
1

A Systematic Mapping Study ExploringQuantification
Approaches to Code, Design, and Architecture Technical Debt

JUDITH PERERA∗, School of Computer Science, The University of Auckland, New Zealand
EWAN TEMPERO, School of Computer Science, The University of Auckland, New Zealand
YU-CHENG TU, School of Computer Science, The University of Auckland, New Zealand
KELLY BLINCOE, Department of Electrical, Computer and Software Engineering, The University of
Auckland, New Zealand

To effectively manage Technical Debt (TD), we need reliable means to quantify it. We conducted a Systematic
Mapping Study (SMS) where we identified 39 quantification approaches for Code, Design, and Architecture
TD. We analyzed concepts and metrics discussed in these quantification approaches by classifying the quan-
tification approaches based on a set of abstract TD Quantification (TDQ) concepts and their high-level themes,
process/time, cost, benefit, probability, and priority, which we developed during our SMS. This helped identify
gaps in the literature and to propose future research directions. Among the abstract TDQ concepts discussed in
the different quantification approaches, TD item, TD remediation cost, TD interest, and Benefit of remediating
TD were the most frequently discussed concepts. They were also supported by some form of measurement.
However, some TDQ concepts were poorly examined, for example, the benefit of taking TD. It was evident
that cost concepts were more frequently quantified among the approaches, while benefit concepts were not.
Most of the approaches focused on remediating TD in retrospect rather than quantifying TD to strategically
use it during software development. This raises the question of whether existing approaches reliably quantify
TD and suggests the need to further explore TD quantification.

CCS Concepts: • Software and its engineering→ Software design tradeoffs.

Additional Key Words and Phrases: technical debt management, technical debt quantification, technical debt
measurement, software quality

ACM Reference Format:
Judith Perera, Ewan Tempero, Yu-Cheng Tu, and Kelly Blincoe. 2024. A Systematic Mapping Study Exploring
Quantification Approaches to Code, Design, and Architecture Technical Debt. ACM Trans. Softw. Eng. Methodol.
1, 1, Article 1 (July 2024), 49 pages. https://doi.org/10.1145/3675393

1 INTRODUCTION
Technical Debt (TD) captures the consequences of making sub-optimal decisions during software
development [19].While taking on TD can be advantageous in the short-term, for example, to deliver
a product on time to market, it can lead to long-term degradation of the software product’s quality.
This can make it challenging to add new features and require additional work to implement them
when there is TD [10, 11]. Therefore, TD must be prudently managed during software development

Authors’ addresses: Judith Perera, jper@aucklanduni.ac.nz, School of Computer Science, The University of Auckland,
Auckland, New Zealand, 1010; Ewan Tempero, e.tempero@auckland.ac.nz, School of Computer Science, The University of
Auckland, Auckland, New Zealand, 1010; Yu-Cheng Tu, yu-cheng.tu@auckland.ac.nz, School of Computer Science, The
University of Auckland, Auckland, New Zealand, 1010; Kelly Blincoe, k.blincoe@auckland.ac.nz, Department of Electrical,
Computer and Software Engineering, The University of Auckland, Auckland, New Zealand, 1010.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2024/7-ART1 $15.00
https://doi.org/10.1145/3675393

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.1145/3675393
https://doi.org/10.1145/3675393

1:2 Perera, et al.

[28, 60]. To effectively manage TD, it is essential to quantify it since quantifying TD can help make
informed decisions regarding TD management (TDM) — “In order to manage technical debt, a way
to quantify the concept is needed” [30]. We are investigating how TD can be quantified to better
support TDM decision-making. In this paper, we explore existing proposals made in the literature
to quantify Code, Design, and Architecture TD, through a Systematic Mapping Study (SMS).
The SMS goal was to identify approaches attempting to quantify TD for the TD types Code,

Design, and Architecture, and to learn how they discuss the quantification of TD and if they provide
some form of measurement. We proposed a definition for a quantification approach to identify
them from the various approaches attempting to perform different TD management activities such
as identification, prioritization, monitoring, and repayment [39]. The definition is, "An approach
that discusses concepts and metrics that could support TDM decision-making". The Research Question
for the SMS was "RQ1: What approaches to quantifying Code, Design, and Architecture TD
have been proposed in the research literature and how do they quantify TD?".
We identified 39 quantification approaches (QAs) and classified them based on a classification

scheme that comprises a set of abstract TD Quantification (TDQ) concepts and their high-level
themes, process/time, cost, benefit, probability, and priority, which we developed during the SMS.
Classifying the QAs based on this classification scheme helped identify gaps in the existing QAs
in terms of the abstract TDQ concepts they quantified and whether they proposed metrics that
supported the quantification of those concepts.

According to our findings, most QAs commonly discuss the abstract TDQ concepts, TD Item, TD
Remediation Cost, TD Interest, and Benefit of remediating TD, regardless of the TD type they quantify.
Concepts, TD Remediation Cost and TD Interest are well supported by metrics. However, our findings
suggested that most QAs focused on quantifying cost concepts, and the benefit concepts were
under-explored. Furthermore, most approaches discussed quantifying TD retrospectively, focusing
on the cost to remediate TD when TD exists in the system. The possibility of using TD strategically
during software development was not adequately explored.
Given the map of classified QAs, practitioners can identify potential existing quantification

approaches that fit their purpose, depending on what concepts they want to quantify to make
decisions regarding TDM. However, whether the existing QAs are reliable means for a complete
assessment of making TDM decisions is still an open question that needs further investigation —
the consolidated set of abstract TDQ concepts we developed in this study can serve as a basis for
further investigating this.
This paper reports on the methodology and results of the mapping study and discusses the

implications of the findings, suggesting potential future work for researchers and implications for
practitioners. The main contributions of this paper can be summarized as follows;

• A Systematic Mapping Study (SMS) — Methodology and results are a typical contribution
of a SMS. We report the results of identifying and classifying quantification approaches
for Code, Design, and Architecture TD. Additionally, we report the detailed methodology
followed for the SMS to improve the repeatability of the study.

• A set of abstract TDQ concepts sufficient to capture TD quantification conceptually—
A set of abstract TDQ concepts was developed during our study. Theywere further categorized
into their high-level themes: process/time, cost, benefit, probability, and priority. The set of
abstract TDQ concepts sufficiently captures what is required to understand the quantification
of TD and can be considered a unified representation of the quantification approaches found
in our SMS. Hence, they can serve as a reference to develop new quantification approaches.

• A concept-based classification scheme for the classification of TD Quantification
Approaches (QAs) for Code, Design, and Architecture TD — The classification scheme

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:3

is based on the set of abstract TDQ concepts and their high-level themes that we developed
during the SMS. The classification scheme was used to classify existing quantification ap-
proaches in our study. However, it can be reused to classify new quantification approaches.
Hence, the classification scheme becomes a contribution on its own.

• Future research directions for researchers and implications for practitioners — We
suggest future research directions for the research community derived from the implications
of the findings of this study. Furthermore, we discuss potential implications for practitioners.

The rest of the paper is structured as follows. SMS methodology is reported in Section 2 while
SMS results are discussed in Section 3. In Section 4, we discuss the implications of findings and
future research directions and provide implications for practitioners. Section 5 discusses threats to
the validity of our study. Section 6 discusses related work. The paper is concluded in Section 7.

2 METHODOLOGY
We followed recommendations given by Kitchenham et al. [34] and Petersen et al. [49, 50] to
conduct our Systematic Mapping Study (SMS). The primary goal of a SMS is to structure a research
area [50]. Our goal was to identify and classify quantification approaches proposed in the research
literature for quantifying Code, Design, and Architecture TD, to learn what they discuss in terms of
quantifying TD and if they provide some form of measurement for that. The definition we propose
for a ‘quantification approach’ is: "An approach that discusses concepts and metrics that could support
TDM decision-making". Figure 1 shows the overview of the methodology and the number of papers
retrieved at each stage of our mapping study. The following subsections describe the methodology.
Further details can be found in our Replication Package1.

2.1 ResearchQuestions
The research question for the SMS was defined following the structure of the example of a typical
SMS research question described in Petersen et al. [50];

• RQ1: What approaches to quantifying Code, Design, and Architecture TD have been
proposed in the research literature and how do they quantify TD?

– RQ1.1: What TD Quantification (TDQ) Concepts do they discuss?
– RQ1.2: Do they provide some form ofmeasurement to the TDQ concepts discussed?

2.2 Search
Articles accepted in the TechDebt conference in 2018 and 2019 (obtained from their website)1
were used as a reference set to build our search string. Search terms were extracted from the title,
abstract, keywords, and the full text of the articles in the reference set. Afterward, the search terms
were expanded with synonyms. We tested the search phrase in SCOPUS, which retrieved all the
articles in our reference set in the search results along with other articles.

The search string contained the following terms and synonyms in its final version (See Listing 1):
Technical Debt, quantify, measure, forecast, predict, assess, estimate, calculate, amount, value, impact,
principal, interest, metric, time, cost. We used the term ‘Technical Debt’ along with the rest of the
keywords to avoid articles not focusing on TD (e.g., articles on software quality or architecture but
not TD). We used the asterisk character (*) to capture possible variations of the keywords, such as
1Replication Package: https://doi.org/10.5281/zenodo.10617774
1Papers accepted in Tech Debt 2018, 2019: https://2018.techdebtconf.org/#event-overview, https://2019.techdebtconf.org/
#Accepted-Papers

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.5281/zenodo.10617774
https://2018.techdebtconf.org/#event-overview
https://2019.techdebtconf.org/#Accepted-Papers
https://2019.techdebtconf.org/#Accepted-Papers

1:4 Perera, et al.

Merge
Results

and
Remove

Duplicates

 Apply
Inclusion/
Exclusion
Criteria

(except E6)
and

Reference
Snowballing

Read
Full

Papers

Determine
TD type and

exclude if
not in TD

types: Code,
Design,

Architecture
, and

General
(E6)

Query
Digital

DBs

1437 783 252 127

Define
RQs and
Incl/Excl
Criteria

Develop
Search

Strategy

96

Report
Results

Identify
unique

Quantification
Approaches

39
Analyze

Quantification
Approaches

SCOPUS
IEEE
ACM
SpringerLink
ScienceDirect

639
319
349

71
59

Fig. 1. SMS Methodology Overview and Results retrieved at each Stage

plurals and verb conjugations. We applied the query to the article’s title, abstract, and keywords
to increase the probability of finding all relevant articles. Also, we did not limit our search query
to search for articles that mentioned only the TD types Code, Design, and Architecture, as we
were aware that some studies did not mention a TD type and discussed TD in general but could
be categorized as Code, Design or Architecture TD. Hence, we performed the categorization of
articles into the TD types Code, Design, and Architecture while reading the full text of the articles
(See Figure 1).

TITLE−ABS−KEY (" T e chn i c a l Debt "
AND (q u a n t i f ∗

OR measur ∗
OR f o r e c a s t ∗
OR p r e d i c t ∗
OR a s s e s s ∗
OR e s t ima t ∗
OR c a l c u l a t ∗
OR impact ∗
OR amount
OR va lu ∗
OR p r i n c i p a l
OR i n t e r e s t ∗
OR me t r i c ∗
OR t ime
OR co s t ∗))

AND (LIMIT−TO (DOCTYPE , " cp ")
OR LIMIT−TO (DOCTYPE , " a r "))

AND (LIMIT−TO (LANGUAGE , " Eng l i s h "))

Listing 1. Final Search String for SCOPUS

We tailored the final search string for the rest of the digital databases according to the func-
tionality and usability of their interfaces. Digital databases IEEEXplore, ACM, and Science Direct,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:5

were recommended by Brereton et al. [14], while SCOPUS was recommended by Cavacini [15].
Additionally, we queried SpringerLink. The search phase was concluded in September 2022.

All queries were performed by the first author. The search string was discussed and agreed with
the rest of the authors prior to performing the search. Results from the multiple digital databases
were merged, and duplicates were removed prior to study selection.

2.3 Study Selection
Article screening and selectionwas performed by the first author by applying the inclusion/exclusion
criteria listed in Table 1. The inclusion and exclusion criteria were defined based on the reference
set of articles 1 and then discussed and agreed upon with the other authors prior to performing the
screening of the articles. When doubt was encountered during the screening of articles, they were
discussed and resolved during consensus meetings with the other authors. The adaptive reading
depth approach was followed for screening articles as suggested in Petersen et al. [49] starting from
the title and then continuing through the abstract, conclusion, and at last, reading the full text.

2.3.1 Inclusion and Exclusion. Articles that discussed quantifying TD and articles that evaluated
quantifying TD were included. Articles that described quantifiable characteristics of TD (e.g.,
principal, interest, interest probability) or units of measurement (in terms of; time, cost, or effort)
were included. Since we were interested in the applicability of software metrics in the measurement
of TD, we included articles discussing software metrics concerning TDM.
We did not consider secondary or tertiary studies as they would count the primary studies

multiple times. We included only peer-reviewed articles as they are considered of high quality. We
ruled out articles not written in English since we were not confident in other languages. Research
articles not directly related to quantifying TD, i.e., articles related to measuring software quality but
not related to TD, articles describing other TDM activities such as identification or prioritization
but not quantification of TD, were ruled out. Articles that we could not access the full text were
also ruled out. However, exclusion criterion E6 could be applied only after reading the full text
since we had to determine the TD type for most of the articles that did not explicitly mention the
type of TD, by reading the complete article.

Table 1. Inclusion and Exclusion Criteria

Inclusion
Criteria

I1 Discusses quantifying TD
I2 Discusses quantifiable characteristics of TD
I3 Discusses units of measurement for TD
I4 Discusses software metrics in relation to TDM
I5 Evaluates quantifying TD

Exclusion
Criteria

E1 Not a primary study
E2 Not peer reviewed
E3 Not written in English
E4 Research is not directly related to Quantifying TD
E5 Full text is inaccessible
E6 Discusses a TD type that is not related to Code, Design, and Architecture
E7 Discusses other TDM activities but not TD quantification

1Papers accepted in Tech Debt 2018, 2019: https://2018.techdebtconf.org/#event-overview, https://2019.techdebtconf.org/
#Accepted-Papers

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://2018.techdebtconf.org/#event-overview
https://2019.techdebtconf.org/#Accepted-Papers
https://2019.techdebtconf.org/#Accepted-Papers

1:6 Perera, et al.

2.3.2 Reference Snowballing. Backward reference snowballing [64] was conducted on the included
articles as an additional step to avoid the possibility of missing articles through only conducting
a database search [50]. The results of snowballing were run through the Inclusion and Exclusion
criteria before including them in the final set of articles. The process was iterated over these newly
found articles until there were no more candidates for inclusion.

2.3.3 Identification of unique Quantification Approaches (QAs). We identified 96 articles discussing
TD quantification in general. However, while examining the articles, we observed that some articles
discussed TD identification or prioritization but did not necessarily discuss a form of measurement
or quantification. Therefore, we applied the definition for a quantification approach: "An approach
that discusses concepts and metrics that could support TDM decision-making", to select the articles
that could be categorized as quantification approaches based on our definition. In some cases, the
same quantification approach was discussed in multiple articles; for example, while one article was
introducing the approach, another evaluated it. We categorized those articles according to distinct
quantification approaches. As an example, from the primary studies P105 (Notation — P[n]) and
P108, we selected P105 as the unique quantification approach since P108 was based on P105 and
was evaluating the use of the method introduced in P105.

As a result of performing both actions (excluding by definition and including only the most
relevant article from a group of articles discussing the same approach), we identified 39 unique
approaches to TD Quantification. See Figure 1 for the overview of the methodology and Table 5 in
the appendix for the list of identified TD quantification approaches and their citations. The list of
Primary Studies can be found in our Replication Package1.

