of the
BBCs impact on Client tests. The results of the Test Failures showed that 55.53% of the time,
the origin resided in a testing library, which is expected as they are responsible for condition
violation checks. The remaining origins were distributed between the client (12.94%), Standard
Java library(12.94%), or the updated library(8.47%), which could mainly result from unexpected
Exceptions and Errors originating from these code locations.
Similar to extracting the origin of the Test Failures, we extracted the origin of the Test errors

following the same approach. Table 5 shows the results received for the Test Error origin. Unlike the
Test Failures, most Test Errors originated from the Updated Library and Client source code, which
occurred 23.66% and 23.34%, respectively. Next, the Test errors originated either in the Standard
Java Library source code or a Testing library source code. Based on this data, we can conclude that
most Test Failures originated from either the Updated Library or the Client Source Code. We could
not extract the Test error origin for some Test error instances as the Crash Log statements were
incomplete and did not provide the class details in which the error originated. Also, there were
errors originating from Scala, Groovy 11 or Kotlin 12 source code, which could not be extracted as
we did not write scripts to handle the binaries of these languages.

We conducted a detailed analysis of the Test Errors to determine whether the exceptions or
errors were explicitly defined in the code or thrown implicitly during program execution. Among
the Test Errors for which we detected their origin, 296 cases, making up 50.60% of the total, were
found to have exceptions or errors that were explicitly defined in the source code. For the remaining
289 cases, accounting for 49.40%, the exceptions or errors were implicitly thrown during program
execution. Therefore, this shows that almost half of the exceptions and errors thrown were explicitly
defined in the source code.

Answering RQ3: Where does the BBC-related impact originate? A similar percentage of Test
Errors (∼23%) originate (e.g., the exception is thrown) from either the updated library or the
client’s code. A non negligible amount of Test Errors originate from other dependencies of
the client or the updated library. These BBCs will be generally more difficult for the client
developers to understand and handle.

11https://groovy-lang.org/
12https://kotlinlang.org/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:16 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

3.5 RQ4: Runtime Exception Messages

In this section, we answer RQ4: “Do runtime exception messages effectively guide developers in
handling BBCs?”

3.5.1 Method. We evaluated if library developers follow best practices and guide their client
developers on handling or adapting to the BBCs they encounter during dependency updates. We
only used Major updates that cause BBCs for this analysis, as these BCs are anticipated during
Major dependency updates. We selected the Runtime Exceptions that indicate potential precon-
dition violations. Following the precondition-related exceptions defined by Dietrich et al. [20]
we looked at the IllegalArgumentException, IllegalStateException, NullPointerException,
Custom Runtime exceptions and, ArrayIndexOutOfBoundsException which were the exceptions
we received for the Test Error effects. Then, based on the exception origin, we filtered the ‘Test
Errors’ that originated at the updated library or another direct or transitive dependency.
For these exceptions, we looked at whether the library developers have provided a customized

exception message that would potentially help guide the user into how to avoid this BBC. Two
authors of the paper conducted a manual analysis to determine if the crash log contained an
exception message and if it was meaningful to help guide the clients to handle the exception.
Further, we detected if the Runtime Exception was thrown at the Library API surface, which is the
part of the API accessible to others, by analyzing the crash log. We determined this by examining if
the first line where the exception occurred was in library-related code, followed by a line related to
the client code. If the API surface threw the Runtime Exception, it would likely indicate that the
client violated the precondition by passing an invalid parameter(s).

3.5.2 Result. We extracted 43 Test Errors, resulting in a precondition-violating exception that
originated from either the updated library or a direct or transitive dependency of the client. From
these precondition-violating exceptions, 53.49% provided an exception message that would help
guide the client to what is the cause of the BBC. Listing 1 displays a well-documented exception
message when a precondition violation occurs. However, only one of these precondition-violating
exceptions was thrown from the library API surface. This indicates that almost all of these exceptions
were not adequately handled by the library developer since they were not thrown at the API surface
or within any precondition handling library or methods.

