
This version of the article has been accepted for publication after peer
review but is not the Version of Record and does not reflect
post-acceptance improvements or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s00766-024-00424-3.

Modelling the Quantification of Requirements

Technical Debt

Judith Perera1*, Ewan Tempero1, Yu-Cheng Tu1, Kelly Blincoe2

1School of Computer Science, The University of Auckland, New Zealand.
2Department of Electrical, Computer and Software Engineering, The

University of Auckland, New Zealand.

*Corresponding author(s). E-mail(s): jper120@aucklanduni.ac.nz;
Contributing authors: e.tempero@auckland.ac.nz;

yu-cheng.tu@auckland.ac.nz; k.blincoe@auckland.ac.nz;

Abstract

Requirements Technical Debt (RTD) applies the Technical Debt (TD) metaphor
to capture the consequences of sub-optimal decisions made concerning Require-
ments. Understanding the quantification of RTD is key to its management. To
facilitate this understanding, we developed a conceptual model, the RTD Quan-
tification Model (RTDQM). Our work is grounded in the literature found via
a Systematic Mapping Study (SMS) and informed by prior work modeling the
quantification of software code-related TD types.
The key finding is that although RTD is similar to code-related TD in many
aspects, it also has its own components. RTD can be incurred regardless of the
presence of code-related TD. Unlike code-related TD, RTD has a feedback loop
involving the user. RTD can have a cascading impact on other development activ-
ities, such as design and implementation, apart from the extra costs and efforts
incurred during Requirements Engineering (RE) activities; this is modeled by the
RTD Interest constituents in our model.
The model was used to compare and analyze existing quantification approaches.
It helped identify what RTD quantification concepts are discussed in the existing
approaches and what concepts are supported by metrics for their quantifica-
tion. The model serves as a reference for practitioners to select existing or to
develop new quantification approaches to support informed decision-making for
RTD management.

Keywords: Requirements Technical Debt Quantification, Systematic Mapping,
Conceptual Model

http://dx.doi.org/10.1007/s00766-024-00424-3

1 Introduction

Requirements play a crucial role in developing a software product — gathering require-
ments right and delivering the product that offers the best value to its end-users is
essential for the success of a software product [1], [2]. Nevertheless, practitioners per-
forming Requirements Engineering (RE), system design, and implementation activities
can make sub-optimal decisions concerning requirements while performing their tasks.
Some instances of sub-optimal decisions related to requirements are the inadequate
gathering of user needs, ambiguous specifications, a wrong prioritization of require-
ments, inadequate (i.e., partial or incorrect) implementation of essential user needs,
and design decisions that do not essentially satisfy user requirements. These sub-
optimal decisions may be deliberate or even inadvertent but introduce consequences
to the project. The consequences of sub-optimal decisions made concerning require-
ments are captured by the metaphor Requirements Technical Debt (RTD) [3], a
metaphor borrowed from the Technical Debt (TD) literature.

Unless reduced or managed, RTD can have a negative impact on the project, lead-
ing to large cost overruns and potentially a bad reputation for the company due to not
meeting customer satisfaction. However, to reduce or manage RTD, there must be a
way to quantify it [4]. We define an approach that allows quantification (i.e., a quan-
tification approach) as: “An approach that discusses concepts and metrics that could
support RTD management decision-making.” Our goal is to improve existing quan-
tification approaches and provide guidance to develop new quantification approaches.
For this, we need to better understand RTD quantification and identify gaps in the
existing quantification approaches.

We conducted a Systematic Mapping Study (SMS) and established a theoretical
foundation to improve the understanding of RTD quantification by formally defining
RTD and through the development of a conceptual model, the Requirements Tech-
nical Debt Quantification Model (RTDQM). This paper presents the results of
our evaluation of existing quantification approaches, firstly through the SMS and sec-
ondly through comparing and analyzing existing approaches based on the conceptual
model that we developed during our SMS.

Our initial work was reported in our RE conference paper [3], where we presented
the results of the initial mapping study on RTD quantification and developed an initial
version of RTDQM. This paper extends our previous work in the following ways:

• The SMS is updated and improved, adding 11 new papers to the initial 7 previously
reported, resulting in 18 papers in the final dataset. However, they reinforced the
same finding reported in our previous work [3] — there is no commonly agreed
definition nor a commonly agreed way to quantify RTD.

• The initial model is updated to accommodate the newly identified concepts (19 new
model concepts). Table 9 shows which concepts were added newly. We re-traversed
the 7 initial papers to find evidence for the new model concepts that emerged from
the 11 new papers.

• We expand the initial model to include RTD quantification for the non-functional
aspect of requirements. Table 9 also shows which concepts were added newly for
modeling the nonfunctional aspect (12 out of 19 concepts were added to model

2

the non-functional aspect). Doing so shows the relationship between non-functional
requirements TD and architectural design.

• We combined RTDQM with previous work by Perera et al. [5], who developed a
model for quantifying software code-related TD types (discussed in Section 7.3)
to have a more complete model that captures both forms of TD. The combined
model shows the cascading impact of RTD on other development activities, such as
implementation and design, where code-related types of TD are introduced (RTD
can also impact testing. However, this is not considered in the scope of this paper).

• We demonstrate how RTDQM can be utilized (discussed in Sections 8.1 and 8.2,
respectively). Firstly, we show how the conceptual model can be utilized to com-
pare and analyze existing quantification approaches to identify gaps in existing
approaches based on model concepts. Secondly, we show how practitioners could
select existing approaches or develop new approaches that fit their quantification
needs based on the model concepts. An existing approach can be selected, or a new
one can be developed based on which concepts and metrics are relevant for practi-
tioners in a specific project (and on whether existing approaches support quantifying
these concepts via metrics).

The remainder of the paper is organized as follows. Section 2 provides background
and discusses related work, Section 3 and Section 4 report on the Methodology and
Results of the improved SMS, respectively. Section 5 provides a high-level discussion
based on the SMS. Section 6 reports on the development of the conceptual model,
adding more information to what was initially reported in our conference paper [3],
and Section 7 describes the resulting conceptual model (with improvements for cap-
turing both functional and non-functional aspects of RTD) and the combined model
that represents both RTD and code-related TD quantification models in the same
model. Section 8 theoretically evaluates the model by demonstrating two examples of
its utility: one to compare and analyze existing quantification approaches based on
model concepts and the other to demonstrate how practitioners could select an exist-
ing quantification approach for their particular quantification needs (or develop new
approaches). Section 9 compares code-related TD and RTD model concepts based on
the combined model reporting on the observations. Section 10 discusses implications
to researchers and practitioners and future work. Section 11 discusses threats to the
validity of conducting the SMS and the model development. The paper is concluded
in Section 12.

2 Background and Related Work

The following sections describe the terminology and background required to under-
stand this paper and related work.

2.1 Terminology

A conceptual model in the context of our paper consists of elements that are abstract
concepts and relationships between those concepts. The purpose of a conceptual model

3

is to capture the abstract concepts related to a phenomenon and illustrate the rela-
tionships between those concepts so that the phenomena can be well understood [6].
Furthermore, a conceptual model can serve as a reference to make inferences about
concepts that could be modeled by the abstract concepts [7]. We have demonstrated
this in Section 8.1 by utilizing our conceptual model (the Requirements Technical Debt
Quantification Model) to analyze existing quantification approaches in the literature
(see Sections 8.1, 8.1.1 and 8.1.2).

The Requirements Technical Debt Quantification Model (RTDQM) we developed
in this work is a conceptual model that captures the phenomenon of “Requirements
Technical Debt quantification” (Technical Debt quantification is described below in
Section 2.2 while Requirements Technical Debt quantification is described in Section
2.3). The model development and the resulting model are described in the Sections 6
and 7 of this paper.

An abstract RTD Quantification concept in the context of our paper succinctly
captures the notion described by multiple various Requirements Technical Debt (RTD)
quantification-related concepts extracted from the primary studies. This is described
further in Section 6 — model development methodology. An example of an abstract
RTD Quantification concept in our model is the ‘Cost of rectifying RTD.’ This abstract
concept captures multiple various concepts such as, Cost to formalize and implement
the neglected needs, Cost to fix the requirement smells within a SRS, Cost of comparing
the current implementation with the set of possible changes, Cost of RTD payment,
Cost of reducing or eliminating or resolving the obstacle and Cost to adjust problems
caused by debt, that were extracted from the primary studies.

Figure 2 in Section 6 shows the set of abstract concepts that resulted from our work
and a few examples of various RTD quantification concepts extracted from the pri-
mary studies that are modeled by the abstract concepts. More examples from primary
studies are discussed in Section 7, where the model concepts (i.e., abstract concepts)
are discussed.

Metrics refer to some form of measurement that supports the quantification of a
concept. For example, a concept may be ‘Cost of rectifying RTD’ while the metric for
measuring the cost could be person-hours.

Quantification is a Technical Debt Management activity [8]. As defined by Li et al.,
measurement or quantification is the activity of analyzing and quantifying the costs
and efforts required to assist in decision-making in TD Management (TDM). This is
discussed further in Section 2.2.

The goal of our mapping study is to identify gaps in the quantification approaches
published in the research literature. We define an approach that allows quantifica-
tion, i.e., a quantification approach as: “An approach that discusses concepts and
metrics that could support RTD management decision-making.” In our work, the con-
cepts could be not only costs and efforts but also benefits, priority, probability, or
process/time-related (see Section 7).

4

2.2 Technical Debt (TD), TD Management (TDM) and
Quantification

Technical Debt (TD) captures the consequences of sub-optimal decisions made dur-
ing the development of a software product [5, 9]. These sub-optimal decisions could
be made throughout the software development lifecycle, from requirements engineer-
ing to product maintenance [10]. Li et al. [8], identified that TD Management (TDM)
is important in the implementation and maintenance of software. According to the
authors, the TDM process includes activities such as Identification, Measurement
(Quantification), Prioritization, Repayment, and Monitoring. They define measure-
ment or Quantification as the activity of analyzing and quantifying the costs and
efforts required to assist in decision-making in TDM.

The work of Perera et al. [5] identified during their SMS that quantification
approaches (i.e., An approach that discusses concepts and metrics that could sup-
port TD management decision-making) proposed in the literature lack consensus.
Therefore, the authors developed a conceptual model to model the quantification of
code-related TD types such as Code, Design, and Architecture TD, based on findings
from their mapping study and the work of Avgeriou et al. [11]. They theoretically
validated their model by applying it to quantification approaches that were not ini-
tially used in the development of the model by conducting a second iteration of their
mapping study and applying the model to the approaches quantifying CTD. Further-
more, the authors introduced an Approach Comparison Matrix to be able to compare
and evaluate different quantification approaches based on their conceptual model [5].
In their future work and implications to researchers, they proposed investigating the
quantification of non-code-related TD types which we chose to investigate in our study
focusing on RTD quantification.

2.3 RTD, RTD Management (RTDM) and Quantification

Compared to code-related TD types, RTD is a relatively new area with less literature
on the topic [4, 12]. Furthermore, there is no consensus yet if RTD can be considered a
type of TD [13]. However, by observing the literature available, we are confident that
it is a type of TD and that it needs to be given attention similar to any other type
of TD since the consequences of RTD can similarly impact software development like
any other type of TD. Few studies highlight the importance of managing RTD, e.g.,
Ernst [2], Lenarduzzi et al. [13], and Frattini et al. [14]. Below, we discuss the most
relevant related work in RTD research. These studies are also discussed in Section 4.

Ernst [2] presents the earliest definition on RTD (in 2012) — “the distance between
the optimal requirements specification and the actual system implementation, under
domain assumptions and constraints”. According to Ernst, RTD describes tradeoffs
regarding what requirements the development team ought to prioritize. The authors
state that product value is measured in satisfied requirements and that RTD is incurred
when requirements are prioritized in a way they do not deliver the most value to the
customer [2]. Their tool, RE-KOMBINE, helps compare the current implementation
to new proposed implementations. In their work, quantification of RTD is measured as
the distance between the different proposed solutions and the current implementation.

5

Lenarduzzi and Fucci [13] provide a more comprehensive definition of RTD by
extending the definition of RTD by Ernst to include upstream activities involving the
elicitation of requirements and their translation into specifications. They give three
definitions of RTD described as three types of RTD: Type 0, 1, and 2, based on Incom-
plete Users’ needs, Requirement Smells, and Mismatch implementation, respectively.
Furthermore, the authors propose strategies for the Identification, Quantification, and
Payback of RTD.

Frattini et al. [14] emphasize the inadequacy of exploring the debt metaphor in
the context of RE. As a result, they developed an initial analytical theory as a guide
towards further research in the area. The authors organized concepts related to prac-
titioners’ understanding and managing of RTDM into 23 falsifiable propositions and
additionally provide explanations to these propositions [14]. Their work is derived
from interview and survey data. Our work, in contrast, is grounded in the existing
literature found via a SMS and complements their work through the development of
our model, RTDQM.

2.4 Secondary Studies on RTD Quantification

Although multiple secondary studies have been conducted for other types of TD, we
found only one secondary study directly discussing RTD, a recent systematic literature
review by Melo et al. [12]. The authors discussed the causes of RTD, strategies to
identify and manage it, and metrics to support the measurement.

However, the 66 primary studies that resulted in their query did not exclusively
focus on RTD. Hence, the metrics they were proposing for measurement were too based
on prior work on other TD types rather than prior work on RTD. For example, one
of the studies listed as ‘quantification approach’ in their study, the work by Nogroho
et al. [15], is not focused on RTD.

Compared to their study, our SMS focuses on studies discussing RTD (i.e., TD
related to Requirements) exclusively, and we specifically focus on the quantification
of RTD based on findings from prior work on RTD. Primary studies included in
our work extend the study period covered in Melo et al.’s work [12] (ours includes
studies from 2020-2023 additionally). Our goal is different from theirs; ours was to
conceptually model the quantification of RTD based on what we learned about RTD
quantification from existing literature while theirs was to investigate which evidence
helps to strengthen the TD requirements management process.

2.5 Definitions of RTD from Secondary Studies

We examined RTD definitions given in previous secondary studies where RTD was
mentioned. Li et al. [8] and Melo et al. [12] use the early definition given by Ernst [2].
Alves et al. [16] refer to a similar definition; they define RTD as trade-offs made by
the development team with respect to what requirements to implement and how to
implement them. Requirements that are partially implemented, requirements that are
implemented but not for all cases, and requirements that are implemented but do not
fully satisfy non-functional requirements, such as security or performance, are given
as examples for RTD by the authors.

6

Behutiye et al. [17] describe RTD as trade-offs in the requirements specifica-
tion that are consequences of intentional, strategic decisions for immediate gains or
unintentional changes in the context that have an impact on future costs of the project.

Definitions of RTD derived from the primary studies in our SMS can be found in
Table 3 (and discussed in Section 4.2).

3 Systematic Mapping Study (SMS) —
Methodology (RQ1)

We followed recommendations given by Kitchenham et al. [18] and Petersen et al. [19]
to conduct the SMS, which answers the following research question:

• RQ1: What means of quantifying RTD are discussed in the literature?

3.1 Search Strategy

We improved the search strategy of our SMS to include more papers in the final
dataset compared to what was reported in our conference paper [3]. We improved our
search query to be less restrictive by removing the list of keywords related to quantifi-
cation and using the AND operation to combine phrases (e.g., “technical debt” AND
“software requirements”) instead of using specific phrases (e.g., “Technical Debt in
Software Requirements”). As these improvements led to more results, we adjusted our
inclusion/exclusion criteria to have E7 as a new exclusion criterion to reduce noise.
The search phase was concluded in November 2023 (The search phase for the confer-
ence paper was concluded in March 2023; this paper extends this work). However, we
did not limit our search to a particular period so as not to miss relevant papers.

In our initial work reported in our conference paper, we queried multiple digital
databases: IEEEXplore, ACM, and Science Direct (based on recommendations by
Brereton et al. [20]) and SCOPUS (following the recommendations by Cavacini [21]).
Since all the primary studies finally analyzed in our initial execution of the SMS were
available in SCOPUS (the most comprehensive database according to Cavacini [21]),
we decided to query only SCOPUS for the work reported in this paper. However, we
complemented the results obtained by querying SCOPUS with Backward Reference
snowballing.

Listing 1 lists the final query string. Table 1 lists the Inclusion and Exclusion
criteria.

TITLE ABS KEY((” requi rements debt”
OR (” t e c hn i c a l debt” AND ” requirements ”)
OR (” t e c hn i c a l debt” AND ” so f tware requi rements ”)
OR (” t e c hn i c a l debt” AND ” requirements eng ine e r i ng ”)
OR (” t e c hn i c a l debt” AND ”user s t o r i e s ”))
AND (LIMIT−TO (DOCTYPE , ”cp ”)
OR LIMIT−TO (DOCTYPE , ” ar ”))
AND (LIMIT−TO (LANGUAGE , ”Engl i sh ”))
Listing 1 ”Final Search String for SCOPUS”

7

I1 Discusses the quantification of RTD or provides
some direction (or guidance) in quantifying RTD

Inclusion I2 Discusses quantifiable characteristics for RTD
I3 Discusses metrics and tools concerning RTDM

E1 Not in English
E2 Full text inaccessible

Exclusion E3 Talks, doc symposiums, posters, tutorials, proceed-
ings, reports
E4 Secondary or tertiary studies
E5 Not RTD
E6 Not peer reviewed
E7 Discusses RTD but does not necessarily provide
any direction (or guidance) in quantifying RTD

Table 1 Inclusion and Exclusion Criteria

3.2 Article Screening and Selection

Article screening and selection were performed following the adaptive depth reading
approach suggested in Petersen et al. [19] starting from the title and continuing through
the abstract, conclusion, and, finally, reading the full text. Additionally, we applied
the inclusion/exclusion criteria listed in Table 1. The first author screened the articles,
and two other authors evaluated the results at each stage of screening, including the
stages where articles were screened by title, abstract, and keywords and based on the
inclusion and exclusion criteria. Disagreements were discussed and resolved during
iterative meetings. For example, the new Exclusion criterion E7 was added as a result
of these discussions. The final set of articles that resulted from querying the digital
database were discussed and agreed upon prior to performing reference snowballing
on them. All articles, including those resulting from the snowballing rounds, were too
discussed and agreed upon prior to data extraction and analysis.

Articles that described an approach to quantifying RTD or at least provided some
direction in quantifying RTD were included. Articles that described quantifiable char-
acteristics such as principal, interest, interest probability, uncertainty, or units of
measurement in terms of time, cost, or effort were included. We also included articles
discussing metrics and tools concerning RTDM. We excluded articles that were not in
English, articles where the full text was inaccessible, that did not discuss RTD, and
where RTD was discussed but nothing about quantification could be extracted from
the article. Only peer-reviewed conference and journal articles were included as they
are considered high quality.

3.3 Reference Snowballing

Backward reference snowballing [22] was performed on the final set of articles to
complement the search query and to avoid the possibility of missing relevant articles.
Backward snowballing was additionally guided by the related work sections in the
articles. Articles that resulted from the snowballing were similarly screened using the
inclusion and exclusion criteria while following the adaptive depth reading approach
suggested in Petersen et al. [19]. Snowballing was conducted until there were no more

8

Fig. 1 Overview of SMS methodology and resulting articles at each stage

candidates for inclusion. The articles resulting from the snowballing were discussed and
agreed upon by the authors prior to being included in the final dataset. The number
of articles that resulted from querying and snowballing can be seen in Figure 1.

3.4 Data Extraction, Analysis, and Synthesis

The first author performed data extraction, analysis, and synthesis following recom-
mendations from Petersen et al. [19] and Braun and Clarke [23] and discussed them
with the other authors during meetings. Data extraction was done by following the
adaptive depth reading approach to read the article’s title, abstract, and conclusion,
scanning for keywords, and then reading, in detail, the sections of the article where
relevant information was found and finally, reading the full text. The thematic anal-
ysis approach recommended by Braun and Clarke [23] was followed for data analysis
and synthesis. It is an effective method for identifying, analyzing, and reporting pat-
terns and themes within data [23]. The high-level themes resulting from the analysis
were Definitions of RTD, Concepts related to RTD quantification, Metrics, Tools and
supported RTDM Activities, RTDM Strategies, Causes, Indicators, and Consequences
of RTD, and Challenges associated with RTD. SMS results are reported under these
themes in Section 4.

4 Systematic Mapping Study (SMS) — Results
(RQ1)

Below, we report the results derived from 18 articles included out of the 158 articles
obtained in total from combining the query results for SCOPUS and two rounds
of Backward Reference Snowballing. Articles retrieved at each stage of the article

9

screening can be seen in Figure 1. The primary studies in the final dataset are listed
in Table 2. Each primary study is referred to by a code P[n] throughout the paper.
The codes for the papers can be found in the same table. Short descriptions of the
papers can be found in Table A1 in the Appendix.

4.1 Demographics

Publications resulting from the SMS range from 1997 - 2023. We reported the study
Title, Publication Year, Authors, Citation, Venue, and Citations received (in SCO-
PUS) in Table 2. The publication venues vary from different conferences to workshops.
The oldest (1997) and the most cited (513 in SCOPUS) publication is by Karlsson et
al. The next highest-cited article (147 in SCOPUS) is by Kazman et al., published in
2001.

4.2 RTD Definitions

The earliest definition of RTD was given by Ernst [2] (P7 in Table 2), which was
discussed earlier in Section 2. Lenarduzzi et al. [13] (P2) introduced a more compre-
hensive definition, including 3 types of RTD incurred during upstream activities such
as identification and formalization of requirements apart from the debt incurred dur-
ing the implementation of requirements (Type 0, 1, and 2, based on Incomplete Users’
needs, Requirement Smells, and Mismatch implementation, respectively). While they
introduce two other types of RTD, 0 and 1, their type 2 is similar to Ernst’s (P7) ini-
tial definition. Frattini et al. [14] (P10) uses the same definition as Lenarduzzi et al.
[13] (P2). See Table 3) for RTD definitions from primary studies.

Abad et al. [4] (P1) define RTD as trade-offs in the System Requirements Speci-
fication (SRS) that result from intentional, strategic decisions or unintentionally due
to changes in the context.

Charalampidou et al. [38] (P3) define RTD as insufficient or incomplete require-
ments and outdated requirements, which are similar to type 1 in P2 and type 2 in P2
(and P7), respectively. Bonfim et al. [1] (P4) define RTD as failures in SRS, which
again aligns with type 2 in P2 (and P7). Belle et al. [25] define RTD as a poor or par-
tial implementation of requirements into features; this is also similar to type 2 in P2
(and P7).

Ojameruaye et al. (P9) [27] define RTD as missing, under-specified, or outdated
Quality Requirement (QR) documentation. This aligns with the definition in P3 (and
type 1 in P2). Similarly, the definition given by Costa et al. [32], consequences of poor
software development (i.e., QRs that are inadequately addressed and usability issues),
aligns with P3. Mendes et al. [33] (P14) describe RTD as problems in documentation
such as missing, inadequate, or incomplete artifacts, which again aligns with P3 (and
type 1 in P2).

Sivattian et al. [34] (P15) describe RTD as the degree to which the company meets
its business goals or satisfies its customers aligning with P7. Barbosa et al. [35] P(16)
describe RTD as the distance between the optimal specification and the actual system
implementation and Requirements Documentation Debt as missing, inadequate, or
outdated documentation aligning with both P7 and P3, respectively. Karlsson et al.

10

[37] define it as producing a system viewed as sub-optimal by its developers, customers,
and users; this definition also aligns with P7.

Kazman et al. [36] (P17), describes the phenomenon as how well the architecture
has been designed with respect to its quality attributes. This can be inferred as aligned
with the notion of optimal vs sub-optimal.

Therefore, we see that most of these studies use variations of the initial definition
provided by Ernst [2] (P7), while some definitions refer to type 1 in P2 [13] (and P3).
Type 0 in P2 seems to be used only in their study currently. However, P2 provides
the most comprehensive definition so far, and it is important to capture type 0 as
well since RE activities begin by capturing User Needs (as further discussed in our
model). However, we see that the aspect of intentional and unintentional decisions
that is captured in Abad et al. [4] is yet missing in P2’s definition.

4.3 Concepts related to RTD Quantification

We identified 286 concepts (in total, without duplicates) related to RTD quantification
from the primary studies.

We categorized them into categories: process/ time, cost, benefit, probability, and
priority, based on the high-level themes that emerged during Thematic Analysis [23]
(further discussed in Section 6) and additionally informed by Perera et al.’s work [5].

We identified 155 concepts for the Process/ Time category, 72 concepts in the
Cost category, 23 concepts in the Benefit category, four concepts in the Probability
category, and seven concepts in the Priority category. However, 25 of the concepts
were categorized as metrics.

The complete list of concepts and their categories can be found in our Replication
Package1, we do not report them here due to space limits. Figure 2 in Section 6 shows
some examples of these concepts extracted from the primary studies.