2.4 Data Extraction and Analysis
2.4.1 Classification Scheme. A typical classification scheme for a SMS could either be utilizing an
existing scheme, for example, reporting data that is not topic specific, or a classification scheme
emerging from the papers found in the mappings study, reporting on data that is topic specific [50].
In our case, we did the latter.

We developed a new classification scheme identifying themes, i.e., Abstract TDQ Concepts (See
Figure 2) based on the initial codes, i.e., TDQ concepts extracted from the full text of the QAs with
our Research Question in mind. We adopted, in part, the keywording approach recommended by
Petersen et al. [50] and in part, the Thematic Analysis approach [18], a foundational method for
qualitative data analysis originating from psychology. The keywording approach is a recursive
process quite similar in nature to open coding in grounded theory [50]. Our coding process adopted
the keywording approach but examined the full text of papers instead of abstracts. Our approach
bears more similarity to Thematic Analysis, which identifies patterns (themes) within the data and
minimally organizes and describes the dataset in rich detail [18].
In thematic analysis, a theme captures something important about the data in relation to the

research question — our abstract TDQ concepts (themes) and their high-level categories (high-level
themes) do this. See Figure 2 for the Classification Scheme resulting from the coding process (the
coding process is further described below). We use it to classify and analyze QAs in Section 3.

The Coding Process. Our Dataset is the set of Quantification Approaches (QAs) resulting from
the screening process of the SMS (See Figure 1). A Data Item is one QA, i.e., the paper that pertains
to the QA. A Data Extract is a chunk of data that has been identified within and extracted from a
data item, which could be either a sentence, a paragraph, or a set of paragraphs in the full text of
the paper.

1Replication Package: https://doi.org/10.5281/zenodo.10617774

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.5281/zenodo.10617774

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:7

TD Quantification
Approaches TDQ Concepts

Benefit

Probability

Product

Release

Dev Path

Dev Step

Impl Step

TD Remediation Step

Feature

TD Item

Dev Path Total Cost

Dev Step Total Cost

Impl Step Total Cost

TD Remediation Cost

Impl Cost of Feature

TD Interest
New Code Cost not
associated with TD
Rework Cost not

associated with TD
New Code Cost

Associated with TD
Rework Cost not

associated with TD

Benefit of Remediating
TD

Benefit of Taking TD

Interest Probability

Themes

PriorityPriority

Process/ Time

Cost

High Level Themes

Classification Scheme

Initial Codes

Examples: “Refactoring
cost”, “Refactoring benefit”,
“Debt Item”, “Code smells”,
“Rework Cost”, “Principal or
time required to fix or cost to
resolve each problem”, “Extra
maintenance cost spent for
not achieving the ideal quality
level “, “Benefit of refactoring
a non modularized
component”...

Abstract TDQ Concepts High-level Categories

Full Text

Fig. 2. Overview of the coding process and the resulting Classification Scheme — Abstract TDQ concepts are
described in Table 2.

We read the article’s title, abstract, keywords, RQs, introduction, and conclusion, and then read
in detail the sections of the article where we saw relevant information and, lastly, the complete
article to perform the data extraction and coding, following the adaptive depth reading approach
recommended by Petersen et al. [50]. We identified and extracted various TDQ concepts as initial
codes from the QAs. We mapped the TDQ concepts extracted from the QAs to a set of abstract TDQ
concepts (i.e., themes) that we identified as recurring themes among the various TDQ concepts
extracted from the QAs. An abstract TDQ concept succinctly captures the notion described by multiple
various concepts extracted from the QAs. See Table 2 for their descriptions.

We traversed all QAs iteratively, extracting new concepts, abstracting them, and then re-traversing
the QAs when a new abstract TDQ concept was introduced. Every time an existing abstract TDQ
concept was not able to capture the concept extracted from a QA, a new abstract concept was
introduced. After mapping concepts extracted from 33 out of 39 QAs, we did not have to introduce
any more new abstract TDQ concepts. We could further categorize the abstract TDQ concepts into
high-level categories (i.e., higher-level themes): process/time, cost, benefit, probability, and priority
(See Figure 2).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:8 Perera, et al.

The first author performed the coding process and developed the classification scheme. The
other authors checked the initial codes and the mappings to abstract TDQ concepts (i.e., themes)
and higher-level themes during iterative meetings. Table 2 describes the list of 22 abstract TDQ
Concepts. An illustrative example of the coding is discussed with reference to Figure 3 below. The
SMS classification scheme (See Figure 2) was discussed and agreed upon among all authors during
the iterative consensus meetings prior to using it to classify and analyze the QAs.

Abstract TDQ Concept
1 Product
2 Release
3 Dev Path
4 Dev Step

A B S T R A C T T D Q C O N C E P T S
5 Impl Step
6 TD Remediation Step

PROCESS COST BEN. P P 7 Feature
TDQ CONCEPTS from QAs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 8 TD Item

QA31, Architecture TD, 2012 1 1 1 1 1 1 1 1 1 1 1 1 9 Total Cost Dev Path
QA31:Product D 10 Total Cost Dev Step
QA31:Release D 11 Total Cost Impl Step
QA31:Dev Path D 12 TD Remediation Cost
QA31:Dev Step I 13 Impl Cost of Feature
QA31:Implementation Step I 14 TD Interest
QA31:Feature D R 15 New Code Cost not associated with TD
QA31:Cumulative Total Cost R R R D D D 16 Rework Cost not associated with TD
QA31:Cumulative Total Cost % R R R D D D 17 New Code Cost associated with TD
QA31:Implementation Cost D I 18 Rework Cost associated with TD
QA31:Rework Cost I D 19 Benefit of Remediating TD
QA31:Number of Dependencies M 20 Benefit of Taking TD
QA31:Change Propagation Metric M 21 Interest Probability

22 Priority

Mappings
D Direct concept mapping
I Inferred concept mapping

M Metric mapping
1 Has one or more concept mappings (D or I)

Has one or more concept and metric mappings (D or I and M)

Fig. 3. Concept mapping for Nord et al. (QA31, Notation — QA[n])

We introduced two types of codes (i.e., mappings — we will use the term ’mapping’ in the
remainder of this paper) to map the initial codes extracted from the full texts of the QAs to the
abstract TDQ concepts. The two types of codes were defined as ‘concept’ and ‘metric,’ as they
allowed distinguishing between concepts and metrics identified from the full text of the QAs.
However, for the type ‘concept,’ not every concept extracted from the QA precisely mapped to

the abstract TDQ concept we identified. Therefore, we introduced two sub-types of codes for the
type ‘concept,’ Direct (D) and Inferred (I), to show how closely they relate to the identified abstract
TDQ concept — ‘the degree to which a given approach concept maps to an abstract TDQ concept’.

The type ‘metric’ (M) was defined to indicate the mapping between software metrics described in
the quantification approach and the abstract TDQ concepts if we could determine that the approach
provided some form of measurement to quantify the abstract TDQ concepts.

• ‘Direct’ concept mapping — indicated by ‘D’ in Figure 3: The approach concept corre-
sponds exactly to the abstract TDQ concept, and it is straightforward to extract.

• ‘Inferred’ concept mapping — indicated by ‘I’: The approach concept relates to the
abstract TDQ concept in some way but does not correspond exactly. i.e., it is inferred and not
straightforward to extract.

• ‘Metric’ mapping — indicated by ‘M’: The approach provides some form of measurement
that contributes to the quantification of the abstract TDQ concept.

Illustrative Example of the Mappings. Figure 3 illustrates the mapping of the concepts of
an example quantification approach (QA) to the abstract TDQ concepts. In Figure 3, the approach
concepts, i.e., concepts related to TD quantification extracted from the example approach Nord et
al., QA31 (notation — QA[n]), are listed in the rows prefixed with QA31. Each approach concept

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:9

(prefixed with ‘QA31:’) is mapped individually to the abstract TDQ Concepts in the columns
denoted 1-22. The legend can be found in the column on the right, next to the matrix. Each cell in
the matrix that pertains to the intersection of an approach concept and an abstract TDQ concept is
assigned a label for either a concept mapping ‘D’ or ‘I’ (according to whether the approach concept
corresponds exactly to the abstract TDQ concept or if it was inferred that they relate) or, a metric
mapping ‘M’ if the approach concept is a form of measurement for the abstract TDQ concept.

To describe this further, Nord et al. explicitly discuss ‘Product’; therefore, the cell is labeled as ‘D,’
indicating the direct mapping to the abstract TDQ concept ‘Product’ (See Figure 3). In comparison,
‘Rework Cost’ is given mapping ‘I’ to the abstract TDQ concept ‘Interest’, indicating that we
inferred this. However, ‘Rework cost’ is given mapping ‘D’ to the abstract TDQ concept ‘Rework
cost associated with TD’ since it corresponds exactly to that abstract TDQ concept. ‘Number of
Dependencies’ and ‘Change propagation metric’ are given mapping ‘M’ since they are metrics that
contribute to the measurement of ‘Rework Cost associated with TD’.

2.4.2 Classifying and Analyzing Quantification Approaches. We classified the quantification ap-
proaches (QAs) based on the concept-based classification scheme we developed based on the
abstract TDQ concepts and their high-level categories process/time, cost, benefit, probability, and
priority. This allowed for identifying gaps in the research literature as to which abstract TDQ
concepts were discussed (or not) in the QAs based on the concept mappings and whether they
were supported by any means of measurement based on the metric mapping. The classification is
illustrated in Figures 8, 9, 10, 11, 12, and 13, and the analyzed results are discussed in Section 3.

Table 2. Abstract TDQ Concepts

Abstract TDQ Concept Description Category
Product A software product developed by a software

company
Process or
time related

Release A software product is delivered to the market
through releases

Process or
time related

Development Path (Dev
Path)

The path developers follow to develop a soft-
ware product

Process or
time related

Development Step (Dev
Step)

A step in the product development path where
developers may work on implementation or
debt remediation activities

Process or
time related

Implementation Step (Impl
Step)

A development step where feature implemen-
tation is performed

Process or
time related

TD Remediation Step A development step where developers remedi-
ate TD

Process or
time related

Feature A collection of user requirements delivered as
a software functionality

Process or
time related

TD Item "A TD item is associated with one or more
concrete, tangible artifacts of the software de-
velopment process, primarily the code, but also
to some extent the documentation, known de-
fects, and tests associated with the system" [8]

Process or
time related

Dev Path Total Cost Total cost of a development path Cost
Dev Step Total Cost Total cost of a development step Cost
Impl Step Total Cost Total implementation cost Cost

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:10 Perera, et al.

TD Remediation Cost The cost to remediate TD during a remediation
step

Cost

Impl Cost of Feature The cost to implement a feature during an im-
plementation step

Cost

TD Interest The additional cost incurred due to the pres-
ence of technical debt [8]

Cost

New Code Cost not associ-
ated with TD

Cost of having to write new code but not as a
consequence of TD

Cost

Rework Cost not associated
with TD

Cost of having to do rework but not as a con-
sequence of TD

Cost

New Code Cost associated
with TD

Cost of having to write new code as a conse-
quence of TD

Cost

Rework Cost associated with
TD

Cost of having to do rework as a consequence
of TD

Cost

Benefit of Remediating TD Benefit gained by remediating TD Benefit
Benefit of taking TD Benefit gained by taking on TD as a strategy,

e.g., as a strategy to gain competitive advan-
tage by delivering a software product early to
market

Benefit

Interest Probability Whether or not implementation is affected by
a TD item [16]

Probability

Priority Priority in terms of severity or the impact a
TD item may have on the code or the priority
to remediate a TD Item

Priority

3 RESULTS: APPROACHES TO QUANTIFYING CODE, DESIGN, AND ARCHITECTURE
TD (RQ1)

A Systematic Mapping Study (SMS) typically reports results in the order; first, the results of
demographics that describe metadata of the studies discussed in the SMS, and then the findings
obtained via the understanding of the studies. Following the same format, we report the results
for demographics of primary studies and Quantification Approaches (QAs) found in our SMS in
Sections 3.1, 3.2 and then the findings obtained for QAs in Sections 3.3 (RQ1, RQ1.1, RQ1.2), 3.4
(RQ1.1) and 3.5 (RQ1.2). Findings for the QAs are discussed based on the abstract TDQ concept-based
classification we developed (See Figures 8, 9, 10, 11, 12, and 13 — they are described in Section 3.3).

3.1 Demographics of Primary Studies
3.1.1 Publication Year. We categorized primary studies based on their publication year (See Figure
4). Publications ranged from 2011 to 2022. The highest number of publications was found in 2018 —
16 primary studies in total, 6 of them discussing Architecture TD, 3 of them Code TD, 2 of them
Design TD, and 5 of them belonged in the General category where they did not explicitly specify
the type of TD, but we could infer them as related to Code, Design or Architecture TD. See Table
3 for the types of TD. The year 2011 is where the least number of studies were found (4 primary
studies) after 2022 (3 primary studies), when the search phase of our mapping study was concluded.
This can be because TD was an emerging research area at the time. In 2016 and 2018, there has been
a significant increase in the number of studies conducted per year for Architecture and Design TD
compared to the rest of the years. Code TD seems to have been researched throughout the years

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:11

Fig. 4. Categorization of primary studies according to Publication Year

Fig. 5. Categorization of primary studies according to the type of TD

2013-2022. However, compared to Architecture and Design TD, there is no significant increase in
the number of studies conducted per year for Code TD in any of the years.

3.1.2 Type of TD. Figure 5 shows the overall number and percentage of primary studies according
to the different types of TD, Code, Design, and Architecture within the primary studies found in our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:12 Perera, et al.

Fig. 6. Categorization of quantification approaches according to Publication Year

Fig. 7. Categorization of quantification approaches according to the type of TD

SMS. However, as illustrated in the Figure, most of the primary studies (35 primary studies) did not
explicitly specify a type of TD. We could infer these as related to Code, Design, or Architecture TD.
We labeled them as ’General.’ There were 27 studies pertaining to Architecture TD, 21 pertaining
to Code TD, and 9 for Design TD. There were 4 studies that discussed Code TD and Architecture
TD, both in the same study. See Table 3 for descriptions of the types of TD discussed in this paper.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:13

Other types of TD can include, for example, Requirements TD, Test TD, and Documentation TD,
which we do not discuss in this paper.

Table 3. TD types discussed in this study — Definitions for Code, Design, and Architecture TD are from Alves
et al. [4]

Type of TD Description
Architecture "Refers to the problems encountered in project architecture, for example, viola-

tion of modularity, which can affect architectural requirements (performance,
robustness, among others). Normally this type of debt cannot be paid with simple
interventions in the code, implying in more extensive development activities" [4]

Design "Refers to debt that can be discovered by analyzing the source code by identifying
the use of practices which violated the principles of good object-oriented design
(e.g. very large or tightly coupled classes)." [4]

Code "Refers to the problems found in the source code which can affect negatively the
legibility of the code making it more difficult to be maintained. Usually, this debt
can be identified by examining the source code of the project considering issues
related to bad coding practices." [4]

Code and
Architecture

We categorized studies that discussed both Architecture and Code TD in the same
article in this category.

General Studies that did not explicitly mention a type of TD but could be inferred as related
to TD types Code, Design, or Architecture, were categorized in this category.

Summary of findings for demographics of primary studies:
• Code TD has been researched throughout the years 2013-2022.
• There is a significant increase in the number of studies conducted per year in 2016
and 2018 for Architecture and Design TD.

• Among the primary studies, General (35 studies), Architecture TD (27) and Code
TD (21), are the most frequently investigated TD types.

3.2 Demographics ofQuantification Approaches (RQ1)
39 unique Quantification Approaches (QAs) were identified from 96 primary studies discussing
Code, Design, and Architecture TD. Table 5 in the appendix lists the QAs.