Listing 1. A well document exception message

java.lang.IllegalStateException: Failed to serialize object of the class 'org.

apache.ignite.tests.MyPojo'

Answering RQ4: Do runtime exception messages effectively guide developers in handling BBCs?

Our results indicate that almost half of the precondition-violation-related exceptions did not
provide proper exception messages into the cause of the BBC, and almost all the exceptions
were not thrown from the API surface. Hence, we can conclude that library developers do not
adequately document the causes of BBC.

4 DISCUSSION

In this section, we discuss the key findings of the research and their implications.
According to our results, we concluded that Behavioral Breaking Changes between library

updates impact 2.30% of the client test cases. This implies that these BBCs could also impact the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:17

client applications. We observed that two-thirds of these BBC-introducing versions were Non-
Major updates, which shows that open-source libraries have not correctly followed the semantic
versioning scheme during their library releases.

Since BBCs affect client tests differently, we introduced a taxonomy of effects, which will help
client developers during the dependency update process understand the nature of effects that can
be observed when there are BBCs in the updating version. We broadly categorized the effects as
Test Failures and Test Errors, and our results indicate that approximately half of the effects
caused by BBCs manifested as Test Failures. This suggests that roughly half of these BBCs can
be identified by implementing comprehensive test cases or utilizing tools capable of generating
tests that cover the invoked library functionalities, as test failures attributed to ∼40% of the failing
tests. This taxonomy will help guide the creation of patch templates for fixing the issues caused by
BBCs. For example, runtime exceptions often represent precondition violations, which indicates
that the call site needs to be changed to comply with the new library requirements. Similarly, if
a test assertion fails, it represents a violated invariant or a postcondition, which would require a
different response.
While we did not find evidence of tests not being executed after the dependency update in our

dataset, another potential effect could be that client tests are skipped due to BBCs. This scenario
can occur when test assumptions are used. If the conditional statement does not evaluate to true,
it would avoid the execution of the test case. Since the test statement was not executed, it will
be marked as a test that was not executed. These tests will be tracked as skipped tests under the
Maven test report. This category of BBC effects can be captured through monitoring if the number
of tests skipped before a dependency is updated increases after a dependency is updated. Future
work can further investigate whether skipped tests are indicative of BBCs.

Under resource-related errors in the taxonomy of effect, our results set only captured the
Timeout Exception due to an expected result not being returned within a specific time limit.
Other than this, OutOfMemoryError and StackOverflowError can also be included in this category.
OutOfMemoryError will occur if the heap memory in the JVM runs out due to too many objects
being created due to a change in the behavior of the program execution. StackOverflowError
can occur if too many methods reside in the stack without being cleared, which causes the stack
to run out of space. A common scenario in which this could occur is when a method is being
called recursively without a proper termination condition. If the termination condition was decided
based on an output of a library and the library does not return the same value due to a behavior
change, this scenario could occur. The result set used for the analysis did not include results for
either OutOfMemoryError or StackOverflowError during the dependency updates. However, it
is important to note that these could also be potential effects on client tests due to dependency
updates.

Through our analysis of the origin of the BBC, which impacts client tests, we observed that the
origin of the BBC could reside in different locations like the updated library, the client, different
direct libraries, transitive dependencies, or the Java standard library itself. Therefore, the behavioral
change can be in the updated library, and the error could originate from the library itself or descend
to other functional calls in different locations. Around half of the Test Errors originated from the
updated library or client, which could potentially mean that the client could handle these BBCs.
However, a non-negligible amount of Test Errors originated from other client dependencies,
which would be hard for the clients to handle during the dependency updates.