Section 7 and Table 9 describe the abstracted set of concepts that went into the
conceptual model developed for RQ2 as the result of the systematic coding performed
adopting the Thematic Analysis approach [23] (abstract concepts are illustrated in
Figure 2, the development of the model is discussed in Section 6). The abstract con-
cepts and their high-level themes process or time, cost, benefit, probability, and priority
formed the classification scheme that we used to analyze the existing approaches found
in our mapping study later in Section 8.1.

1Replication Package: https://doi.org/10.5281/zenodo.10900222

11

https://doi.org/10.5281/zenodo.10900222

Title Pub
Year

Authors, Citation Venue Cit.

P1 Using real options to manage Technical Debt
in Requirements Engineering

2015 Abad et. al, [4] RE 18

P2 Towards a Holistic Definition of Requirements
Debt

2019 Lenarduzzi et. al, [13] ESEM 7

P3 Integrating Traceability Within the IDE to
Prevent Requirements Documentation Debt

2018 Charalampidou et. al,
[24]

SEAA 2

P4 Requirements debt: causes, consequences, and
mitigating practices

2022 Bonfim et. al, [1] SEKE 0

P5 A novel approach to measure confidence and
uncertainty in assurance cases

2019 Belle et. al, [25] REW 2

P6 On the perceived harmfulness of requirement
smells: An empirical study

2020 Lenarduzzi et. al, [26] CEUR 0

P7 On the role of requirements in understanding
and managing technical debt

2012 Ernst et. al, [2] MTD 27

P8 Systematic elaboration of compliance require-
ments using compliance debt and portfolio
theory

2014 Ojameruaye B. et. al,
[27]

REFSQ 11

P9 Towards optimal quality requirement docu-
mentation in agile software development: A
multiple case study

2022 Behutiye W. et. al, [28] JSS 11

P10 An initial theory to understand and manage
requirements engineering debt in practice

2023 Frattini J. et. al, [29] IST 1

P11 An industry experience report on managing
product quality requirements in a large orga-
nization

2017 Mohagheghi P. et. al,
[30]

IST 13

P12 Sustainability debt: A portfolio-based
approach for evaluating sustainability require-
ments in architectures

2016 Ojameruaye B. et. al,
[31]

ICSE 5

P13 Towards a Process to Manage Usability Tech-
nical Debts

2022 Costa A.F.F. et. al, [32] ICPS 0

P14 Impacts of agile requirements documentation
debt on software projects: A retrospective
study

2016 Mendes T.S. et. al, [33] SAC 20

P15 Linking the Selection of Requirements to Mar-
ket Value: A Portfolio-Based Approach

2001 Sivzattian et. al, [34] REFSQ 45

P16 Organizing the TD Management Landscape
for Requirements and Requirements Documen-
tation Debt

2022 Barbosa et. al, [35] UMBC 8

P17 Quantifying the Costs and Benefits of Archi-
tectural Decisions

2001 Kazman et. al, [36] ICSE 147

P18 A Cost-Value Approach for Prioritizing
Requirements

1997 Karlsson et. al, [37] IEEE
Soft-
ware

513

Table 2 Demographics: Publication Year, Authors, Citation, Venue, Num of Citations from SCOPUS, First
part of the Table — 7 papers found in the initial execution of the SMS reported in our conference paper [5],
Second part of the Table — 11 papers newly added to the dataset from improvements to the SMS by the
work reported in this paper

12

RTD Definition
P1 Discusses definitions borrowed from Alves et al. and Ernst et al., and give their own definition

by explicitly incorporating the main characteristics of TD (time-dependent, interest, context/en-
vironment dependent) to those definitions: “The trade-offs in requirements specification that are
consequences of the intentional strategic decisions for immediate gains or unintentional changes in
the context that have an impact on the future cost of the project”.

P2 Provides a holistic definition of RTD, defining three sub-types of RTD: Type 0, 1, 2, which include
debt incurred during the identification, formalization, and implementation of requirements.
Type 0 — Incomplete or neglected Users’ needs: Incurred when User needs expressed in feedback
channels are neglected; when not all user needs are captured within a channel and when one or more
relevant channels are not considered.
Type 1 — Requirement Smells: Incurred when a requirements engineer, business analyst, or developer
formalizes user needs into the specification. e.g., Linguistic constructs that can indicate a violation
of the ISO29148 standard for Requirements quality.
Type 2 — Mismatch implementation: Captures the mismatch between stakeholders’ goals framed in
the SRS and the actual system implementation. Incurred when developers implement a solution to a
requirement problem or when the requirements framed in the SRS changes while the implementation
does not change accordingly.

P3 Requirements documentation debt: Insufficient or incomplete requirements: Pieces of specifications,
e.g., Use cases, User stories, SRS), that are lopped either at low quality or do not describe the system
under development, and Outdated requirements: Cases in which specifications have been developed
at an appropriate level of quality in the early releases of the system but subsequently are not updated
with new requirements or changes in existing ones.

P4 Failures in the SRS, characterizing the distance between the desired specification of requirements
and the actual implementation of these requirements in the system

P5 Poor/partial implementation of requirements into a feature(s), and compromises made regarding
the specific requirements by a development team with regards to what to implement and how to
implement.

P6 Uses the definition of Type 1 in P2
P7 Tradeoffs on what requirements the development team ought to prioritize. The distance between the

optimal solution to a requirements problem and the actual solution, with respect to some decision
space.

P8 Result of neglected compliance when engineering requirements of software i.e., the difference between
the cost of an ideal resolution tactic and the cost of the selected resolution tactic (aligned with P7).

P9 Missing, under specified or outdated QR documentation (Aligned with P3).
P10 Uses the definition in P2
P11 The gap between what can be achieved with the available resources and the hypothesized ”ideal”

environments where sustainability goals are successfully and completely realized (aligned with P7).
P12 Unfulfilled quality requirements, Under-performance, Poor documentation.
P13 Consequences of poor software development. e.g., quality requirements that are not adequately

addressed, Usability issues (aligned with P3).
P14 Problems in documentation e.g., missing, inadequate, or incomplete artifacts.
P15 Tradeoffs have to be made in order to meet a degree of customer satisfaction relative to the employed

resources. The degree to which the company meets its business goals or satisfies its customers is RTD
(Aligned with P7).

P16 Requirements and Requirements Documentation Debt indicate shortcuts taken in software develop-
ment projects, resulting in requirements partially implemented and with outdated documentation.
Requirements debt - the distance between the optimal requirements specification and the actual
system implementation e.g., requirements that are only partially implemented (aligned with P7)
Requirements Documentation debt - associated with problems found in software project documen-
tation (e.g. missing, inadequate, or outdated documentation). A type of documentation debt is
requirements documentation debt, which affects requirements specifications, causing a mismatch
between the stakeholder’s needs and the software implementation (aligned with P3, P7).

P17 How well the architecture has been designed with respect to its quality attributes e.g., modifiability,
performance, availability, usability i.e., non-functional requirements (aligned with P7).

P18 Producing a software system that developers, customers, and users view as sub-optimal (aligned with
P7).

Table 3 RTD Definitions

13

Supported RTDM Activities
P1 Quantification
P2 Identification, Quantification, Repayment
P3 Monitoring and Prevention
P4 Prevention, Reduction
P5 Quantification
P6 Reduction/ Prevention, Quantification
P7 Prioritization, Quantification
P8 Quantification, Repayment
P9 Prevention
P10 Detecting, Measuring (Quantification), Tracking, Remediation
P11 Identification, Quantification
P12 Reduction
P13 Identification, Prioritization, Estimation (Quantification), and Monitoring
P14 Quantification
P15 Quantification
P16 Prevention, Prioritization, Repayment
P17 Quantification
P18 Prioritization

Table 4 Supported RTDM Activities

4.4 Metrics, Tools and supported RTD Management Activities

We aimed to capture approaches that made an effort toward quantifying RTD. Five
approaches (See Table 4) found in our SMS focused completely on this RTDM Activity
(P1, P5, P14, P15, and P17). P2, P6, P7, P8, and P11 discussed RTD quantification
along with other RTDM Activities such as Identification, Repayment, Prioritization
and Debt Reduction or Prevention. P1, P2, P5, P7, P8, P11, P12, P13, P15 and P17
introduced metrics to quantify RTD (See Table 5).

Metrics
P1 Standard deviation of the rate of return on the value of the selected requirements over time, Net value of

the option, Conditional value of the option, Present value of each node, Risk-adjusted probability, Net
present value of the existing options

P2 Principal, Interest
P5 INCIDENCE (or Weighted Assurance Confidence), Uncertainty (based on INCIDENCE) — to measure

RTD incurred for a given feature
P6 Extra effort related to the harmfulness of Req. Smells
P7 Distance
P8 Criticality, Likelihood of the obstacle occurring
P11 Sharpe ratio of an “optimal” architecture, Sharpe ratio of an “selected” architecture, Criticality, Likeli-

hood
P12 Priority of a req., SMART metric for quality of QRs, Covergae and fulfilment of requirements
P13 End user satisfaction, Usability heuristics
P15 Market Line (relationship between expected return and Beta - constant of proportionality)
P17 Quality attribute response measures e.g., a particular level of performance measured by mean time to

failure, level of reliability measured by steady-state of availability, Importance of QA (i.e., benefit of
QA), Cost of an Architectural Strategy (i.e., Expected cost of implementing each Architectural Strategy
), Benefit of an Architectural Strategy (i.e., Expected benefit of each Architectural Strategy), Desirabil-
ity metric for each AS — i.e., Cost benefit ratio of mean cost and mean benefit, QA Score given by
stakeholder

Table 5 RTD Metrics

14

P3 and P7 introduced tools. P3 proposed a tool-based approach to enable debt
Monitoring and Prevention while P7 introduced RE-KOMBINE, a tool that helps
compare one implementation to new proposed implementations based on different
prioritizations of requirements. P4 investigated the causes and effects of RTD and
actions to minimize RTD within an agile context. Although some approaches did
not directly facilitate RTD quantification, they provided some guidance to be able to
quantify RTD. Hence, they were included in our study results.

However, these approaches focus on different aspects of quantification. For exam-
ple, P1 applies real options theory to quantify the Net Present Value (NPV) of a SRS,
and P5 measures the uncertainty of a given feature being supported by a system,
while P2 proposes measuring Principal and Interest; Principal as the cost to formal-
ize requirements, cost to fix Requirements Smells, and cost to compare the current
implementation with a set of possible changes (also P7), and the Interest as the extra
effort related to the current development stage and the harmfulness of Requirement
Smells (also P6).

The conceptual model we developed answering RQ2 helps understand how these
different concepts discussed in the different approaches map to the concepts of RTD
quantification (See Sections 6, 7, and 8, all mappings are provided in the Replication
Package1.

4.5 Proposed RTD Management Strategies

Table 6 shows strategies for managing RTD proposed in the primary studies. P2
provides Strategies for identifying, quantifying, and repaying RTD Types 0, 1, 2. P3
describes how to avoid insufficiently specified requirements or outdated requirements
and promotes verification of requirements by multiple stakeholders. P4 emphasizes
the need to validate and manage requirements, while P7 emphasizes the importance
of tracking requirements throughout the software lifecycle.

P9 [17] introduces the use of lightweight artifacts to document quality require-
ments such as the Given/ When/ Then template and having sprints dedicated for
documentation to reduce the introduction of RTD. P12 [31] suggests using SMART
requirements as a way to measure if the requirements are specified adequately, apart
from involving all relevant stakeholders when specifying and prioritizing requirements.
P13 [32] proposes an approach to systematically identify and manage UTD.

P11 [30] proposes identifying the optimal portfolio of architectural strategies to
maximize value and minimize risks, while P18 [36] emphasizes that tradeoffs should
be made prudently (i.e., acceptable trade-offs), with respect to quality, cost, and time-
to-market.

P10 [14] provides prevention practices and repayment strategies for both Require-
ments Documentation Debt and Requirements Debt. Examples can be found in Table
6. P16 provides 26 prevention practices and 18 repayment practices; the most common
practices are listed in Table 6.

1Replication Package: https://doi.org/10.5281/zenodo.10900222

15

https://doi.org/10.5281/zenodo.10900222

RTDM Strategies
P2 Type 0 — Identification: Leverage techniques for automatically classifying and summarizing user feed-

back and recommending new features based on it, Quantification: Consider that implementing a
neglected need in a later stage can be more expensive and which components need to be changed to
address the RTD, Payback: Once the neglected user need is identified, formalize and include it in the SRS
Type 1 — Identification: (semi) automatic detection within SRS, Quantification: Consider different
negative impacts that each requirement smell can have on activities relying on SRS, Payback: Removing
a problematic language construct leading to ambiguity while maintaining the original goal of the SRS
Type 2 — Identification: Identify based on approaches for traceability between SRS and source code,
Quantification: Determine the amount of change between the current implementation and the SRS,
Payback: Implementation of the best new solution matching the updated SRS

P3 Avoid insufficiently specified requirements through communication, avoid over-engineering requirements,
limit the number of incomplete requirement specifications by assuring completeness of requirements
through the verification of requirements by multiple stakeholders, alleviate accumulation of RTD due
to lack of requirements to code traceability, prompt update of requirement specifications to prevent
accumulation of outdated requirements

P4 Practices to reduce or mitigate RTD: Meeting requirements elicitation, helping requirements analysis,
supporting the implementation of SRS, requirements validation, assisting requirements management

P7 Tracking requirements throughout the software development lifecycle
P9 Light-weight artifacts to document QRs such as the Given/When/Then template, Documenting sprints

(allocating separate sprints for documenting QRs), QR check lists, QR training, Documenting QR quality
targets and decisions

P10 Prevention Practices for Requirements Doc Debt — Commenting code, Creating tutorials on how to fill
documentation, Defining process and good practices for documentation, Defining roles concerning the
documentation process, Documenting the project since it begins.
Prevention Practices for Requirements Debt — Well-defined requirements, Following project planning,
Following well-defined project process, Well-defined scope statement, Good allocation of resources in the
team.
Repayment Practices for Requirements Doc Debt — Adopting TD payment prioritization criteria, Keep-
ing documentation updated, Reviewing outdated documentation
Repayment Practices for Requirements Debt — Code refactoring, Monitoring and controlling project
activities, Design refactoring, Investing effort on TD repayment activities, Changing project scope.

P11 Avoiding inappropriate selection of architectures that are not value- and risk-driven and debt-aware,
identifying the optimal portfolio of architectural strategies with a total value that minimises risks and
maximises returns.

P12 Moving to SMART requirements, involving the business stakeholders in the work for specifying and
prioritizing quality requirements, understanding costs drivers when making tradeoffs

P13 Systematic identification and management of UTD
P16 Most common prevention practices (26 in total) — well-defined requirements, following the project

planning, and following well-defined project process
Most common repayment practices (18 in total) — code refactoring, monitoring and controlling project
activities, and design refactoring investing effort on TD repayment activities, and changing project scope

P17 Incorporating economic models of software, that take into account costs, benefits, and risks to analyze
software architecture for decision-making to meet quality attribute response goals.

P18 Making acceptable tradeoffs among goals such as quality, cost, and time-to-market.

Table 6 RTDM Strategies

4.6 RTD Causes, RTD Indicators and Consequences of RTD

Similar to any TD type, RTD can be incurred or caused intentionally or unin-
tentionally. See Table 7, for causes and indicators. Inefficiencies in identifying and
estimating Requirements (P2, P11, P16), inefficiencies in the Requirements speci-
fication or Requirement Smells (P2, P3, P10), and sub-optimal implementation of
Requirements (P2, P3, P10) can happen due to negligence or deliberate choice to not

16

Causes and Indicators of RTD
P2 Neglecting user needs, Missing to capture User feedback from one or more user feedback channels,

Ambiguities introduced during formalization of requirements (Requirement smells), Implementing a sub-
optimal solution to a requirements problem

P3 Insufficient and incomplete requirements missed due to the lack of requirements-to-code traceability, Doc-
umentation inefficiencies occurred intentionally or unintentionally (e.g., selecting not to apply a rigorous
documentation process, documents are not sufficiently maintained due to tight schedules, developers not
documenting requirements properly due to time limitations), Inconsistent management of requirements
from different stakeholders

P4 Absence of a good requirements process may cause the RE steps to fail
P5 Requirements that are only partly implemented, Requirements that are implemented but do not support

all cases, Requirements that are implemented but in a manner that does not entirely fulfill all desired
non-functional requirements (e.g., security, performance)

P7 Inadequate or poorly conducted requirements elicitation and analysis
P8 Non-compliance e.g. , to information security compliance requirements
P9 Causes — Time constraints lead to under specification of QRs, Limited QR awareness, Communication

gaps among team members
Indicators — Missing or under specified or outdated QR documentation

P10 Requirements Documentation Debt causes — Deadline, The company does not give value to documenta-
tion, Non-adoption of good practices, Inaccurate time estimations,Inappropriate planning, Requirements
not documented
Requirements Debt causes — Deadline, Not effective project management, Changes in requirements,
Inappropriate planning, High turnover of the team, requirements incompleteness, lack of formalization
of requirements, not implementing requirements

P11 Causes — Poor estimates or misperceptions of system requirements, the system environment and external
conditions, incomplete knowledge of the system, its environment and capacities
Indicators — The final design may not have completely met the actual requirements, architecture does
not fully contribute to the requirements imposed by sustainability, overdesign of the architecture so the
potentials of the architecture are not fully utilized and the operational cost tends to exceed that of the
generated benefits

P12 Failures, unimplemented functionality that were in the scope, Unfulfilled quality requirements, Under-
performance, Poor documentation

P13 Indicators — Quality requirements that are not adequately addressed e.g., Usability requirements, Lack
of usability standards, Inconsistencies between navigation aspects of the software, Violating relevant user
interaction principals

P14 Causes — Lack of Information, Volatility of Requirements, Lack of Non-functional Requirements Iden-
tification, Lack of detailed specification, Problems in requirements documentation such as missing,
incomplete or inadequate artifacts

P15 Poor selection of requirements for implementation
P16 Causes (55 in total) categorized into: External factors, Development issues, Lack of knowledge,

Methodology, Organizational, People, Planning and Management — Deadline, not effective project
management, change of requirements,inaccurate or complex requirement, and requirements elicitation
issues, customer does not know his need, team’s lack of knowledge and experience to develop the project,
lack of well-defined process, inappropriate or poorly planned or poor executed test, and lack of require-
ments analysis, lack of qualified professional, lack of commitment and lack of team communication

P17 Changes to the existing architectural design

Table 7 Causes and Indicators of RTD

do so. P15 similarly discusses the poor selection of requirements for implementation.
If a system does not satisfy one or more non-functional requirements, this could also
be a cause of RTD (P5, P14).

Communication gap among team members (i.e., the lack of communication) was
listed as a cause of RTD in both P9 and P17. Deadlines were another common cause
of RTD, as discussed in P10 and P16. P9 discusses the same as ‘time constraints’.

17

Consequences of RTD
P3 Extra burden on maintenance tasks, inefficiency in project progress tracking, communication with cus-

tomers on bug-fixing progress being hindered and testers not being aware of the requirements that need
to be tested

P4 misunderstood, omitted, ill-defined, and poorly specified requirements in the RE phase and functional
and non-functional requirements not being met in the implementation phase due to bad specification
(i.e., not everything that was requested is delivered to the customer)

P7 Building the wrong product that does not meet customer satisfaction
P8 Consequence of non-compliance or extra cost if resolution does not fully mitigate the risk of obstacle,

impact on compliance
P9 Consequences of missing or outdated QR documentation such as lack of common understanding of QRs

and incorrect implementations, rework and additional iterations, TD accumulation, Informal quality
management process

P10 Requirements Documentation Debt —Low maintainability, Delivery delay, Rework, Low external quality,
Inadequate, non-existing or outdated documentation
Requirements Debt — Delivery delay, Rework, Financial loss, Low external quality, Low maintainability

P11 Impact on sustainability dimensions e.g., on technical sustainability (i.e., impact of alternative architec-
tures on sustainability goals and the likely debt due to the partial or poor satisfaction of these goals)

P12 Architectural impact of the QRs, further growth of TD that is due to under-performance
P14 Impact of New requirement (lack of info or lack of non-functional documentation), Impact of changed

requirement (volatility of requirement)
P16 Consequences or effects (33 in total) categorized into: Development issues, External Quality, Organi-

zational, People, Planning and Management — Delivery delay, rework, increased effort, low external
quality, and low maintainability, design changes, inadequate documentation, and constant need for retest,
project not completed, need for refactoring, bad code, stress with stakeholders, team demotivation, and
stakeholder dissatisfaction, financial loss, impaired company image

P17 Architectural decisions can affect more than one quality attribute resulting in multiple non-functional
requirements not being met (i.e., Architectural decisions might have consequences for several QA con-
cerns)

P18 Developing a sub-optimal product

Table 8 Consequences of RTD

The volatility of requirements (i.e., requirements changes) was discussed as another
common cause in studies P10, P14, and P16. P17 discussed changes to the existing
architectural design, which can also cause requirement changes.

Consequences of RTD extracted from the primary studies are listed in table 8.
P3 states that consequences can take the form of an extra burden on maintenance
tasks. Furthermore, incomplete or insufficient requirements could lead to inefficiency
in project progress tracking, hindered communication with customers on bug-fixing
progress, and testers not being aware of the requirements that need to be tested. P4
describes that the absence of a good requirements process may cause the RE steps to
fail, and that will generate consequences such as misunderstood, omitted, ill-defined,
and poorly specified requirements in the RE phase and functional and non-functional
requirements not being met in the implementation phase due to bad specification (i.e.,
not everything that was requested is delivered to the customer). P7 states that poorly
conducted requirements elicitation can lead to building the wrong product that does
not meet customer satisfaction. P18 states the same.

P9 discusses rework and additional iterations as consequences of RTD. P10 and
P16 also discuss delivery delay, rework, low external quality, and low maintainabil-
ity for both Requirements Debt and Requirments Documentation Debt. P16 lists 33
consequences in total. Table 8 lists the most common among them.

18

P8 mentions the impact of non-compliance, while P11 discusses the impact on
sustainability dimensions as a consequence of RTD due to the poor satisfaction of non-
functional requirements. P12 similarly discusses the architectural impact of quality
requirements.

4.7 Challenges associated with RTD

Primary studies discuss various challenges in the field of RE associated with RTD.
Common themes are as follows.

There is yet no consensus in the research community on whether RTD is a type
of TD (P1, P2, P6), lack of formalization of RTD (P1, P2, P6), the inherent uncer-
tainty and complexity in Requirements (P1, P7, P9, P16, P17) — e.g., uncertainties
about customer (or market) requirements, project context and environment, and the
feasibility, cost, and duration of developing each requirement [4], and difficulties in
monitoring and traceability of Requirements (P3, P7, P10) — e.g., the effort of keep-
ing requirements updated is high since it is difficult to identify which requirements
can be affected when the source code is changed [38].

Prioritizing functional requirements over non-functional requirements can also be
a challenge, according to P9. Software process models can be helpful, but they usually
prioritize other activities than debt assessment and remediation (P10, P14). Further-
more, the user’s satisfaction level can also vary, i.e., stakeholders may have different
expectations (P8, P11), and stakeholders may prioritize requirements differently (P15,
P16). Another challenge is that only a few teams usually track Requirements according
to P7 [2].

For non-functional requirements, the design problem parameters are not completely
known at the beginning of a project (P11, P12). P12 states that Specifying measurable
requirements with verification scenarios is a challenge. Eliciting quality requirements
and measuring and tracking them can be more difficult than their functional coun-
terparts, according to P12. Furthermore, changes in non-functional requirements can
also affect the system architecture (P15). The level of uncertainty and risk associated
with design decisions and the difficulties in estimating costs and benefits are discussed
as challenges associated with non-functional requirements in P17.

Our study contributes to some of these challenges by establishing a formal
definition of RTD and a theoretical foundation for RTD quantification.

5 SMS — Discussion

This section provides a high-level discussion and a conclusion for the results obtained
from the SMS. Section 8.1 provides a classification of the SMS dataset and findings
based on the conceptual model for RTD quantification developed in the rest of the
paper. Threats to the validity of the SMS are discussed later in Section 11.

5.1 A definition for RTD

The primary studies that resulted in our SMS discussed different instances where RTD
could incur and in what form. For example, some studies discussed the incurrence

19

of RTD during the identification of requirements (e.g., incomplete user needs), while
some discussed the incurrence of RTD during the documentation of requirements (e.g.,
incomplete or outdated or inadequate documentation, Requirement Smells), and the
rest discussed the incurrence of RTD during the implementation of the system (e.g.,
poor or partial implementation of requirements, distance between the optimal SRS and
the system implementation). Some studies also discussed that RTD could be incurred
unintentionally or intentionally — due to strategic reasons. Some studies discussed
missed, or outdated, or under-specified Quality Requirements (QRs) or how well a
system architecture satisfies QRs.