3.2.1 Publication Year. Similar to the categorization of primary studies, we categorized QAs based
on their publication year (See Figure 6). We found QAs in publication years ranging from 2011 to
2022. The highest number of distinct QAs was found in 2018 and 2016, with 6 QAs in each year.
In 2018, 3 QAs discussed the quantification of Architecture TD, 2 discussed Code TD, and one
belonged to the General category. In 2016, 2 QAs discussed the quantification of Architecture TD, 1
discussed Code and Architecture, and 3 discussed Design TD. There have been only two distinct
QAs per year since 2019, indicating that only a few distinct attempts have been made to quantify
TD compared to 2018 and 2016. However, in 2018 and 2016, there were also more primary studies
compared to the rest of the years.

3.2.2 Type of TD. Figure 7 shows the overall number and percentage of QAs according to the
different types of TD within the dataset of QAs found in our SMS. However, as illustrated in the
Figure, most of the QAs (13 of them) did not explicitly specify a type of TD. They were inferred as

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:14 Perera, et al.

related to Code, Design, or Architecture TD and therefore included. We labeled them as ’General’.
10 QAs were quantifying Code TD, 9 quantified Architecture TD, and 5 quantified Design TD and 2
of the approaches discussed the quantification of both Code TD and Architecture TD in the same
article. Although more primary studies were conducted for Architecture TD compared to Code TD,
the number of distinct QAs was higher by one for Code TD.

Summary of findings for demographics of QAs:
• Among the QAs found in our study, General (13 QAs), Code (10), and Architecture
(9) are the most frequently investigated TD types.

• Although there were more primary studies for Architecture TD compared to Code
TD, there was one additional distinct QA discussing Code TD.

3.3 Classification of TDQuantification Approaches (RQ1, RQ1.1, RQ1.2)
In this section we discuss results obtained by classifying Quantification Approaches (QAs) based
on the classification scheme we developed during this study (discussed previously in Section 2.4.1
and presented in Figure 2). The classification scheme comprises the set of abstract TDQ Concepts
(i.e., themes) and their high-level categories (i.e., higher-level themes): process/time, cost, benefit,
probability, and priority.
The Figures in this section show a more abstract view (i.e., high-level view) of the concept

mappings (D, I) and the metric mapping (M) that were discussed earlier in Section 2.4.1. — By this
we mean that the figures illustrate whether a given QA discusses the abstract TDQ concept or
supporting metrics for the abstract TDQ concept rather than whether the mapping was explicit,
i.e., a direct mapping (D) or inferred (I). All detailed mappings D (direct), I (inferred) and M can
be found in our Replication Package1 while findings from the detailed mappings are discussed in
Sections 3.4 and 3.5 and the number of mappings per mapping type is illustrated via Figure 14.
Figures 9, 10 11, and 12 illustrate the total number of QAs (via bubble size) representing each

abstract TDQ concept and supporting metrics per TD type (Figures 9, and 10) and per publication
year (Figures 11, and 12), respectively. Figures 8 and 13 show a more granular level of detail.
They show the individual QAs pertaining to the grouping of either TD type or Publication Year.
Furthermore, Figure 8 shows how many concepts are represented by each individual QA and how
many QAs represent a given abstract TDQ concept regardless of the TD type and Publication year.
The distribution of the QAs across the high-level themes process/time, cost, benefit, probability,
and priority can be seen in all these Figures visualized by their color coding: process/time (yellow),
cost (red), benefit (purple), probability (blue) and priority (green).

3.3.1 Classification grouped by TD Type. Figure 8 illustrates the classification of the 39 QAs grouped
by TD types and ordered by the publication year within the block for each TD type. The 22 abstract
TDQ concepts are listed in the Legend on the right side of Figure 8. The high-level themes of the
abstract TDQ concepts, process/time, cost, benefit, probability, and priority, are color-coded in the
cells of the classification matrix. The total number of abstract TDQ concepts discussed in each QA
in our dataset can be found in the column between the classification matrix and the Legend in
Figure 8 while the total count of QAs mapped to each abstract TDQ concept (regardless of the TD
type and Publication year) can be found in the row below the classification matrix at the bottom of
the Figure.

1Replication Package: https://doi.org/10.5281/zenodo.10617774

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.5281/zenodo.10617774

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:15

C L A S S I F I C A T I O N
Legend

A B S T R A C T T D Q C O N C E P T S
PROCESS COST BEN. P P Abstract TDQ Concept

QA Pub Year TD Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 Product
QA31 2012 Architecture 1 1 1 1 1 1 1 1 1 1 1 1 M 13 2 Release
QA20 2013 Architecture 1 1 1 1 1 1 1 1 8 3 Dev Path
QA25 2014 Architecture 1 1 1 1 1 5 4 Dev Step
QA32 2015 Architecture 19 5 Impl Step
QA8 2016 Architecture 1 1 1 1 1 1 1 1 1 1 1 1 12 6 TD Remediation Step
QA13 2016 Architecture M M 1 3 7 Feature
QA3 2018 Architecture 1 1 M 1 1 1 6 8 TD Item
QA9 2018 Architecture M M 1 1 4 9 Total Cost Dev Path
QA28 2018 Architecture 1 1 1 1 1 5 10 Total Cost Dev Step
QA4 2014 Code 1 M M 1 1 1 6 11 Total Cost Impl Step
QA17 2015 Code 1 M 2 12 TD Remediation Cost
QA6 2017 Code M 1 13 Impl Cost of Feature
QA16 2017 Code 1 M 2 14 TD Interest
QA1 2018 Code 1 1 M 1 1 1 1 7 15 New Code Cost not associated with TD
QA11 2018 Code 1 1 M M 1 1 6 16 Rework Cost not associated with TD
QA37 2020 Code 1 1 1 1 1 5 17 New Code Cost associated with TD
QA6 2021 Code 1 M 1 1 1 5 18 Rework Cost associated with TD
QA34 2022 Code 1 1 M 3 19 Benefit of Remediating TD
QA35 2022 Code 1 1 M 3 20 Benefit of Taking TD
QA10 2012 Code & Architecture M M 1 1 1 1 6 21 Interest Probability
QA14 2016 Code & Architecture 1 1 M M M 5 22 Priority

QA15 2011 Design 1 1 M 1 1 1 1 7
QA2 2016 Design 1 M 1 1 4
QA5 2016 Design M 1 1 3 Mapping

QA7 2016 Design M 1 1 Has one or more concept mappings (D or I)
QA39 2021 Design 1 1 1 1 1 1 6 M Has one or more concept and metric mappings (D or I and M)

QA19 2011 General 1 1 1 1 1 5
QA24 2011 General 1 1 1 1 1 5
QA30 2011 General M M 1 3 Count

QA18 2012 General 1 M M 1 1 1 1 1 8 Count of abstract concepts covered by each QA
QA26 2012 General M 1 2 Count of QAs mapped to abstract concepts

QA27 2012 General 1 M 1 3
QA21 2014 General 1 M 1 3
QA23 2014 General 1 1 1 M M 1 M 1 1 9
QA33 2015 General 1 M 1 3
QA22 2018 General 1 M 1 3
QA12 2019 General M M 1 1 1 5
QA29 2019 General M 1 2
QA38 2020 General 1 1 1 1 1 1 1 1 1 9

4 4 4 4 2 10 6 26 6 5 4 29 5 28 3 1 12 14 16 3 9 12

Fig. 8. Classification of Individual Quantification Approaches based on abstract TDQ Concepts, ordered by
TD Type and by Publication Year within each TD Type.

The classification of QAs shows that most of the abstract TDQ concepts are represented by the
QAs for Architecture TD (See Figures 8 and 9). General and Code follow. This is more evident in
Figure 9 — see the row for Architecture TD; there is a bubble for every abstract TDQ concept on
the x-axis.
The block of Architecture TD in Figure 8 shows the individual QAs for Architecture TD and

the abstract TDQ concepts represented by each of them. For example, QA32 (notation — QA[n]),
QA31, and QA8, which all belong to Architecture TD discuss 19, 13, and 12 abstract TDQ concepts,
respectively (these numbers can be seen in the column between the classification matrix and the
legend in Figure 8). QA32 discusses concepts 1-19. QA31 discusses concepts 1-5, 7, 9-11, 13-15, and
18 (the legend for the concepts can be seen in Figure 8 on the right side of the classification matrix).
QA31 also discusses supporting metrics for quantifying the abstract TDQ concept 18, which is
‘Rework Cost associated with TD.’

The abstract TDQ concepts, TD Remediation Step, TD Item, TD Remediation Cost, TD Interest,
New Code Cost associated with TD, Rework Cost associated with TD, Benefit of remediating TD
and Priority have been discussed among all types of TD (See Figures 8, 9). The Benefit of taking
TD is discussed only among the TD types, Architecture, and General. Rework Cost not associated
with TD is discussed only for type Architecture while New Code Cost not associated with TD is

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:16 Perera, et al.

Fig. 9. Number of Quantification Approaches (QAs) discussing Abstract TDQ Concepts per TD Type. The
bubble size shows the total number of QAs that discuss each concept per TD type.

discussed only within the types Architecture and Code. Implementation Step is discussed only
within the type Code TD, which is expected.

However, costs concerning the development path, for example, the Total cost of a dev path, the
Total cost of a dev step, and the Total cost of an implementation step, seem to be discussed only
within the TD types, Code, Architecture, and General and not with the TD type, Design or the type
Code and Architecture (See Figure 9).
Supporting Metrics have been mostly discussed for the concepts TD Remediation Cost and TD

Interest for all TD types (see Figure 10). Supporting metrics for Benefit of remediating TD has been
discussed for Architecture TD and the type ‘Code and Architecture TD’. Supporting metrics for
Rework Cost associated with TD have been discussed within Architecture TD but not among the
rest of the TD types. Interest Probability has been supported by metrics within Code TD while
Priority has been supported by metrics within Code and ‘Code and Architecture’ TD types.
Supporting metrics have not been discussed for any of the TD types to support quantifying

the cost concepts New Code Cost not associated with TD, Rework Cost not associated with TD,
New Code Cost associated with TD and for the process/time concepts Product, Release, Dev Path,
Dev Step, Implementation Step, TD remediation step, and Feature. The process/time concepts are
expected to not have supporting metrics.

In additional to the Classification of QAs among the different TD types, Figure 8 also shows the
total number of abstract TDQ concepts discussed in each QA in our dataset in the column between
the classification matrix and the Legend. The Figure also shows the total count of QAs mapped to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:17

Fig. 10. Number of Quantification Approaches (QAs) discussing Supporting Metrics for each Abstract TDQ
Concept per TD Type. The bubble size shows the total number of QAs that discuss supporting metrics for
each concept per TD Type.

each abstract TDQ concept regardless of the TD type and Publication year, in the row below the
classification matrix at the bottom of the Figure.
According to Figure 8, Abstract TDQ concepts, TD Remediation Cost is discussed in 29 QAs —

see bottom row below the matrix, TD Interest is discussed in 28 QAs, TD Item is discussed in 26
QAs and Benefit of remediating TD is discussed in 16 QAs. These concepts are the concepts that
are discussed by most of the QAs, regardless the type of TD and Publication year.

Considering the number of abstract TDQ concepts (22 in total) in the set of abstract TDQ concepts
(see Legend in Figure 8) and the count of QAs representing each concept (see bottom of Figure
8), an observation that could be made is that quantification approaches are discussing more cost
concepts compared to benefit concepts regardless of the TD type or publication year. There are
10 cost concepts and only 2 benefit concepts in the set of abstract TDQ concepts, and the counts
for QAs are comparatively higher for cost concepts than for benefit concepts (See Figures 8 and 9).
Similarly, counts for concepts supported by metrics are comparatively higher for cost concepts
than for benefit concepts (See Figures 8 and 10).

3.3.2 Classification grouped by Publication Year. Figure 11 shows which abstract TDQ concepts
have been discussed over the publication years. Most of the abstract TDQ Concepts, such as TD
Remediation Cost, TD Interest, and TD Item, have been discussed over most of the publication
years.

However, an observation made here is that the TDQ concepts, Total cost of a dev path, the total
cost of a dev step, and the total cost of an implementation step have been discussed between 2012 -

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:18 Perera, et al.

Fig. 11. Number of Quantification Approaches (QAs) discussing Abstract TDQ concepts over the Publication
Years. The bubble size shows the total number of QAs that discuss each concept per Publication Year.

2016 but not before or after. The process/time related concepts Product, Release, Dev Path, Dev
Step, and Implementation Step have been discussed but not continuously. This is similar with New
Code Cost not associated with TD and Rework Cost not associated with TD.

Another observation is that the Benefit of taking TD has been discussed in 2012, 2014, and 2015
but not in the rest of the publication years. The benefit of Remediating TD has been discussed over
most of the publication years except 2017, 2019 and 2022. However, supporting metrics have been
proposed for this concept only in 2016 and 2018 (see Figure 12).

Supporting metrics are discussed frequently for TD remediation Cost and TD Interest as well as
some for TD Item over most of the publication years (see Figure 12) while supporting metrics for
quantifying Rework Cost associated with TD (2012), Interest probability (2017) and Priority (2015,
2016) have some occurrences.
Figure 13 shows the same information as Figure 8 except ordered by Publication Year. It shows

which individual QAs are relevant to each publication year, adding a granular level of detail to Figure
11 where the total number of QAs (bubble size) for each abstract TDQ concept per publication year
is illustrated. For example, it shows which individual QAs represent the abstract TDQ concepts for
the years 2012 and 2015, where most of the abstract TDQ Concepts have been discussed. However,
it is evident from this Figure that QA31 and QA32 contribute to this by discussing most of the
abstract TDQ concepts.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:19

Fig. 12. Number of Quantification Approaches (QAs) discussing Supporting Metrics for each Abstract TDQ
concept over the Publication Years. The bubble size shows the total number of QAs that discuss supporting
metrics for each concept per Publication Year.

Summary of findings from the Classification of QAs (RQ1, RQ1.1, RQ1.2):
• QAs for Architecture TD discuss all 22 abstract TDQ concepts collectively.
• TD Item, TD Remediation cost, TD Interest, and Benefit of Remediating TD are the
concepts most frequently represented among the QAs regardless of the type of TD
and the publication year. Supporting metrics are most frequently discussed for TD
Remediation cost and TD Interest.

• Cost concepts are more frequently investigated than benefit concepts. Metrics
supporting the quantification of benefits are also fewer than for costs.

• Costs concerning the development path are not investigated for Design TD.
• The Benefit of remediating TD has been discussed more frequently compared to
the Benefit of taking TD. However, supporting metrics have been proposed only in
2016 and 2018.

• New Code and Rework Costs associated with TD have been discussed among all TD
Types. However, supporting metrics are discussed only for Rework costs associated
with TD and only for Architecture TD.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:20 Perera, et al.