Our analysis on whether library developers provide adequate documentation to handle runtime
exceptions raised due to BBCs showed that proper documentation was not provided, especially for
the Major updates, which they anticipated BBCs.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:18 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

4.1 Implications of the Study

The practical implications we could draw through this study are outlined below.
Client developers should write comprehensive test suites covering the functionalities of both

the application functionalities and the external API functionalities used. Our results indicated that
43.25% of the clients used for the analysis did not contain any test cases in their projects, which is
not a good software practice. Writing test cases is a proactive approach to ensure the application’s
functionality works as expected after any change. Therefore, in the event of a dependency update
introducing a BBC, having comprehensive test cases would help detect the BBC. Otherwise, all
functionality would have to be manually verified by a quality assurance engineer of the project.
Library developers should be careful to correctly follow the semantic versioning scheme to

indicate if BBCs are included in the releases. Our study indicates that most BBCs that impacted
client tests were during a Non-Major update, which shows that the semantic scheme was violated
duringmost of the updates that contained BBCs that impacted client tests. Further, library developers
should adequately document the BBCs so that the documentation would guide clients in handling
the BBC.
Previous research indicates that approximately half of Syntactic BCs are introduced in Non-

Major updates [29]. Our study strengthens this finding by revealing that two-thirds of BBCs are
introduced in Non-Major updates. It is evident that BBCs are an inherent part of software evolution,
as all software will inevitably change its existing functionalities. Consequently, library maintainers
likely have difficulty knowing when they introduce BBC as they can be subtle changes that do
not impact their current tests but will impact clients, so better support is needed to help them
with this. Therefore, researchers should develop better tooling to indicate when potential BBCs
are introduced between two library versions. This would also benefit clients to make informed
decisions when updating dependencies.
Our findings indicated that more than half (59.35%) of the failing tests are exposed as Test

Errors; therefore, automated test generation tools[25, 47] could efficiently identify these BBCs
without requiring assertion oracles.

4.2 Threats to Validity

One threat to construct validity relates to how we determine the impact of BBCs on client tests
during dependency updates. The impact can vary depending on the comprehensiveness of the tests,
especially in terms of their ability to cover the library functionalities utilized in the client project.
Also, if a client test does not pass the precise conditions or provide the necessary parameters to
expose a BBC, it is possible that certain BBCs may not be detected as part of our study. Additionally,
we excluded dependency updates that led to compilation errors when selecting projects for the
analysis. If a dependency update introduced both Syntactic and Behavioral BCs, our study did not
consider them. Thus, our study’s number of client tests impacted by BBCs may be underestimated.
Another threat to construct validity relates to the tests’ flakiness; we examined only tests that

exhibited failures during all ten times of the test execution. It is important to note that in cases of test
flakiness, there might be situations where specific tests failed because a BBC was not consistently
captured; it might have passed during some test runs due to the inherent unpredictability of these
tests. Consequently, it is worth noting that the impact of BBCs on client tests could vary slightly
under these circumstances.

One more threat to construct validity is the manual verification we had to conduct to determine
the assertion categories and the exception message documentation. We mitigated the threat of
bias by having more than one author engaged in the decision-making to make the final decision
impartial.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:19

A threat to external validity of our study is generalizing these results to other programming
languages. Like other studies conducted to detect and quantify the impact of BBCs [43, 60, 67],
we also focused on capturing the impact for a specific programming language under this study.
The approach we used to identify the BBCs using tests will be appropriate for statically typed
languages, as dynamic programming languages typically rely on test failures to detect syntactic
and behavioral changes.
Another threat to external validity is that our experiments were conducted using open-source

projects, so our findings depend on the nature of these projects. Consequently, we can only
reasonably assume that closed-source projects might yield similar outcomes.