Based on the various definitions found in the literature, drawing together the
commonalities found in them, we synthesized the following definition for RTD:

A Definition for Requirements Technical Debt (RTD): “RTD cap-
tures the consequences of sub-optimal decisions made concerning requirements,
either deliberately (for strategic gains) or inadvertently (due to changes in
context), during the identification, documentation, and implementation of
requirements as features or architectural design decisions.”

5.2 RTD Quantification (RQ1)

The goal of conducting the SMS was to identify what means of quantifying RTD are
discussed in the literature. However, the primary studies that resulted in our SMS
discuss different aspects of RTD quantification, and there is no common consensus on
how to quantify RTD.

Furthermore, we did not find a common model that conceptualizes RTD quantifi-
cation that can be used as a reference point to objectively compare and analyze the
existing approaches in the literature to find out what the existing approaches support
and do not support in terms of RTD quantification. This also creates difficulty for a
software practitioner in choosing an appropriate approach for their RTD quantification
needs.

This implies the need to unify the knowledge regarding RTD quantification and to
be able to objectively compare and analyze existing approaches to find gaps in them.
The rest of the paper addresses this problem via RQ2. We first develop a conceptual
model, which we use to compare and analyze existing approaches (see Section 8.1)
and provide guidance on developing new quantification approaches (see Section 8.2).

The conceptual model establishes a theoretical foundation for RTD quantification.
The model development is discussed in Section 6, and the resulting model is discussed
in Section 7. A theoretical evaluation is conducted in Section 8, effectively demonstrat-
ing the comparison and analysis of existing quantification approaches based on the
model. This analysis also allowed the identification of gaps in the existing literature
in terms of what model concepts are supported by the existing approaches.

Section 8 furthermore discusses how the model can be useful in selecting exist-
ing quantification approaches or developing new quantification approaches to support

20

informed decision-making for RTD management. Section 7 and 9 discuss further obser-
vations made from the model development, while Section 10 discusses implications for
research and practice.

6 Modelling RTD Quantification — Methodology
(RQ2)

The lack of unified knowledge on RTD quantification in the existing literature and the
lack of a common conceptual model as a reference to compare and analyze existing
approaches motivated us to develop a model to conceptualize the quantification of
RTD. The development of our model answers the following Research Question:

• RQ2: How can we model the quantification of RTD?

– RQ2.1: What are the concepts sufficient to model the quantification of
RTD?

– RQ2.2: What relationships can be identified among those concepts?

The Requirements Technical Debt Quantification Model (RTDQM) (see
Figures 4, 5, discussed in Sections 7.1, 7.2) was developed in part by examining the
literature captured via our SMS and in part by examining what constitutes RTD
quantification informed by its code-related counterpart in Perera et al.’s work [5],
TDQM, a conceptual model developed to model the quantification of TD types related
to software code such as Code, Design, and Architectural TD. Their work was also
informed by literature captured via a SMS and by past models of TD, for example,
Avgeriou et al.’s work [11].

We examined primary studies in our SMS to extract various concepts related to
RTD quantification. As discussed in Section 4, 286 concepts (without duplicates)
were extracted from the papers, which were then abstracted into 33 abstract concepts
that went into the model for RTD quantification after multiple iterations of mapping
related concepts into themes, high-level themes and examining them with reference to
the TDQM concepts and their high-level themes. For this, we adopted the Thematic
Analysis approach developed by Braun and Clark [23].

Thematic Analysis identifies patterns (themes) within the data and minimally
organizes and describes the dataset in rich detail [23]. A theme captures something
important about the data in relation to the research question, which is, in our case,
abstract RTD quantification concepts (themes) and their high-level categories (high-
level themes): process or time, cost, benefit, probability, and priority. The overview of
the methodology is illustrated in Figure 2.

The systematic coding process we employed to map the concepts extracted from
the literature (initial codes) to abstract RTDQ concepts (themes) and their high-level
categories (high-level themes) is discussed in detail in Section 6.1. Section 6.2 provides
an example.

First, we mapped the RTD quantification concepts extracted from the eleven new
papers to the 14 model concepts that already existed from the initial work reported
in our conference paper [3]. Any new concepts that could not be mapped to the
existing model concepts went through the process of abstracting concepts into new

21

Fig. 2 Methodology for deriving RTDQM Concepts using Thematic Analysis adopted from Braun
and Clark [23] — The RTD Quantification Approach Classification Scheme is used later in Section 8
to classify and analyze existing RTD quantification approaches

model concepts. The process was iterative until we found no new abstract concepts.
Additionally, we re-iterated the seven initial papers to find evidence for new model
concepts that emerged from the new papers.

The model reported in this paper is composed of 33 abstract RTD Quantification
(RTDQ) concepts. Figure 2 shows the final set of 33 concepts. Table 9 also lists the
final set of 33 RTDQM concepts and shows which concepts were added newly, from
what was initially reported in [3]. The first part of the Table lists the model concepts
reported in our initial work [3] while the second and third parts of the Table list what
was added newly. Note that the concept ‘RE Costs associated with RTD’ was split
into two concepts in this work, resulting in ‘New RE Costs associated with RTD’ and
‘Rework RE Costs associated with RTD’. This is discussed in the results in Section 7.

Table 9 also provides two metrics we adopted from Junior et al. [39] to provide a
hint on which concepts are grounded in the literature and how many sources support
the concept. The density (d) metric shows how many sources support the concept —
the number of papers that inform or validate a concept in our model. The groundedness
(g) metric indicates how many excerpts or concepts (initial codes) extracted from a
source (paper) are related to one RTD quantification concept in our model.

22

RTD Quantification Con-
cept

Informed by Literature Informed by TDQM

density (d) groundness
(g)

TDQM counterpart

User Need 6 6 -
Requirements Engineering
Step

9 9 Implementation Step

(Documented) Requirement 15 24 Feature
RTD Item 15 38 CTD Item
RTD Rectifying Step 7 9 CTD Rectifying Step
Total Cost of a RE Step 3 3 Total Cost of an Impl. Step
Cost of Rectifying (or remedi-
ating)

9 11 Cost of Rectifying

RTD Interest 14 45 CTD Interest
New Code Cost associated
with RTD

3 6 New Code Cost associated
with CTD

Rework Code Cost associated
with RTD

5 8 Rework Cost associated with
CTD

Benefit of Rectifying 1 5 Benefit of Rectifying CTD
Benefit of taking RTD 2 2 Benefit of taking CTD
RTD Interest Probability 5 5 CTD Interest Probability

Functional Requirement 7 10 -
(Prioritized) Requirement 0 0 Feature
New RE Cost associated with
RTD

1 2 New Code Cost associated
with CTD

Rework RE Cost associated
with RTD

2 2 Rework Cost associated with
CTD

Documentation Cost of a
Requirement

0 0 Implementation Cost of a Fea-
ture

Benefit of not taking RTD 5 11 benefit of not taking TD
RTD Item Priority 5 5 CTD Item Priority
Priority of a Requirement 3 3 -

Non-Functional Requirement 10 14 -
Design Step 1 1 Implementation Step
Architectural/ Design decision 6 6 Feature
Context 9 13 -
Risk 5 6 -
Scenario 3 3 -
Quality Attribute 2 2 -
New Design Cost associated
with RTD

0 0 New Code Cost associated
with CTD

Rework Design Cost associated
with RTD

2 2 Rework Cost associated with
CTD

Implementation Cost of a
Design Step

3 4 Implementation Cost of a Fea-
ture

End user satisfaction level 7 7 -
Product Value 5 5 -

Table 9 RTD Quantification Concepts (First column): First part of the Table — model concepts
reported in our initial work [5], Second part of the Table — new concepts added to model the functional
aspect of requirements, Third part of the Table — new concepts added to model the non-functional
aspect of requirements, Density (d) - Num. of sources, i.e., SMS papers, Groundness (g) - Num. of
concepts or excerpts extracted (initial codes) from all sources representing a RTDQM concept, Last
column — TDQM concepts that informed the RTDQM concept

23

While some concepts for RTD quantification were informed by both the literature
found in our SMS and TDQM, some concepts were informed by the literature only,
and some were informed by TDQM [5] only (see Table 9). By utilizing TDQM as a
reference, we could easily identify counterparts for RTD quantification.

6.1 The Coding Process

Adopting the terminology defined in Thematic Analysis [23], we define our Dataset,
Data Item, and Data Extract as follows. Our Dataset is the set of 18 primary studies
that resulted from the screening process of the SMS (See Figure 1). A Data Item is
one primary study. A Data Extract is a chunk of data that has been identified within
and extracted from a data item. This could be a phrase, a sentence, a paragraph, or
a set of paragraphs in the full text of the primary study.

The first author identified and extracted various RTD quantification concepts as
Initial Codes (see Figure 2 for examples) from the primary studies. The first author
then mapped these initial codes extracted from the primary studies to a set of abstract
RTDQ concepts (i.e., themes) that were identified as recurring themes among the vari-
ous RTD quantification concepts extracted from the primary studies. An abstract RTD
Quantification concept succinctly captures the notion described by multiple various
RTD quantification concepts extracted from the primary studies.

The first author traversed all the primary studies iteratively, extracting new con-
cepts, mapping them to abstract concepts, and then re-traversing the primary studies
when a new abstract RTD quantification concept was identified. Every time an exist-
ing abstract RTD quantification concept was not able to capture the concept extracted
from a primary study, a new abstract concept was introduced. Every time a new
abstract concept was introduced, it was discussed with the other authors.

Mappings between the extracted concepts (initial codes) and abstract concepts
(themes) were examined by at least two other authors than the first author during the
process. When there was disagreement, it was discussed and resolved during meetings.
An example of a disagreement that occurred between the authors was regarding the
concept ‘Requirements Engineering (RE) Step’. However, the authors finally came to
the conclusion that the model must model the real world as closely as possible but
should not be too complicated. Therefore, it was decided that detailed steps of RE do
not need to be modeled. All abstract concepts were discussed among all authors for
agreement before they were finalized as model concepts. The final set of 33 abstract
RTDQ concepts, agreed among all authors, can be seen in Figure 2 also listed in Table
9.

We could further categorize these abstract RTDQ concepts (themes) into high-level
categories (high-level themes): process/time, cost, benefit, probability, and priority,
similar to Perera et al.’s work [5]. These high-level themes were recurrent among the
concepts extracted in our study for RTD quantification as well.

Relationships between the RTD quantification concepts in RTDQM were informed
by TDQM, work of Perera et al. [5], as well as derived from the literature. For example,
the three RTD types described by Lenarduzzi et al. [13] informed the relationships
in our model between the concepts RTD Item and RE Step, and RTD Item and
Implementation Step describing the introduction of RTD Items during these steps

24

(RE Step includes capturing User needs and producing Requirement specifications).
Relationships related to costs and benefits were mainly informed by TDQM [5], for
example, the relationships between the costs and benefits of rectifying a RTD Item and
the Interest incurred by a RTD Item. We could identify similar relationships between
RTDQ concepts.

We defined two levels of coding for the Concept mappings, Direct (D) and Inferred
(I), to show how closely the paper concepts mapped to the model concepts (i.e.,
the abstract RTDQ concepts) — ‘the degree to which a paper concept maps to an
abstract concept’ since not all concepts derived from the papers precisely mapped to
the abstract concepts, some inference had to be made in some cases based on the
full text of the papers. A Metric (M) mapping was defined to indicate the mapping
between metrics described in the paper and the model concepts if we could determine
that the paper provided some form of measurement to quantify the model concept.
A Relationship mapping (R) was defined to capture if two model concepts had a
relationship between them. In some cases, some model concepts were directly related,
while in some cases, they were indirectly related.

• ‘Concept’ mappings

– ‘Direct’ mapping — indicated by (D) in Figure 3: The paper concept
(initial code) corresponds exactly to the model concept.

– ‘Inferred’ mapping — indicated by (I): The paper concept refers to the
model concept in some way but does not correspond exactly. i.e., it is inferred
that the paper concept corresponds to the model concept.

• ‘Metric’ mapping — indicated by (M): The paper discusses some form of
measurement that contributes to the quantification of the model concept.

• ‘Relationship’ mapping — indicated by (R): The paper discusses or indicates
the relationship between two model concepts (or between a model concept and a
paper concept corresponding to a model concept).

An example of the systematic coding process is discussed below in Section 6.2, with
reference to Figure 3, which illustrates the detailed mappings performed for Ernst,
P7 (notation — P[n]) [2]. See our Replication Package1 for the detailed mappings
performed for the rest of the primary studies.

6.2 An Example of the Mappings

Figure 3 illustrates the mappings between the concepts related to RTD quantifica-
tion extracted from the primary study (initial codes) and abstract RTDQ concepts
(themes) of an example primary study, Ernst, P7 [2].

In Figure 3, the rows in the matrix pertain to the ten initial codes from P7 listed as
C1 to C10. Each initial code is mapped individually to the abstract RTDQ Concepts
listed in the columns of the matrix, denoted 1-33. The legend for the paper concepts
(initial codes C1 - C10) can be found below the matrix, while the legend for the
abstract RTDQ concepts can be found on the right side of the matrix.

1Replication Package: https://doi.org/10.5281/zenodo.10900222

25

https://doi.org/10.5281/zenodo.10900222

�
✁
✂
✄
☎
�
✆
✄
☎
✄
✝
✞

✆
✟
✠
✆
✡
☛
✄
✂

☞

✌
✍
✎
✏
✑
✎
✎
✒

✓

✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚ ✍
✛
✙
✜
✗✙
✎
✎
✏✗
✙
✜
✢
✚ ✎
✣

✤

✥✦
✧
✏✘
★
✩✗
✪
✎
✒
✧
✏
✒
✧
✫
✖
✘
✎
✙
✚ ✎
✒
✬
✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚

✭

✮
✧
✫
✖
✘
✎
✙
✚ ✎
✒
✦✖
✙
✫
✚✗
✧
✙
★
✩
✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚

✯

✮
✧
✫
✖
✘
✎
✙
✚ ✎
✒
✑
✧
✙
✰✦
✖
✙
✫
✚✗
✧
✙
★
✩
✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚

✱

✔
✲
✮

✳✚
✎
✘

✴

✔
✲
✮

✔
✎
✫
✚✗
✦✵
✗✙
✜
✢
✚ ✎
✣

✶

✷
✧
✙
✚ ✎
✸
✚

�
✁
✂
✄
☎
�
✆
✄
☎
✄
✝
✞

✆
✟
✠
✆
✡
☛
✄
✂

✹

✔
✗ ✍
✺

☛
☎
✟
✆
✡
✂
✂
✻
✄
✼✽
✡

✆
✟
✂
✄

✁
✡
✠
✡
✾
✼ ✄

☛

☛
☎
✼ ✟

☞
✿

✢
✫
✎
✙
★
✏✗
✧

✼ ✠
✼ ✄
✼ �
❀
✆
✟
✝
✡
✂

❁

❂

❃

❄

❅

❆

❇

❈

❉

❁
❊

❁
❁

❁
❂

❁
❃

❁
❄

❁
❅

❁
❆

❁
❇

❁
❈

❁
❉

❂
❊

❂
❁

❂
❂

❂
❃

❂
❄

❂
❅

❂
❆

❂
❇

❂
❈

❂
❉

❃
❊

❃
❁

❃
❂

❃
❃

☞
☞

❋
✖
★
✩✚
✗ ✵
●
✚✚
✏✗
❍
✖
✚ ✎

☛
❇

☞
✓

✥■
✏✗
✧
✏✗
✚✗
✪
✎
✒
✬
✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚

✷
☞

✝

✼

✼

☞
✤

✮
✎
✍
✗✜
✙
✢
✚ ✎
✣

✷
✓

✮

☞
✭

✮
✎
✍
✗✜
✙
❏
●
✏✫
❑
✗✚
✎
✫
✚✖
✏★
✩
✮
✎
✫
✗ ✍
✗ ✧
✙

✷
✤

✝

☎

☞
✯

✳✘
✣
✩✎
✘
✎
✙
✚ ★
✚✗
✧
✙
✫
✧
✍
✚
✧
✦
●
✏✫
❑
✗✚
✎
✫
✚✖
✏★
✩❏
✮
✎
✍
✗✜
✙
✒
✎
✫
✗ ✍
✗ ✧
✙

✷
✭

☎

✝

☞
✱

✲
✧
✚ ★
✩
✷
✧
✍
✚
✧
✦
★
✔
✛

✢
✚ ✎
✣

✷
✯

☎

✝

☞
✴

✷
✧
✍
✚
✧
✦
✔
✎
✚✗
✦✵
✗✙
✜
✔
✲
✮

✷
✱

✼

☞
✶

✔
✲
✮

✳✙
✚ ✎
✏✎
✍
✚

✷
✴

☎

✼

☞
✹

✑
✎
▲

✷
✧
✒
✎
✷
✧
✍
✚
★
✍
✍
✧
✫
✗ ★
✚ ✎
✒
▲
✗✚
❑
✔
✲
✮

✷
✶

☎

✮

✓
✿

✔
✎
▲
✧
✏✺
✷
✧
✒
✎
✷
✧
✍
✚
★
✍
✍
✧
✫
✗ ★
✚ ✎
✒
▲
✗✚
❑
✔
✲
✮

✷
✹

✝

✓
☞

✑
✎
▲

✮
✎
✍
✗✜
✙
✷
✧
✍
✚
★
✍
✍
✧
✫
✗ ★
✚ ✎
✒
▲
✗✚
❑
✔
✲
✮

✷
☞
✿

✽

✓
✓

✔
✎
▲
✧
✏✺
✮
✎
✍
✗✜
✙
✷
✧
✍
✚
★
✍
✍
✧
✫
✗ ★
✚ ✎
✒
▲
✗✚
❑
✔
✲
✮

✓
✤

✑
✎
▲

✔
✛

✷
✧
✍
✚
★
✍
✍
✧
✫
✗ ★
✚ ✎
✒
▲
✗✚
❑
✔
✲
✮

✓
✭

✔
✎
▲
✧
✏✺
✔
✛

✷
✧
✍
✚
★
✍
✍
✧
✫
✗ ★
✚ ✎
✒
▲
✗✚
❑
✔
✲
✮

☎
✄
✝
✞

✆
✟
✠
✆
✡
☛
✄
✂

✾
☎
✟
✽

☛
❇
▼✼
✠
✼ ✄
✼ �
❀
✆
✟
✝
✡
✂
◆

✓
✯

✮
✧
✫
✖
✘
✎
✙
✚ ★
✚✗
✧
✙
✫
✧
✍
✚
✧
✦
★
✏✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚

✷
☞

✳✙
✚ ✎
✏✎
✍
✚
✧
✙
✚❑
✎
✒
✎
❍
✚
✧
✏
✫
✧
✍
✚
✧
✦
✙
✎
✜
✩✎
✫
✚✗
✙
✜
✚❑
✎
✒
✎
❍
✚
✗ ❖
✎
❖P
✔
★
✚ ✎
✧
✦
✗✙
✫
✏✎
★
✍
✎
✧
✦
✚❑
✎
✒
✗ ✍
✚ ★
✙
✫
✎

✓
✱

◗
✎
✙
✎
✦✗
✚
✧
✦
✔
✎
✫
✚✗
✦✵
✗✙
✜

✷
✓

■
✏✧
✒
✖
✫
✚
❘
★
✩✖
✎
✥✣
✧
✍
✍
✗ ❍
✩✵
✘
✎
★
✍
✖
✏✎
✒
✗✙
✍
★
✚✗
✍
✦✗
✎
✒
✏✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚ ✍
✬

✓
✴

◗
✎
✙
✎
✦✗
✚
✧
✦
✚ ★
✺
✗✙
✜
✔
✲
✮

✷
✤

✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚ ✍
■
❑
★
✍
✎
✧
✦
✢
✵
✍
✚ ✎
✘

✮
✎
✍
✗✜
✙

✓
✶

◗
✎
✙
✎
✦✗
✚
✧
✦
✙
✧
✚
✚ ★
✺
✗✙
✜
✔
✲
✮

✷
✭

✢
✣
✎
✫
✗ ✦
✗ ✫
★
✚✗
✧
✙
✍

✓
✹

■
✏✧
✒
✖
✫
✚
❘
★
✩✖
✎

✷
✯

✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚
✥✗
❖✎
❖P
✜
✧
★
✩✍
✚❑
★
✚
✫
★
✣
✚✖
✏✎
✒
✎
✍
✗ ✏
✎
✒
✣
✏✧
✣
✎
✏✚
✗ ✎
✍
✧
✦
✚❑
✎
✍
✵
✍
✚ ✎
✘
✬

✤
✿

✛
✙
✒
✖
✍
✎
✏
✍
★
✚✗
✍
✦★
✫
✚✗
✧
✙
✩✎
❙
✎
✩

✷
✱

✑
✧
✙
✰✫
✧
✒
✎
★
✏✚
✗ ✦
★
✫
✚

✤
☞

✔
✲
✮

✳✙
✚ ✎
✏✎
✍
✚
■
✏✧
❍
★
❍
✗ ✩
✗✚
✵

✷
✴

❚
★
✙
✒
★
✚ ✧
✏✵
✧
✏
✣
✏✎
✦✎
✏✏
✎
✒
✚ ✧
✍
★
✚✗
✍
✦✵

✤
✓

✔
✲
✮

✳✚
✎
✘

■
✏✗
✧
✏✗
✚ ✵

✷
✶

✮
✧
✘
★
✗✙
★
✍
✍
✖
✘
✣
✚✗
✧
✙
✍

✤
✤

■
✏✗
✧
✏✗
✚ ✵
✧
✦
★
✔
✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚

✷
✹

✮
✗ ✍
✚ ★
✙
✫
✎
❍
✎
✚ ▲
✎
✎
✙
✚❑
✎
✧
✣
✚✗
✘
★
✩
✏✎
✕
✖
✗ ✏
✎
✘
✎
✙
✚ ✍
✍
✣
✎
✫
❖
★
✙
✒
✚❑
✎
★
✫
✚✖
★
✩
✍
✵
✍
✚ ✎
✘

✗✘
✣
✩✎
✘
✎
✙
✚ ★
✚✗
✧
✙

✷
☞
✿

✮
✗ ✍
✚ ★
✙
✫
✎
✘
✎
✚ ✏
✗ ✫
✥✒
✗ ✍
✚ ★
✙
✫
✎
❍
✎
✚ ▲
✎
✎
✙
✚ ▲
✧
✍
✎
✚ ✍
✧
✦
✍
✧
✩✖
✚✗
✧
✙
✗✘
✣
✩❖
✚ ★
✍
✺
✍
✬

✽
�
☛
☛
✼ ✠
❯
✂

✝

✮
✗ ✏
✎
✫
✚
✷
✧
✙
✫
✎
✣
✚
❚
★
✣
✣
✗✙
✜

✼

✳✙
✦✎
✏✏
✎
✒
✷
✧
✙
✫
✎
✣
✚
❚
★
✣
✣
✗✙
✜

✽

❚
✎
✚ ✏
✗ ✫
❚
★
✣
✣
✗✙
✜

☎

✔
✎
✩★
✚✗
✧
✙
✍
❑
✗✣
❚
★
✣
✣
✗✙
✜

❱
★
✍
✧
✙
✎
✧
✏
✘
✧
✏✎
✷
✧
✙
✫
✎
✣
✚
❚
★
✣
✣
✗✙
✜
✍
✥✮

✧
✏
✳ ✬

❱
★
✍
✧
✙
✎
✧
✏
✘
✧
✏✎
✷
✧
✙
✫
✎
✣
✚
★
✙
✒
❚
✎
✚ ✏
✗ ✫
❚
★
✣
✣
✗✙
✜
✍
✥✮

✧
✏
✳
★
✙
✒
❚
✬

F
ig
.
3

M
a
p
p
in
g
s
p
er
fo
rm

ed
fo
r
E
rn

st
et
.
a
l.
,
P
7
[2
]

26

Each cell in the matrix pertaining to the intersection of an initial code and an
abstract concept is assigned a label for either a concept mapping ‘D’ or ‘I’ (according
to whether the concept extracted from the primary study corresponds exactly to the
abstract RTDQ concept or if it was inferred that they relate) or, a metric mapping
‘M’ if the approach concept is a form of measurement for the abstract concept. A
relationship mapping ‘R’ is used if there can be a relationship between the model
concept the initial code is mapped to and another model concept listed in the columns
of the matrix.

To describe this further (refer to the cells outlined in red in Figure 3), Ernst
explicitly discuss the ‘Requirements phase of system design (C3)’; therefore, the cell is
labeled as ‘D’, indicating the direct mapping to the abstract RTDQ concept ‘Require-
ments Engineering Step’ (Column 2). In comparison, ‘non-code artifact (C6)’ is given
mapping ‘I’ to the abstract RTDQ concept ‘Requirement’ (Column 3), indicating
that we inferred this based on the text in the primary study. However, this is not
the only mapping to ‘Requirement’ (Column 2) since the author explicitly discusses
‘Requirement (C5)’ and ‘Specifications (C4)’, which we have given mapping ‘D’.