C L A S S I F I C A T I O N
A B S T R A C T T D Q C O N C E P T S Legend

PROCESS COST BEN. P P Abstract TDQ Concept
QA Pub Year TD Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 Product
QA15 2011 Design 1 1 M 1 1 1 1 2 Release
QA19 2011 General 1 1 1 1 1 3 Dev Path
QA24 2011 General 1 1 1 1 1 4 Dev Step
QA30 2011 General M M 1 5 Impl Step
QA31 2012 Architecture 1 1 1 1 1 1 1 1 1 1 1 1 M 6 TD Remediation Step
QA10 2012 Code & Architecture M M 1 1 1 1 7 Feature
QA18 2012 General 1 M M 1 1 1 1 1 8 TD Item
QA26 2012 General M 1 9 Total Cost Dev Path
QA27 2012 General 1 M 1 10 Total Cost Dev Step
QA20 2013 Architecture 1 1 1 1 1 1 1 1 11 Total Cost Impl Step
QA25 2014 Architecture 1 1 1 1 1 12 TD Remediation Cost
QA4 2014 Code 1 M M 1 1 1 13 Impl Cost of Feature
QA21 2014 General 1 M 1 14 TD Interest
QA23 2014 General 1 1 1 M M 1 M 1 1 15 New Code Cost not associated with TD
QA32 2015 Architecture 16 Rework Cost not associated with TD
QA17 2015 Code 1 M 17 New Code Cost associated with TD
QA33 2015 General 1 M 1 18 Rework Cost associated with TD
QA8 2016 Architecture 1 1 1 1 1 1 1 1 1 1 1 1 19 Benefit of Remediating TD
QA13 2016 Architecture M M 1 20 Benefit of Taking TD
QA14 2016 Code & Architecture 1 1 M M M 21 Interest Probability
QA2 2016 Design 1 M 1 1 22 Priority

QA5 2016 Design M 1 1
QA7 2016 Design M

QA6 2017 Code M Mapping
QA16 2017 Code 1 M 1 Has one or more concept mappings (D or I)
QA3 2018 Architecture 1 1 M 1 1 1 M Has one or more concept and metric mappings (D or I and M)

QA9 2018 Architecture M M 1 1
QA28 2018 Architecture 1 1 1 1 1
QA1 2018 Code 1 1 M 1 1 1 1
QA11 2018 Code 1 1 M M 1 1
QA22 2018 General 1 M 1

QA12 2019 General M M 1 1 1
QA29 2019 General M 1

QA37 2020 Code 1 1 1 1 1
QA38 2020 General 1 1 1 1 1 1 1 1 1

QA6 2021 Code 1 M 1 1 1
QA39 2021 Design 1 1 1 1 1 1

QA34 2022 Code 1 1 M
QA35 2022 Code 1 1 M

Fig. 13. Classification of Individual Quantification Approaches based on abstract TDQ Concepts, ordered by
Publication Year

3.4 TDQ Concepts (RQ 1.1)
Figure 14 illustrates the counts of the detailed concept and metric mappings (D, I, M) between
the concepts extracted from QAs and the abstract TDQ Concepts regardless of the TD type or
Publication Year. That is, how many QAs have discussed a particular concept and have proposed
supporting metrics, and howmany concepts in total have been mapped from the QAs to the abstract
TDQ Concepts. The size of the bubble shows the count of mappings. The y-axis shows the number
of QAs representing an abstract TDQ concept. The x-axis shows the abstract TDQ concepts.
Sections 3.4.1 and 3.4.2 below discuss the most frequently discussed, and the least frequently

discussed TDQ concepts in terms of the detailed mappings, D and I. Mapping M is discussed in
Section 3.5. Tables 6, 7, and 8 in the Appendix list the concepts and metrics from the QAs that were
mapped to the abstract TDQ concepts.

3.4.1 Most frequently discussed TDQ Concepts. Below we discuss results obtained for the most
frequently discussed abstract TDQ Concepts with respect to the concept mappings D and I.
Mapping D — According to the obtained results, TD Item, Remediation Cost, TD Interest, and

Benefit of Remediating TD appear to be the most frequently discussed concepts (see highest counts
in Figure 14). 19, 24, 23 and 9 QAs (y-axis) discuss these concepts while, 19, 25, 24 and 11 concepts
from the QAs (bubble size) are mapped to these abstract TDQ concepts.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:21

Fig. 14. Mappings between Abstract TDQ Concepts and TDQuantification Approaches. The bubble size
shows how many concepts from each QA were mapped to an abstract TDQ concept.The legend describes the
color coding of the bubbles for the different mapping types.

Mapping I — According to the obtained results, TD Item, New Code Cost associated with TD,
and Rework Cost associated with TD appear to be the most frequently discussed concepts (see
highest counts in Figure 14). 9, 12, and 13 approaches discuss these concepts (y-axis) while 11, 12,
and 13 concepts from the QAs are mapped to the abstract concepts (bubble size).
As discussed previously in Section 2, the two different mappings D and I indicate that the

concepts were either straightforward to extract or inferred (i.e., derived). However, when we
combine the results obtained for both types of mappings, it is evident that TD item, Remediation
cost, TD interest and Benefit of remediating TD receive the highest number of mappings 30, 31, 30,
and 19, respectively. At least 12 (12 QAs for New code cost associated with TD) and at most 30 (30
QAs for TD Remediation cost) out of 39 QAs are mapped to these frequently discussed abstract
TDQ concepts (TD item, Remediation cost, TD interest and Benefit of remediating TD), indicating
that the majority of the QAs in our SMS discuss similar aspects of TD quantification.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:22 Perera, et al.

3.4.2 Least frequently discussed TDQ Concepts. Below we discuss results obtained for the least
frequently discussed TDQ Concepts with respect to the concept mappings D and I (See Figure 14).
Mapping D — According to the obtained results, some abstract TDQ concepts received only a

few explicit (D) mappings. Dev Step, Dev Path total Cost, Dev Step Total Cost, Impl Step Total Cost,
and Rework Cost associated with TD appeared to be the least frequently discussed concepts. Two
QAs (y-axis) each and 2, 3, 3, 3, and 2 concepts (bubble size) from the QAs were mapped to those
abstract TDQ concepts. There were also a few concepts that received zero D mappings. They were
Impl Step, New Code Cost not associated with TD, Rework cost not associated with TD, New Code
Cost associated with TD, and Benefit of taking TD.

Mapping I — According to the obtained results, Product, Release, Dev Path, Dev Step, Impl Step,
Impl Step Total Cost, Impl Cost of Feature, and Rework Cost not associated with TD appeared to
be the least frequently discussed concepts for Mapping I. For concepts Product, Release, Dev Path,
Impl Cost of feature, and Rework Cost not associated with TD, one QA each, and for concepts
Dev Step, Impl Step, and Total cost of Impl, two QAs each discuss these concepts. The number of
concepts mapped from QAs (see y-axis), were 1, 1, 1, 2, 2, 3, 2, and 2 for the abstract TDQ concepts
in the order of occurrence (bubble size) in Figure 14.

However, the observation here is that there has been at least one inferred mapping (mapping I)
to the abstract TDQ concepts, even for instances with zero explicit mappings, e.g., for the abstract
TDQ concepts, Impl Step and Rework cost not associated with TD. This was also evident once
the results obtained for both types of mappings were combined. — There were no abstract TDQ
concepts with zero mappings. Concepts that had zero D mappings, Impl Step, New Code Cost not
associated with TD, Rework Cost not associated with TD, New Code Cost associated with TD, and
Benefit of taking TD still had a count in I mappings.

Another observation made by examining the total mappings for D and I is although the abstract
TDQ concepts New Code Cost associated with TD and Rework Cost associated with TD had fewer
explicit (D) mappings, they had a considerable count of inferred (I) mappings. The total mapping
for these two concepts was derived as; 12 and 15 QAs (y-axis), and 12 and 15 approach concepts
(bubble size) were mapped in total for the two abstract TDQ concepts.

Summary of findings for TDQ Concepts (RQ1.1):
• There were no abstract TDQ Concepts that had zero mappings, i.e., all QAs discussed
the quantification of at least one abstract TDQ concept when the total of D and I
mappings were considered in order to determine what a QA quantifies.

• TD Remediation Step, TD Item, TD Remediation Cost, TD Interest, New code cost
associated with TD, Rework cost associated with TD, Benefit of remediating TD
and Priority, received the highest number of concept mappings considering D and I
mappings in total, indicating that most of the QAs found in our SMS discuss these
aspects of TD quantification similarly. (TD Item, TD Remediation Cost, TD Interest,
and Benefit of remediating TD are the top four.)

• Although New Code Cost associated with TD and Rework Cost associated with TD
had zero or fewer explicit (D) mappings, they had a considerable amount of inferred
(I) mappings. Therefore, these concepts are worthwhile for further investigation.

• Impl Step, New Code Cost and Rework Cost not associated with TD, New Code
Cost associated with TD, and Benefit of taking TD still had a count in inferred (I)
mappings although they had zero direct (D) mappings. They could also be further
investigated.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:23

3.5 Metrics supporting theQuantification of TDQ Concepts (RQ 1.2)
Bubbles for the Metric mapping in Figure 14 show the number of QAs discussing some form
of measurement for an abstract TDQ concept (y-axis) and how many metrics in total from the
approaches map to a given abstract TDQ Concept (bubble size). According to the obtained results,
TD Item, Remediation Cost and TD Interest appear to be the most frequently discussed concepts
in terms of the concepts where some form of measurement has been discussed. 6, 14 and 12 QAs
discuss metrics for these concepts while 10, 43, and 37 metrics from the approaches in total are
mapped to the abstract TDQ concepts. It seems that most of the QAs provide metrics to quantify
Remediation Cost and TD Interest (Remediation Cost being the most frequently discussed one), as
well as provide some form of measurement for TD Items as well.

However, there are concepts that have no form of measurement provided for them in the QAs
(zero counts). These include; the process/time-related concepts (except TD Item), a few of the Cost
concepts (Total cost of an implementation step, Implementation Cost of a Feature, New code cost
not associated with TD, Rework Cost not associated with TD, and New Code Cost associated with
TD), and one benefit concept, the Benefit of Taking TD. It is expected that process/time-related
concepts will have no measurement associated with them. However, it is interesting that some of the
cost-related concepts, and especially the Benefit of taking TD, have no metrics associated with them.

Summary of findings for Metrics supporting the quantification of Concepts
(RQ1.2):

• TD Item, Remediation Cost, and TD Interest are the most frequently discussed
concepts in terms of the concepts where some form of measurement has been
discussed.

• Some cost concepts have not been adequately supported by metrics, e.g., Total cost
of Impl Step, New Code cost associated with TD, New Code cost not associated
with TD, and Rework cost not associated with TD.

• The quantification of the Benefit of taking TD has not been supported by metrics,
although the concept has been discussed in some QAs.

4 DISCUSSION
In this section, we first discuss the implications of the findings from the analysis of TD quantification
approaches for TD types Code, Design, and Architecture found in our SMS in Section 4.1. Later,
in Section 4.2, we discuss potential future research directions, and in Section 4.3, we discuss
implications for practitioners.

4.1 Implications of Findings
4.1.1 Quantifying TD at the ‘code’ level. Our findings suggest that most quantification approaches
are still focusing on the quantification of ‘Code TD’ compared to other types of TD. Code TD
captures TD at a more granular lower level, while Design TD and Architecture TD capture TD at
higher levels in software product architecture. Although there have been more primary studies for
Architecture TD, the number of quantification approaches is slightly higher for Code TD. However,
quantification approaches for Architecture TD collectively cover all 22 abstract TDQ concepts. This
indicates that the overall bigger picture is explored in approaches quantifying Architecture TD.
This suggests the opportunity to investigate the quantification of types of TD exploring TD at a
higher level, and how they could impact the overall software product.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:24 Perera, et al.

4.1.2 Current focus is on the cost concepts. The quantification approaches found in our SMS focus
mainly on TD remediation Cost, TD Interest, TD Item, and Benefit of Refactoring. Out of these
concepts, TD Remediation Cost and TD Interest are the concepts that are well supported by metrics
— these are both cost concepts. This indicates that the current focus is on cost concepts, and the
benefit concepts are not adequately considered in TD quantification. This raises the question
of whether cost concepts alone can make well-informed decisions for TDM. According to Li et
al.’s definition of TD measurement: "Quantifies the benefit and cost of known TD in a software
system through estimation techniques, or estimates the level of the overall TD in a system" [39],
we should also focus on benefit concepts. Therefore, we should critically assess the ability to make
well-informed TDM decisions using quantification approaches considering both cost and benefit
concepts.

4.1.3 Remediating TD in retrospect. An observation we made through the analysis of the quantifi-
cation approaches is that they mainly focus on ‘remediating TD,’ the cost to remediate TD, and
the benefit of remediating TD. This indicates that TD is dealt with after the fact, i.e., in retrospect,
when TD already exists in the software product. The quantification approaches rarely discuss the
potential benefit of taking on TD strategically, for example, to gain a competitive advantage. The
lack of supporting metrics to measure the benefit concepts shows that the metaphor ‘Technical
Debt’ is not used as intended. The financial metaphor ’debt’ suggests taking a loan to make progress
on some task while paying off the interest or making a one-off payment whenever it still yields
the benefits of taking the loan in the first place. This is a prudent, deliberate action. However, our
findings suggest a lack of attention in the current quantification approaches to the fact that TD can
be used strategically during software development.

4.1.4 New Code and Rework Costs. There can be New Code and Rework costs associated with TD
as well as not associated with TD. — costs that are a consequence of TD and costs that are not a
consequence of TD.

An observation we made with respect to these costs is that New Code Costs and Rework Costs
associated with TD were represented in all the TD types analyzed in this paper, while Rework costs
not associated with TD is discussed only with respect to Architecture TD and New Code costs not
associated with TD is discussed only with respect to Architecture and Code TD. However, of all
four concepts, supporting metrics could be found only for Rework costs associated with TD and
only for Architecture TD. This suggests that rework is potentially occurring more frequently with
respect to the software architecture and is more likely to be measured as a consequence of TD in
the context of Architecture TD. However, this does not mean that these costs cannot be measured
for other types of TD.

4.1.5 Understanding the quantification of TD. There were no abstract TDQ concepts with zero
mappings. This suggests that the developed set of abstract TDQ concepts sufficiently captures what
is required to understand the quantification of TD and can be considered a unified representation
of the quantification approaches. However, we are yet to understand how useful these concepts are
in TDM decision-making. For this, we suggest that the next step should be to better understand the
relationships between these abstract TDQ concepts. We plan to do this in our future work.

4.2 Future Research Directions
4.2.1 Addressing the lack of focus on TD quantification in the recent research literature. Our findings
indicate a lack of emphasis on TD quantification in recent years (since 2019). To address this gap, we
encourage researchers to prioritize the investigation of TD quantification since TD quantification is a
crucial TD Management (TDM) activity that can support the decision-making process. Quantifying

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:25

TD can support making informed decisions regarding TDM, such as taking on TD to gain a
competitive advantage and remediating it prudently while the benefit is still yielded.

4.2.2 Investigating the quantification of TD types where TD quantification is less-explored. Demo-
graphics of QAs revealed a predominant focus on TD types: Code, Architecture, and General. We
encourage researchers to investigate the quantification of other types of TD, such as Design TD,
where TD quantification has been less explored.

4.2.3 Exploring insufficiently investigated TDQ Concepts. Classifying the QAs based on our concept-
based classification scheme revealed gaps in the research literature where some TDQ concepts were
not adequately investigated. We encourage researchers to investigate these concepts and metrics
that could support quantifying such concepts.
One such example concept is the Benefit of taking TD. Despite the potential benefits of the

strategic adoption of TD (e..g., to gain a competitive advantage) this concept has received very
limited attention with only 3 QAs discussing the concept and only three concepts mapped from the
3 QAs. The concept has not been supported with any form of measurement, indicating a lack of
supporting metrics. Therefore, we encourage researchers to address this gap by examining this
concept and potential metrics for its quantification. Furthermore, the benefit of taking TD has been
discussed only among Architecture and General types so far. This indicates the need for exploring
the concept with respect to the different types of TD.
Total Cost of Implementation Step, New Code cost, and Rework Costs not associated with TD

are similarly insufficiently explored concepts. Rework costs not associated with TD are discussed
only for Architecture TD. Although these costs represent costs that may be unaffected by TD,
they may play a role in TDM decision-making, for example, with respect to allocating the time
spent by developers on managing TD. Therefore, investigating the role of these concepts in TDM
decision-making can be worthwhile. However, the Total Cost of Implementation Step may still be
affected by the TD Interest. Therefore, investigating the relationship between these concepts is
encouraged.

4.2.4 Addressing the insufficient exploration of benefit concepts. Cost concepts are frequently inves-
tigated in the existing literature for TD quantification. Although various metrics have supported
the quantification of many cost concepts, metrics supporting the quantification of benefit concepts
are fewer than for cost concepts. To address this research gap, we encourage researchers to focus
on developing suitable metrics to quantify the benefit concepts effectively. There are two benefit
concepts in the set of abstract TDQ concepts, the benefit of taking TD and the benefit of remediating
TD. However, compared to the benefit of taking TD, the benefit of remediating TD has been dis-
cussed more frequently as a concept. Yet, supporting metrics have been proposed only in 2016 and
2018. Supporting metrics have not at all been discussed for the benefit of taking TD.