5 RELATED WORK

Library usage is convenient for clients with centralized package distribution systems such as
Maven for Java, NPM for JavaScript, PyPI for Python, and Ruby for Ruby [24, 40]. Although these
libraries reduce the development cost of application development [12, 13, 44], it adds extra effort
into maintaining them as libraries evolve and releases new versions. When updating a dependency,
the project maintainers should consider the context in which the dependency is used [29]. Based
on the context and the changes introduced in the releases, the maintainers could decide to update
to the latest stable version or migrate to a different library. Updating to a new version can be
time-consuming if the new version contains Breaking Changes (BCs) compared with its previous
version, and is a factor for clients having outdated dependencies [33, 54]. This has led researchers
to study more about the different types of BCs, and our study focuses on Behavioral Breaking
Changes (BBCs) and its impact on client projects.
Breaking Changes in Library Evolution: In recent years much research has focused on detecting
the syntactic (source and binary) BCs between two Java library versions [7, 9, 21, 32, 41, 45, 64].
However, the focus on analyzing BBCs between Java libraries has been relatively limited [11, 42, 66].
Sembid [66] is a static analysis tool, which detects BBCs between two library versions with a
precision of 81.29%. However, this static technique has limitations, particularly in classifying benign
changes and determining what APIs are exposed for client utilization. Mostafa et al. [42] used
cross-version testing only to detect BBCs between two library versions and proposed a classification
for the different BBCs as exceptions and crashes, return value change, and other effects. Similarly,
DeBBI [11] is a cross-project testing approach that prioritizes client tests to detect BBCs faster.
However, they relied on the confirmed BBCs by the library developers to detect their existence,
which is not a comprehensive approach as not all BBCs are intentional. These approaches focused
on detecting BBCs between library versions, while our study focused on identifying the impact of
BBCs between library versions on clients that utilize them.
BCs Impact on Clients: The studies explained above all focus on detecting BBCs between
library versions, but it is also important to study how these BBCs impact clients that use them.
Research conducted on Java-related libraries and their clients has revealed that Syntactic BCs
introduced between library versions impact clients that rely on these libraries during dependency
updates [4, 30, 45, 51, 64]. Mezzetti et al. [37] conducted a study using client test suites to detect
BCs introduced in Node.js libraries. They manually classified the test failures related to Syntactic
and Behavioral BCs and used these Syntactic BCs to develop a type regression testing technique
to detect Syntactic BCs, as they are more easily detectable than Behavioral ones. Building upon
this research, Mujahid et al. [43] and Venturini et al. [60] utilized client tests to detect BBCs
introduced by Node packages. Mujahid et al.’s study only focused on BC detection and concluded
that better performance could be gained by utilizing more client test cases. Venturini et al. concluded
that Syntactic and Behavioral BCs affected approximately 11.7% of the clients [60] and further
categorized these errors manually based on their origin and reported that 13.9% of these BCs reside

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

56:20 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

in the library. However, these studies did not perform an in-depth analysis specifically targeting
BBCs, whereas our study led to novel findings and outcomes focused on the impact of BBCs on
clients. Moreover, their investigations focused on the Javascript ecosystem, whereas ours was on
the Java ecosystem.
SENSOR [63] and CompCheck [67] are both BBC detecting tools built for Java projects, which

focus on identifying the existence of BBCs between two library versions by generating incompati-
bility revealing tests so they would assist client developers during the dependency update process.
Both these tools can only detect BBCs which manifest as assertion errors as they utilize test cases
to identify the BBCs. In alignment with these studies, our research follows a similar approach using
client tests to identify how BBCs impact Java clients. However, these prior studies do not cover
BBCs that manifest as Test Errors and do not determine the impact of these BBCs or how they
manifest within client tests. Therefore, our study goes beyond detection and analyzes how BBCs
influence dependency updates in clients, their impact on client tests, and the origins of these effects.

6 CONCLUSION

In this research, we conducted an empirical study to analyze the impact of BBCs on client test cases
when updating 30,548 dependencies under 8,086 Maven clients. This study examined the impact
of BBCs on client tests and observed that 2.30% of the dependency updates contained a BBC that
impacted a client test. Most BBC impacts occurred during a Non-Major dependency update. Using
the client tests that were affected due to a BBC, we looked at how these changes manifest in client
tests by introducing a Taxonomy of Effect. We broadly categorized these effects as Test Failures

and Test Errors. We further categorized the Test Failures as Test Assertions and Program

Assertions. Test Errorswere categorized as Runtime Exceptions, Checked Exceptions, Errors
and Resource Errors. Almost all Test Failures were due to Test Assertions, and most Test
Errors manifested as Runtime Exceptions. We observed that the origin of the Test Failures

mostly resides in a testing library while the origin of Test Errors resides in either the updated
library or the client’s source code. We also concluded that the library developers do not provide
adequate documentation to handle strengthened preconditions, resulting in runtime exceptions.