The ‘Distance metric’ (C10) is given mapping ‘M’ since it describes a form of
measurement for the abstract RTDQ concept ‘RTD Item’.

The relationship mapping ‘R’ between row C3 (which is mapped to column 2, ‘RE
Step’) and column 13 (‘Design Step’) indicates that there can be a relationship between
the concepts ‘RE Step’ and ‘Design Step’. This relationship is illustrated in Figure 6
(an indirect relationship as variants of ‘Development Steps’ in the combined model of
TDQM and RTDQM) later in Section 7. The relationship mapping ‘R’ between Row
C4 ‘Specifications’ (mapped as ‘D’ to ‘Requirement’) and Column 2 (‘RE Step’) indi-
cates a relationship between ‘Requirement’ and ‘RE Step’. Similarly, the relationship
mapping ‘R’ between Row C5 ‘Requirement’ (mapped as ‘D’ to ‘Requirement’) and
Column 2 (‘RE Step’) also indicates a relationship between ‘Requirement’ and ‘RE
Step’ (Column 2).

7 Modelling RTD Quantification: The
Requirements Technical Debt Quantification
Model (RTDQM) — Results (RQ2)

The Technical Debt Quantification Model (TDQM) developed by Perera et al. [5]
captured the important concepts related to the quantification of code-related TD types
and illustrated the relationships between those concepts. Modeling RTD quantification
in our work resulted in the RTD Quantification Model (RTDQM) that captures
important concepts related to RTD quantification and illustrates the relationships
between them (See Figures 4, 5 and Table 9 — First column: RTD Quantification
Concepts, Last column: code-related counterparts from TDQM [5]).

Evidence from the literature (mappings resulting from the coding process) for
all model concepts and relationships can be found in our Replication Package1. The
number of primary studies and the number of initial codes from the primary studies

1Replication Package: https://doi.org/10.5281/zenodo.10900222

27

https://doi.org/10.5281/zenodo.10900222

supporting each model concept can be seen in Table 9. Below, we describe examples
under each subsection describing parts of our conceptual model.

Note that RTDQM is presented in three steps as follows for ease of understanding
of the reader:

1. Section 7.1 and Figure 4 presents RTDQM with the RTD quantification concepts
and relationships modelling the functional aspect of requirements

2. Section 7.2 and Figure 5 presents the complete RTDQM with the RTD quan-
tification concepts and relationships modelling the functional and non-functional
aspects of requirements

3. Section 7.3 and Figure 6 presents the combined model where the complete
RTDQM is combined with TDQM, Perera et al.’s work [5]. Through this, we can
observe how the impact of RTD flows through to the rest of the development stages.

7.1 Modelling RTD Quantification

7.1.1 User Need, RE Step, Total Cost of a RE Step, (Documented)
Requirement and how it connects to the Implementation of
Features

See Figure 4. User needs (e.g., P2 User’s needs [13], P3 stakeholder expectations
[24]) for a software product that must be developed are usually captured through a
Requirements Engineering (RE) Step (e.g., P7 Requirements Phase of System Design
[2], P12 Specifying requirements [31]), which incurs a cost, the Total Cost of a RE
Step similar to an Implementation Step incurring a Total Cost of Implementation in
TDQM [5].

The RE Step produces one to many Documented Requirements (e.g., P1 SRS [4],
P3 User stories [24], P6 Requirements specification [26], P6 A natural language formal-
ization of a user need [26], P7 Specifications [2], P9 Documented Quality Requirement
[28]). A Feature (the output of an Implementation Step in TDQM) is the implemen-
tation of either a single or multiple functional requirements according to Belle et al.
[25]. This is indicated by the relationship between the ‘Functional Requirement’ and
‘Feature’ in Figure 4.

Non-functional requirements can also generate functional requirements or act as
constraints on functional requirements (or feature implementation) [40] — we discuss
this in Section 7.2 (illustrated in Figure 5).

7.1.2 RTD Items

Following the 16162 model [11], Perera et al. [5] modeled CTD as TD Items in TDQM.
RTD could be modeled similarly as RTD Items. The difference is, a CTD Item is a
software code artifact (e.g., Code Smell, Design Smell, Architectural Smell) whilst a
RTD Item is a Requirement artifact (e.g., P2 Requirement Smell [13], P3 Outdated
requirements [26], P2 and P16 Inadequately or insufficiently or incompletely imple-
mented requirements [13, 35], P11 Inadequately satisfied non-functional Requirements
[30], P9 Missing or outdated Quality Requirements [28]).

28

�✁✂ ✄☎✆✝

�✁✂ �✆✞☎✟✠✟✞✡☎✟☛☞

✌☎✆✍

✎✆☞✆✠✟☎ ☛✠ ☎✡✏✟☞✑

�✁✂

✎✆☞✆✠✟☎ ☛✠ ☞☛☎ ☎✡✏✟☞✑

�✁✂

�✆✒✓✟✔✆✝✆☞☎✕

✖☞✑✟☞✆✆✔✟☞✑ ✗�✖✘

✌☎✆✍

✙✔✟☛✔✟☎☎✚

✄✝✍✛✆✝✆☞☎✡☎✟☛☞

✌☎✆✍

✜✆✡☎✓✔✆

✢✣✤✥✦✧★✩

✪

✫✬✬✭

✣★✧✮✯✰✯★✩✱ ★✲✯✳✯✭✴✮★✩

✪

✯✭✮✣✤✥✦✧★✩

✪

✴✧✧✣✦★✩

✪

✴✧✧✣✦★✩

✪

✯✭✮✣✤✥✦✧★✩

✪

✫✬✬✭

✫✬✬✭✫✬✬✭

✪

✵✴✩ ✴

✯✭✧✦✣✩

✪

✶☛✕☎ ☛✠ ✔✆✞☎✟✠✚✟☞✑

�✁✂

✎✆☞✆✠✟☎ ☛✠ ✔✆✞☎✟✠✚✟☞✑

�✁✂

✴✧✧✣✦★✩

✪

✗✂☛✞✓✝✆☞☎✆✷✘

�✆✒✓✟✔✆✝✆☞☎

✢✣✤✥✦✧★✩

✪

✫✬✬✭

✗✙✔✟☛✔✟☎✟✕✆✷✘

�✆✒✓✟✔✆✝✆☞☎

✙✔☛✷✓✞☎ ✸✡✛✓✆ ✌☛✠☎✹✡✔✆ ✙✔☛✷✓✞☎
✪

✵✴✩ ✴

✺✕✆✔ ✻✆✆✷

✩✴✮✯✩✰✯★✩

✪

✫✬✬✭

✧✤✭✮✣✯✼✦✮★✩ ✮✤

✪

✫✬✬✭

✧✴✢✮✦✣★✥ ✮✵✣✤✦✽✵

✫✬✬✭

✪

✯✭✮✣✤✥✦✧★✩

✫✬✬✭

✙✔✟☛✔✟☎☎✚

✯✭✧✦✣✩
✪

✁☛☎✡✛ ✶☛✕☎ ☛✠ �✖

✌☎✆✍

�✁✂ ✄☞☎✆✔✆✕☎

✯✭✧✦✣✩

✪

✻✆✹ ✶☛✷✆ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎✾

�✁✂

�✆✹☛✔✏ ✶☛✷✆ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎✾

�✁✂

�✆✹☛✔✏ �✖ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎✾

�✁✂

✻✆✹ �✖ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎✾

�✁✂

✧✤✭✩✮✯✮✦✮★✩ ✤✰

✙✔☛✿✡✿✟✛✟☎✚

✪

✵✴✩ ✴

✂☛✞✓✝✆☞☎✡☎✟☛☞

✶☛✕☎ ☛✠ ✡

�✆✒✓✟✔✆✝✆☞☎

✪

✧✤✭✩✮✯✮✦✮★✩ ✤✰

✫✬✬✭

✪

✵✴✩ ✴

✗✂☛✞✓✝✆☞☎✆✷✘

✜✓☞✞☎✟☛☞✡✛

�✆✒✓✟✔✆✝✆☞☎

✯✳✢✲★✳★✭✮★✥ ✴✩

✪✬✬✭

✪✬✬✭

�✆✛✡☎✟☛☞✕✾✟✍

✄✝✍✛✟✆✷

✔✆✛✡☎✟☛☞✕✾✟✍

✙✔☛✞✆✕✕❀✁✟✝✆

✶☛✕☎

✎✆☞✆✠✟☎

✙✔✟☛✔✟☎✚

✙✔☛✿✡✿✟✛✟☎✚

Fig. 4 RTDQM (functional aspect) — Concepts newly added can be found in Table 9, Right
of dotted line shows the connection to TDQM, Perera et al.’s work [5] — the combined model is
illustrated in Figure 6 and discussed in Section 7.3

Similar to CTD, RTD could also be introduced either deliberately or inadvertently,
either during RE (e.g., when capturing User Needs or when Specifying Requirements
in the Specification, illustrated by the relationship ‘RE Step introduces RTD Item’

29

— These instances are described as RTD Types 0 and 1 by Lenarduzzi et al. [13]
and by Charalampidou et al, as Requirements Documentation Debt [38]) or during
Implementation (e.g., mismatch implementation, missing features, partially satisfied
requirements, illustrated by the relationship ‘Implementation Step introduces RTD
Item’— described by Lenarduzzi et al. as Type 2, also by Ernst, Belle et al., and Abad
et al. [2, 4, 13, 25, 26]).

7.1.3 RTD Rectifying Step and Cost of Rectifying RTD

In TDQM, a CTD Item can be eliminated via a Refactoring Step that incurs a
Refactoring Cost. Similarly, a RTD Item can be eliminated or rectified via a RTD
Rectification Step and incurs a Cost of Rectifying RTD. RTD can be rectified either
during RE if identified early on before implementation or during Implementation if
identified during that stage.

Lenarduzzi et al. [13] (P2) describe the Cost of Rectifying RTD as the cost to
formalize and implement the neglected needs, the Cost to fix the Requirement Smells
within a SRS, and the Cost of comparing the current implementation with the set
of possible changes. Abad et al. [4] (P1) describe it as the Cost of exercising the
option. Other examples include P4 Cost of RTD payment [1], P8 Cost of reducing or
eliminating or resolving the obstacle (Principal) [41], and P14 Cost to adjust problems
caused by debt [33].

7.1.4 RTD Interest and RTD Interest Probability

Similar to the extra or additional cost that is the consequence of the presence of CTD
Items (i.e., TD Interest) a RTD Item can incur a RTD Interest that could occur prior to
the implementation phase, e.g., as an extra cost to clarify an ambiguous formalization
of a Requirement during Requirements Specification or as an extra cost to conduct
additional interviews with Users (New RE Costs associated with RTD, Rework RE
Costs associated with RTD) or during the implementation phase, e.g., as an extra cost
to implement a workaround for a mismatch implementation (Rework Cost associated
with RTD, New Code Cost associated with RTD) [4], [1], [2], [13]. Interest components
are further described below.

However, there is a probability associated with the Interest since some requirements
might not make a difference if unmet (e.g., P8 Likelihood of the obstacle occurring
[41], P13 Estmiated Probability of Interest [32]). For example, RTD Items pertaining
to an unused feature will not incur Interest [4]. This is modeled by the concept ‘RTD
Interest Probability’.

7.1.5 RTD Interest constituents

In TDQM, Perera et al. [5] decomposed the Implementation Cost of a Feature and
CTD Interest into constituents, New Code Cost, and Rework Code Cost (i.e., costs
incurred due to having to write new code or do rework). We saw the need to similarly
decompose RTD Interest as well since RTD can also impact software code and there
might be instances where new code must be written as well as instances where rework
must be done. For example, if the Requirements change while the implementation is

30

done, then presumably, the code has to change, and some of those changes will require
writing new code while some will require changing existing code. The existing code may
have no CTD at all. Therefore, this cost differs from the CTD Interest constituents,
New code cost associated with CTD, and Rework code cost associated with CTD. In
other words, RTD Interest can occur regardless of the presence of CTD.

New Code Cost associated with RTD and the Rework Code Cost associated with
RTD, model the cascading impact that can be incurred in the implementation phase
due to RTD Items introduced in the RE phase or as the extra work to compensate
for RTD introduced as a mismatch implementation during the implementation phase.
Lenarduzzi et al. [13] (P2) discuss RTD Interest in terms of extra effort related to the
current development stage, or the implementation of the selected change to address
the amount of change between the current implementation and the SRS, which we
see as examples for RTD Interest constituents New Code Cost associated with RTD
and Rework Cost associated with RTD. Other examples for these RTD Interest con-
stituents include P10 Rework on Code (extra rework due to RTD) [29] and P16 Need
for refactoring [35].

RTD Interest can have other constituents, such as extra costs incurred during the
RE Step that we initially referred to as ‘RE Costs associated with RTD’ in our previ-
ous work [3], e.g., the extra cost to perform additional interviews with Users in case the
captured User Needs are incomplete. In this paper, we have represented the concept
‘RE Costs associated with RTD’ as two new concepts, ‘New RE Costs associated with
RTD’ and ‘Rework RE Costs associated with RTD’, to illustrate the new and rework
aspects of RE costs. Since Requirements are separate from code (i.e., RE is separate
from Implementation), these costs are not represented by ‘New code cost associated
with RTD’ or ‘Rework code cost associated with RTD’ concepts. Examples of these
Interest constituents include P14 Impact of New requirement (impact of lack of infor-
mation or lack of non-functional documentation) [33], P10 Rework on Requirements
[29], P14 Impact of changed requirement (volatility of requirement) [33].

The extra costs in the RE phase could also occur due to a mismatch implementation
(RTD introduced by the implementation) if this means having to do extra interviews
with Users for feedback. Lenarduzzi et al. [26] (P2) refer to the cost related to the
harmfulness of Requirement Smells. This can possibly incur all constituents of RTD
Interest that we describe.

7.1.6 Benefit of Rectifying RTD, Benefit of taking RTD and
Benefit of not taking RTD

Taking RTD can be beneficial in the short term (Benefit of taking RTD) as it allows
faster delivery to market to gain a competitive advantage by delivering the most
wanted set of Features, i.e., Minimum Viable Product (MVP). P10 describes this as
the value for acquiring RTD, e.g., faster time to market [14]. Other examples include
P1 Standard deviation of the rate of return on the value of the selected requirements
over time [4].

However, accumulating RTD can be detrimental in the long run as it could
impact the downstream activities, such as the software implementation phase. In such

31

instances, the developers might end up developing the wrong product for their cus-
tomer that might have to be scrapped completely [2] (P7). Therefore, rectifying RTD
early on would be more beneficial in the long run, during the early stages of the prod-
uct development lifecycle prior to implementation. The benefit accrued by rectifying
RTD is modeled as the ‘Benefit of Rectifying RTD’. This was informed by the ‘Benefit
of Refactoring’ in TDQM [5] (See Table 9).

Additionally, we modeled the concept ‘Benefit of not taking RTD’ since we encoun-
tered instances where this concept will be useful to quantify based on the evidence
from the literature. P17 describes this as the benefit of an architectural design decision
that does not introduce RTD [36]. Other examples include P1 Standard deviation of
the rate of return on the value of the selected requirements over time [4], P11 Value of
architectural design decisions [30], P15 Value importance, worth or desirability, [34]
and P15 Expected Return (expected returns of the requirements) [34].

7.1.7 RTD Item Priority, Priority of a (Documented) Requirement
and (Prioritized) Requirement

RTD Items can be prioritized for rectification or elimination (P7 Mandatory or pre-
ferred to satisfy [2], P8 Priority of an Obstacle [31], similar to CTD Items being
prioritized for rectification or elimination in TDQM [5] — e.g., prioritized Code Smells
are eliminated by refactoring software code.

Requirements can also be prioritized for implementation as Features (e.g., P12
Priority of a requirement [41], P15 Requirement’s importance [34], P17 Importance
of Quality Attribute [36]), resulting in the introduction of RTD if the wrong set of
requirements is prioritized, i.e., sub-optimal prioritization of requirements [2, 27, 34].

7.2 Modelling the Non-Functional aspect of Requirements for
RTD Quantification

Software requirements can be both functional and non-functional. Functional require-
ments are implemented as software Features while non-functional requirements are
(usually) implemented as architectural or design decisions [32, 36]. Non-functional
requirements can be constraints for functional requirements (i.e., constraints on a
service or functions offered by the system) [40]. Non-functional requirements can
also generate one or more functional requirements. This is indicated by the relation-
ship ‘may generate/ constraint’ between Functional Requirement and Non-Functional
Requirement in Figure 5.

For example, “Must remain confidential among authorized users.” — This may
appear non-functional. However, when the specification is developed in more detail,
these requirements can generate functional requirements, such as the need to have
a mechanism for user authentication [40]. According to Sommerville, non-functional
requirements often apply to the software system as a whole and affect the system
architecture rather than individual system components or features [40].

We modeled the concept ‘Non-functional Requirement’ (e.g., P4 Functional
and non-functional requirements [1], P11 Sustainability Requirements [30]) and its
relationship to ‘Functional Requirement’ (e.g., P4 Functional and non-functional

32

�✁✂ ✄☎✆✝

�✁✂ �✆✞☎✟✠✟✞✡☎✟☛☞

✌☎✆✍

✎✆☞✆✠✟☎ ☛✠ ☎✡✏✟☞✑

�✁✂

✎✆☞✆✠✟☎ ☛✠ ☞☛☎ ☎✡✏✟☞✑

�✁✂

�✆✒✓✟✔✆✝✆☞☎✕

✖☞✑✟☞✆✆✔✟☞✑ ✗�✖✘

✌☎✆✍

✙✔✟☛✔✟☎☎✚

✄✝✍✛✆✝✆☞☎✡☎✟☛☞

✌☎✆✍

✜✆✡☎✓✔✆

✢✣✤✥✦✧★✩

✪

✪✫✫✬

✣★✧✭✮✯✮★✩✰ ★✱✮✲✮✬✳✭★✩

✪

✮✬✭✣✤✥✦✧★✩

✪

✳✧✧✣✦★✩

✪

✳✧✧✣✦★✩

✪

✮✬✭✣✤✥✦✧★✩

✪

✴✫✫✬

✴✫✫✬

✪

✵✳✩ ✳

✮✬✧✦✣✩

✪

✶☛✕☎ ☛✠ ✔✆✞☎✟✠✚✟☞✑

�✁✂

✎✆☞✆✠✟☎ ☛✠ ✔✆✞☎✟✠✚✟☞✑

�✁✂

✳✧✧✣✦★✩

✪

✗✂☛✞✓✝✆☞☎✆✷✘

�✆✒✓✟✔✆✝✆☞☎

✢✣✤✥✦✧★✩

✪

✴✫✫✬

✙✔☛✷✓✞☎ ✸✡✛✓✆ ✌☛✠☎✹✡✔✆ ✙✔☛✷✓✞☎
✪

✵✳✩ ✳

✺✕✆✔ ✻✆✆✷

✩✳✭✮✩✯✮★✩

✪

✴✫✫✬

✧✤✬✭✣✮✼✦✭★✩ ✭✤

✴✫✫✬

✧✳✢✭✦✣★✥ ✭✵✣✤✦✽✵

✴✫✫✬

✪

✮✬✭✣✤✥✦✧★✩

✴✫✫✬

✮✲✢✱★✲★✬✭★✥ ✳✩

✪✫✫✬

✙✔✟☛✔✟☎☎✚

✮✬✧✦✣✩
✪

✁☛☎✡✛ ✶☛✕☎ ☛✠ �✖

✌☎✆✍

✮✬✧✦✣✩

✪

✙✔☛✾✡✾✟✛✟☎✚

✪

✵✳✩ ✳

✂☛✞✓✝✆☞☎✡☎✟☛☞

✶☛✕☎ ☛✠ ✡

�✆✒✓✟✔✆✝✆☞☎

✪

✧✤✬✩✭✮✭✦✭★✩ ✤✯

✴✫✫✬

✪

✵✳✩ ✳

✗✂☛✞✓✝✆☞☎✆✷✘

✻☛☞✿✜✓☞✞☎✟☛☞✡✛

�✆✒✓✟✔✆✝✆☞☎

✗✂☛✞✓✝✆☞☎✆✷✘

✜✓☞✞☎✟☛☞✡✛

�✆✒✓✟✔✆✝✆☞☎

❀✔✞❁✟☎✆✞☎✓✔✡✛❂

✂✆✕✟✑☞ ✂✆✞✟✕✟☛☞

✮✲✢✱★✲★✬✭★✥ ✳✩

✪✫✫✬

✴✫✫✬

✄✝✍✛✆✝✆☞☎✡☎✟☛☞

✶☛✕☎ ☛✠ ❀✔✞❁❃ ❂

✂✆✕✟✑☞ ✂✆✞✟✕✟☛☞

✮✬✧✦✣✩

✪

✂✆✕✟✑☞ ✌☎✆✍

✢✣✤✥✦✧★✩

✪

�✟✕✏

✶☛☞☎✆❄☎

✮✬✭✣✤✥✦✧★✩

✪

✴✫✫✬

✴✫✫✬

✲✳❅ ✽★✬★✣✳✭★✰ ✧✤✬✩✭✣✳✮✬✭✩

✪

✥★✢★✬✥✩ ✤✬

✮✬❆✤✱❆★✩

✖☞✷ ✺✕✆✔

✌✡☎✟✕✠✡✞☎✟☛☞ ❇✆❈✆✛
✳✩✩✤✧✮✳✭★✥ ❉✮✭✵

❊✓✡✛✟☎✚ ❀☎☎✔✟✾✓☎✆

✳✩✩✤✧✮✳✭★✥ ❉✮✭✵

✲★✳✩✦✣★✥ ✼❅

❊✓✡✛✟☎✚ ❀☎☎✔✟✾✓☎✆

✌✞✆☞✡✔✟☛

✳✩✩✤✧✮✳✭★✥ ❉✮✭✵

✪

✴✫✫✬

✪

✽★✬★✣✳✭★✩

✴✫✫✬

✴✫✫✬

✗✙✔✟☛✔✟☎✟✕✆✷✘

�✆✒✓✟✔✆✝✆☞☎
✴✫✫✬

�✁✂ ✄☞☎✆✔✆✕☎

�✆✹☛✔✏ ✂✆✕✟✑☞

✶☛✕☎✕ ✡✕✕☛✞✟✡☎✆✷

✹✟☎❁ �✁✂

�✆✹☛✔✏ ✶☛✷✆ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎❁

�✁✂

✻✆✹ ✂✆✕✟✑☞ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎❁

�✁✂

�✆✹☛✔✏ �✖ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎❁

�✁✂

✧✤✬✩✭✮✭✦✭★✩ ✤✯

✻✆✹ �✖ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎❁

�✁✂

✻✆✹ ✶☛✷✆ ✶☛✕☎✕

✡✕✕☛✞✟✡☎✆✷ ✹✟☎❁

�✁✂

�✆✛✡☎✟☛☞✕❁✟✍

✄✝✍✛✟✆✷

✔✆✛✡☎✟☛☞✕❁✟✍

✙✔☛✞✆✕✕❂✁✟✝✆

✶☛✕☎

✎✆☞✆✠✟☎

✙✔✟☛✔✟☎✚

✙✔☛✾✡✾✟✛✟☎✚

Fig. 5 Complete RTDQM (both functional and non-functional aspects) —Concepts newly
added can be found in Table 9, RTDQM is combined with TDQM, Perera et. al’s work [5] later in
Figure 6 (and discussed in Section 7.3)

requirements [1], P11 Functional Requirements [30], P15 Functional requirement [34])
via ‘may generate or constraint’, based on Sommerville [40]. The concepts ‘Design
Step’, ‘Architectural/Design decisions’, and ‘Implementation Cost of a Design Step’
were modeled to show the role of non-functional requirements in the architectural
design phase by connecting the concept ‘Non-functional Requirement’ with the con-
cept ‘Architectural/ design decisions’, based on Bass et al. [42] and the evidence from
the literature (P17, P11, P8, P13, P8) [27, 30–32, 36].

33

A prioritized set of requirements contributes to the Product Value (P18, P15)
[34, 37] and, in turn, to the level of end-user satisfaction when user needs are met.
In the case of non-functional requirements, the level of end-user satisfaction (e.g., P8
Level of satisfaction [27], P13 End user satisfaction [32], P15 Customer satisfaction
[34], P16 Stakeholder dissatisfaction [35]) can be related to, for example, the ful-
fillment of quality attributes such as performance, reliability, and availability (P17)
[36, 42]. However, the ability of a software product to satisfy non-functional require-
ments is mostly context-dependent. It may involve the consideration of risk when
making architectural or design decisions, for example, to satisfy quality attributes for
a given quality attribute scenario (P11, P12, P17) such as meeting a performance
threshold (P17, P11) [30, 36, 42].