It is worthwhile to investigate the possibility of making better-informed decisions regarding TD
management if the quantification of the benefit concepts is known. For example, it may be worth
exploring whether stakeholders would make better decisions if the benefit of taking TD is known
in a given situation and not only the cost of remediating.

4.2.5 Further investigation of New Code Costs and Rework Costs associated with TD. Although New
code cost associated with TD and Rework cost associated with TD (i.e., the costs affected by TD —
descriptions can be found in Table 2) had zero or few explicit (D) mappings from the QAs, they
had multiple inferred (I) mappings (12 and 15 QAs, 12 and 15 concepts mapped from QAs). This
suggests that these concepts would benefit from further investigation to better understand their
implications and to develop appropriate metrics for their quantification.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:26 Perera, et al.

4.2.6 Addressing the insufficient exploration of metrics to support the quantification of TDQ concepts.
Some cost concepts have not been adequately supported by metrics, e.g., Total cost of Impl Step,
New Code cost associated with TD, New Code cost not associated with TD, and Rework cost not
associated with TD. Costs concerning the development path are not investigated in particular for
Design TD. Addressing these gaps in metric support can enhance the quantification of TD.

4.2.7 Quantifying TD in a timely manner. As discussed in the implications of findings (Section
4.1), an observation made with respect to the current literature is that most of the existing TD
quantification approaches were quantifying TD retrospectively to remediate accumulated TD.
Another aspect of TD is to use it for strategic reasons, for example, to gain a competitive advantage.
However, for this, TD must be quantified during software development. We encourage researchers
to develop quantification approaches supporting this aspect of TD management.

4.2.8 Investigating potential aspects of TD quantification for well-informed TDM decision-making.
TD Item, Remediation Cost, TD Interest, and Benefit of remediating TD received the highest number
of concept mappings, indicating that most of the QAs found in our SMS consider these aspects
the most significant aspects of TD quantification. However, the question is whether these aspects
of TD quantification alone can make well-informed decisions, i.e., if they lead to a reliable TD
quantification useful for TDM decision-making. Researchers should critically asses if these aspects
are sufficient to make well-informed decisions and explore other potential aspects that could
enhance the decision-making process to enable more effective TD management in practice. The
set of abstract TDQ concepts developed in our study serves as a reference for identifying such
potential aspects.

4.3 Implications for Practitioners
We provide a classification of Quantification Approaches (QA) classified based on a set of abstract
TDQ concepts and their high-level themes process/time , cost, benefit, probability and priority. The
classification also shows which abstract TDQ concepts are supported by metrics for each QA. See
Figure 8.

Practitioners may want to decide what existing quantification approaches are fit for their purpose,
depending on their particular needs. They could use our classification map of QAs to select a QA
for their particular need.
As an example, if they want to make decisions if and when to fix TD by considering the TD

Remediation Cost for a given type of TD such as Architectural TD, they may want to select one of
the QAs representing these concepts. QAs 20, 25, 32, 8, 13, 3, and 28 all which quantify Architecture
TD represent TD remediation cost. However, only QA13 discusses supporting metrics for TD
remediation cost out of the Architecture TD QAs discussing TD remediation cost. Therefore, if
practitioners are searching for an existing approach that already discusses metrics that support
the quantification they want to perform (TD remediation cost in this example), they may want to
select QA13 from the QAs given in our classification as fit for their purpose.

5 THREATS TO VALIDITY
In this section, we discuss threats to the validity of our study based on the guidelines provided by
Petersen et al. [50].

5.1 Descriptive Validity
Descriptive Validity refers to how a study describes observations accurately and objectively. To
reduce this threat, we recorded the data (Quantification approach ID, study title, publication year,
TD type, and concepts extracted from the quantification approach) in a tabular format. Doing so

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:27

objectified the data extraction process. Metadata such as the study title and the publication year
was automatically recorded from the searched databases.

Furthermore, the first author objectively extracted TDQ concepts from the quantification ap-
proaches and coded them systematically following the process described in Section 2.4. The other
authors checked the concepts extracted from the quantification approaches (i.e., initial codes),
resulting themes (i.e., abstract TDQ concepts), and high-level themes (i.e., process/ time, cost,
benefit, probability, and priority) during multiple iterative meetings held during data extraction and
analysis. Any concerns brought up by the other authors were discussed and resolved during the
iterative consensus meetings. The classification scheme (See Figure 2) was discussed and agreed
upon among all authors prior to analyzing the quantification approaches for reporting results.

5.2 Theoretical Validity
Theoretical Validity refers to our ability to capture what we intend to capture. This applies to
identifying primary studies, identifying quantification approaches, data extraction, and classification
in our study.

5.2.1 Identification of Primary Studies/ Sampling. Primary studies could have been missed during
the search process. To mitigate this threat, we developed our search string in multiple iterations
before finalizing a satisfactory one. We piloted the search string multiple times with one of the
major databases, SCOPUS. Then, we evaluated our search results with the reference set of articles
obtained from the TechDebt conference proceedings in 2018 and 2019, as listed on their website 1.
All the articles from the reference set were found in SCOPUS search results with the final search
string. Hence, the search string was verified that it captures what we intend to capture.

To expand the possibility of including all relevant articles in our sample, we developed our search
string by using keywords and their synonyms and wildcards (*) to capture possible variations of
the keywords, for example, plurals and verb conjugations. We applied the search query to the title,
abstract, and keywords to increase the probability of finding all relevant articles. Furthermore, we
did not limit our search to a particular period. The search string was discussed and agreed among
all authors prior to conducting the search.
We conducted backward reference snowballing as a way to complement the database search

so that articles that may have not been captured by the search string could be found during
snowballing. However, we did not conduct forward reference snowballing when selecting the set
of primary studies. Yet, we evaluated the validity of our findings by conducting forward reference
snowballing on the study QA32 [32], which had the highest number of mappings for the set of
abstract TDQ concepts. Only two papers resulted from this. This indicates that the conclusions of
this study are not likely to change.
The inclusion and exclusion criteria were evaluated with the reference set of articles from

TechDebt 1 before screening articles for inclusion. The inclusion and exclusion criteria and the
selected studies were discussed and agreed upon among all authors before finalizing them as the
sample.

5.2.2 Identification of Quantification Approaches. We identified quantification approaches from
primary studies based on our definition for a quantification approach; "An approach that discusses
concepts andmetrics that could support TDM decision-making". Furthermore, while identifying unique
quantification approaches, we grouped studies that discussed the same approach and selected the
article that discussed quantification concepts. We acknowledge that this could introduce researcher

1Papers accepted in Tech Debt 2018, 2019: https://2018.techdebtconf.org/#event-overview, https://2019.techdebtconf.org/
#Accepted-Papers

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://2018.techdebtconf.org/#event-overview
https://2019.techdebtconf.org/#Accepted-Papers
https://2019.techdebtconf.org/#Accepted-Papers

1:28 Perera, et al.

bias. However, we think we sufficiently mitigated this threat by discussing the selection of the
quantification approaches among the researchers in multiple iterative consensus meetings where
disagreements were resolved.

5.2.3 Data Extraction and Classification. The first author performed the analysis of the selected
quantification approaches. The coding process was systematic and strictly adhered to. The other
authors checked the concepts extracted from the quantification approaches (i.e., initial codes),
resulting themes (i.e., abstract TDQ concepts), and high-level themes (i.e., process/ time, cost,
benefit, probability, and priority) during multiple iterative consensus meetings.

The coding process did not add new concepts to the set of abstract TDQ concepts after concepts
from 33 out of 39 approaches were already mapped to the abstract TDQ concepts. The classification
scheme (Figure 2) was also discussed and agreed upon among all authors prior to finalizing it. The
classification scheme was used as the framework to perform the analysis to find answers to our
research questions, leading to interesting implications of the findings and future research directions
for the research community as well as implications for practitioners.

5.3 Generalizability
Generalizability refers to the internal and external generalizability of the study. Systematic mapping
studies typically follow a common process. For example, researchers usually follow the guidelines by
Petersen et al. [50]. We followed the same guidelines. Hence, the threat to internal generalizability
is mitigated.
In terms of external generalizability, we do not claim our classification scheme or the set of

abstract TDQ concepts to be complete. However, since all quantification approaches in our dataset
could be represented by the set of abstract TDQ concepts and their high-level themes, we can
conclude that the set of abstract TDQ concepts sufficiently captures the concepts required to discuss
TD Quantification for Code, Design, and Architecture TD.

5.4 Interpretive Validity
Interpretive Validity maps to conclusion validity. The conclusions should be reasonable given
the data [50]. Researcher bias could apply to interpreting the data since the first author drew the
conclusions of our study. However, in our case, the data was interpreted based on the set of abstract
TDQ concepts and their high-level themes (process/time, cost, benefit, probability, priority) that
were systematically developed (see Section 2) during our study. We discussed the results, their
interpretations, and the conclusions among all authors and agreed on them prior to reporting them
in this paper.

5.5 Repeatability
The detailed reporting of the research process preserves the repeatability of the study. We have
reported the systematic mapping process that we followed in Section 2 and provided a Replication
Package1 as supplementary material. Furthermore, the process we followed applied the guidelines
by Petersen et al. in [50], a commonly followed process for SMSs by the research community.

6 RELATEDWORK
In this Section we discuss related work firstly in terms of secondary and tertiary studies in Section
6.1 and secondly in terms of other related work in Section 6.2.

1Replication Package: https://doi.org/10.5281/zenodo.10617774

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.5281/zenodo.10617774

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:29

6.1 Secondary and Tertiary Studies
Several secondary and tertiary studies related to TD have been published since 2012. However,
the topic of ‘TD Quantification’ or measurement remains under-explored. The phenomenon is
especially not explored conceptually, i.e., a study that surveys TD quantification conceptually is
missing in the existing surveys. We fill this gap by conducting a systematic mapping study that
focuses on TD quantification, conceptually.

In our mapping study, we emphasize the importance of understanding TD quantification concep-
tually as an important TDM activity since it supports other TDM activities such as ‘prioritization’
and ‘repayment’ [13, 41]. We analyzed concepts and metrics discussed in TD quantification ap-
proaches to identify gaps in terms of what is quantified in the existing quantification approaches
based on a set of abstract TD quantification concepts (and their high-level themes process/time,
cost, benefit, probability, and priority) that sufficiently capture TD quantification conceptually.
Implications of findings and recommendations for researchers and practitioners were discussed in
Sections 4.1, 4.2, and 4.3.
Although most of the secondary and tertiary studies have focused on aspects different from

TD quantification, we discuss them below and draw connections to our study where possible.
However, a few studies focus on TD measurement tools, which are discussed under the focus area
‘Measurement (quantification) of TD’ in Section 6.1.3. Table 4 summarizes the contributions of all
the studies discussed in this section, along with the contributions of our mapping study.

6.1.1 Concept of TD. Tom et al. [60] were the first to conduct a secondary study on TD in 2012.
They focused on the concept of TD, attempting to provide a holistic view of TD. The outcome was
a theoretical framework comprising TD dimensions, attributes, precedents, and outcomes. Alves et
al. [4] proposed an ontology of terms on TD in their systematic literature review. Different types of
TD and their indicators were identified during this study. Alves et al. [3] provided an improved
version of the ontology of terms on TD proposed by the same authors in 2014. They provided
a list of indicators to identify TD, a list of TD management strategies, data sources used in TD
identification activities, and software visualization techniques used to identify and manage TD.

6.1.2 TD Management (TDM), TDM Tools and Strategies. Li et al. [39] conducted their study on TD
and TDM. They classified TD into ten types and TDM activities into eight types. Twenty-nine tools
for TDM were identified. The authors emphasized the need for tools for managing the different TD
types during the TDM process. According to the authors, code-related TD and its management had
gained the most attention at the time of conducting their study. However, this has not changed since
then. We emphasize the need to investigate other types of TD and their quantification since the
current focus still remains on code-related TD. Li et al. [39] identify the lack of an underlying theory
and models to support TD identification and measurement. Our work fills this gap by establishing
a theoretical foundation identifying a consolidated set of abstract TDQ concepts and high-level
themes sufficient to capture TD quantification conceptually.

Rios et al. [53] conducted a tertiary study in 2018. They evaluated 13 secondary studies between
2012 and 2018. They consolidated the TD types found in previous secondary studies, identified
a list of situations in which TD items can be found in software projects, and presented a map
representing the activities, strategies, and tools supporting TDM. They pointed out TDM activities
that do not yet have any support tool. According to Rios et al., [53], TD measurement has some
kind of support in terms of tools. The different aspects of measurement discussed in their study are
TD impact measurement, principal estimation, interest estimation, interest probability estimation,
interest uncertainty estimation, and measurement in general. Most of these aspects are captured
in our study, where we explored the concepts sufficient to capture TD quantification. Therefore,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:30 Perera, et al.

researchers can now use our set of abstract TDQ concepts to analyze existing primary and secondary
studies through the lens of TD Quantification.

Da Silva et al. [21] analyzed TDM tools. Their goal was to to consolidate the understanding about
how existing TD tools map to different TD types and TDM activities, and to analyze the existing
empirical evidence on the validity of the tools. The study found that most of the TD tools address
code-related TD and that there are also some dedicated TDM tools for managing non-code-related
TD. Our findings similarly suggest that the current focus on quantification approaches is on the
code level. Therefore, we encourage the investigation of the quantification of other TD types.

6.1.3 Measurement (quantification) of TD. Khomyakov et al. [33] investigated existing tools for
the measurement of TD, but they focused only on quantitative methods that could be automated.
They reported on 38 papers out of 835 retrieved in their initial search. They found that almost all of
the methods propose novel approaches to measure TD using different criteria. The authors claim
that the research area of TD measurement is not mature and lacks independent evaluations of the
methods proposed. Furthermore, they state that existing methods commonly focus on proposing
new approaches, and therefore, no consolidation can be identified among the existing approaches.
Contributions of our study help to fill this gap by proposing a consolidated set of abstract TDQ
concepts that helps analyze existing quantification approaches by representing them via a common
set of concepts.

Avgeriou et al. [9] compared a few existing tools measuring TD. They compared the features and
the popularity of the tools. They focused on the TD types: code, design, and architecture. However,
their study is limited to tools that estimate TD principal or interest. Our research complements
their research by extending the discussion of TD quantification to a greater degree without limiting
it to TD principal and interest. We discuss 22 concepts that capture TD quantification more
holistically, covering the themes of process/time, cost, benefit, probability, and priority. Our study
complements their study by making contributions towards filling the gaps discussed by Avgeriou
et al. [9], one of them being the difficulties practitioners face trying to select a tool to match their
needs and the second, the concept of TD and its role in software development being blurred. By
classifying quantification approaches based on the set of abstract TDQ concepts and their high-level
themes, we allow practitioners to use this classification to decide if a given quantification approach
actually quantifies what they require to be quantified. The classification scheme is reusable. Hence,
practitioners could use it to classify new approaches as well. Our findings emphasize the need
to explore the quantification of TD by investigating how it could also be used strategically, for
example, by quantifying the benefit of taking TD.

6.1.4 TD Prioritization. Alfayez et al. [2] investigated TD prioritization approaches and the pri-
oritization techniques utilized by those approaches. Furthermore, they analyzed prioritization
approaches based on their accounts for value, cost, or resource constraints. Leanarduzzi et al. [37]
reviewed articles on technical debt prioritization, including strategies, processes, factors, and tools.
They discovered that there is a lack of empirical evidence on measuring TD and that there is no
validated, widely used set of tools specific to TD prioritization. Our study identifies the concepts
sufficient to capture TD quantification. Prioritization strategies can benefit from this.