For our future research, we hope to examine the source code change of the library that contributed
towards a BBC and categorize these changes. Based on the source code changes, we could determine
if the client needs to adopt these changes, remain under the same version, or migrate to a different
library. We would further intend to mine the dependency updates applied in open-source projects
and extract changes contributing to resolving the BBCs. By identifying patterns of these fixes, we
could create patch templates for client developers as fixes to resolve the BBCs during dependency
updates. To further refine our study on the documentation of BBCs, we will extend our analysis to
include data extracted from release notes of the libraries, as release notes would potentially provide
detailed discussions and decisions about the BBCs, offering valuable insights into the rationale
behind these changes and their implications.

DECLARATIONS

Acknowledgments. This work was supported by the Marsden Fund Council from Government
funding, administered by the Royal Society Te Apārangi, New Zealand. The work of the third author
was supported by a gift by Oracle Labs Australia. In addition, the authors wish to acknowledge
the Centre for eResearch at the University of Auckland for their help in facilitating this research
(http://www.eresearch.auckland.ac.nz).
Data Availability Statement. All study results, data and scripts are available on Zenodo [28].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:21

REFERENCES

[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical Analysis of Security Vulnerabilities in Python

Packages. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 446–457.

https://doi.org/10.1109/SANER50967.2021.00048

[2] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014. The oracle problem in software

testing: A survey. IEEE transactions on software engineering 41, 5 (2014), 507–525.

[3] Kevin Bartz, Jack W. Stokes, John C. Platt, Ryan Kivett, David Grant, Silviu Calinoiu, and Gretchen Loihle. 2008. Finding

similar failures using callstack similarity (SysML’08). USENIX Association, USA, 1.

[4] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2013. The

Evolution of Project Inter-Dependencies in a Software Ecosystem: The Case of Apache (ICSM ’13). IEEE, 280–289.

https://doi.org/10.1109/ICSM.2013.39

[5] Antoine Beugnard, J-M Jézéquel, Noël Plouzeau, and Damien Watkins. 1999. Making components contract aware.

Computer 32, 7 (1999), 38–45.

[6] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When and How to Make Breaking Changes:

Policies and Practices in 18 Open Source Software Ecosystems. ACM Trans. Softw. Eng. Methodol. 30, 4, Article 42

(2021), 56 pages. https://doi.org/10.1145/3447245

[7] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You broke my code: understanding the

motivations for breaking changes in APIs. Empirical Software Engineering 25, 2 (2020), 1458–1492. https://doi.org/10.

1007/s10664-019-09756-z

[8] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff: Detecting API breaking changes.

In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). 507–511.

https://doi.org/10.1109/SANER.2018.8330249

[9] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. Why and how Java developers break APIs. In

2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 255–265.

[10] Eric Bruneton, Eugene Kuleshov, Andrei Loskutov, and Rémi Forax. 2022. ASM. https://asm.ow2.io/

[11] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Taming Behavioral Backward Incompatibil-

ities via Cross-Project Testing and Analysis. In 2020 IEEE/ACM 42nd International Conference on Software Engineering

(ICSE). 112–124. https://doi.org/10.1145/3377811.3380436

[12] Joel Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring Dependency Freshness in Software

Systems. In MOBILESoft 2015 : second ACM International Conference on Mobile Software Engineering and Systems (2015

IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), Vol. 2). IEEE Press„ 109–118.