The ‘Design Step’ can also introduce RTD when sub-optimal decisions are made
regarding what non-functional requirements are prioritized to be satisfied by the archi-
tectural or design decisions and strategies (P8) [27]. For example, the level of end-user
satisfaction regarding the system performance might not be met by a particular choice
of design. This could lead to ‘Rework Design Costs associated with RTD’ (P10 Rework
on Design [29]) and potentially ‘New Design Costs associated with RTD’ (P16 Design
changes [35]) in the future if the design does not cater to the user’s need (two of the
Interest constituents of RTD). The relationship between RTD Item and Design Step,
‘Design Step introduces RTD Item’ was informed by Kazman et al.’s (P17) [36] and
Costa et al.’s work (P13) [32].

The new concepts that were added to model the non-functional aspect of require-
ments can be seen in Table 9 (Third part of the Table). Figure 5 illustrates the complete
model, incorporating the concepts for modeling the non-functional aspect.

7.3 A combined model of RTD and TD Quantification

The Technical Debt Quantification Model (TDQM) developed by Perera et al. [5]
captured the important concepts related to TD Quantification for code-related TD and
illustrated the relationships between those concepts. Modeling RTD quantification in
our work resulted in the RTD Quantification Model (RTDQM) (discussed in Sections
7.1, 7.2) that captures the important concepts related to RTD quantification and
illustrates the relationships between them. In this Section, we combine the two models
to understand how RTD and code-related TD quantification fit together in the context
of software development and what we can learn from that.

See Figure 6. A Software Product is usually delivered through multiple Releases.
The releases are created through a Development Path that consists of a sequence of
Development Steps. These Development Steps could be either Requirements Engineer-
ing, Design, Implementation, and Testing, for example. Note that our current model
does not model all the development steps. For example, it does not model the Testing
step.

TDQM was initially developed by Perera et al. [5] to model the types of TD
related to software code, such as Design, Architecture, and Code TD. Therefore, our
‘Design Step’ in Figure 6 may have some overlap with the Design or Architectural TD
discussed in Perera et al.’s work, which we plan to investigate further in our future

34

�
✁
✂

✄☎
✆
✝

�
✁
✂

�
✆
✞
☎✟
✠✟
✞
✡
☎✟
☛
☞

✌
☎✆
✍

✎
✆
☞
✆
✠✟
☎
☛
✠
☎✡
✏
✟☞
✑

�
✁
✂

✎
✆
☞
✆
✠✟
☎
☛
✠
☞
☛
☎
☎✡
✏
✟☞
✑

�
✁
✂

�
✆
✒
✓
✟✔
✆
✝
✆
☞
☎✕

✖
☞
✑
✟☞
✆
✆
✔✟
☞
✑
✗�
✖
✘

✌
☎✆
✍

✙
✔✟
☛
✔✟
☎☎
✚

✄✝
✍
✛✆
✝
✆
☞
☎✡
☎✟
☛
☞

✌
☎✆
✍

✜
✆
✡
☎✓
✔✆

✢
✣✤
✥
✦
✧
★
✩

✪

✫
✬✬
✭

✣★
✧
✮✯
✰✯
★
✩
✱
★
✲✯
✳
✯✭
✴
✮★
✩

✪

✯✭
✮✣
✤
✥
✦
✧
★
✩

✪

✴
✧
✧
✣✦
★
✩

✪✴
✧
✧
✣✦
★
✩

✪

✯✭
✮✣
✤
✥
✦
✧
★
✩

✪

✫
✬✬
✭

✫
✬✬
✭

✪ ✵
✴
✩
✴

✯✭
✧
✦
✣✩

✪

✶
☛
✕
☎
☛
✠
✔✆
✞
☎✟
✠ ✚
✟☞
✑

�
✁
✂

✎
✆
☞
✆
✠✟
☎
☛
✠
✔✆
✞
☎✟
✠ ✚
✟☞
✑

�
✁
✂

✴
✧
✧
✣✦
★
✩

✪

✗✂
☛
✞
✓
✝
✆
☞
☎✆
✷
✘

�
✆
✒
✓
✟✔
✆
✝
✆
☞
☎

✢
✣✤
✥
✦
✧
★
✩

✪

✫
✬✬
✭

✙
✔☛
✷
✓
✞
☎
✸
✡
✛✓
✆

✌
☛
✠☎
✹
✡
✔✆
✙
✔☛
✷
✓
✞
☎

✪

✵
✴
✩
✴

✺
✕
✆
✔
✻
✆
✆
✷

✩
✴
✮✯
✩
✰✯
★
✩

✪ ✫
✬✬
✭

✧
✤
✭
✮✣
✯✼
✦
✮★
✩
✮✤ ✫

✬✬
✭

✧
✴
✢
✮✦
✣★
✥
✮✵
✣✤
✦
✽
✵

✫
✬✬
✭ ✪

✯✭
✮✣
✤
✥
✦
✧
★
✩

✫
✬✬
✭

✯✳
✢
✲★
✳
★
✭
✮★
✥
✴
✩

✫
✬✬
✭

✙
✔✟
☛
✔✟
☎☎
✚

✯✭
✧
✦
✣✩

✪

✁
☛
☎✡
✛
✶
☛
✕
☎
☛
✠
�
✖

✌
☎✆
✍

�
✁
✂

✄☞
☎✆
✔✆
✕
☎

✯✭
✧
✦
✣✩

✪

�
✆
✹
☛
✔ ✏
✂
✆
✕
✟ ✑
☞

✶
☛
✕
☎✕
✡
✕
✕
☛
✞
✟✡
☎✆
✷

✹
✟☎
✾
�
✁
✂

�
✆
✹
☛
✔ ✏
✶
☛
✷
✆
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

�
✁
✂

✻
✆
✹

✂
✆
✕
✟ ✑
☞
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

�
✁
✂

�
✆
✹
☛
✔ ✏
�
✖
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

�
✁
✂

✧
✤
✭
✩
✮✯
✮✦
✮★
✩
✤
✰

✙
✔☛
✿
✡
✿
✟✛
✟☎
✚

✪
✵
✴
✩
✴

✂
☛
✞
✓
✝
✆
☞
☎✡
☎✟
☛
☞

✶
☛
✕
☎
☛
✠
✡

�
✆
✒
✓
✟✔
✆
✝
✆
☞
☎

✪

✧
✤
✭
✩
✮✯
✮✦
✮★
✩
✤
✰

✫
✬✬
✭

✪

✵
✴
✩
✴

✻
☛
☞
❀✜
✓
☞
✞
☎✟
☛
☞
✡
✛

�
✆
✒
✓
✟✔
✆
✝
✆
☞
☎

✜
✓
☞
✞
☎✟
☛
☞
✡
✛

�
✆
✒
✓
✟✔
✆
✝
✆
☞
☎

❁
✔✞
✾
✟☎
✆
✞
☎✓
✔✡
✛ ❂

✂
✆
✕
✟ ✑
☞
✂
✆
✞
✟✕
✟☛
☞

✯✳
✢
✲★
✳
★
✭
✮★
✥
✴
✩

✫
✬✬
✭

✫
✬✬
✭

✂
✆
✕
✟ ✑
☞
✌
☎✆
✍

✢
✣✤
✥
✦
✧
★
✩

✪

�
✟✕
✏

✶
☛
☞
☎✆
❃
☎

✯✭
✮✣
✤
✥
✦
✧
★
✩

✪

✫
✬✬
✭

✫
✬✬
✭

✳
✴
❄
✽
★
✭
★
✣ ✴
✮★
✱
✧
✤
✭
✩
✮✣
✴
✯✭
✮✩

✪

✥
★
✢
★
✭
✥
✩
✤
✭

✯✭
❅
✤
✲❅
★
✩

✖
☞
✷
✺
✕
✆
✔

✌
✡
☎✟
✕
✠✡
✞
☎✟
☛
☞
❆
✆
❇
✆
✛

✴
✩
✩
✤
✧
✯✴
✮★
✥
❈
✯✮
✵

❉
✓
✡
✛✟
☎ ✚
❁
☎☎
✔✟
✿
✓
☎✆

✳
★
✴
✩
✦
✣★
✥
✼
❄

❉
✓
✡
✛✟
☎ ✚
❁
☎☎
✔✟
✿
✓
☎✆

✌
✞
✆
☞
✡
✔✟
☛

✴
✩
✩
✤
✧
✯✴
✮★
✥
❈
✯✮
✵

✪ ✫
✬✬
✭

✪

✽
★
✭
★
✣ ✴
✮★
✩

✫
✬✬
✭

✫
✬✬
✭

✻
✆
✹

�
✖

✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

�
✁
✂

✻
✆
✹

✶
☛
✷
✆
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

�
✁
✂

�
✆
✛✆
✡
✕
✆ ✪

✧
✤
✭
✩
✯✩
✮✩
✤
✰✫

✬✬
✭

✂
✆
❇
✆
✛☛
✍
✝
✆
☞
☎
✙
✡
☎ ✾

✧
✣★
✴
✮★
✥
✮✵
✣✤
✦
✽
✵

✫
✬✬
✭

✪

✂
✆
❇
✆
✛☛
✍
✝
✆
☞
☎
✌
☎✆
✍

✫
✬✬
✭

✯✩
✴
✩
★
❊
✦
★
✭
✧
★
✤
✰

✪✁
☛
☎✡
✛
✶
☛
✕
☎
☛
✠

✂
✆
❇
✆
✛☛
✍
✝
✆
☞
☎
✙
✡
☎ ✾

✁
☛
☎✡
✛
✶
☛
✕
☎
☛
✠

✂
✆
❇
✆
✛☛
✍
✝
✆
☞
☎
✌
☎✆
✍

✯✭
✧
✦
✣✩

✪

✯✭
✧
✦
✣✩

✪

✯✩
✴

✪

✯✩
✴

✪

✯✩
✴

✪

✯✩
✴

✪

✶
✁
✂

�
✆
✞
☎✟
✠✟
✞
✡
☎✟
☛
☞

✌
☎✆
✍

✯✩
✴

✪

✶
✁
✂

✄☎
✆
✝

✙
✔✟
☛
✔✟
☎☎
✚

✪ ✵
✴
✩
✴

✣★
✧
✮✯
✰✯
★
✩
✱
★
✲✯
✳
✯✭
✴
✮★
✩

✪

✫
✬✬
✭

✶
✁
✂

�
✆
✞
☎✟
✠✟
✞
✡
☎✟
☛
☞

✌
☎✆
✍

✯✭
✧
✦
✣✩

✪

✶
☛
✕
☎
☛
✠
✔✆
✞
☎✟
✠ ✚
✟☞
✑

✶
✁
✂

✎
✆
☞
✆
✠✟
☎
☛
✠
✔✆
✞
☎✟
✠ ✚
✟☞
✑

✶
✁
✂

✴
✧
✧
✣✦
★
✩

✪

✯✭
✮✣
✤
✥
✦
✧
★
✩

✪

✫
✬✬
✭✴

✧
✧
✣✦
★
✩

✪✴
✧
✧
✣✦
★
✩

✪

✎
✆
☞
✆
✠✟
☎
☛
✠
☎✡
✏
✟☞
✑

✶
✁
✂

✎
✆
☞
✆
✠✟
☎
☛
✠
☞
☛
☎
☎✡
✏
✟☞
✑

✶
✁
✂

✯✩
✴

✪

�
✁
✂

✄☞
☎✆
✔✆
✕
☎

✯✭
✧
✦
✣✩

✪

�
✆
✹
☛
✔ ✏
✶
☛
✷
✆
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

✶
✁
✂

✙
✔☛
✿
✡
✿
✟✛
✟☎
✚

✪
✵
✴
✩
✴

✻
✆
✹

✶
☛
✷
✆
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

✶
✁
✂

✧
✤
✭
✩
✮✯
✮✦
✮★
✩
✤
✰

✁
☛
☎✡
✛
✶
☛
✕
☎
☛
✠

✄✝
✍
✛✆
✝
✆
☞
☎✡
☎✟
☛
☞

✌
☎✆
✍

✪

✧
✤
✭
✩
✮✯
✮✦
✮★
✩
✤
✰

✯✭
✧
✦
✣✩

✪

✄✝
✍
✛✆
✝
✆
☞
☎✡
☎✟
☛
☞

✶
☛
✕
☎
☛
✠
✡
✜
✆
✡
☎✓
✔✆

✯✭
✧
✦
✣✩

✪

�
✆
✹
☛
✔ ✏
✶
☛
✷
✆
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

✶
✁
✂

✻
✆
✹

✶
☛
✷
✆
✶
☛
✕
☎✕

✡
✕
✕
☛
✞
✟✡
☎✆
✷
✹
✟☎
✾

✶
✁
✂

✧
✤
✭
✩
✮✯
✮✦
✮★
✩
✤
✰

✄✝
✍
✛✆
✝
✆
☞
☎✡
☎✟
☛
☞

✶
☛
✕
☎
☛
✠
❁
✔✞
✾
❋
❂

✂
✆
✕
✟ ✑
☞
✂
✆
✞
✟✕
✟☛
☞

✯✭
✧
✦
✣✩

✪

✯✳
✢
✴
✧
✮✩

✯✳
✢
✴
✧
✮✩

✯✳
✢
✴
✧
✮✩

✯✳
✢
✴
✧
✮✩

✗ ✙
✔✟
☛
✔✟
☎✟
✕
✆
✷
✘

�
✆
✒
✓
✟✔
✆
✝
✆
☞
☎

�
✆
✛✡
☎✟
☛
☞
✕
✾
✟✍

✄✝
✍
✛✟
✆
✷

✔✆
✛✡
☎✟
☛
☞
✕
✾
✟✍

✙
✔☛
✞
✆
✕
✕
❂✁
✟✝
✆

✶
☛
✕
☎

✎
✆
☞
✆
✠✟
☎

✙
✔✟
☛
✔✟
☎ ✚

✙
✔☛
✿
✡
✿
✟✛
✟☎
✚

F
ig
.
6

T
h
e
co

m
b
in
ed

m
o
d
el

o
f
R
T
D
Q
M

(o
u
r
w
o
rk
)
a
n
d
T
D
Q
M

P
er
er
a
et

a
l.
’s

w
o
rk

[5
]

35

work. In our current model, the ‘Design Step’ models the non-functional requirement
aspect of RTD quantification.

Some companies could also have a dedicated Refactoring Step to refactor the soft-
ware code or a Sprint to rectify the TD or RTD incurred. This is the reason for
modeling RTD and CTD rectification steps parallel to the other development steps in
Figure 6.

7.3.1 The cascading impact of RTD

By modeling the RTD quantification within the context of software development by
combining the two models, we can observe how the impact of RTD flows through to
the rest of the development stages.

The cascading impact of RTD on design and implementation costs is modeled by
the ‘impacts’ relationships between the relevant RTD Interest constituents and the
design and implementation cost concepts. For example, if problems with requirements
specifications (i.e., ambiguities or Requirement Smells [13]) are not resolved early on,
and they result in the misinterpretation of requirements, this can lead to the poor
design of the system and, later on, require rework in the design. This is modeled by
the ‘impacts’ relationship between the concepts ‘Rework Design costs associated with
RTD’ and ‘Implementation cost of an architectural/ design decision’ in Figure 6.

In the case of functional requirements, the consequences of RTD could also impact
the implementation, having to rework the inadequately implemented features, result-
ing in new code and rework costs associated with RTD. This is modeled by the
‘impacts’ relationship between new code and rework cost constituents of RTD Interest
and the Implementation Cost of a Feature in Figure 6.

7.3.2 Feedback loop involving the User

Compared to artifacts related to software code, Requirement artifacts have a feedback
loop involving the user to precisely capture User Needs in the RE Step (P2, P3, P6,
P7, P16, P17, P18) [2, 13, 26, 36–38] and to meet the End user Level of Satisfaction
with the Design and Implementation of the requirements (P8, P10, P11, P13, P15,
P16, P18) [14, 27, 30, 32, 34, 35, 37]. Hence, the user is key in determining the
optimal set of requirements of the software product that ultimately contributes to the
Product Value. — ‘contributes to’ relationship between the (Prioritized) Requirement
and Product Value. The satisfaction of a non-functional requirement, for example, a
quality attribute, is ‘measured by’ its ‘User Satisfaction Level’, which is associated
with the ‘User Needs’. This illustrates the feedback loop involved with the user.

8 Evaluating the use of RTDQM

Our model, the Requirements Technical Debt Quantification Model
(RTDQM), can be useful to both researchers and practitioners as a conceptual model
that conceptualizes RTD quantification.

36

The model can serve as a reference point to compare and analyze existing
quantification approaches and to develop new approaches in the instances where exist-
ing approaches may not satisfy practitioners’ quantification needs. We theoretically
evaluate these uses of the model in the subsections 8.1 and 8.2 below.

8.1 Comparing and Analyzing existing RTD Quantification
Approaches

In this Section, we apply the RTD quantification approach Classification Scheme,
which is based on the model concepts and their high-level themes: process/time, cost,
benefit, probability, and priority, to compare and analyze existing approaches found
in our mapping study. The classification scheme was illustrated in Figure 2.

Figures 7 and 8 illustrate the comparison of the 18 quantification approaches (a
quantification approach, in the case of our paper, corresponds to one primary study)
that resulted from our SMS in a matrix (adopted from Perera et al.’s TDQM Approach
Comparison Matrix [5]) where the model concepts are in the numbered columns and
the approaches are in the rows. The approaches P[n] are listed in Table 2.

Figure 7 ranks the quantification approaches based on how many model concepts a
particular approach represents, while Figure 8 classifies the quantification approaches
into those that discuss the functional and non-functional aspects of requirements.

The intersection of the columns and rows of the matrix in both Figures denotes
whether a model concept is represented by the particular quantification approach,
regardless of whether these concepts were initially mapped as ‘D’ or ‘I’ mappings
during the development of the model (D and I mappings were discussed earlier in
Section 6). Here, we pay attention to whether an existing RTD quantification approach
discusses the model concept and whether it supports the quantification of that model
concept by providing some form of measurement (i.e., metrics). Our model provides
a common format to make comparisons by representing the existing quantification
approaches via the model.

8.1.1 What do existing RTD Quantification Approaches quantify

Figure 7 ranks the existing quantification approaches based on how many model
concepts are represented by a particular approach, which means that the particular
quantification approach discusses these concepts. This ranking allows one to deter-
mine the most comprehensive (or the most complete) quantification approach in our
dataset in terms of RTD quantification based on our conceptual model.

According to Figure 7, P11 represents 17 RTDQM concepts, which is the highest
number of model concepts represented by a quantification approach in our dataset.
Therefore, P11 is the approach that discusses RTD quantification most comprehen-
sively from the quantification approaches in our dataset. P1 and P8 discuss 15 and
13 RTDQM concepts, respectively. Hence, P11, P1, and P8 are the top three most
comprehensive RTD quantification approaches in our dataset.

Among the concepts discussed within the most comprehensive approaches, Pro-
cess/Time concepts: (Documented) Requirement, Documented Functional Require-
ment, Documented Non-functional Requirement, and RTD Item, Cost concepts:

37

�
✁
✂
✄
☎
✆
✁
✝
✞
✄
✟
✠✡

☛

☞
✌
✍
✎
✏
✍
✍
✑

✒

✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙✌
✚
✘
✛
✖✘
✍
✍
✎✖
✘
✛
✜
✙✍
✢

✣

✤✥
✦
✧
✕
✗
✍
✘
✙✍
✑
★
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✩

✪
✕
✘
✧
✙✖
✦
✘
✫
✬
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✭

✏
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✰
✱
✲
✳
✴

✵

✓
✶
✥
✷✙
✍
✗

✸
✹
✺
✆
✻
✼
✼
✽
✾
✿ �
✻

✆
✺
✼
✾

❀
✻
❁
✻
❂
✿✾

✸

✸
✹
✿✺

❃

✓
✶
✥
✓
✍
✧
✙✖
✯❄
✖✘
✛
✜
✙✍
✢

☛

✒

✣

✩

✭

✵

❃

❅

❆

☛
❇

☛
☛
☛
✒

☛
✣

☛
✩

☛
✭

☛
✵

☛
❃

☛
❅

☛
❆

✒
❇

✒
☛

✒
✒

✒
✣

✒
✩

✒
✭

✒
✵

✒
❃

✒
❅

✒
❆

✣
❇

✣
☛

✣
✒

✣
✣

❈
✎ ✦
✧
✍
✌
✌
❉
✶
✖✗
✍
✧
✦
✘
✧
✍
✢
✙✌

❅

❊
✦
✘
✙✍
❋
✙

❊
✦
✌
✙
❊
✦
✘
✧
✍
✢
✙✌

❆

✓
✖✌
●

✸
☛
☛

❍
■

❏
✍
✘
✍
✯✖
✙
❊
✦
✘
✧
✍
✢
✙✌

☛
❇

✜
✧
✍
✘
✫
✎✖
✦

❑
▲

❍
▼

❈
✎ ✦
◆
✫
◆
✖✬
✖✙
❄
❊
✦
✘
✧
✍
✢
✙✌

☛
☛
❖
✕
✫
✬✙
✖ ❄
P
✙✙
✎✖
◆
✕
✙✍

❑
◗

❍
❘

❈
✎✖
✦
✎✖
✙ ❄
❊
✦
✘
✧
✍
✢
✙✌

☛
✒

✤❈
✎✖
✦
✎✖
✙✖
❙
✍
✑
★
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✸
☛
❇

❍
❍

☛
✣
✥
✍
✌
✖✛
✘
✜
✙✍
✢

✸
☛
✣

❍
❍

☛
✩
✥
✍
✌
✖✛
✘
❉
P
✎ ✧
❚
✖✙
✍
✧
✙✕
✎✫
✬
✥
✍
✧
✖✌
✖ ✦
✘

✸
☛
✭

❍
❍

✥
✖✌
✧
✕
✌
✌
✍
✌
✙❚
✍
✗
✦
✑
✍
✬
✧
✦
✘
✧
✍
✢
✙

☛
✭
✷✗
✢
✬✍
✗
✍
✘
✙✫
✙✖
✦
✘
✧
✦
✌
✙
✦
✯
P
✎ ✧
❚
❯
❉
✥
✍
✌
✖✛
✘
✑
✍
✧
✖✌
✖ ✦
✘

✸
☛
❃

❍
❍

✥
✖✌
✧
✕
✌
✌
✍
✌
✙❚
✍
✗
✦
✑
✍
✬
✧
✦
✘
✧
✍
✢
✙
✫
✘
✑
✢
✎ ✦
❱
✖✑
✍
✌
✗
✍
✙✎
✖ ✧
✌

☛
✵

✶
✦
✙✫
✬
❊
✦
✌
✙
✦
✯
✫
✓
✚
✜
✙✍
✢

❑
❲

❍
❳

☛
❃

❊
✦
✌
✙
✦
✯
✓
✍
✙✖
✯❄
✖✘
✛
✓
✶
✥

✸
☛
✒

❍
❳

☛
❅

✓
✶
✥
✷✘
✙✍
✎✍
✌
✙

❑
❨

❩

☛
❆

✏
✍
❬
❊
✦
✑
✍
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❬
✖✙
❚
✓
✶
✥

✸
☛
✵

❩

✏
✦
✘
✮✯
✕
✘
✧
❯
✓
✍
✔
❯

✒
❇

✓
✍
❬
✦
✎●
❊
✦
✑
✍
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❬
✖✙
❚
✓
✶
✥

✸
☛
❅

❩

✪
✕
✘
✧
✙✖
✦
✘
✫
✬
✓
✍
✔
❯

✒
☛

✏
✍
❬
✥
✍
✌
✖✛
✘
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❬
✖✙
❚
✓
✶
✥

❑
❭

❩

❏
✦
✙❚

✒
✒

✓
✍
❬
✦
✎●
✥
✍
✌
✖✛
✘
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❬
✖✙
❚
✓
✶
✥

✸
☛
✩

❪

❊
✫
✘
◆
✍
✖✘
✯✍
✎✎
✍
✑
✫
✌
◆
✦
✙❚
✯✕
✘
✧
✙✖
✦
✘
✫
✬
✫
✘
✑
✘
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬

✒
✣

✏
✍
❬
✓
✚
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❬
✖✙
❚
✓
✶
✥

✸
❆

▼

❊
✫
✘
◆
✍
✖✘
✯✍
✎✎
✍
✑
✫
✌
✘
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬
✦
✘
✬ ❄

✒
✩

✓
✍
❬
✦
✎●
✓
✚
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❬
✖✙
❚
✓
✶
✥

❑
❫

❴

✒
✭
✥
✦
✧
✕
✗
✍
✘
✙✫
✙✖
✦
✘
✧
✦
✌
✙
✦
✯
✫
✎✍
✔
✕
✖✎
✍
✗
✍
✘
✙

❑
❵

❴

✒
✵
❏
✍
✘
✍
✯✖
✙
✦
✯
✓
✍
✧
✙✖
✯❄
✖✘
✛

❑
❛

❴

✒
❃
❏
✍
✘
✍
✯✖
✙
✦
✯
✙✫
●
✖✘
✛
✓
✶
✥

❜
✖✛
❚
✍
✌
✙
❊
✦
✕
✘
✙✌

✒
❅

❏
✍
✘
✍
✯✖
✙
✦
✯
✘
✦
✙
✙✫
●
✖✘
✛
✓
✶
✥

❝

❩

❍
▼

■

❍
❳

❍
▼

■

❩

▼

❘

❞

❳

❍

❝

❘

❘

❩

❍
❴

❘

▼

❳

❞

❍

❞

❳

❍

❞

▼

▼

■

▼

■

❘

❡
✦
❬
✍
✌
✙
❊
✦
✕
✘
✙✌

✒
❆
❈
✎ ✦
✑
✕
✧
✙
❢
✫
✬✕
✍

✣
❇

✚
✘
✑
✕
✌
✍
✎
✌
✫
✙✖
✌
✯✫
✧
✙✖
✦
✘
✬✍
❱
✍
✬

✣
☛

✓
✶
✥
✷✘
✙✍
✎✍
✌
✙
❈
✎ ✦
◆
✫
◆
✖✬✖
✙ ❄

✹
✾
❣
❤
�

✆
✁
✝
✞
✄
✟
✠✡

✣
✒

✓
✶
✥
✷✙
✍
✗

❈
✎✖
✦
✎✖
✙ ❄

✣
✣
❈
✎✖
✦
✎✖
✙ ❄
✦
✯
✫
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

F
ig
.
7

C
la
ss
ifi
ca

ti
o
n

o
f
ex

is
ti
n
g
a
p
p
ro
a
ch

es
—

R
a
n
k
ed

b
a
se
d

o
n

th
e
n
u
m
b
er

o
f
m
o
d
el

co
n
ce
p
ts

re
p
re
se
n
te
d

b
y

a
p
a
rt
ic
u
la
r
a
p
p
ro
a
ch

.
A
p
p
ro
a
ch

C
o
m
p
a
ri
so
n
M
a
tr
ix

a
d
o
p
te
d
fr
o
m

P
er
er
a
et

a
l.
[5
].
P
a
p
er
s
re
fe
rr
ed

b
y
th

e
co

d
es

P
[n
]
ca

n
b
e
fo
u
n
d
in

T
a
b
le

2
.