6.1.5 Decision Making in TD Management. Fernández-Sánchez et al. [26] identified elements
required to manage TD. The elements were classified into three groups: basic decision-making
factors, cost estimation techniques, practices, and techniques for decision-making. The factors
were grouped based on stakeholders’ points of view: engineering, engineering management, and
business-organizational management. TD Item, Principal, Interest, and Interest probability were

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:31

among the elements identified by the authors, and these concepts have also been captured in our
study.

Ribeiro et al. [52] introduce criteria that can be utilized for TDM decision-making. They evaluated
the appropriate time for paying a TD item and how to apply decision-making criteria to balance
the short-term benefits against long-term costs. They identified 14 decision-making criteria that
development teams could use to prioritize the payment of TD items and a list of types of debt related
to the criteria. They identify ’Debt impact on the project’ and ’Cost-Benefit’ as the most explored
criteria in the studies captured in their mapping study. This confirms our selection of abstract
TDQ concepts (i.e., concepts related to Cost and Benefit, including TD Interest) for discussing TD
Quantification.

6.1.6 Financial aspect of TD. Ampatzoglou et al. [5] focused on the financial aspect of TD. The
authors provided a glossary of financial terms and a classification scheme for financial approaches to
managing TD. The authors motivate their study by stating that the measurement (or quantification)
activity of TD will be supported by examining the financial perspective of technical debt. According
to the authors, the most common financial terms that are used in technical debt research are
principal and interest. The abstract TDQ concepts, TD Remediation Cost, and TD Interest identified
in our study align with those terms. Repayment is another term in their glossary that also aligns
with our concepts TD Remediation Step and TD Remediation Cost.

6.1.7 Architecture TD (ATD). Besker et al. [12] investigated Architecture TD (ATD) in their sys-
tematic literature review. They provided a comprehensive interpretation of the ATD phenomenon
by contributing with a descriptive model categorizing the main characteristics of ATD.

6.1.8 TD in the context of Agile Software Development (ASD). Behutiye et al. [10] analyzed the
state of the art of TD and its causes, consequences, and management strategies in the context of
agile software development (ASD).

Table 4. Study Focus and Contributions of other secondary and tertiary studies along with Focus and
Contributions of ours. | Italics — studies focusing on TD Measurement, Bold Italics — Our Study

Study Focus Contribution
Tom et al. [60] Concept of TD Theoretical framework comprising TD dimen-

sions, attributes, precedents, outcomes
Alves et al. [4] Concept of TD Ontology of terms on TD

Different types of TD
Indicators

Alves et al. [3] Concept of TD, TDM
strategies

Ontology of terms on TD
List of indicators to identify TD
List of management strategies
Data sources used in TD identification activities
Software visualization techniques used to iden-
tify and manage TD

Li et al. [39] TDM, TDM strategies
and tools

10 types of TD
8 types of TDM activities
29 tools for TDM

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:32 Perera, et al.

Rios et al. [53] TDM, TDM strategies
and tools

Consolidated list of TD types
List of situations in which TD items can be
found in software projects
Map representing activities, strategies, and tools
supporting TDM
TDM activities that do not yet have a support
tool

Da Silva et al. [21] TDM tools Consolidated the understanding of how existing
TD tools map to different TD types and TDM
activities
Analyzed the existing empirical evidence on the
validity of the tools.

Khomyakov et al.
[33]

TD measurement Consolidated (automated) tools for the measure-
ment of TD

Avegeriou et al. [8] TD measurement Compared existing tools to measure Code, De-
sign, and Architecture TD but focused on the
popularity and features of the tools

Our Study TD measurement (quan-
tification)

A set of abstract TDQ concepts sufficient to cap-
ture TD quantification conceptually. This can
serve as a reference to develop new quantifica-
tion approaches.
A classification scheme based on the set of ab-
stract TD quantification concepts and their high-
level themes process/time, cost, benefit, prob-
ability, and priority. The classification scheme
helped understand gaps in the literature to pro-
vide future research directions for researchers.
Practitioners could also make use of the clas-
sification to select existing quantification ap-
proaches fit for their particular needs.

Alfayaz et al. [2] TD Prioritization Prioritized approaches based on their value, cost
and resources

Lenarduzzi et al.
[37]

Prioritization Strategies, processes, factors and tools for prior-
itization

Fernandez-
Sanches et al.
[25]

Decision-making Elements required to manage TD classified
into basic decision-making factors, cost estima-
tion techniques, practices, and techniques for
decision-making — factors were grouped based
on stakeholder’s point of view: engineering, en-
gineering management and business organiza-
tion management

Ribeiro et al. [52] Decision-making 14 decision-making criteria that development
teams can use to prioritize the payment of TD
items
List of types of debt related to the criteria

Ampatzoglou et
al. [6]

Financial aspect of TD Glossary of terms
Classification Scheme for financial approaches
to manage TD

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:33

Besker et al. [12] Architecture TD Descriptive model categorizing the main char-
acteristics of ATD

Behutiye et al.
[10]

TD in the context of ASD Analyzed the state of the art of TD and its causes,
consequences, and management strategies in
the context of ASD

6.2 TD, TDM andQuantification of TD
The first mention of TD as a metaphor to indicate writing not quite-right code as a trade-off of
long-term code quality for a short-term gain, was by Cunningham in 1992 [19]. Avgeriou et al.
proposed a consensus definition for TD at a Dagstuhl seminar held in 2016, referred to as the
16162 definition of TD: “In software-intensive systems, technical debt is a collection of design or
implementation constructs that are expedient in the short term, but set up a technical context that can
make future changes more costly or impossible. Technical debt presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily maintainability and evolvability [8].”
Avgeriou et al. [8] also introduced a conceptual model for TD (referred to as the ’16162 model’

in this paper) based on two viewpoints. The first viewpoint describes the properties, artifacts, and
elements related to TD items, and the second viewpoint articulates the management and process-
related activities or the different states that debt may go through. In the 16162 model, TD was
described as one of many concerns in a software system. The authors also discussed the concept of
a TD item. A TD item is associated with one or more artifacts of the software development process,
such as code, test, or documentation, and is caused by, for example, schedule pressure. The concept
of a TD Item was captured in our work as one of the predominant abstract TDQ concepts discussed
and quantified in the literature.
However, the 16162 model does not entirely capture the two viewpoints they initially discuss.

Instead, it focuses more on the first viewpoint, capturing the elements related to TD. Therefore,
the model does not discuss the quantification (or measurement) of TD, which is one of the TD
Management (TDM) activities introduced by Li et al. [39] in a previous study. According to Li et al.,
TDM includes activities that prevent potential TD from being incurred (e.g., prevention) and activi-
ties that deal with accumulated TD to make it visible, controllable and to keep a balance between
costs and value of a software project (e.g., identification, visualizing, monitoring, measurement,
prioritization, repayment). In our work, we focus on TD quantification (measurement), as one of
the main TDM activities which can support making informed decisions for TDM.

Ourwork establishes the first theoretical foundation for understanding the quantification of TD by
consolidating concepts sufficient to capture the phenomenon of quantification of TD. Furthermore,
we categorize these concepts into high-level themes of process/time, cost, benefit, probability, and
priority and show which concepts are represented in the existing literature and which concepts are
supported by metrics in the existing literature. The classification scheme developed based on the
consolidated set of abstract TDQ concepts and their high-level themes can serve as a reusable tool
to analyze new quantification approaches. The set of abstract TDQ concepts can also serve as a
reference to develop new quantification approaches.

7 CONCLUSION
We conducted a systematic mapping study to investigate what approaches to TD quantification
have been proposed in the research literature for Code, Design, and Architecture TD. We found 39
unique TD quantification approaches. We analyzed what TD quantification concepts are discussed
in these quantification approaches and which of those concepts are supported by metrics based

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:34 Perera, et al.

on a classification scheme we developed during our study. The classification scheme comprises
a set of abstract TDQ concepts and their high-level themes, process/time, cost, benefit, probability,
and priority. The classification of TD quantification approaches based on the classification scheme
helped identify gaps in the research literature and provide recommendations for researchers and
practitioners.
Among the TD quantification concepts discussed in the different quantification approaches,

TD Item, TD remediation cost, TD Interest, and Benefit of remediating TD were the most frequently
discussed abstract TDQ concepts. These concepts were also supported by metrics for their quantifi-
cation. Some abstract TDQ concepts were poorly examined, for example, the benefit of taking TD. It
was evident from our findings that cost concepts were more frequently discussed and supported
by metrics in the quantification approaches, while benefit concepts were not. Furthermore, the
focus was on remediating TD in retrospect rather than using TD strategically as intended by the
metaphor. This raises the question of whether the existing quantification approaches proposed in
the research literature quantify TD in a reliable manner that supports TDM decision-making.
Our work serves as a theoretical foundation to understand and analyze TD quantification

approaches conceptually. The consolidated set of abstract TDQ concepts we developed is a uniform
representation of what is discussed in terms of TD quantification in the literature. Therefore, the
set of abstract TDQ concepts and their high-level themes can serve as a reference point to develop
new quantification approaches. In future work, we plan to identify the relationships between the
different abstract TDQ concepts to develop a conceptual model to shed light on how quantifying
these concepts could better support TDM decision-making.

REFERENCES
[1] Md Abdullah Al Mamun, Antonio Martini, Miroslaw Staron, Christian Berger, and Jörgen Hansson. 2019. Evolution of

technical debt: An exploratory study. In 2019 Joint Conference of the International Workshop on Software Measurement
and the International Conference on Software Process and Product Measurement, IWSM-Mensura 2019, Haarlem, The
Netherlands, October 7-9, 2019, Vol. 2476. CEUR-WS, 87–102.

[2] Reem Alfayez, Wesam Alwehaibi, Robert Winn, Elaine Venson, and Barry Boehm. 2020. A systematic literature review
of technical debt prioritization. In Proceedings of the 3rd international conference on technical debt. 1–10.

[3] Nicolli SR Alves, Thiago S Mendes, Manoel G De Mendonça, Rodrigo O Spínola, Forrest Shull, and Carolyn Seaman.
2016. Identification and management of technical debt: A systematic mapping study. Information and Software
Technology 70 (2016), 100–121.

[4] Nicolli SR Alves, Leilane F Ribeiro, Vivyane Caires, Thiago S Mendes, and Rodrigo O Spínola. 2014. Towards an
ontology of terms on technical debt. In 2014 Sixth International Workshop on Managing Technical Debt. IEEE, 1–7.

[5] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris Avgeriou. 2015. The financial
aspect of managing technical debt: A systematic literature review. Information and Software Technology 64 (2015),
52–73.

[6] Areti Ampatzoglou, Alexandros Michailidis, Christos Sarikyriakidis, Apostolos Ampatzoglou, Alexander Chatzige-
orgiou, and Paris Avgeriou. 2018. A framework for managing interest in technical debt: an industrial validation. In
Proceedings of the 2018 International Conference on Technical Debt. 115–124.

[7] Arooj Arif and Zeeshan Ali Rana. 2020. Refactoring of code to remove technical debt and reduce maintenance effort.
In 2020 14th International Conference on Open Source Systems and Technologies (ICOSST). IEEE, 1–7.

[8] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016. Managing technical debt in software
engineering (dagstuhl seminar 16162). In Dagstuhl Reports, Vol. 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[9] Paris C Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli Fontana, Terese Besker, Alexander Chatzi-
georgiou, Valentina Lenarduzzi, Antonio Martini, Athanasia Moschou, Ilaria Pigazzini, et al. 2020. An overview and
comparison of technical debt measurement tools. IEEE Software 38, 3 (2020), 61–71.

[10] Woubshet Nema Behutiye, Pilar Rodríguez, Markku Oivo, and Ayşe Tosun. 2017. Analyzing the concept of technical
debt in the context of agile software development: A systematic literature review. Information and Software Technology
82 (2017), 139–158.

[11] Terese Besker, Antonio Martini, and Jan Bosch. 2017. The pricey bill of technical debt: When and by whom will it be
paid?. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 13–23.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:35

[12] Terese Besker, Antonio Martini, and Jan Bosch. 2018. Managing architectural technical debt: A unified model and
systematic literature review. Journal of Systems and Software 135 (2018), 1–16.

[13] Terese Besker, Antonio Martini, and Jan Bosch. 2019. Technical Debt Triage in Backlog Management. In 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt). 13–22. https://doi.org/10.1109/TechDebt.2019.00010

[14] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007. Lessons from applying
the systematic literature review process within the software engineering domain. Journal of systems and software 80, 4
(2007), 571–583.

[15] Antonio Cavacini. 2015. What is the best database for computer science journal articles? Scientometrics 102, 3 (2015),
2059–2071.

[16] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris Avgeriou. 2017. Assessing code
smell interest probability: a case study. In Proceedings of the XP2017 Scientific Workshops. 1–8.

[17] Aabha Choudhary and Paramvir Singh. 2016. Minimizing Refactoring Effort through Prioritization of Classes based on
Historical, Architectural and Code Smell Information.. In QuASoQ/TDA@ APSEC. 76–79.

[18] Victoria Clarke and Virginia Braun. 2017. Thematic analysis. The journal of positive psychology 12, 3 (2017), 297–298.
[19] Ward Cunningham. 1992. The WyCash portfolio management system. Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications, OOPSLA Part F1296, October (1992), 29–30. https:
//doi.org/10.1145/157709.157715

[20] Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. 2012. Estimating the size, cost, and types of technical debt. In 2012
Third International Workshop on Managing Technical Debt (MTD). IEEE, 49–53.

[21] José Diego Saraiva da Silva, José Gameleira Neto, Uirá Kulesza, Guilherme Freitas, Rodrigo Reboucas, and Roberta
Coelho. 2021. Exploring Technical Debt Tools: A Systematic Mapping Study. In International Conference on Enterprise
Information Systems. Springer, 280–303.

[22] Georgios Digkas, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Paris Avgeriou, Oliviu Matei, and Robert Heb.
2021. The risk of generating technical debt interest: a case study. SN Computer Science 2, 1 (2021), 1–12.

[23] Robert J Eisenberg. 2012. A threshold based approach to technical debt. ACM SIGSOFT Software Engineering Notes 37,
2 (2012), 1–6.

[24] Davide Falessi and Andreas Reichel. 2015. Towards an open-source tool for measuring and visualizing the interest of
technical debt. In 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD). IEEE, 1–8.

[25] Carlos Fernández-Sánchez, Jessica Díaz, Jennifer Pérez, and Juan Garbajosa. 2014. Guiding flexibility investment in
agile architecting. In 2014 47th Hawaii International Conference on System Sciences. IEEE, 4807–4816.

[26] Carlos Fernández-Sánchez, Juan Garbajosa, Agustín Yagüe, and Jennifer Perez. 2017. Identification and analysis of the
elements required to manage technical debt by means of a systematic mapping study. Journal of Systems and Software
124 (2017), 22–38.

[27] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Riccardo Roveda. 2015. Towards a prioritization of
code debt: A code smell intensity index. In 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD).
IEEE, 16–24.

[28] Martin Fowler. 2019. Is high quality software worth the cost? https://martinfowler.com/articles/is-quality-worth-
cost.html

[29] Yuepu Guo and Carolyn Seaman. 2011. A portfolio approach to technical debt management. In Proceedings of the 2nd
Workshop on Managing Technical Debt. 31–34.

[30] Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti, Graziela Tonin, Fabio Q. B. Da Silva, Andre L. M.
Santos, and Clauirton Siebra. 2011. Tracking Technical Debt – An Exploratory Case Study. In Proceedings of the
2011 27th IEEE International Conference on Software Maintenance (ICSM ’11). IEEE Computer Society, USA, 528–531.
https://doi.org/10.1109/ICSM.2011.6080824

[31] Trong Tan Ho and Guenther Ruhe. 2014. When-to-release decisions in consideration of technical debt. In 2014 Sixth
International Workshop on Managing Technical Debt. IEEE, 31–34.