[13] Russ Cox. 2019. Surviving Software Dependencies. Commun. ACM 62, 9 (8 2019), 36–43. https://doi.org/10.1145/3347446

[14] Alexandre Decan and Tom Mens. 2021. Lost in zero space – An empirical comparison of 0.y.z releases in software

package distributions. Science of Computer Programming 208 (2021), 102656. https://doi.org/10.1016/j.scico.2021.102656

[15] Alexandre Decan and Tom Mens. 2021. What Do Package Dependencies Tell Us about Semantic Versioning? IEEE

Transactions on Software Engineering 47, 6 (6 2021), 1226–1240. https://doi.org/10.1109/TSE.2019.2918315

[16] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and Arie van Deursen. 2021. Botsing, a

search-based crash reproduction framework for Java. In Proceedings of the 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’20). Association for Computing Machinery, New York, NY, USA, 1278–1282.

https://doi.org/10.1145/3324884.3415299

[17] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017. Keep Me Updated: An Empirical Study

of Third-Party Library Updatability on Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’17). Association for Computing Machinery, New York, NY, USA, 2187–2200.

https://doi.org/10.1145/3133956.3134059

[18] Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An empirical study into evolution problems in

Java programs caused by library upgrades. In 2014 Software Evolution Week - IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering (CSMR-WCRE). 64–73. https://doi.org/10.1109/CSMR-WCRE.2014.6747226

[19] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe. 2019. Dependency Versioning in the Wild.

In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). 349–359. https://doi.org/10.

1109/MSR.2019.00061

[20] Jens Dietrich, David J Pearce, Kamil Jezek, and Premek Brada. 2017. Contracts in the wild: A study of java programs.

In 31st European Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.

[21] Danny Dig and Ralph Johnson. 2006. How Do APIs Evolve? A Story of Refactoring: Research Articles. Journal of

software maintenance and evolution: Research and Practice 18, 2 (3 2006), 83–107. https://doi.org/10.1002/smr.328

[22] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W O’Hearn. 2019. Scaling static analyses at Facebook.

Commun. ACM 62, 8 (2019), 62–70.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1145/3447245
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1109/SANER.2018.8330249
https://asm.ow2.io/
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3347446
https://doi.org/10.1016/j.scico.2021.102656
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1145/3324884.3415299
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1002/smr.328

56:22 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

[23] Michael D Ernst. 2003. Static and dynamic analysis: Synergy and duality. In WODA 2003: ICSE Workshop on Dynamic

Analysis. 24–27.

[24] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018. Efficient Static Checking of

Library Updates. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery,

791–796. https://doi.org/10.1145/3236024.3275535

[25] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation for object-oriented software.

In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software

engineering. 416–419.

[26] Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou. 2021. A Large-Scale Empirical Study on Java Library Migrations:

Prevalence, Trends, and Rationales (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,

478–490. https://doi.org/10.1145/3468264.3468571

[27] Nevin Heintze and David McAllester. 1997. On the cubic bottleneck in subtyping and flow analysis. In Proceedings of

Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE, 342–351.

[28] Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe. 2024. Replication Package for Understanding

the Impact of APIs Behavioral Breaking Changes on Client Applications. https://doi.org/10.5281/zenodo.11498333

[29] Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe. 2023. Understanding Breaking

Changes in the Wild. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 1433–1444. https://doi.org/10.1145/3597926.

3598147

[30] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs Break - An Empirical Study. 65, C (sep 2015),

129–146. https://doi.org/10.1016/j.infsof.2015.02.014

[31] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure and evolution of package dependency

networks. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, 102–112.

[32] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. 2019. Classification of Changes in API Evolution. In

IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC). 243–249. https://doi.org/10.1109/

EDOC.2019.00037

[33] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. 2018. Do Developers Update

Their Library Dependencies? Empirical Software Engineering 23, 1 (2 2018), 384–417. https://doi.org/10.1007/s10664-

017-9521-5

[34] Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko Marinov. 2020. Understanding Reproducibility

and Characteristics of Flaky Tests Through Test Reruns in Java Projects. In 2020 IEEE 31st International Symposium on

Software Reliability Engineering (ISSRE). 403–413. https://doi.org/10.1109/ISSRE5003.2020.00045

[35] Ondvrej Lhotak. 2007. Comparing call graphs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering. 37–42.

[36] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhotak, J Nelson Amaral, Bor-Yuh Evan Chang,

Samuel Z Guyer, Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: A

manifesto. Commun. ACM 58, 2 (2015), 44–46.