38

Cost of Rectifying RTD and RTD Interest, and the Priority concept: RTD Interest
Probability are discussed commonly between all three approaches P11, P1 and P8.

The row below the matrix provides a count of the number of quantification
approaches that represent each individual RTDQM concept. This provides an overview
of the concepts most commonly discussed among all quantification approaches, as well
as which concepts are inadequately discussed among the existing approaches. In other
words, this reveals gaps in the literature in terms of the RTDQM concepts discussed.

Model concepts most frequently discussed in the existing quantification approaches
are ‘RTD Item’ (Column No. 6) and ‘(Documented) Requirement’ (Column No. 3)
since each of them has been represented by 15 approaches. ‘RTD Interest’ (represented
by 14 approaches) has the next highest count. By observing the top 3 concepts, we
can conclude that most of the existing approaches found in our SMS were aware of
the consequences of RTD (i.e., RTD Interest) and discussed its quantification.

We observe that RTDQM concepts ‘(Prioritized) Requirement’, ‘New Design Costs
associated with RTD’, and ‘Documentation Cost of a Requirement’ are not represented
by any of the quantification approaches. These concepts were informed by the TDQM
model [5] during the development of our model RTDQM. Hence, they may not be
represented in the quantification approaches in the literature (see Table 9 for what
was informed by literature and what was informed by TDQM [5]). Documentation
does require time and effort. Similarly, designing a new system in an instance where
the existing system no longer caters to the user’s needs has a cost. Our model shows
that these concepts are worth investigating for RTD quantification.

In terms of Metrics that support the quantification of model concepts, we can
observe that the following model concepts have one or more metrics or some form of
measurement provided with, in the existing quantification approaches: ‘Requirement’,
‘Non-Functional Requirement’, ‘RTD Item’, ‘Risk’, and ‘Quality Attribute’ in the
Process/ Time category, ‘Implementation Cost of Architectural Design Decision’, and
‘Cost of Rectifying RTD’, in the Cost category, and ‘Benefit of not taking RTD’, and
‘End User Satisfaction Level’ in the Benefit category, and ‘Priority of a Requirement’
in the Priority category.

However, Interest constituents (new and rework costs associated with RE, design
and implementation phaces — Columns 19 to 24 in the matrix) identified through our
conceptual model still lack metrics in the existing approaches. Surprisingly, ‘Total Cost
of a RE Step’ and ‘Documentation cost of a requirement’ also lack metrics even though
we expected that they may be quantified in the existing literature. Benefit concepts:
‘Benefit of Rectifying’, ‘Benefit of taking RTD’ and ‘Product Value’ do not have any
metrics associated with them. Similarly, ‘RTD Interest Probability’ and ‘RTD Item
Priority’ also do not have a form of measurement associated with them. This could be
due to RTD yet being a relatively new area of research and the concept of RTD not
being explored enough in the literature.

39

Summary of Findings:

• P11, P1, and P8 are the top three most comprehensive approaches.
• ‘RTD Item’, ‘(Documented) Requirement’, and ‘RTD Interest’ are the most
frequently discussed model concepts — This means that most of the existing
approaches were aware of the consequences of RTD (i.e., RTD Interest) and
discussed its quantification.

• ‘Requirement’, ‘Non-Functional Requirement’, ‘RTD Item’, ‘Risk’, ‘Quality
Attribute’, ‘Implementation Cost of Architectural Design Decision’, ‘Cost of
Rectifying RTD’, ‘Benefit of not taking RTD’, ‘End User Satisfaction Level’,
and ‘Priority of a Requirement’ had metrics in the existing approaches.

• RTD Interest constituents, most of the benefit concepts, priority of a RTD
item, and interest probability still lack metrics.

8.1.2 Functional vs Non-Functional Quantification Approaches

The matrix in Figure 8 illustrates the classification of the existing quantification
approaches into those that discuss RTD related to the functional aspect of require-
ments and those that discuss RTD related to the non-functional aspect of requirements.
Some approaches did not explicitly mention if they discussed functional or non-
functional requirements. Still, we could infer from reading the complete article that
some of them discussed both functional and non-functional aspects of requirements
while some discussed only the non-functional aspect.

Based on the classification and with reference to the RTDQM concepts in the
columns in the matrix, we can make observations about the RTDQM concepts
represented by the different quantification approaches belonging to the categories:
functional, non-functional, or both.

Considering the highest counts for the model concepts within the functional and
non-functional classification, we can observe that for approaches discussing both func-
tional and non-functional aspects, the model concepts ‘(Documented) Requirement’,
‘RTD Item’, and ‘RTD Interest’ are the most commonly discussed (top three). They
are the same as the top 3 concepts prior to classifying approaches into functional or
non-functional (discussed in Section 8.1.1). However, this is different for approaches
discussing non-functional only; the concept ‘Design/ Architectural Decision’ has been
discussed more commonly than ‘RTD Interest’ while ‘(Documented) Requirement’ and
‘RTD Item’ are similarly common among these approaches.

P5 is the only approach that discusses functional requirements only. The primarily
discussed concepts for this approach in the Process Time category are; ‘Requirement’,
‘Functional Requirement’, and ‘RTD Item’. For Cost concepts, ‘Cost of Rectifying
RTD’ is quantified, but none of the other concepts are. P5 does not discuss ‘RTD
Interest’, but this does not mean that the ‘RTD Interest’ is not quantified for functional
RTD. All quantification approaches except P15, P17, and P18 discuss ‘RTD Interest’
regardless of whether they are discussing functional or non-functional requirements
(P15 and P18 also discuss functional RTD).

40

�
✁
✂
✄
☎
✆
✁
✝
✞
✄
✟
✠✡

☛
☞
✌
✍
✎
✏
✍
✍
✑

✒
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙✌
✚
✘
✛
✖✘
✍
✍
✎✖
✘
✛
✜
✙✍
✢

✣
✤✥
✦
✧
✕
✗
✍
✘
✙✍
✑
★
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✩
✪
✕
✘
✧
✙✖
✦
✘
✫
✬
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✭
✏
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✰
✱
✲
✳
✴

✵
✓
✶
✥
✷ ✙
✍
✗

✸
✹
✺
✆
✻
✼
✼
✽
✾
✿ �
✻

✆
✺
✼
✾

❀
✻
❁
✻
❂
✿✾

✸

✸
✹
✿✺

❃
✓
✶
✥
✓
✍
✧
✙✖
✯❄
✖✘
✛
✜
✙✍
✢

☛

✒

✣

✩

✭

✵

❃

❅

❆

☛
❇

☛
☛
☛
✒

☛
✣

☛
✩

☛
✭

☛
✵

☛
❃

☛
❅

☛
❆

✒
❇

✒
☛

✒
✒

✒
✣

✒
✩

✒
✭

✒
✵

✒
❃

✒
❅

✒
❆

✣
❇

✣
☛

✣
✒
✣
✣

❈
✎✦
✧
✍
✌
✌
❉
✶
✖✗
✍
✧
✦
✘
✧
✍
✢
✙✌

❅
❊
✦
✘
✙✍
❋
✙

❊
✦
✌
✙
❊
✦
✘
✧
✍
✢
✙✌

❆
✓
✖✌
●

❍
■

❏
❑

▲
✍
✘
✍
✯ ✖
✙
❊
✦
✘
✧
✍
✢
✙✌

☛
❇
✜
✧
✍
✘
✫
✎✖
✦

❍
▼

◆

❈
✎✦
❖
✫
❖
✖✬ ✖
✙❄
❊
✦
✘
✧
✍
✢
✙✌

☛
☛
P
✕
✫
✬ ✙
✖❄
◗
✙✙
✎✖
❖
✕
✙✍

✸
☛
☛

❏
❘

❈
✎✖
✦
✎✖
✙❄
❊
✦
✘
✧
✍
✢
✙✌

☛
✒
✤❈
✎✖
✦
✎✖
✙✖
❙
✍
✑
★
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✸
☛
✣

❏
❏

☛
✣
✥
✍
✌
✖✛
✘
✜
✙✍
✢

✸
☛
✩

❚

☛
✩
✥
✍
✌
✖✛
✘
❉
◗
✎✧
❯
✖✙
✍
✧
✙✕
✎✫
✬
✥
✍
✧
✖✌
✖✦
✘

✸
☛
✭

❏
❏

✥
✖✌
✧
✕
✌
✌
✍
✌
✙❯
✍
✗
✦
✑
✍
✬
✧
✦
✘
✧
✍
✢
✙

☛
✭
✷ ✗
✢
✬ ✍
✗
✍
✘
✙✫
✙✖
✦
✘
✧
✦
✌
✙
✦
✯
◗
✎✧
❯
❱
❉
✥
✍
✌
✖✛
✘
✑
✍
✧
✖✌
✖✦
✘

✸
☛
❅

◆

✥
✖✌
✧
✕
✌
✌
✍
✌
✙❯
✍
✗
✦
✑
✍
✬
✧
✦
✘
✧
✍
✢
✙
✫
✘
✑
✢
✎✦
❲
✖✑
✍
✌
✗
✍
✙✎
✖✧
✌

☛
✵
✶
✦
✙✫
✬
❊
✦
✌
✙
✦
✯
✫
✓
✚
✜
✙✍
✢

❍
❳

❏
❨

☛
❃
❊
✦
✌
✙
✦
✯
✓
✍
✙✖
✯❄
✖✘
✛
✓
✶
✥

❍
❩

❬

☛
❅
✓
✶
✥
✷ ✘
✙✍
✎✍
✌
✙

❍
❭

❬

☛
❆
✏
✍
❪
❊
✦
✑
✍
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❪
✖✙
❯
✓
✶
✥

❍
❫

◆

✏
✦
✘
✮✯
✕
✘
✧
❱
✓
✍
✔
❱

✒
❇
✓
✍
❪
✦
✎●
❊
✦
✑
✍
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❪
✖✙
❯
✓
✶
✥

✸
☛
❇

❏
❏

✪
✕
✘
✧
✙✖
✦
✘
✫
✬
✓
✍
✔
❱

✒
☛
✏
✍
❪
✥
✍
✌
✖✛
✘
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❪
✖✙
❯
✓
✶
✥

✸
☛
✵

◆

▲
✦
✙❯

✒
✒
✓
✍
❪
✦
✎●
✥
✍
✌
✖✛
✘
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❪
✖✙
❯
✓
✶
✥

✭

❃

☛
❇

✵

❃

☛
❇

✵

❃

✒

☛

☛

❇

❇

✒

☛

✣

❃

☛
☛

✣

✭

❇

✒

☛

✒

❇

☛

✒

✩

✭

✵

✩

✭

☛

❊
✫
✘
❖
✍
✖✘
✯ ✍
✎✎
✍
✑
✫
✌
❖
✦
✙❯
✯ ✕
✘
✧
✙✖
✦
✘
✫
✬
✫
✘
✑
✘
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬

✒
✣
✏
✍
❪
✓
✚
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❪
✖✙
❯
✓
✶
✥

❊
✫
✘
❖
✍
✖✘
✯ ✍
✎✎
✍
✑
✫
✌
✘
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬
✦
✘
✬❄

✒
✩
✓
✍
❪
✦
✎●
✓
✚
❊
✦
✌
✙
✫
✌
✌
✦
✧
✖✫
✙✍
✑
❪
✖✙
❯
✓
✶
✥

❍
❴

❬

✒
✭
✥
✦
✧
✕
✗
✍
✘
✙✫
✙✖
✦
✘
✧
✦
✌
✙
✦
✯
✫
✎✍
✔
✕
✖✎
✍
✗
✍
✘
✙

❇

❇

☛

☛

❇

☛

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

☛

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

✒
✵
▲
✍
✘
✍
✯ ✖
✙
✦
✯
✓
✍
✧
✙✖
✯❄
✖✘
✛
✓
✶
✥

✒
❃
▲
✍
✘
✍
✯ ✖
✙
✦
✯
✙✫
●
✖✘
✛
✓
✶
✥

❍
❵

❏
❛

❜
✖✛
❯
✍
✌
✙
✧
✦
✕
✘
✙✌

✒
❅
▲
✍
✘
✍
✯ ✖
✙
✦
✯
✘
✦
✙
✙✫
●
✖✘
✛
✓
✶
✥

✸
❆

❑

❝
✍
✎✦
❉
✬ ✦
❪
✍
✌
✙
✧
✦
✕
✘
✙✌

✒
❆
❈
✎✦
✑
✕
✧
✙
❞
✫
✬ ✕
✍

✸
☛
✒

❏
❨

✣
❇
✚
✘
✑
✕
✌
✍
✎
✌
✫
✙✖
✌
✯✫
✧
✙✖
✦
✘
✬ ✍
❲
✍
✬

✸
☛
❃

❏
❏

✣
☛
✓
✶
✥
✷ ✘
✙✍
✎✍
✌
✙
❈
✎✦
❖
✫
❖
✖✬ ✖
✙❄

☛

✒

✩

❇

✣

✩

☛

✒

✣

✒

☛

❇

☛

✩

✒

❇

☛

✣

❇

❇

❇

❇

❇

❇

❇

❇

❇

☛

❇

☛

☛

✒

✒

✹
✾
❡
❢
�
✆
✁
✝
✞
✄
✟
✠✡

✣
✒
✓
✶
✥
✷ ✙
✍
✗
❈
✎✖
✦
✎✖
✙❄

❜
✖✛
❯
✍
✌
✙
✧
✦
✕
✘
✙✌
❪
✖✙
❯
✖✘
✯ ✕
✘
✧
✙✖
✦
✘
✫
✬
✫
✘
✑
✘
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬

✣
✣
❈
✎✖
✦
✎✖
✙❄
✦
✯
✫
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

✵

❆

☛
✭

❃

☛
❇

☛
✭

❃

❆

✭

✣

✒

❇

☛

✵

✣

✣

❆

☛
✩

✣

✭

❇

✒

☛

✒

❇

☛

✒

✭

✭

❃

✭

❃

✣

❝
✍
✎✦
❉
✬ ✦
❪
✍
✌
✙
✧
✦
✕
✘
✙✌
❪
✖✙
❯
✖✘
✯ ✕
✘
✧
✙✖
✦
✘
✫
✬
✫
✘
✑
✘
✦
✘
✮✯
✕
✘
✧
✙✖
✦
✘
✫
✬

✒
❆
❈
✎✦
✑
✕
✧
✙
❞
✫
✬ ✕
✍

✣
❇
✚
✘
✑
✕
✌
✍
✎
✌
✫
✙✖
✌
✯✫
✧
✙✖
✦
✘
✬ ✍
❲
✍
✬

✣
☛
✓
✶
✥
✷ ✘
✙✍
✎✍
✌
✙
❈
✎✦
❖
✫
❖
✖✬ ✖
✙❄

✣
✒
✓
✶
✥
✷ ✙
✍
✗
❈
✎✖
✦
✎✖
✙❄

✣
✣
❈
✎✖
✦
✎✖
✙❄
✦
✯
✫
✓
✍
✔
✕
✖✎
✍
✗
✍
✘
✙

F
ig
.
8

C
la
ss
ifi
ca

ti
o
n
o
f
ex

is
ti
n
g
a
p
p
ro
a
ch

es
—

F
u
n
ct
io
n
a
l
V
s
n
o
n
-f
u
n
ct
io
n
a
l.
A
p
p
ro
a
ch

C
o
m
p
a
ri
so
n
M
a
tr
ix

a
d
o
p
te
d
fr
o
m

P
er
er
a
et

a
l.
[5
].
P
a
p
er
s

re
fe
rr
ed

b
y
th

e
co

d
es

P
[n
]
ca

n
b
e
fo
u
n
d
in

T
a
b
le

2
.

41

In terms of gaps in the literature, for the type of approaches discussing both func-
tional and non-functional aspects, Proces/ Time concepts: ‘(Prioritized) Requirement’,
‘Design Step’, Cost concepts: New ‘Design Cost associated with RTD’ and ‘Documen-
tation cost of a requirement’ have not been discussed. Compared to the approaches
discussing both the functional and non-functional aspects, ‘Design Step’ has been
discussed among the approaches discussing the non-functional aspect only.

For approaches discussing the non-functional aspect only, Proces/ Time concept:
‘Functional Requirement’ is not discussed as expected. Cost concepts: ‘Total Cost of
a RE Step’, ‘Documentation cost of a requirement’, and Benefit concepts: ‘Benefit of
Rectifying’, ‘Benefit of taking RTD’, and ‘Product Value’ have also not been discussed
in the approaches discussing the non-functional only.

Interest constituents: ‘New Code Cost associated with RTD’, ‘Rework Code Cost
associated with RTD’, ‘New RE Cost associated with RTD’, ‘Rework RE Cost asso-
ciated with RTD’, and ‘Rework Design Cost associated with RTD’ are discussed
commonly in the approaches discussing functional and non-functional both but have
not been discussed in the approaches discussing non-functional only.

Regarding metrics, model concepts ‘RTD Item’, ‘Risk’, ‘Cost of Rectifying RTD’,
and ‘Benefit of not taking RTD’ have some metrics associated with them for
the approaches discussing both functional and non-functional aspects as well as
non-functional only. Model concepts ‘(Documented) Requirement’, ‘Non-functional
Requirement’, ‘Quality Attribute’, ‘Implementation cost of Arch. / Design decision’
and ‘Priority of a Requirement’ have metrics only in the non-functional only category.
However, ‘End user satisfaction level’ does not have metrics for the non-functional
only category, although the concept has been discussed in this type of approaches.

Summary of Findings:

• For approaches discussing non-functional only, the concept ‘Design/ Archi-
tectural Decision’ has been discussed more commonly than ‘RTD Interest’
while ‘(Documented) Requirement’, ‘RTD Item’ are similarly common
among all types of approaches.

• Regardless, they are categorized as approaches discussing functional or non-
functional aspects; all approaches have no metrics associated with RTD
Interest and its constituents.

• ‘End user satisfaction level’ does not have metrics for the non-functional only
type of approaches.

8.2 Quantifying RTD to support informed decision-making

To demonstrate how the RTDQM model can help select existing quantification
approaches or devise new quantification approaches for practitioners’ quantification
needs, we provide a simplified example based on a case study of an ongoing real-world
project by which this work is funded1.

1Veracity Lab: https://veracity.wgtn.ac.nz/

42

https://veracity.wgtn.ac.nz/

8.2.1 A software-intensive system supporting Organic Products
Certification

In order to claim a product is organic, the process that produces it must be certified
according to relevant standards. The example examines the requirements associated
with a software-intensive system for supporting the certification process.

Full certification takes place over multiple years, and not all certification require-
ments need to be supported at the beginning of the process. This means a software
company intending to develop a certification support system may choose to only sup-
port some of the requirements or only incompletely support some requirements in the
early releases. This would provide the benefits of earlier time-to-market and allow the
software company to gain experience with the domain.

That is, the company may choose to take on Requirements Technical Debt (RTD)
with the expectation of accruing benefits by doing so. The company needs to make
decisions regarding which requirements to omit or incompletely implement, and they
would like to find a RTD quantification approach that would help support these
decisions.

Ideally, the decision would be based on a RTD quantification approach that sup-
ports the specifics of the decision (specifics are discussed in Section 8.2.3 with reference
to an example decision-making scenario related to the prioritization of requirements).
We show how RTDQM can help choose such a quantification approach.

8.2.2 Requirements

Certification agencies, their auditors, the certification panel, and the organic producers
are the end-users of this system. Once the organic producer applies for certification, an
on-site audit follows the assessment of the application to audit the product’s, process,
and premises compliance with Organic Standards and Regulations. Once applied for
certification, organic producers are considered clients of the certification agency.

During an onsite audit, an audit report will be produced with or without Corrective
Action Requests for the Client in the cases of non-compliance. The client must perform
the Corrective Actions before they can proceed with their operations in order to be
eligible for the certification. Corrective action may take the form of, for example,
changes to the ingredients of the product, or changes to the Organic Management Plan
(OMP). If the certification agency approves that the Client adheres to the Organic
Standards and Regulations, the certification is issued.

End-user needs can lead to both functional and non-functional requirements to be
implemented in the software system. Below, we summarize a simplified subset of the
requirements.

Functional Requirements

• FR1: The system must allow Clients to apply for certification by uploading all
the data required to meet the requirements for an application. e.g., an Organic
Management Plan (OMP) and other evidence, e.g., a Sector Map separating organic
and other produce.

43

• FR2: The system state should change to “Awaiting on-site Audit Report” for a
Client who is yet to pass an on-site audit.

• FR3: An auditor must be able to upload an Audit Report and issue Corrective
Action Requests (CARs) for the Client.

• FR4: The system must have the functionality to import data from external appli-
cations e.g., soil testing applications, and have the functionality to view those
reports.

• FR5: The Client should receive notifications on their mobile when a CAR is issued.

Non-Functional Requirements

• FR6: User authentication mechanism to ensure that the authorized person is view-
ing, entering, or modifying the data, i.e., a user is authenticated to carry out the
operations.

• FR7: Encryption of data at the record level.
• ADD1: Layered Architecture implementing platform-level, application-level, and
record-level protection of the data, e.g., system authentication at the platform
level, database login authentication at the application level, and record access
authorization at the record-level.

8.2.3 Prioritization of requirements

The Requirements prioritized to be implemented in the first Release can be
either Functional Requirements, or Non-Functional Requirements, or both.
Functional Requirements are implemented as Features while Non-Functional Require-
ments are implemented by Architectural or Design Decisions.

Consider that the following are two candidate sets of prioritized requirements. The
company must select one of them to implement in the first release while knowing how
much RTD they may incur and what costs and benefits may be associated with that.

• Set1: FR1, FR3, FR6
• Set2: FR1, FR4, ADD1

A ‘sub-optimal prioritization of requirements’ (i.e., RTD instance or the RTD
item in this example) can lead to RTD interest payments. This could be in the form
of RTD Interest associated with the Design and Implementation phases —- New
and Rework Design Costs or New and Rework Code Costs. All these RTD
quantification concepts are illustrated as RTD Interest constituents in our model,
RTDQM.

Furthermore, there can be a cost to rectify the incurred RTD, that is, the Cost
of rectifying RTD and a benefit associated with that, the Benefit of Rectifying
RTD. There could also be a benefit accrued by taking on the RTD, that is, the
Benefit of taking RTD. There could also be a benefit of not taking on RTD in the
first place, that is, the Benefit of not taking RTD. All or a few of these concepts
can be the specifics the company wants to consider when making their decision to take
on or not take on RTD with their prioritization of requirements in the first Release.