[32] Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge Haziyev, Volodymyr Fedak, and Andriy Shapochka.
2015. A Case Study in Locating the Architectural Roots of Technical Debt. Proceedings - International Conference on
Software Engineering 2 (2015), 179–188. https://doi.org/10.1109/ICSE.2015.146

[33] Ilya Khomyakov, Zufar Makhmutov, Ruzilya Mirgalimova, and Alberto Sillitti. 2020. An analysis of automated technical
debt measurement. In Enterprise Information Systems: 21st International Conference, ICEIS 2019, Heraklion, Crete, Greece,
May 3–5, 2019, Revised Selected Papers 21. Springer, 250–273.

[34] Barbara Kitchenham, Rialette Pretorius, David Budgen, O Pearl Brereton, Mark Turner, Mahmood Niazi, and Stephen
Linkman. 2010. Systematic literature reviews in software engineering–a tertiary study. Information and software
technology 52, 8 (2010), 792–805.

[35] Boris Kontsevoi, Denis Syraeshko, and Sergei Terekhov. 2022. Practice of Tech Debt Assessment and Management
with TETRA™. In Proceedings of Sixth International Congress on Information and Communication Technology. Springer,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.1109/TechDebt.2019.00010
https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://martinfowler.com/articles/is-quality-worth-cost.html
https://martinfowler.com/articles/is-quality-worth-cost.html
https://doi.org/10.1109/ICSM.2011.6080824
https://doi.org/10.1109/ICSE.2015.146

1:36 Perera, et al.

843–850.
[36] Makrina Viola Kosti, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Georgios Pallas, Ioannis Stamelos, and

Lefteris Angelis. 2017. Technical debt principal assessment through structural metrics. In 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE, 329–333.

[37] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, and Francesca Arcelli Fontana. 2021. A systematic
literature review on technical debt prioritization: Strategies, processes, factors, and tools. Journal of Systems and
Software 171 (2021), 110827.

[38] Jean-Louis Letouzey and Michel Ilkiewicz. 2012. Managing technical debt with the sqale method. IEEE software 29, 6
(2012), 44–51.

[39] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study on technical debt and its management.
Journal of Systems and Software 101 (2015), 193–220. https://doi.org/10.1016/j.jss.2014.12.027

[40] Antonio Martini. 2018. Anacondebt. (2018), 55–56. https://doi.org/10.1145/3194164.3194185
[41] Antonio Martini, Jan Bosch, and Michel Chaudron. 2015. Investigating Architectural Technical Debt accumulation

and refactoring over time: A multiple-case study. Information and Software Technology 67 (2015), 237–253. https:
//doi.org/10.1016/j.infsof.2015.07.005

[42] Antonio Martini, Erik Sikander, and Niel Madlani. 2018. A semi-automated framework for the identification and
estimation of architectural technical debt: A comparative case-study on the modularization of a software component.
Information and Software Technology 93 (2018), 264–279.

[43] Alois Mayr, Reinhold Plösch, and Christian Körner. 2014. A benchmarking-based model for technical debt calculation.
In 2014 14th International Conference on Quality Software. IEEE, 305–314.

[44] Solomon Mensah, Jacky Keung, Michael Franklin Bosu, and Kwabena Ebo Bennin. 2016. Rework effort estimation of
self-admitted technical debt. (2016).

[45] Nikolaos Nikolaidis, Dimitrios Zisis, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Dimitrios Soudris. 2021.
Experience With Managing Technical Debt in Scientific Software Development Using the EXA2PRO Framework. IEEE
Access 9 (2021), 72524–72534.

[46] Robert L. Nord, Ipek Ozkaya, Philippe Kruchten, and Marco Gonzalez-Rojas. 2012. In search of a metric for managing
architectural technical debt. Proceedings of the 2012 Joint Working Conference on Software Architecture and 6th European
Conference on Software Architecture, WICSA/ECSA 2012 (2012), 91–100. https://doi.org/10.1109/WICSA-ECSA.212.17

[47] Ariadi Nugroho, Joost Visser, and Tobias Kuipers. 2011. An empirical model of technical debt and interest. In Proceedings
of the 2nd workshop on managing technical debt. 1–8.

[48] Boris Pérez, Darío Correal, and Hernán Astudillo. 2019. A proposed model-driven approach to manage architectural
technical debt life cycle. In 2019 IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE, 73–77.

[49] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic mapping studies in software
engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12. 1–10.

[50] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies
in software engineering: An update. Information and software technology 64 (2015), 1–18.

[51] Derek Reimanis and Clemente Izurieta. 2016. Towards Assessing the Technical Debt of Undesired Software Behaviors
in Design Patterns. Proceedings - 2016 IEEE 8th International Workshop on Managing Technical Debt, MTD 2016 (2016),
24–27. https://doi.org/10.1109/MTD.2016.13

[52] Leilane Ferreira Ribeiro, Mário André de Freitas Farias, Manoel G Mendonça, and Rodrigo Oliveira Spínola. 2016.
Decision Criteria for the Payment of Technical Debt in Software Projects: A Systematic Mapping Study.. In ICEIS (1).
572–579.

[53] Nicolli Rios, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Spínola. 2018. A tertiary study on technical
debt: Types, management strategies, research trends, and base information for practitioners. Information and Software
Technology 102, February (2018), 117–145. https://doi.org/10.1016/j.infsof.2018.05.010

[54] Riccardo Roveda, Francesca Arcelli Fontana, Ilaria Pigazzini, and Marco Zanoni. 2018. Towards an architectural debt
index. In 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 408–416.

[55] Klaus Schmid. 2013. A Formal Approach to Technical Debt Decision Making. (2013), 153–162.
[56] Andriy Shapochka and Borys Omelayenko. 2016. Practical Technical Debt Discovery by Matching Patterns in

Assessment Graph. In 2016 IEEE 8th International Workshop on Managing Technical Debt (MTD). IEEE, 32–35.
[57] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016. Designite - A software design quality assessment tool.

Proceedings - 1st International Workshop on Bringing Architectural Design Thinking Into Developers’ Daily Activities,
Bridge 2016 (2016), 1–4. https://doi.org/10.1145/2896935.2896938

[58] Vallary Singh, Will Snipes, and Nicholas A Kraft. 2014. A framework for estimating interest on technical debt by
monitoring developer activity related to code comprehension. In 2014 Sixth International Workshop on Managing
Technical Debt. IEEE, 27–30.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1145/3194164.3194185
https://doi.org/10.1016/j.infsof.2015.07.005
https://doi.org/10.1016/j.infsof.2015.07.005
https://doi.org/10.1109/WICSA-ECSA.212.17
https://doi.org/10.1109/MTD.2016.13
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1145/2896935.2896938

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:37

[59] Marek G Stochel, Piotr Chołda, and Mariusz R Wawrowski. 2020. Continuous debt valuation approach (codva) for
technical debt prioritization. In 2020 46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 362–366.

[60] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical debt. Journal of Systems and
Software 86, 6 (2013), 1498–1516.

[61] Adam Tornhill. 2018. Assessing technical debt in automated tests with codescene. In 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 122–125.

[62] Sri Harsha Vathsavayi and Kari Systä. 2016. Technical debt management with genetic algorithms. In 2016 42th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 50–53.

[63] Urjaswala Vora. 2022. Measuring the Technical Debt. In 2022 17th Annual System of Systems Engineering Conference
(SOSE). IEEE, 185–189.

[64] ClaesWohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering.
In Proceedings of the 18th international conference on evaluation and assessment in software engineering. 1–10.

[65] Nico Zazworka, Carolyn Seaman, and Forrest Shull. 2011. Prioritizing design debt investment opportunities. In
Proceedings of the 2nd Workshop on Managing Technical Debt. 39–42.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:38 Perera, et al.

A QUANTIFICATION APPROACHES

Table 5. Quantification Approaches found in the SMS for code-related types of TD | QAn —Quantification
Approach

Quant.
App.

Title of the Article Citation Pub Year TD Type

QA1 Assessing Technical Debt in Automated Tests
with CodeScene

[61] 2018 Code

QA2 Designite - A Software Design Quality Assess-
ment Tool

[57] 2016 Design

QA3 AnaconDebt: A Tool to Assess and Track Techni-
cal Debt

[40] 2018 Architecture

QA4 A framework for estimating interest on technical
debt by monitoring developer activity related to
code comprehension

[58] 2014 Code

QA5 Towards assessing the Technical Debt of Unde-
sired Software Behaviors in Design Patterns

[51] 2016 Design

QA6 Technical Debt Principal Assessment through
Structural Metrics

[36] 2017 Code

QA7 Rework Effort Estimation of Self-admitted Tech-
nical Debt

[44] 2016 Design

QA8 Technical Debt Management with Genetic Algo-
rithms

[62] 2016 Architecture

QA9 Towards an Architectural Debt Index [54] 2018 Architecture
QA10 Estimating the Size, Cost, and Types of Technical

Debt
[20] 2012 Code and

Architec-
ture

QA11 A Framework for Managing Interest in Technical
Debt: An Industrial Validation

[6] 2018 Code

QA12 A Proposed Model-Driven Approach to Manage
Architectural Technical Debt Life Cycle

[48] 2019 General

QA13 Practical Technical Debt Discovery by Matching
Patterns in Assessment Graph

[56] 2016 Architecture

QA14 Minimizing Refactoring Effort through Prioritiza-
tion of Classes based on Historical, Architectural
and Code Smell Information

[17] 2016 Code and
Architec-
ture

QA15 Prioritizing Design Debt Investment Opportuni-
ties

[65] 2011 Design

QA16 Assessing Code Smell Interest Probability: A Case
Study

[16] 2017 Code

QA17 Towards a prioritization of code debt: A code
smell Intensity Index

[27] 2015 Code

QA18 Managing Technical Debt with the SQALE
Method

[38] 2012 General

QA19 A portfolio approach to technical debt manage-
ment

[29] 2011 General

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:39

QA20 A Formal Approach to Technical Debt Decision
Making

[55] 2013 Architecture

QA21 A Benchmarking-based model for Technical Debt
Calculation

[43] 2014 General

QA22 A proposed sizing model for managing 3rd party
Code Technical Debt

[48] 2018 General

QA23 When-to-release decisions in consideration of TD [31] 2014 General
QA24 Tracking technical debt - An exploratory case

study
[30] 2011 General

QA25 Guilding Flexibility Investment in Agile Archi-
tecting

[25] 2014 Architecture

QA26 A Threshold based approach to TD [23] 2012 General
QA27 Estimating the Principal of an Application’s Tech-

nical Debt
[20] 2012 General

QA28 A semi-automated framework for the identifica-
tion and estimation of Architectural Technical
Debt: A comparative case-study on the modular-
ization of a software component

[42] 2018 Architecture

QA29 Evolution of TD: An exploration Study [1] 2019 General
QA30 An Empirical Model of Technical Debt and Inter-

est (SIG method)
[47] 2011 General

QA31 In Search of a Metric for Managing Architectural
Technical Debt

[46] 2012 Architecture

QA32 A Case Study in Locating the Architectural Roots
of Technical Debt

[32] 2015 Architecture

QA33 Towards an open-source tool for measuring and
visualizing the interest of technical debt

[24] 2015 General

QA34 Measuring the Technical Debt [63] 2022 Code
QA35 Practice of Tech Debt Assessment and Manage-

ment with TETRA™
[35] 2022 Code

QA36 The Risk of Generating Technical Debt Interest:
A Case Study

[22] 2021 Code

QA37 Refactoring of Code to Remove Technical Debt
and Reduce Maintenance Effort

[7] 2020 Code

QA38 Continuous Debt Valuation Approach (CoDVA)
for Technical Debt Prioritization

[59] 2020 General

QA39 Experience With Managing Technical Debt
in Scientific Software Development Using the
EXA2PRO Framework

[45] 2021 Design

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:40 Perera, et al.

B APPROACH CONCEPTS MAPPED TO ABSTRACT TDQ CONCEPTS — MAPPING D

Table 6. Approach Concepts mapped to Abstract TDQ Concepts (Mapping D) | Bold Italics — highest counts

Abstract
TDQ Con-
cept

Num.
of
QAs

Num.
of Ap-
proach
Con-
cepts
mapped
from
QAs

Concepts mapped from QAs

Product 3 3 QA23: Product, QA31: Product, QA38: Product
Release 3 3 QA23: Release, QA31: Release, QA38: Release
Dev Path 3 3 QA20: Evolution Sequence, QA31:Dev Path, QA38: Feature

Pipeline or Roadmap
Dev Step 2 2 QA20: Evolution Step, QA34: Development phase
Impl Step 0 0 -
Remediation
Step

6 6 QA14: Pay off TD (through refactoring), QA15: Refactoring,
QA32:Refactoring Step, QA35: Elimination Step, QA36: TD
remediation, QA37: Refactoring

Feature 4 4 QA8: Features, QA23: Feature, QA31:Feature, QA38: Feature
TD Item 19 19 QA1:Refactoring Candidates, QA2:Design smells, QA3: TD

Item, QA8: Technical Debt Items, QA12:ATD Item, QA13:TD
Item, QA15:God Classes, QA17:Code Smell, QA18:Debt Item,
QA19:TD Item, QA21: violations to be fixed, QA24:TD
Items, QA27:Should-fix Violations, QA28:non-modularized
components (lack of modularization), QA29:Code smells,
QA32:Architectural Flaw, QA37: Code smell, QA38: TD Item,
QA39: TD Item or design problem

Dev Path To-
tal Cost

2 3 QA20: Evolution sequence cost (Change cost of evol. se-
quence), QA31:Cumulative Total Cost, QA31:Percentage of
Cumulative Total Cost

Dev Step To-
tal Cost

2 3 QA20: Evolution Step Cost or (Change Cost),
QA31:Cumulative Total Cost, QA31:Percentage of Cu-
mulative Total Cost

Impl Step To-
tal Cost

2 3 QA23: Effort required to Implement a Feature,
QA31:Cumulative Total Cost, QA31:Percentage of Cu-
mulative Total Cost

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:41

Remediation
Cost

24 25 QA3: Cost of refactoring (Principal), QA6: TD Princi-
pal, QA8: Cost to fully eliminate the debt (Principal),
QA10:Principal (Cost to fix the problems), QA11:Principal,
QA13:Refactoring cost, QA15:Cost of refactoring (overall met-
ric score), QA18:Time to remediate each debt item or remedi-
ation cost. (Principal), QA18:technical debt, QA19:Principal,
QA20: Cost associated with refactoring, QA21: Remedia-
tion Cost, QA24:Principal, QA25:Cost of eliminating the
weaknesses (Principal), QA26: Debt remediation effort,
QA27:Principal (Cost of remediatnig should-fix violations),
QA28:Principal (Cost of reworking or refactoring the com-
ponent), QA29:Principal of code smell (time to fix it),
QA30:Repair Effort (RE) or cost of repair (cost to repair quality
issues to reach the ideal quality level), QA32:Cost of Refac-
toring, QA34: Principal or Refactoring Cost, QA34: TD Princi-
pal or efforts required to refactor, QA37: Man-hour used to
remove the selected code smell, QA38: Principal or cost of
refactoring, QA39: Principal or time required to fix or cost to
resolve each problem

Impl Cost of
Feature

4 4 QA8: Implementation cost, QA31:Implementation Cost, QA37:
Effort required to add features or Man-hour for Addition of
Functionality, QA38: Development cost of Feature

TD Interest 23 24 QA1:Impact on maintenance effort, QA3: Interest (extra costs),
QA4: Difference between code comprehension effort in ideal
and current state Interest (gap between maintenance costs
under ideal conditions versus conditions where maintenance
is higher due to accrued debt), QA10:Interest, QA11:Interest,
QA15:Impact of god class on quality attributes (defect likely-
hod, change likelihood), QA18:Impact of the debt items on the
business or non-remediation cost (Interest), QA18:business
impact, QA19:Expected Interest Amount, QA20: Additional
development cost introduced in evolution, QA21: Non Reme-
diation Cost, QA24:Interest Amount, QA25: Additional Cost
of Change (CoC) - Additional cost derived from lack of flexi-
bility or additional cost of implementing changes (Interest),
QA27:Interest (Continuing cost of not remediating should-
fix violations), QA28:Interest (code somplexity, maintenance
costs), QA30:Extra maintenance cost spent for not achieving
the ideal quality level (diff between maintenance cost of cur-
rent level and ideal level), QA32:Penalty Incurred by Debts,
QA34: Interest, QA34: Interest or Impact of technical debt,
QA35: TD Impact, QA36: TD Interest, QA38: Interest or Im-
pact, QA39: Interest

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:42 Perera, et al.