[37] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type Regression Testing to Detect Breaking Changes

in Node.js Libraries (Artifact). Dagstuhl Artifacts Series 4, 3 (2018), 8:1–8:2. https://doi.org/10.4230/DARTS.4.3.8

[38] J. Micco. 2017. The state of continuous integration testing at Google. https://bit.ly/2OohAip

[39] Samim Mirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encourage Software Developers to Upgrade

Out-of-Date Dependencies?. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE 2017). IEEE Press, 84–94.

[40] Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. 2020. Detecting Locations in JavaScript Programs

Affected by Breaking Library Changes. Proc. ACM Program. Lang. 4, OOPSLA (11 2020), 1–25. https://doi.org/10.1145/

3428255

[41] Anders Møller and Martin Toldam Torp. 2019. Model-Based Testing of Breaking Changes in Node.Js Libraries. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,

409–419. https://doi.org/10.1145/3338906.3338940

[42] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience Paper: A Study on Behavioral Backward

Incompatibilities of Java Software Libraries (ISSTA 2017). Association for Computing Machinery, New York, NY, USA,

215–225. https://doi.org/10.1145/3092703.3092721

[43] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. 2020. Using Others’ Tests to Identify Breaking

Updates. In Proceedings of the 17th International Conference on Mining Software Repositories (MSR ’20). Association for

Computing Machinery, New York, NY, USA, 466–476. https://doi.org/10.1145/3379597.3387476

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.5281/zenodo.11498333
https://doi.org/10.1145/3597926.3598147
https://doi.org/10.1145/3597926.3598147
https://doi.org/10.1016/j.infsof.2015.02.014
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1109/ISSRE5003.2020.00045
https://doi.org/10.4230/DARTS.4.3.8
https://bit.ly/2OohAip
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3092703.3092721
https://doi.org/10.1145/3379597.3387476

Understanding the Impact of APIs Behavioral Breaking Changes on Client Applications 56:23

[44] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Anh Tuan Nguyen, Miryung Kim, and Tien N. Nguyen. 2010.

A Graph-Based Approach to API Usage Adaptation. In Proceedings of the ACM International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA ’10). Association for Computing Machinery, New

York, NY, USA, 302–321. https://doi.org/10.1145/1869459.1869486

[45] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. 2022. Breaking Bad? Semantic Versioning and

Impact of Breaking Changes in Maven Central: An External and Differentiated Replication Study. Empirical Softw.

Engg. 27, 3 (may 2022), 42 pages. https://doi.org/10.1007/s10664-021-10052-y

[46] Fernando Rodriguez Olivera. 2022. MVN Repository: repository stats. https://mvnrepository.com/repos

[47] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random testing for Java. In Companion to the

22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion. 815–816.

[48] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio Massacci. 2018. Vulnerable Open

Source Dependencies: Counting Those That Matter. In Proceedings of the 12th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM ’18). Association for Computing Machinery, New York, NY,

USA, Article 42, 10 pages. https://doi.org/10.1145/3239235.3268920

[49] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio Massacci. 2020. Vuln4real: A

methodology for counting actually vulnerable dependencies. IEEE Transactions on Software Engineering 48, 5 (2020),

1592–1609.

[50] Tom Preston-Werner. n.d. Semantic Versioning 2.0.0. https://semver.org/

[51] S. Raemaekers, A. van Deursen, and J. Visser. 2017. Semantic versioning and impact of breaking changes in the Maven

repository. Journal of Systems and Software 129 (2017), 140–158. https://doi.org/10.1016/j.jss.2016.04.008

[52] Eric Ruiz, Shaikh Mostafa, and Xiaoyin Wang. 2015. Beyond api signatures: An empirical study on behavioral backward

incompatibilities of java software libraries. Department of Computer Science, University of Texas at San Antonio, Tech.

Rep (2015).

[53] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from building

static analysis tools at google. Commun. ACM 61, 4 (2018), 58–66.