Figure 7 shows what RTD quantification concepts are discussed in the exist-
ing quantification approaches and what concepts are supported by metrics in these

44

approaches. Table 10 provides the details of the metrics. Based on what RTDQM con-
cepts (or combination of concepts) the company would want to make their informed
decision for RTD management, they could select an existing quantification approach
(or multiple complementing approaches) that would fit their quantification need.

If existing approaches do not support their quantification need, they could alterna-
tively develop a new RTD quantification approach to fit their need. Our model helps
identify such instances.

Identification of a suitable Quantification Approach

Consider an example where the company wants to make its decision based on how
much Cost of rectifying RTD will be incurred in Release 2 for the RTD introduced
by the selected prioritization of requirements in the first Release. Figure 7 indicates
whether the existing approaches represent the concept Cost of rectifying RTD and
whether they provide metrics for quantifying it. Specifics of the metrics can be seen
in Table 10.

According to Figure 7, approaches P1, P2, P4, P5, P8, P10, P11, P13, and P14 dis-
cuss the concept Cost of rectifying RTD. However, only P11 and P5 provide some
form of measurement. According to Table 10, P11 supports measuring the “sharp ratio
of an optimal architecture” and the “sharp ratio of the selected architecture”, which
contribute to measuring the cost of moving towards the optimal architecture (essen-
tially rectifying the RTD introduced in the first Release). P5 provides “confidence”
and “uncertainty”, which contribute to measuring the RTD incurred for a feature, i.e.,
how much it costs to fix the RTD. Therefore, the company can decide if they want to
choose one of these approaches as fit for their purpose.

Identifying the need to develop a new Quantification Approach

As another example, consider that the company wants to make its decision based on
how much Rework code costs associated with RTD may be incurred in the next
release (or the next few releases) if the RTD incurred by the selected prioritization of
requirements in the first release is not rectified for some time.

According to Figure 7, even though approaches P1, P2, P7, P10, and P16 discuss
this concept, they do not necessarily provide a way to measure it (this is also indicated
in Table 10). Therefore, this is an instance where new metrics or new quantification
approaches may need to be developed.

9 Modelling RTD Quantification — Discussion

9.1 A Comparison of RTD and CTD

The development of RTDQM and combining it with Perera et al.’s work, TDQM [5]
(See Figure 6 and Section 7.3), enabled a comparison between the quantification of
code-related TD and RTD.

A comparison between the concepts for code-related TD and RTD quantification
can be observed in Table 11 where we drew parallels between the RTDQM and TDQM
concepts where possible. We discuss the main observations below. From here on, we

45

RTDQM Concept Existing approaches dis-
cussing the concept

Existing approaches pro-
viding metrics for the con-
cept

New Design Costs associated
with RTD

- -

Rework Design Costs associ-
ated with RTD

P10, P16 -

New Code Costs associated
with RTD

P1, P2, P7 -

Rework Code Costs associated
with RTD

P1, P2, P7, P10, P16 -

Implementation Cost of a
Design/ Architectural Decision

P8, P11, P17 P17 - Cost of Architectural
Strategy (i.e., Expected cost
of implementing each Architec-
tural Strategy)

Implementation Cost of Fea-
ture

P1, P15, P18 -

Total cost of a Development
Path

P1, P2, P3, P5, P7, P11 P1 - Standard deviation of the
rate of return on the value
of the selected requirements
over time, Net value of the
option, Conditional value of
the option, Present value of
each node, Net Present value of
existing options, Risk-adjusted
probability

Benefit of taking RTD P1, P10 -
Cost of rectifying RTD P1, P2, P4, P5, P8, P10, P11,

P13, P14
P11 - Sharpe ratio of an “opti-
mal” architecture, Sharpe ratio
of a “selected” architecture, P5
- confidence, uncertainty

Table 10 RTDQM Concepts and metrics to make an informed decision for prioritizing requirements
— model concepts discussed in the example are in italics

will refer to code-related TD as CTD and that model as CTDQM to distinguish
between RTD and CTD easily.

9.1.1 Similar Concepts in RTDQM and TDQM

RTDQM and CTDQM Concepts in the first part of Table 11 are similar concepts. We
discuss below the concepts that were most commonly discussed in the RTD quantifica-
tion approaches found in our SMS (see Figure 7 for the comparison of the occurrences
of the concepts; highest counts are highlighted).

The most commonly discussed concepts were RTD Item and RTD Interest. A TD
Item (either CTD or RTD) refers to a unit of Technical Debt, i.e., an artifact in the
code or requirements that is a symptom of the incurrence of TD. TD Interest refers
to the consequences of accumulating RTD or CTD.

CTD vs RTD Items

CTD Items include software code-related artifacts, while RTD Items can take vari-
ous forms such as ambiguous, poorly or inadequately specified requirements that are

46

documentation-related artifacts, design trade-offs, and implementation that do not
completely satisfy user needs.

Examples of CTD Items include software code-related artifacts such as Code
Smells, Design Smells, and Architectural Smells [5].

RTD Items can take the form of ambiguous or low-quality requirements (P2, P6,
P7), poorly specified requirements (P9), poor requirements documentation (P12),
insufficient or incomplete requirements (P3), missing or inadequate or outdated
requirements documentation or missing, incomplete or inadequate artifacts (P3, P9,
P14, P16), or Requirement Smells (P2, P6), neglected or missed user needs (P2),
inconsistencies in the SRS (P4), unspecified non-functional requirements (P14), incon-
sistencies in functional and non-functional requirements (P4), absence of requirements
(P4), accumulated requirements in the backlog (P4), partially implemented require-
ments (P1, P5), and unmet requirements (P4), unfulfilled quality requirements (P12)
and design trade-offs (P17) [1, 2, 4, 13, 24–26].

Like CTD Items, RTD Items could also be introduced into a software system inad-
vertently or through deliberate choice (P1, P3) either during RE activities (e.g., when
capturing user needs, when specifying requirements in the SRS) or during design (
e.g., design trade-offs, unfulfilled quality requirements) [31, 36] or during Implementa-
tion (e.g., mismatch implementation, missing features, partially satisfied requirements)
[2, 4, 13, 24–26].

According to Abad et al. (P1) [4], trade-offs in requirements specification can be
consequences of intentional, strategic decisions made in pursuit of immediate gains.
Charalampidou et al. [38] state that documentation inefficiencies can occur intention-
ally by selecting not to apply a rigorous documentation process or unintentionally
due to insufficient maintenance of documents, e.g., developers not documenting
requirements properly due to time limitations.

CTD Interest vs RTD Interest

CTD Interest impacts the implementation and maintenance activities and does not
impact upstream activities such as RE. New Code Costs associated with CTD and
Rework Code Costs associated with CTD model the consequences of RTD related
to the software code. In contrast, RTD Interest can impact both upstream (e.g., RE
activities) and downstream activities (e.g., design, implementation or maintenance
activities) of the software product development life cycle (P1, P2, P3, P4, P6, P7, P9,
P10, P11, P12, P13, P14, P16) [2, 4, 13, 26, 38]. Therefore, RTD can have more Interest
constituents relevant to other development stages, such as design and implementation,
compared to CTD.

RTD can have additional consequences compared to the consequences of CTD, e.g.,
having to do additional interviews with Users to validate newly emerged requirements
and having to clarify an ambiguous requirement in the specification; these involve costs
associated with RE activities only (P2) [13], rework on requirements (P10), and the
impact of changed requirements causing additional work in the RE phase (P14). New
RE Costs associated with RTD and Rework RE costs associated with RTD concepts
capture those costs.

47

Poorly conducted requirements elicitation (P4, P7) can also lead to building the
wrong product that does not meet customer satisfaction [1, 2]. Bonfim et al. (P4)
[1] describe this situation as unmet functional and non-functional requirements due
to bad specification, and not everything requested is being delivered. New Design
Costs associated with RTD and Rework Design Costs associated with RTD (P10,
P16) concepts capture the costs that are consequences of sub-optimal design decisions
related to the requirements.

RTD Interest incurred during the development stage (P1, P2, P7, P10, P16), e.g.,
to implement a workaround to compensate for a neglected user need, extra effort
related to the current development stage (P7), cost of neglecting the debt (P7), rework
on code (P10), and the need to refactor (P16), can be more expensive than resolving
such issues earlier in the software development life cycle, which is the downside to
accumulating RTD [2, 4, 13]. New Code Costs associated with RTD and Rework Code
costs associated with RTD capture such consequences.

RTD can also lead to other issues such as inefficiency in project progress tracking
(P3), hindered communication with customers on bug-fixing progress (P3), and testers
being not aware of the requirements that need to be tested (P3), causing an extra
burden for software maintenance tasks [38], lack of common understanding of QRs
(P9), the architectural impact of QRs (P12), incorrect implementation leading to
unhappy customers (P9), Informal quality management process (P9), low external
quality, and low maintainability (P16), the constant need for re-testing (P16) and also
delivery delays and thereby lead to stakeholder dissatisfaction and impaired company
image.

9.1.2 Concepts specific to RTDQM

RTDQM concepts, User Need, Context, Risk, Scenario, Quality Attribute, Product
Value, End User Satisfaction Level, Priority of a Requirement, and Non-Functional
Requirement are specific to the RTDQM model (See Table 11).

The User is key in determining the optimal set of requirements for developing a
software product to reach the desired product value that meets end-user satisfaction.
Therefore, compared to artifacts related to software code, Requirement artifacts have
a feedback loop involving the User to precisely capture User Needs, document them,
and implement them as Features or Design decisions as discussed in Section 7.3.2. This
is supported by evidence from the RTD quantification approaches (P2, P3, P6, P7) in
the literature [2, 13, 26, 38]. This is not the case with the quality of the software code
since it is an internal aspect that is not directly visible to the end user.

Furthermore, Requirements involve Risk and may be determined by Quality
attributes and Scenarios, for example, Non-Functional Requirements, according to the
evidence from the literature (P11, P17) [31, 36]. Therefore, such specific concepts are
required to be considered in the context of RTD quantification.

9.1.3 Concepts specific to CTDQM

Concepts specific to the TDQM model from the work of Perera et al. [5] were: Release,
development Path, Development Step, Total Cost of a Development Path, and Total

48

� ✁ ✂ ✄ ☎ ✆✝✞✝✟✠

✡ ☛ ☞ � ✌ ✍ ✍ � ☞ ✍ ✁ ✎ ✏ ✡

✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✑✚ ✑✑ ✑✒ ✑✓ ✑✔ ✑✕ ✑✖ ✑✗ ✑✘ ✑✙ ✒✚ ✒✑ ✒✒ ✁✂✄☎ �✛✟✜✝✢✣✤

✥✦ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✡✧✛✠★✜✣

✥✩ ✑ ✑ ✑ ✑ ✑ ✑ ✒ ☛✝✪✝✫✤✝

✥✬ ✑ ✑ ✑ ✑ ✑ ✑ ✓ ✂✝✭ ✡✫✣✮

✥✯ ✔ ✂✝✭ ✍✣✝✢

✥✰ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✕ ✱✲✢✪ ✍✣✝✢

✥✳ ✖ ☛✝✴✫✜✣✛✧✵✟✞ ✍✣✝✢

✥✶ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✗ ✏✝✫✣★✧✝

✥✷ ✘ ✁✂ ✱✣✝✲

✡✙ ✙ ✂✝✭ ✡✫✣✮ ✁✛✣✫✪ �✛✤✣

✡✑✚ ✑✚ ✂✝✭ ✍✣✝✢ ✁✛✣✫✪ �✛✤✣

✡✑✑ ✑ ✑ ✑✑ ✱✲✢✪✝✲✝✟✣✫✣✵✛✟ ✍✣✝✢ ✁✛✣✫✪ �✛✤✣

✡✑✒ ✑✒ ☛✝✴✫✜✣✛✧✵✟✞ �✛✤✣

✡✑✓ ✑✓ ✱✲✢✪✝✲✝✟✣✫✣✵✛✟ �✛✤✣ ✛✴ ✫ ✏✝✫✣★✧✝

✡✑✔ ✑✔ ✁✂ ✱✟✣✝✧✝✤✣

✡✑✕ ✑ ✑ ✑ ✑✕ ✸✝✹ �✛✠✝ �✛✤✣ ✟✛✣ ✫✤✤✛✜✵✫✣✝✠ ✹✵✣✮ ✁✂

✡✑✖ ✑✖ ☛✝✹✛✧✺ �✛✤✣ ✟✛✣ ✫✤✤✛✜✵✫✣✝✠ ✹✵✣✮ ✁✂

✡✑✗ ✑ ✑ ✑✗ ✸✝✹ �✛✠✝ �✛✤✣ ✫✤✤✛✜✵✫✣✝✠ ✹✵✣✮ ✁✂

✡✑✘ ✑ ✑ ✑ ✑✘ ☛✝✹✛✧✺ �✛✠✝ �✛✤✣ ✫✤✤✛✜✵✫✣✝✠ ✹✵✣✮ ✁✂

✑✙ ✎✝✟✝✴✵✣ ✛✴ ☛✝✴✫✜✣✛✧✵✟✞

✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✑✚ ✑✑ ✑✒ ✑✓ ✑✔ ✑✕ ✑✖ ✑✗ ✑✘ ✑✙ ✒✚ ✒✑ ✒✒ ✒✚ ✎✝✟✝✴✵✣ ✛✴ ✣✫✺✵✟✞ ✁✂

✒✑ ✱✟✣✝✧✝✤✣ ✡✧✛✻✫✻✵✪✵✣✼

✒✒ ✁✂ ✱✣✝✲ ✡✧✵✛✧✵✣✼

�✛✟✜✝✢✣✤ ✴✛★✟✠ ✵✟ ☛✁✂ ✫✢✢✧✛✫✜✮✝✤

Fig. 9 CTDQM Concepts discussed in RTD Approaches — The Approach Comparison Matrix and
the TDQM Concepts are from Perera et al.’s work [5]. Papers referred by the codes P[n] are listed in
Table 2

Cost of a Development Step (See Table 11). We utilized the TDQM approach compari-
son matrix [5] to understand if these concepts were discussed in the RTD approaches as
well since the concepts were related to the context of software development, although
they were not initially modeled in our RTDQM model but in the TDQM model.

Figure 9 shows that the concepts Release, Development Path, Development Step,
Total Cost of a Development Path, and Total Cost of a Development Step were
represented by the RTD approaches as well. Hence, they are not specific to CTD
quantification but are common to RTD quantification as well.

9.1.4 Concepts common to both models

Software Product was the only concept that was common to both the models
(See Table 11). Figure 9 verifies that the concept is a common concept to both
phenomenons, RTD quantification and CTD quantification.

49

RTDQM Concept Category Parallel CTDQM Concept Category

Requirements Engineering Step Process/ Time Implementation Step Process/ Time
(Documented) Requirement Process/ Time Feature/ Arch. or Design Deci-

sion
Process/ Time

Functional Requirement Process/ Time Feature Process/ Time
RTD Item Process/ Time CTD Item Process/ Time
RTD Rectifying Step Process/ Time CTD Rectifying Step Process/ Time
(Prioritized) Requirement Process/ Time Feature/ Arch. or Design Deci-

sion
Process/ Time

Design Step Process/ Time Implementation Step Process/ Time
Design/ Architectural Decision Process/ Time Feature Process/ Time
Implementation Cost of Archi./ Design
Decision

Cost Implementation Cost of a Fea-
ture

Process/ Time

Total Cost of a RE Step Cost Total Cost of an Implementa-
tion Step

Cost

Cost of Rectifying RTD Cost Cost of Rectifying CTD Cost
RTD Interest Cost CTD Interest Cost
New Code Cost associated with RTD Cost New Code Cost associated

with CTD
Cost

Rework Code Cost associated with
RTD

Cost Rework Code Cost associated
with CTD

Cost

New Design Cost associated with RTD Cost New Code Cost associated
with CTD

Cost

Rework Design Cost associated with
RTD

Cost Rework Code Cost associated
with CTD

Cost

New RE Cost associated with RTD Cost New Code Cost associated
with CTD

Cost

Rework RE Cost associated with RTD Cost Rework Code Cost associated
with CTD

Cost

Documentation Cost of a Requirement Cost Implementation Cost of a Fea-
ture

Cost

Benefit of Rectifying RTD Benefit Benefit of Rectifying CTD Benefit
Benefit of taking RTD Benefit Benefit of taking RTD Benefit
Benefit of not taking RTD Benefit Benefit of not taking RTD Benefit
RTD Interest Probability Probability CTD Interest Probability Probability
RTD Item Priority Priority CTD Item Priority Priority

User Need Process/ Time - -
Context Process/ Time - -
Risk Process/ Time - -
Scenario Process/ Time - -
Quality Attribute Process/ Time - -
Product Value Benefit - -
End User Satisfaction Level Benefit - -
Priority of a Requirement Priority - -
Non-functional Requirement Process/ Time - -

- - Release Process/ Time
- - Development Path Process/ Time
- - Development Step Process/ Time
- - Total Cost of a Development

Path
Cost

- - Total Cost of a Development
Step

Cost

Software product Process/ Time Software Product Process/ Time

Table 11 RTDQM vs TDQM: First part of the Table — similar concepts, Second part of the Table —
RTDQM specifics, Fourth part of the Table — CTDQM specifics, Fifth part of the Table — common concepts,
In Italics — Concepts most commonly discussed among the RTD quantification approaches in our dataset

50

Summary of the comparison between RTD and CTD:

• Although some concepts are similar in both models, they can relate to
different artifacts.

• RTD interest can encompass multiple stages in software development. Unlike
CTD, it can impact both upstream and downstream activities in software
development.

• Even though some concepts appeared to be specific to CTD, they were also
found in RTD quantification approaches.

• Concepts specific to RTD emphasized the end user’s involvement in RTD.

10 Implications to Researchers and Practitioners
and Future Work

10.1 Implications to Researchers

A definition for RTD and a reference for RTD quantification

SMS results indicated that there is no commonly agreed definition for RTD and that
there is no commonly agreed way to quantify RTD. There was no common reference
point for understanding RTD quantification in the existing literature. Therefore, we
formally defined RTD and developed a conceptual model to unify knowledge related to
RTD quantification so that we could compare and analyze existing approaches based
on the model. Our model also guides the development of new quantification approaches
and helps understand what concepts may need to be supported by metrics.

The value of having our conceptual model is that it reveals aspects of RTD quantifi-
cation that were not directly visible in the existing literature for both functional and
non-functional requirements; one such aspect is the consequences of RTD in the form
of constituents of RTD Interest. Another aspect is the costs and benefits associated
with RTD.

There is still a lack of metrics for RTD quantification

There is still a lack of metrics for quantifying RTD. This became evident from ana-
lyzing the existing quantification approaches based on our model. This is discussed in
Section 8.1. However, the model helps identify concepts related to RTD quantification
and identify where metrics could support the quantification of those concepts. The
model can guide the development of new quantification approaches. This use of the
model is discussed in Section 8.2.

The comparison of the existing approaches revealed that the quantification of the
consequences of RTD (i.e., RTD Interest) was discussed among most approaches. How-
ever, regardless of whether the approaches are categorized as discussing functional
or non-functional aspects of requirements, all approaches have no metrics associated
with RTD Interest and its constituents. Furthermore, most of the benefit concepts,
the priority of a RTD Item, and RTD Interest probability also lack metrics. Inves-
tigating metrics that can support the quantification of these concepts is a potential
future research direction.

51

The end-user is important for RTD management

Combining RTDQM with TDQM allowed a clear comparison of RTD with the TD
types related to software code. The combined model shows the feedback loop involved
with the user when capturing user needs and meeting the users’ level of satisfaction
for RTD, which differs from TD types related to the software code.

TD quantification can inform RTD quantification

Having discussed a comparison of code-related TD quantification and RTD quantifi-
cation concepts in Section 9, the combined model enables one to develop new metrics
to support the quantification of RTDQM concepts by being informed by the metrics
that have been developed for code-related TD quantification concepts in the TD liter-
ature (and in the industry). In this paper, we did not perform a detailed comparison
of metrics for CTD and RTD. This is a possible future work that can be done by using
our model as a reference point.

Developing instruments for future research

The model can also be used to develop instruments for future research, for example,
to develop surveys that investigate whether practitioners quantify RTD as discussed
in the model. By doing so, researchers can investigate whether software practition-
ers quantify the costs and benefits associated with RTD captured in the model and
whether they utilize metrics to support the quantification of the concepts.

10.2 Implications to Practitioners

When sub-optimal decisions concerning requirements are made inadvertently, the
ability to identify them and rectify them early on is important. When sub-optimal
decisions are made deliberately (in a prudent manner), for example, to deliver the most
important set of features on time to market or to develop a prototype that helps gain
user feedback, then such RTD must be monitored and rectified prior to facing larger
problems. Furthermore, there may be situations where one set of requirements must
be prioritized over another while being aware of the trade-offs. All these are instances
where practitioners have to make informed decisions with respect to managing the
RTD.

Practitioners may have particular needs regarding what they want to quantify
when making informed decisions. They may want answers to particular questions such
as the following when making their decisions for RTD management.

• How much RTD has accumulated in the project right now?
• What is the Interest we are paying for not fixing the problems with requirements?
• What is the benefit that can be gained by fixing problems with requirements right
now rather than later?

• What is the impact on the project due to changes in the requirements (i.e., What
is the impact of the implementation being out of sync with the requirements)?

• What are the consequences of RTD for a given set of sub-optimally prioritized
requirements?

52

�✁✂✁✄ ☎✆ ☎✝✁ ✞✟✠✡✡☛✂☛✞✠☎☛✆☞

✆✂ ✁✌☛✡☎☛☞✍ ✎✏✠☞☎☛✂☛✞✠☎☛✆☞

✠✑✑✄✆✠✞✝✁✡ ☎✝✠☎ ☛✡ ✒✠✡✁✓

✆☞ �✔✕✖✗ ✞✆☞✞✁✑☎✡

✘☞ ✁✌☛✡☎☛☞✍ ✠✑✑✄✆✠✞✝ ✙✡✚

✡✠☎☛✡✂☛✁✡ ☎✝✁ ✎✏✠☞☎☛✂☛✞✠☎☛✆☞

☞✁✁✓ ☛☞ ☎✁✄✛✡ ✆✂ �✔✕✖✗

✞✆☞✞✁✑☎✡✜

✢✣

✤✥✦

✕✁✞☛✡☛✆☞✧✛✠★☛☞✍

✩✞✁☞✠✄☛✆

✪✓✁☞☎☛✂✫ ✞✆☞✞✁✑☎✡ ✄✁✎✏☛✄✁✓

☎✆ ✛✠★✁ ✠☞ ☛☞✂✆✄✛✁✓

✓✁✞☛✡☛✆☞ ✒✠✡✁✓ ✆☞ �✔✕✖✗

✞✆☞✞✁✑☎✡

✬✡✁ ☎✝✁ ✛✆✡☎ ✡✏☛☎✠✒✟✁

✁✌☛✡☎☛☞✍ ✎✏✠☞☎☛✂☛✞✠☎☛✆☞

✠✑✑✄✆✠✞✝ ✂☛☎ ✂✆✄ ✑✏✄✑✆✡✁

✙✞✆☞✡☛✓✁✄ ✛✁☎✄☛✞✡ ☛☞ ☎✝☛✡

✡✁✟✁✞☎☛✆☞✚

✕✁✭✁✟✆✑ ✠ ☞✁✮

✎✏✠☞☎☛✂☛✞✠☎☛✆☞ ✠✑✑✄✆✠✞✝ ✂☛☎

✂✆✄ ☎✝✁ ✑✏✄✑✆✡✁ ✒✠✡✁✓ ✆☞

�✔✕✖✗ ✞✆☞✞✁✑☎✡ ✄✁✎✏☛✄✁✓

☎✆ ✒✁ ✎✏✠☞☎☛✂☛✁✓

Fig. 10 Practitioners’ Flow Chart for informed-decision making

Depending on their quantification needs, practitioners may want to decide what
existing quantification approaches fit their purpose. For this, they need to ask two
questions: What concepts should be part of the quantification? and Is there a good
existing quantification approach that supports making an informed decision in the given
scenario? Figure 10 shows how practitioners may go about answering these questions.

See Figure 10; in a given decision-making scenario (e.g., the decision to take on
or not take on RTD with a sub-optimal prioritization of requirements), a practitioner
identifies the concepts that may help make an informed decision based on RTDQM con-
cepts. Then, they can refer to the classifications of existing quantification approaches
presented in Section 8.1 in this paper (see Figure 7).

Our classification of the existing quantification approaches discussed in Section
8.1 shows what concepts are discussed in the existing RTD quantification approaches
and what approaches may have metrics to support the quantification of the RTDQM
concepts (see Figure 7). Practitioners could use this classification to select an approach
that helps satisfy their quantification needs.