New Code
Cost not
associated
with TD

0 0 -

Rework Cost
not associated
with TD

0 0 -

New Code
Cost associ-
ated with TD

0 0 -

Rework Cost
associated
with TD

2 2 QA8: Extra cost to selected new features due to unfixed tech-
nical debt, QA31:Rework Cost

Benefit of
Remediating
TD

9 11 P9:Architectural Debt Index (ADI), QA20: Refactoring benefit,
QA25:ROI of designing for flexibility, QA28:benefit of refac-
toring a non modularized component, QA30:ROI, QA30:NPV,
QA32:Expected benefit of Refactoring, QA37: Impact of remov-
ing TD, QA38: Return on Investment (ROI), QA38: Benefits
from paying off known technical debt items or effort saved
(monetized value or benefit associated with any of refactor-
ings), QA39: Benefit

Benefit of Tak-
ing TD

0 0 -

Interest Prob-
ability

4 4 QA16:Smell Interest Probability, QA24:Interest Probability,
QA36: Interest Probability, QA39: Interest Probability

Priority 5 5 QA1:Priority, QA3: Priority, QA13:Priority, QA15:Priority of
god class according to cost benefit analysis (impact vs effort
or cost of refactoring), QA17:Priority

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:43

C APPROACH CONCEPTS MAPPED TO ABSTRACT TDQ CONCEPTS — MAPPING I

Table 7. Approach Concepts mapped to Abstract TDQ Concepts (Mapping I) | Bold Italics — highest counts

Abstract
TDQ Con-
cept

Num.
of
QAs

Num.
of Ap-
proach
Con-
cepts
mapped
from
QAs

Concepts mapped from QAs

Product 1 1 QA32:Product
Release 1 1 QA32:Release
Dev Path 1 1 QA32:Dev Path
Dev Step 2 2 QA31:Dev Step, QA32:Dev Step
Impl Step 2 2 QA31:Implementation Step, QA32:Implementation Step
Refactoring
Step

4 7 QA11: Number of problems that must be fixed, QA11:time re-
quired to fix each problem, QA11:cost for fixing each problem,
QA22: migrate the API calls in the using code to the newer
version of the API, QA25: Eliminating quality weaknesses,
QA32:Cost of Refactoring, QA39: Refactoring or repayment

Feature 4 5 QA4: Change Task, QA8: Business value of feature, QA8: Short
term value (Benefit of focusing on features), QA32:Feature,
QA38: Sales opportunity

TD Item 9 11 QA9:Architectural Smells, QA10:Must fix problems,
QA11:Problems that must be fixed, QA12:Architectural
Smells, QA12:Architectural Anti-Patterns, QA12:Sub-optimal
architectural decisions, QA14:Code smells, QA16:Code Smell,
QA23: Technical Debt, QA27:Technical Debt (Future costs
attributes to known violations in production code that should
be fixed, includes both Principal and Interest), QA35: Critical
Problem

Dev Path To-
tal Cost

4 5 QA4: Developer code comprehension effort, QA8: Total im-
plementation cost of a sprint, QA23:Total Release Value (sum
of all values of individual features offered in that release),
QA32:Current Total LOC Changed, QA32:Expected Total LOC
Changed

Dev Step To-
tal Cost

3 4 QA4: Developer code comprehension effort, QA8: Total imple-
mentation cost of a sprint, QA32:Current Total LOC Changed,
QA32:Expected Total LOC Changed

Impl Step To-
tal Cost

2 3 QA8: Total implementation cost of a sprint, QA32:Current
Total LOC Changed, QA32:Expected Total LOC Changed

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:44 Perera, et al.

Remediation
Cost

6 6 QA1:Rework, QA7:Rework Effort, QA14:Estimated effort of
refactoring (the total number of classes that needs to be refac-
tored divided by the total number of classes present in the
software), QA22:Principal cost (Cost to migrate the API calls
in the using code to the newer version of the API), QA23:Effort
required to pay off accumulated TD in the current release,
QA26:Cost to return to Green

Impl Cost of
Feat

1 2 QA32:Current Total LOC Changed, QA32:Expected Total LOC
Changed

TD Interest 6 6 QA2:Smell density, QA8: Extra effort, QA12:ATD Item Im-
pact, QA22:Accumulated Principal Cost (Cost of differing
upgrades), QA31:Rework Cost, QA36: New Code

New Code
Cost not
associated
with TD

3 4 QA31:Implementation Cost, QA32:Current Total LOC
Changed, QA32:Expected Total LOC Changed, QA36: New
Code

Rework Cost
not associated
with TD

1 2 QA32:Current Total LOC Changed, QA32:Expected Total LOC
Changed

New Code
Cost associ-
ated with TD

12 12 QA1:Impact on maintenance effort, QA2:Smell density, QA3:
Interest (extra costs), QA4: Difference between code com-
prehension effort in ideal and current state, QA5: Program
comprehension effort (derived), QA10:Interest, QA11:Interest,
QA12:ATD Item Impact, QA15:Impact of god class on quality
attributes (defect likelyhod, change likelihood), QA18:Impact
of the debt items on the business or non-remediation cost
(Interest), QA32:Penalty Incurred by Debts, QA36: New Code

Rework Cost
associated
with TD

13 13 QA1:Impact on maintenance effort, QA2:Smell density, QA3:
Interest (extra costs), QA4: Difference between code compre-
hension effort in ideal and current state, QA5: Program com-
prehension effort (derived), QA8: Future extra costs of debt
item, QA10:Interest, QA11:Interest, QA12:ATD Item Impact,
QA15:Impact of god class on quality attributes (defect like-
lyhod, change likelihood), QA18:Impact of the debt items on
the business or non-remediation cost (Interest), QA24:Effort
to rewrite, QA32:Penalty Incurred by Debts

Benefit of Re-
mediating TD

7 8 QA1: Effect of a refactoring, QA8: Future investment value
(Benefit of paying the debt items), QA14:Code smells correc-
tion ratio (the total number of code smell instances to be
removed by refactoring the prioritized classes, divided by the
total number of code smell instances present in the software),
QA14: total reduction in refactoring effort, QA18:SQALE debt
ratio (technical debt divided by the budget of the project),
QA19:Net benefit (Principal - Interest amount), QA23: Poten-
tial effort the team can invest in the next release, QA34: ROI
of Refactoring

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:45

Benefit of tak-
ing TD

3 3 QA8: Short term value (Benefit of focusing on features),
QA18:SQALE debt ratio (technical debt divided by the budget
of the project), QA23: Potential effort the team can invest in
the next release

Interest Prob-
ability

5 6 QA8: Dependency of a feature on a set of debt items, QA9:Page
Rank (estimates whther the AS is located in an important part
of the project), QA19:Interest Standard Deviation or variance
of return or risk that a TD item will not produce benefit,
QA19:Correlations with other debt items, QA20: Probability
measure (or uncertainty of evol. steps), QA25:Uncertainity
that a change could happen

Priority 7 7 QA9:Severity of an Architectural Smell, QA10:Potential sever-
ity (high , medium, low), QA12:Severity, QA14:Rank (Accord-
ing to class score), QA18:SQALE rating (a grade a, B, C as-
signed based on low or high debt ratio), QA26:Priority of
metrics, QA28:Refactor index

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:46 Perera, et al.

D APPROACH CONCEPTS MAPPED TO ABSTRACT TDQ CONCEPTS — MAPPING M

Table 8. Metrics supporting the Quantification of Abstract TDQ Concepts | Italics — Concepts where one or
moreQuantification Approaches discussed Metrics, Bold Italics — highest counts

Abstract
TDQ Con-
cept

Num.
of
QAs
pro-
viding
some
form
of
mea-
sure-
ment
for
con-
cepts

Num.
of
Met-
rics
mapped
from
QAs

Metrics mapped from QAs

Product 0 0 -
Release 0 0 -
Dev Path 0 0 -
Dev Step 0 0 -
Impl Step 0 0 -
Refactoring
Step

0 0 -

Feature 0 0 -
TD Item 6 10 QA9:Dependency metrics (Martin’s), QA10:Total Quality In-

dex, QA10:Halth factors e.g. robustness, QA13:Size of TD Item
(LOC), QA13:Complexity of TD Item, QA23:maximum num
of effort days the release could be varied, QA23:change in
the value due to functionality change, QA23:remaining TD in
that release, QA29:TD Density (amount of TD per 100 LOC),
QA29:TD Density Trend (Slope of the line of two successive
TD density measures)

Dev Path Total
Cost

2 5 QA4: Time spent in class, QA4: Time spent in other classes,
QA23:maximum num of effort days the release could be var-
ied, QA23:change in the value due to functionality change,
QA23:remaining TD in that release

Dev Step Total
Cost

1 2 QA4: Time spent in class, QA4: Time spent in other classes

Impl Step To-
tal Cost

0 0 -

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:47

Remediation
Cost

14 43 QA6: Coupling metrics, QA6: Cohesion metrics, QA6: In-
heritance metrics, QA6: Size metrics, QA6: Polymore-
physm metrics, QA7:Commented LOC on average per SATD
prone source file, QA10:Number of must fix problems,
QA10:Potential severity (high , medium, low), QA10:Time
required to fix each problem, QA10:Cost for fixing each
problem(labor rate measured in dollars), QA11:Number of
problems that must be fixed, QA11:time required to fix each
problem, QA11:cost for fixing each problem, QA15: Refactor-
ing, QA13:Refactoring size, QA13:Work rate, QA13:Fixed ex-
penses, QA14:Number of classes to be refactored, QA14:Total
number of classes in the system, QA15:WMC, QA15:TCC,
QA15:AFTD, QA18:TD Index, QA21: target quality levels (de-
fines the threshold for minimum quality), QA21: max allowed
violations per 3-tuple, QA21: num of violations to be fixed
(number of violations actually need to be fixed to reach the
specified quality level for each 3-tuple), QA22:Size of the
impact(LOC) upgrading an aging third-party component to
the current version, QA22:Size of the code base using the
thirs-party component, QA22:Degree of API deprecation be-
tween the version used and the current version of the third-
party component, QA22:Age in years of the third-party soft-
ware component version being used, QA23:TD adjustment
factor (weighted average of all criteria in all 4 TD dimen-
sions: process rules compliance, qualty testing, maintainabil-
ity, complexity), QA23:Effort adjustment factor (product or
project specific cost drivers that will affect the efficiency ad-
dressing TD e.g. availability of human experts or develop-
ers), QA26:Acceptable levels of debt, QA26:Debt per KSLOC,
QA27:the number of should fix violations, QA27: percentage
of violations to be fixed, QA27:hours to fix each violation,
QA27:cost of labour, QA30:Rework Fraction (estimate of the
percentage of lines of code that need to be changed to im-
prove the quality of software to a higher level), QA30:Rebuild
Value (estimate of effort in man-months), QA30:Refcatoring
adjustment (context specific adjustment), QA30:Overall main-
tainability rating, QA30:Risk Profile

Impl Cost of
Feat

0 0 -

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

1:48 Perera, et al.

Interest (c) 12 37 QA1:Complexity growth, QA1:Code growth, QA1:Comments
growth, QA1:Change Frequency, QA1:Lines of Code,
QA1:Cyclomatic Complexity, QA3: External propagation
factors (e.g. num of TD related increments planned, num
of users affected, QA3: Internal propagation factors (e.g.
growth of source, growtyh of complexity), QA5: Excessive
actions, QA5: Improper order of sequences, QA5: Program
comprehension effort (derived), QA11:TD Breaking Point
(in num of versions), QA12:Granularity, QA12:Severity,
QA12:Amount of architectural decisions impacted by the
ATD Business impact index, QA30:Rebuild Value (estimate
of effort in man-months), QA30:Maintenance Fraction,
QA30:Maintenance Effort, QA30:Quality Factor, QA34:
Defect Proneness, QA34: Maximum Defects per 100 LOC
touched, QA34: Extra Defect Proneness, QA34: Maximum
Extra Defects per 100 LOC Touched, QA34: Relative Extra
Defect Proneness, QA34: Average Relative Extra Defect
Proneness, QA34: Violation Density, QA34: Linkage, QA34:
Estimation Error, QA34: Complexity Index, QA34: Modularity
Index, QA34: Data Coupling Index, QA34: Efforts Deviation
Index, QA35: Metric Index, QA35: Dimension Index, QA35:
TETRA™ Index, QA36: Interest Generation Risk Importance
(IGRI)

New Code
Cost not
associated
with TD

0 0 -

Rework Cost
not associated
with TD

0 0 -

New Code
Cost associ-
ated with TD

0 0 -

Rework Cost
associated
with TD

1 2 QA31:Number of Dependencies, QA31:Change Propagation
Metric

Benefit of Re-
mediating TD

2 7 QA9:Severity of an Architectural Smell, QA9:Page Rank (esti-
mates whther the AS is located in an important part of the
project), QA9:AS weight (the number of dependencies as-
sociated with an AS), QA9:History score(score associated
to the trend evolution), QA9:Architectural Smell Impact
Score (ASIS), QA14:Number of code smells to be removed,
QA14:Total number of code smells in the system

Benefit of tak-
ing TD

0 0 -

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

A SMS ExploringQuantification Approaches to Code, Design and Architecture Technical Debt 1:49

Interest Proba-
bility

1 2 QA16:Occurrence Frequency of Code Smells (number of
events of occurrence), QA16:Change proneness of the mod-
ules in which the code smells reside

Priority 2 7 QA14:Class Score, QA14:Change frequency score,
QA14:Severity score i.e. negative impact (measured by
size, cohesion, coupling, complexity etc.), QA14:Number of
code smells present in the class Threshold value, QA17:Smell
Intensity, QA17:Metric thresholds

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Search
	2.3 Study Selection
	2.4 Data Extraction and Analysis

	3 Results: Approaches to quantifying Code, Design, and Architecture TD (RQ1)
	3.1 Demographics of Primary Studies
	3.2 Demographics of Quantification Approaches (RQ1)
	3.3 Classification of TD Quantification Approaches (RQ1, RQ1.1, RQ1.2)
	3.4 TDQ Concepts (RQ 1.1)
	3.5 Metrics supporting the Quantification of TDQ Concepts (RQ 1.2)

	4 Discussion
	4.1 Implications of Findings
	4.2 Future Research Directions
	4.3 Implications for Practitioners

	5 Threats to Validity
	5.1 Descriptive Validity
	5.2 Theoretical Validity
	5.3 Generalizability
	5.4 Interpretive Validity
	5.5 Repeatability

	6 Related Work
	6.1 Secondary and Tertiary Studies
	6.2 TD, TDM and Quantification of TD

	7 Conclusion
	References
	A Quantification Approaches
	B Approach Concepts mapped to Abstract TDQ Concepts — Mapping D
	C Approach Concepts mapped to Abstract TDQ Concepts — Mapping I
	D Approach Concepts mapped to Abstract TDQ Concepts — Mapping M