[54] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea De Lucia, and Filomena Ferrucci. 2018. Do

Developers Update Third-Party Libraries in Mobile Apps? (ICPC ’18). Association for Computing Machinery, New

York, NY, USA, 255–265. https://doi.org/10.1145/3196321.3196341

[55] TIOBE Software. 2023. TIOBE Index. https://www.tiobe.com/tiobe-index/

[56] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-based crash reproduction and its impact on

debugging. IEEE Transactions on Software Engineering 46, 12 (2018), 1294–1317.

[57] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens Dietrich. 2020. Technical Lag of Dependencies in Major Package

Managers. In 2020 27th Asia-Pacific Software Engineering Conference (APSEC). 228–237. https://doi.org/10.1109/

APSEC51365.2020.00031

[58] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the recall of static call graph construction in

practice. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 1049–1060.

[59] Inc Tidelift. 2022. Libraries.io - The Open Source Discovery Service. https://libraries.io/data

[60] Daniel Venturini, Filipe Roseiro Cogo, Ivanilton Polato, Marco A. Gerosa, and Igor Scaliante Wiese. 2023. I Depended

on You and You Broke Me: An Empirical Study of Manifesting Breaking Changes in Client Packages. 32, 4, Article 94

(2023), 26 pages. https://doi.org/10.1145/3576037

[61] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng, Yijian Wu, and Yang Liu. 2020. An

Empirical Study of Usages, Updates and Risks of Third-Party Libraries in Java Projects. In 2020 IEEE International

Conference on Software Maintenance and Evolution (ICSME). 35–45. https://doi.org/10.1109/ICSME46990.2020.00014

[62] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng, Yijian Wu, and Yang Liu. 2020. An

Empirical Study of Usages, Updates and Risks of Third-Party Libraries in Java Projects. In 2020 IEEE International

Conference on Software Maintenance and Evolution (ICSME). 35–45. https://doi.org/10.1109/ICSME46990.2020.00014

[63] Ying Wang, Rongxin Wu, Chao Wang, Ming Wen, Yepang Liu, Shing-Chi Cheung, Hai Yu, Chang Xu, and Zhiliang

Zhu. 2022. Will Dependency Conflicts Affect My Program’s Semantics? IEEE Transactions on Software Engineering 48,

7 (2022), 2295–2316. https://doi.org/10.1109/TSE.2021.3057767

[64] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical and impact analysis of API breaking

changes: A large-scale study. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering

(SANER). 138–147. https://doi.org/10.1109/SANER.2017.7884616

[65] Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre Decan, Eleni Constantinou, and Gregorio Robles.

2019. A formal framework for measuring technical lag in component repositories—and its application to npm. Journal

of Software: Evolution and Process 31, 8 (2019).

[66] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu. 2023. Has My Release

Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing (ASE ’22). ACM, New York, NY,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

https://doi.org/10.1145/1869459.1869486
https://doi.org/10.1007/s10664-021-10052-y
https://mvnrepository.com/repos
https://doi.org/10.1145/3239235.3268920
https://semver.org/
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1145/3196321.3196341
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://libraries.io/data
https://doi.org/10.1145/3576037
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/TSE.2021.3057767
https://doi.org/10.1109/SANER.2017.7884616

56:24 Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe

USA, 12 pages. https://doi.org/10.1145/3551349.3556956

[67] Chenguang Zhu, Mengshi Zhang, Xiuheng Wu, Xiufeng Xu, and Yi Li. 2023. Client-Specific Upgrade Compatibility

Checking via Knowledge-Guided Discovery. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 98 (2023), 31 pages.

https://doi.org/10.1145/3582569

Received 2023-09-29; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 56. Publication date: July 2024.

https://doi.org/10.1145/3551349.3556956
https://doi.org/10.1145/3582569

	Abstract
	1 Introduction
	2 Background
	3 Study Design and Results
	3.1 Experiment Setup
	3.2 RQ1: BBC Impact on Clients
	3.3 RQ2: Effects of BBC
	3.4 RQ3: Origin of BBC Impact
	3.5 RQ4: Runtime Exception Messages

	4 Discussion
	4.1 Implications of the Study
	4.2 Threats to Validity

	5 Related Work
	6 Conclusion
	References