If there are existing quantification approaches that discuss the relevant concepts
in our conceptual model (i.e., RTDQM concepts) and provide metrics (or some form
of measurement) for their quantification, practitioners could select an approach that
best fits their purpose based on that. If an existing approach does not support the
quantification, practitioners may want to develop new quantification approaches and
supporting metrics to satisfy their quantification needs. Section 8.2 discusses an exam-
ple related to a RTD management decision-making scenario (See 8.2.3 — selecting an
existing approach and Section 8.2.3 — identifying the need to develop a quantification
approach).

However, the RTD quantification approaches that were identified in the literature
discuss different aspects that must be quantified, and some of them do not provide ade-
quate support to quantify the RTDQM concepts they discuss. This lack of consensus

53

was initially indicated by the SMS results and became more evident from the analysis
and classification of the existing quantification approaches discussed in Section 8.1.
Therefore, we encourage the development of new quantification approaches and met-
rics to support the quantification of RTDQM concepts that could eventually support
informed decision-making for RTD management.

10.3 Future Work

This work laid the theoretical foundation for quantifying RTD, proposing how
researchers and practitioners can go about utilizing existing quantification approaches
and developing new quantification approaches to support RTD quantification.

Our future work employs a survey with practitioners from the industry to learn
whether practitioners are currently aware of RTD quantification and to gather their
perceptions on how the quantification of RTD could be better supported.

In the survey, we inquire whether practitioners formally or informally quantify
RTD, and if so, how they quantify it and what their perceptions are about quantifying
the costs, benefits, and consequences of RTD so that the gaps in these can be addressed
by research. Our conceptual model, RTDQM, which we presented in this paper, guided
the development of the survey instrument.

11 Threats to Validity

We discuss threats to the validity of our SMS and model development based on the
guidelines provided by Petersen et al. [43].

11.1 Descriptive Validity

Descriptive Validity refers to how a study describes its observations accurately and
objectively. This threat applies to our SMS and the development of the conceptual
model.

To reduce the threat to the SMS, we recorded the data we extracted from the
papers in a tabular format. Demographic data, such as the paper title, publication
year, venue, author names, and the number of citations, was automatically recorded
from SCOPUS. The first author extracted and analyzed the rest of the data objectively,
based on the themes described in Section 3 (SMS Methodology). The recorded data
was discussed among all authors before their analysis to determine how they would
be analyzed and reported in this paper.

For the model development, data was extracted and analyzed using the systematic
coding process adopting the Thematic Analysis approach [23] described in Section
6, while Figure 2 provides an overview Figure 3 provides an example. The concepts
extracted from the papers were mapped to the model concepts using a matrix format
(TDQM Approach Comparison Matrix, adopted from Perera et al.’s work [5]). At least
two other authors reviewed the data extraction and analysis in iterative meetings.
Concerns were discussed and resolved during the iterative consensus meetings. All
authors agreed on the final set of model concepts before they were included in the
model.

54

11.2 Theoretical Validity

Theoretical Validity refers to the ability to capture what we intend to capture through
our study. This applies to identifying primary studies in the SMS and data extraction
in both the SMS and model development.

11.2.1 Identification of Primary Studies

We improved our search query to be less restrictive by removing specific phrases
and using the ‘AND’ operation to combine keywords (e.g., “technical debt” AND
“software requirements” instead of “Technical Debt in Software Requirements”). The
list of quantification-related keywords was removed from the query string to retrieve
papers that may have been filtered out otherwise. The search query was applied to the
title, abstract, and keywords to increase the probability of finding all relevant articles.
Furthermore, we did not limit our search to a particular period.

Additionally, we conducted Backward Reference Snowballing to complement the
results found via the search query. The research questions, inclusion/exclusion criteria,
and the selection of studies were discussed among all authors. At least two other
authors evaluated the results at each stage of the screening. Therefore, this threat has
been sufficiently mitigated.

11.2.2 Data Extraction and Analysis

The first author performed the data extraction and analysis of the primary studies in
the SMS and the data extraction analysis for the model development.

Themes described in Section 3 were used for the data extraction in the SMS.
The extracted data was reviewed by the other authors prior to analysis. The authors
discussed and agreed on how the data will be analyzed and reported in this paper.

For the model development, data was first extracted using the systematic coding
process adopting the Thematic Analysis approach [23] as described in Section 6. Map-
pings between initial codes and abstract concepts were performed using the TDQM
Approach Comparison Matrix developed by Perera et al. [5], an example is discussed
with reference to Ernst at. al. (Primary Study P7) — see Figure 3 and Section 6.1).
The first author performed the mappings. At least two other authors verified the
mappings. The resulting model concepts and relationships were discussed and agreed
upon between all authors prior to including them in the model. Disagreements that
were raised were resolved during meetings. The interpretations of the results and the
conclusions were also discussed among the authors before they were reported in this
paper.

11.3 Generalizability

Generalizability refers to the external and internal generalizability of our study. SMSs
typically follow a common process. We followed the guidelines by Petersen et al. [43].
Therefore, the threat to internal generalizability is mitigated. However, study goals
may differ for different SMSs. Therefore, external generalizability cannot be discussed
with respect to SMSs.

55

We do not claim that our model is complete and generalizable to all contexts and
scenarios in software development. We cannot make this claim without validating our
model in an industrial setting. However, our model captures the concepts and rela-
tionships sufficient to model RTD quantification and to serve as a common reference
point to compare and analyze existing quantification approaches. We evaluated this
by applying our model to the approaches found in our SMS (see Section 8.1).

11.4 Interpretive Validity

Interpretive validity refers to conclusion validity. The conclusions should be reasonable
given the data [43]. The first author primarily made the conclusions of our study,
and this might be subject to researcher bias. However, we discussed the results and
conclusions among all authors in multiple iterative meetings prior to reporting them
in this paper. Therefore, this threat is sufficiently mitigated.

11.5 Repeatability

The detailed reporting of a research process preserves the repeatability of the study.
We have reported the SMS process in Section 1 and the overview in Figure 1. The
process we followed applied the guidelines by Petersen et al. [43], a commonly followed
process for SMSs by the research community.

Our systematic coding to developing our model adopting the Thematic Analysis
approach by Braun and Clarke [23] is described in Section 6, an overview of the
methodology and an example of the systematic coding are provided in Figures 2 and
3, respectively.

Furthermore, we provide a Replication Package1 as supplementary material.

12 Conclusion

We formally defined Requirements Technical Debt (RTD) and developed a conceptual
model for RTD quantification, the Requirements Technical Debt Quantification Model
(RTDQM), as a theoretical foundation to support the understanding of RTD quantifi-
cation. Our initial work was reported in our conference paper [3]. This paper extends
our initial work, improving the SMS and the model. We report on results from all 18
primary studies and the findings from the improvements made to the model.

RTDQM was improved to model the functional and non-functional aspects of
requirements for RTD quantification based on 286 concepts extracted from the lit-
erature found in our SMS. The result was combined with prior work modeling the
quantification of code-related TD to have a more complete model of both requirements
TD and TD related to the software code.

The key observation from our work is that although RTD is similar to code-related
TD in many aspects, it has its own components. RTD can be incurred indepen-
dently, regardless of whether there is code-related TD in a software project. RTD can
impact both upstream and downstream activities in software development. For exam-
ple, RTD Interest can be incurred during Requirements Engineering (RE) and also

1Replication Package: https://doi.org/10.5281/zenodo.10900222

56

https://doi.org/10.5281/zenodo.10900222

during Design and Implementation. The impact on downstream activities can also
be cascading from the upstream activities. Unlike code-related TD, RTD has a feed-
back loop involving the User to precisely capture their needs and meet their level of
satisfaction. This became more evident when the code-related and requirements TD
quantification models were combined.

RTDQM unifies the knowledge of RTD quantification gained from the existing
literature. It can serve as a reference point to compare existing approaches for RTD
quantification and to develop new approaches, metrics, and tools to support informed
decision-making based on the model concepts and their relationships. The model’s
utility was evaluated by applying it to compare and analyze existing quantification
approaches found through our SMS and by illustrating, via an example case study,
how the model can help practitioners select an existing approach or identify the need
to develop new approaches to support their particular quantification needs. The model
can guide the development of instruments for empirical research. Our future work
employs a survey developed based on the model to gather software practitioners’
perceptions of RTD quantification.

Supplementary information. Replication Package: https://doi.org/10.5281/
zenodo.10900222

Acknowledgments. This research is funded by the New Zealand Ministry of Busi-
ness, Innovation, and Employment via The Science for Technological Innovation (SfTI)
National Science Challenge Veracity Technology Spearhead.

Appendix A SMS Primary Studies

57

https://doi.org/10.5281/zenodo.10900222
https://doi.org/10.5281/zenodo.10900222

Approach Description
P1 Applies the real options theory to quantify requirements decisions in the form of their

Net Present Value (NPV) by considering uncertainty in requirements selection, sched-
ule and final cost. A Positive number for NPV indicates that the current requirements
specification does not take on RTD.

P2 Extends Ernst et al.’s RTD definition to include upstream activities involving the elici-
tation of requirements and their translation into specifications. Defines how to identify,
quantify, and payback RTD for RTD types, 0, 1, 2.

P3 A tool-based approach to prevent requirements documentation TD during RE. Integrates
the SRS into the IDE enabling real-time traces between requirements and code.

P4 Investigates the causes that incur RTD and actions that can minimize and or avoid them
in the context of agile software development.

P5 Focuses on RTD incurred for a given feature as the extent to which that feature is not
implemented. Relies on an uncertainty measure to assess RTD accrued for a specific
feature (i.e., to assess the extent to which that feature is not entirely supported by the
system). If the INCIDENCE value is above a particular threshold for the top claim of
the case, then there is sufficient certainty that the feature is supported by the system.

P6 Performs a live study surveying RE experts to gain further insights on the issues taking
place at this stage and how they fit in their definition of RTD Type 1: Requirement
Smells, an indicator for a quality violation of a requirements artifact. Aims to understand
and compare the perceived harmfulness of requirement smells from a theoretical and
practical perspective.

P7 Introduces a tool that helps compare one implementation to new proposed implementa-
tions to reduce RTD.

P8 Defines the concept of TD for managing compliance requirements exploring its link to
compliance goals and obstacles. Requirements are represented in the form of compliance
goals that range from high level business objectives to well-defined compliance properties.
These compliance requirements can be related to quality attributes such as information
security. Obstacles represent undesired properties that prevent satisfying the goals. Cost
required to resolve an obstacle is the TD Principal, the extra costs that will be incurred
in case the obstacle is not resolved, is the TD Interest.

P9 The goal of the conceptual model introduced in this paper is to support optimal QR
documentation in ASD. The model provides a representation and explanation of the
factors affecting QR documentation and identifies mitigation strategies to overcome the
issues introduced due to those factors. The model is based on 3 case studies. Practitioners
can analyze for example, how time constraints or QR awareness affects documentation,
see potential issues that may arise from them, and utilize strategies suggested by the
model to address these issues.

P10 Proposes a RED theory that aligns concepts from TD research but emphasizes the specific
nature of requirements engineering. The theory is based on interview data. The authors
put together a list of causes and consequences and prevention and repayment practices
for RED based on literature.

58

P11 ‘Sustainability’ can be viewed as a concern that can cross-cut both functional and non-
functional requirements. This paper proposes an economics-driven architecture evaluation
method which extends CBAM and integrates principals of MPT to evaluate software
architecture design decisions for sustainability. The approach aims to identify architecture
design decisions which minimize costs, reduce risk and maximize value on sustainability
dimensions of interest including – environmental, social, economic, technical, and indi-
vidual– and calculates the requirements debt related to these dimensions. This approach
models technical debt as a function of requirements trade-offs (i.e. QA response trade-offs
for scenarios of interest).

P12 The authors suggest that, for fulfillment of Quality Requirements (QRs), the conse-
quences should be evaluated and adequate resources must be allocated to develop a
solution that meets the requirements. They combine existing techniques such as, Quality
Attribute Workshops (QAW) and Impact Mapping to create a lightweight, iterative and
effective quality requirement elicitation process.

P13 Aims to present a process for managing UTD supporting the debts identification, valida-
tion, rating, prioritization, estimation and monitoring. The process involves actors and
tasks to be performed by the actors, for example, UTD analysts will focus on identify-
ing usability issues and following up on their correction, development team will act to
validate problems in UTD and prioritize, estimate, and pay the UTD

P14 Investigates the impacts of agile requirements documentation debt on software projects.
The findings indicated an extra maintenance effort of about 47 percent of the total effort
estimated for developing the project and an extra cost of about 48 percent of the initial
cost of the development phase in their retrospective case study.

P15 Proposes a market driven systematic approach to supplement the selection of require-
ments, which accounts for uncertainty and incomplete knowledge in the real world.
Utilizes portfolio-based reasoning to make the connection to market value explicit.

P16 Investigates the state of the practice of R2DD, understanding causes, effects, and prac-
tices and practice avoidance reasons (PARs) for debt prevention and repayment and
organizes those practices into a conceptual map. The authors emphasize that it is
important to discuss the management of TD in the context of requirements engineering
activities because they are inherently complex and impact several software development
phases (e.g., coding, test planning).

P17 Presents CBAM (Cost Benefit Analysis Method), in which costs and benefits are traded
off with system quality attributes. CBAM builds upon the Architecture Tradeoff Analysis
Method (ATAM) to model the costs and benefits of architectural decisions and to provide
means of optimizing such deicisons. CBAM helps in the elicitation and documentation
of costs, benefits and uncertainity and gives the stakeholders a rational decision-making
process.

P18 Introduces a cost-value approach that prioritizes requirements according to their relative
value (in terms of customer satisfaction) and costs (in terms of implementation costs).
Defines ‘quality’ as, candidate requirement’s potential contribution to customer satisfac-
tion with the resulting system. Defines ‘cost’ as, cost of successfully implementing the
candidate requirement.

Table A1: Short descriptions of the RTDM Approaches

59

References

[1] Bonfim, V.D., Benitti, F.B.V.: Requirements debt: causes, consequences, and
mitigating practices. In: SEKE, pp. 13–18 (2022)

[2] Ernst, N.A.: On the role of requirements in understanding and managing technical
debt. In: 2012 Third International Workshop on Managing Technical Debt, pp.
61–64 (2012). IEEE

[3] Perera, J., Tempero, E., Tu, Y.-C., Blincoe, K.: Quantifying requirements techni-
cal debt: A systematic mapping study and a conceptual model. In: 2023 IEEE 31st
International Requirements Engineering Conference (RE), pp. 123–133 (2023).
https://doi.org/10.1109/RE57278.2023.00021

[4] Abad, Z.S.H., Ruhe, G.: Using real options to manage technical debt in require-
ments engineering. In: 2015 IEEE 23rd International Requirements Engineering
Conference, pp. 230–235 (2015). IEEE

[5] Perera, J., Tempero, E., Tu, Y.-C., Blincoe, K.: Quantifying technical debt: A sys-
tematic mapping study and a conceptual model. arXiv preprint arXiv:2303.06535
(2023) https://doi.org/10.48550/arXiv.2303.06535

[6] Guarino, N., Guizzardi, G., Mylopoulos, J.: On the philosophical foundations
of conceptual models. Information Modelling and Knowledge Bases 31(321), 1
(2020)

[7] Delcambre, L.M., Liddle, S.W., Pastor, O., Storey, V.C.: A reference framework
for conceptual modeling. In: Conceptual Modeling: 37th International Conference,
ER 2018, Xi’an, China, October 22–25, 2018, Proceedings 37, pp. 27–42 (2018).
Springer

[8] Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101, 193–220 (2015)

[9] Cunningham, W.: The WyCash portfolio management system. Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions, OOPSLA Part F1296(October), 29–30 (1992) https://doi.org/10.1145/
157709.157715

[10] Rios, N., Mendonça Neto, M.G., Sṕınola, R.O.: A tertiary study on technical
debt: Types, management strategies, research trends, and base information for
practitioners. Information and Software Technology 102, 117–145 (2018)

[11] Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt
in software engineering (dagstuhl seminar 16162). In: Dagstuhl Reports, vol. 6
(2016)

60

https://doi.org/10.1109/RE57278.2023.00021
https://doi.org/10.48550/arXiv.2303.06535
https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715

[12] Melo, A., Fagundes, R., Lenarduzzi, V., Santos, W.B.: Identification and mea-
surement of requirements technical debt in software development: A systematic
literature review. Journal of Systems and Software, 111483 (2022)

[13] Lenarduzzi, V., Fucci, D.: Towards a holistic definition of requirements debt. In:
2019 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pp. 1–5 (2019). IEEE

[14] Frattini, J., Fucci, D., Mendez, D., Sṕınola, R., Mandić, V., Taušan, N., Ahmad,
M.O., Gonzalez-Huerta, J.: An initial theory to understand and manage require-
ments engineering debt in practice. Information and Software Technology 159,
107201 (2023) https://doi.org/10.1016/j.infsof.2023.107201

[15] Nugroho, A., Visser, J., Kuipers, T.: An empirical model of technical debt and
interest. In: Proceedings of the 2nd Workshop on Managing Technical Debt, pp.
1–8 (2011)

[16] Alves, N.S., Mendes, T.S., Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman, C.:
Identification and management of technical debt: A systematic mapping study.
Information and Software Technology 70, 100–121 (2016)

[17] Behutiye, W.N., Rodŕıguez, P., Oivo, M., Tosun, A.: Analyzing the concept
of technical debt in the context of agile software development: A systematic
literature review. Information and Software Technology 82, 139–158 (2017)

[18] Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi,
M., Linkman, S.: Systematic literature reviews in software engineering–a tertiary
study. Information and software technology 52(8), 792–805 (2010)

[19] Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies
in software engineering. In: 12th International Conference on Evaluation and
Assessment in Software Engineering, pp. 1–10 (2008)

[20] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of systems and software 80(4), 571–583 (2007)

[21] Cavacini, A.: What is the best database for computer science journal articles?
Scientometrics 102(3), 2059–2071 (2015)

[22] Wohlin, C.: Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, pp. 1–10
(2014)

[23] Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative research
in psychology 3(2), 77–101 (2006)

61

https://doi.org/10.1016/j.infsof.2023.107201

[24] Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A., Tsiridis, N.: Integrating
traceability within the ide to prevent requirements documentation debt. In: 2018
44th Euromicro Conference on Software Engineering and Advanced Applications,
pp. 421–428 (2018). IEEE

[25] Belle, A.B., Lethbridge, T.C., Kpodjedo, S., Adesina, O.O., Garzón, M.A.: A
novel approach to measure confidence and uncertainty in assurance cases. In: 2019
IEEE 27th International Requirements Engineering Conference Workshops, pp.
24–33 (2019). IEEE

[26] Lenarduzzi, V., Fucci, D., Mendéz, D.: On the perceived harmfulness of require-
ment smells: An empirical study. In: Joint 26th International Conference on
Requirements Engineering: Foundation for Software Quality Workshops, Doctoral
Symposium, Live Studies Track, and Poster Track, Pisa; Italy, vol. 2584 (2020).
CEUR-WS

[27] Ojameruaye, B., Bahsoon, R.: Systematic elaboration of compliance requirements
using compliance debt and portfolio theory. In: Requirements Engineering: Foun-
dation for Software Quality: 20th International Working Conference, REFSQ
2014, Essen, Germany, April 7-10, 2014. Proceedings 20, pp. 152–167 (2014).
Springer

[28] Behutiye, W., Rodŕıguez, P., Oivo, M., Aaramaa, S., Partanen, J., Abhervé,
A.: Towards optimal quality requirement documentation in agile software devel-
opment: A multiple case study. Journal of Systems and Software 183, 111112
(2022)

[29] Frattini, J., Fucci, D., Mendez, D., Spinola, R., Mandić, V., Taušan, N., Ahmad,
M.O., Gonzalez-Huerta, J.: An initial theory to understand and manage require-
ments engineering debt in practice. Information and Software Technology 159,
107201 (2023)

[30] Mohagheghi, P., Aparicio, M.E.: An industry experience report on managing
product quality requirements in a large organization. Information and Software
Technology 88, 96–109 (2017)

[31] Ojameruaye, B., Bahsoon, R., Duboc, L.: Sustainability debt: A portfolio-based
approach for evaluating sustainability requirements in architectures. In: Proceed-
ings of the 38th International Conference on Software Engineering Companion,
pp. 543–552 (2016)

[32] Costa, A.F.F., Marques, A.B.D.S., Santos, I.S., Andrade, R.M.D.C.: Towards
a process to manage usability technical debts. In: Proceedings of the XXXVI
Brazilian Symposium on Software Engineering, pp. 241–246 (2022)

[33] Mendes, T.S., F. Farias, M.A., Mendonça, M., Soares, H.F., Kalinowski, M.,

62

Sṕınola, R.O.: Impacts of agile requirements documentation debt on soft-
ware projects: a retrospective study. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pp. 1290–1295 (2016)

[34] Sivzattian, S., Nuseibeh, B.: Linking the selection of requirements to market
value: A portfolio-based approach. In: Proceedings of 7th International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ 2001)
(2001)

[35] Barbosa, L., Freire, S., Rios, N., Ramač, R., Taušan, N., Pérez, B., Castellanos,
C., Correal, D., Pacheco, A., López, G., et al.: Organizing the td management
landscape for requirements and requirements documentation debt. UMBC Faculty
Collection (2022)

[36] Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and benefits of architec-
tural decisions. In: Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, pp. 297–306 (2001). IEEE

[37] Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE
software 14(5), 67–74 (1997)

[38] Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: Assess-
ing code smell interest probability: a case study. In: Proceedings of the XP2017
Scientific Workshops, pp. 1–8 (2017)

[39] Junior, H.J., Travassos, G.H.: Consolidating a common perspective on technical
debt and its management through a tertiary study. Information and Software
Technology, 106964 (2022)

[40] Sommerville, I.: Sommerville: Software Engineering. Pearson (2011)

[41] Ojameruaye, B., Bahsoon, R.: Sustainability archdebts: An economics-driven
approach for evaluating sustainable requirements. Software Sustainability, 369–
398 (2021)

[42] Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Professional (2007)

[43] Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and software
technology 64, 1–18 (2015)

63

	Introduction
	Background and Related Work
	Terminology
	Technical Debt (TD), TD Management (TDM) and Quantification
	RTD, RTD Management (RTDM) and Quantification
	Secondary Studies on RTD Quantification
	Definitions of RTD from Secondary Studies

	Systematic Mapping Study (SMS) — Methodology (RQ1)
	Search Strategy
	Article Screening and Selection
	Reference Snowballing
	Data Extraction, Analysis, and Synthesis

	Systematic Mapping Study (SMS) — Results (RQ1)
	Demographics
	RTD Definitions
	Concepts related to RTD Quantification
	Metrics, Tools and supported RTD Management Activities
	Proposed RTD Management Strategies
	RTD Causes, RTD Indicators and Consequences of RTD
	Challenges associated with RTD

	SMS — Discussion
	A definition for RTD
	RTD Quantification (RQ1)

	Modelling RTD Quantification — Methodology (RQ2)
	The Coding Process
	An Example of the Mappings

	Modelling RTD Quantification: The Requirements Technical Debt Quantification Model (RTDQM) — Results (RQ2)
	Modelling RTD Quantification
	User Need, RE Step, Total Cost of a RE Step, (Documented) Requirement and how it connects to the Implementation of Features
	RTD Items
	RTD Rectifying Step and Cost of Rectifying RTD
	RTD Interest and RTD Interest Probability
	RTD Interest constituents
	Benefit of Rectifying RTD, Benefit of taking RTD and Benefit of not taking RTD
	RTD Item Priority, Priority of a (Documented) Requirement and (Prioritized) Requirement

	Modelling the Non-Functional aspect of Requirements for RTD Quantification
	A combined model of RTD and TD Quantification
	The cascading impact of RTD
	Feedback loop involving the User

	Evaluating the use of RTDQM
	Comparing and Analyzing existing RTD Quantification Approaches
	What do existing RTD Quantification Approaches quantify
	Functional vs Non-Functional Quantification Approaches

	Quantifying RTD to support informed decision-making
	A software-intensive system supporting Organic Products Certification
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Prioritization of requirements
	Identification of a suitable Quantification Approach
	Identifying the need to develop a new Quantification Approach

	Modelling RTD Quantification — Discussion
	A Comparison of RTD and CTD
	Similar Concepts in RTDQM and TDQM
	CTD vs RTD Items
	CTD Interest vs RTD Interest

	Concepts specific to RTDQM
	Concepts specific to CTDQM
	Concepts common to both models

	Implications to Researchers and Practitioners and Future Work
	Implications to Researchers
	A definition for RTD and a reference for RTD quantification
	There is still a lack of metrics for RTD quantification
	The end-user is important for RTD management
	TD quantification can inform RTD quantification
	Developing instruments for future research

	Implications to Practitioners
	Future Work

	Threats to Validity
	Descriptive Validity
	Theoretical Validity
	Identification of Primary Studies
	Data Extraction and Analysis

	Generalizability
	Interpretive Validity
	Repeatability

	Conclusion
	Supplementary information
	Acknowledgments

	SMS Primary Studies

