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Abstract
Online user feedback, like app reviews, can provide valuable insights into soft-
ware product improvements, offering development teams direct insights into
customer experiences, preferences, and pain points. There are many studies that
have proposed promising methods to automatically prioritize online user feed-
back, helping development teams identify the most salient software issues that
need to be addressed. However, these methods may not take into account the
accessibility-related needs of end users.
Our study addresses this limitation by developing a novel approach to analyze and
prioritize app store reviews that discuss accessibility concerns. This new approach
involves the evaluation of seven distinct machine learning (ML) algorithms, as
well as three state-of-the-art large language models (LLMs), all leveraging fea-
tures of app reviews relevant to accessibility. Utilizing validated accessibility
reviews, we assess the effectiveness of our proposed approach and compare its
performance with a leading general prioritization tool.
The results show that our novel method surpasses the leading general tool in pri-
oritizing accessibility reviews, achieving an F1-score of 83.6%. This represents an
improvement over the prior study’s F1-score of 69.0%. Additionally, our approach
outperforms the existing method across all three priority classifications, with
the most notable improvement seen in the identification of high-priority reviews,
where we achieved a +59.8% increase in F1-score. We hope our findings will
inspire more research and innovation in this area and ultimately contribute to a
more inclusive and accessible digital landscape for all users.

Keywords: Accessibility reviews, Prioritization, Machine learning, Requirements
engineering
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1 Introduction
In an increasingly digital world, the usability and accessibility of software applications
have become key concerns for both developers and users alike. For example, consider
a visually impaired user attempting to use a food delivery app. If the app lacks screen
reader support or fails to provide accessible navigation options, the user may struggle
to complete essential tasks such as placing an order. Situations like this highlight the
importance of ensuring that applications are accessible to users of all abilities. To
support this, various regulations and standards, such as the Web Content Accessibility
Guidelines (WCAG) [1], have been developed to guide developers in creating inclusive
applications.

Previous research has found that users report their accessibility concerns in online
feedback, such as app reviews [2]. Accessibility issues can include vision, hearing,
motor-control, and cognitive challenges, which limit or prevent the use of an appli-
cation. Effective identification of these issues, in online feedback, can help developers
enhance the overall usability of their applications [3], which in turn fosters inclusivity
for diverse user groups, including people with disabilities [4].

However, as the number of users grows, manually extracting actionable insights
from vast amounts of online feedback becomes increasingly challenging for develop-
ers [5]. This challenge is exacerbated by constraints such as limited budgets, time
pressures, and a lack of awareness about accessibility, which contribute to many appli-
cations remaining inaccessible to users with disabilities [6, 7]. While many previous
studies have proposed automatic methods for general user feedback prioritization [2, 8–
11], such as the consensus algorithms utilized by Etaiwi et al. [9], and the PAID
framework proposed by Gao et al. [10], there is still a lack of work specifically
addressing the automatic prioritization of accessibility concerns in user feedback.

To address this gap, we first evaluate the state-of-the-art general prioritization
tool proposed by Malgaonkar et al. [8], on its ability to prioritize app reviews for
accessibility concerns. Malgaonkar’s approach was selected due to it’s excellent perfor-
mance in general review prioritization, and its availability. Following that, we propose
an approach specifically designed to identify the most pressing accessibility concerns
in user feedback, leveraging state-of-the-art machine learning techniques. We con-
duct a comparative analysis of these approaches, aiming to identify the most effective
method for prioritizing accessibility concerns. Ultimately, our findings aim to advance
accessibility prioritization tools, enabling developers to focus on addressing the most
impactful issues and creating more inclusive applications.

We were guided by the following high level research questions:
[RQ1]What is the effectiveness of the existing prioritization method (multi-criteria
heuristic prioritization technique) in prioritizing accessibility reviews?
[RQ2]Can a prioritization tool specifically designed to identity accessibility issues
outperform a state-of-the-art general prioritization tool?

The following are the key contributions of this paper:

1. We proposed a novel set of criteria to (manually) prioritize accessibility-related user
issues based on their impact on app usability, and accessibility. We present content
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coding guidelines for this new accessibility framework, and apply it to manually
label a dataset of 307 accessibility reviews.

2. We evaluated a state-of-the-art general prioritization tool [8], and found that its
performance dropped significantly when prioritizing reviews for impact on accessi-
bility. This suggests that general prioritization tools may be insufficient, and that
tools specifically designed to prioritize accessibility issues may be required.

3. We developed a novel prioritization method called Accessibility Rank, specifically
designed for prioritizing accessibility reviews based on their impact on app usabil-
ity and accessibility. This new approach outperforms the existing general review
prioritization method, when applied to accessibility-related feedback. Accessibil-
ity Rank achieves a weighted F1 score of 83.6%. Additionally, Accessibility Rank
significantly outperforms the existing method in identifying the important "high"
priority accessibility reviews, with a F1 of 71.6%, compared to the existing tool’s
11.8%.

4. We have made our research code and labeled data publicly available1, and we
encourage future researchers to use and improve upon our proposed approach.

The remaining sections of this paper are structured as follows: In Section 2, a thor-
ough literature review is presented, highlighting the significance of user reviews and
exploring related research on accessibility, the prioritization of user reviews, and the
application of large language models in Requirements Engineering. Section 3 details
the methodology utilized in this study. The results are presented in Section 4. Section
5 discusses the findings and their implications, potential threats to the validity, and
potential avenues for future exploration. Lastly, Section 6 concludes the paper.

2 Related Work
In this section, an overview of previous research directly influencing the current work
is presented. First, we discuss online user feedback and techniques proposed to help
software development teams automatically identify the important product improve-
ment insights more generally. Then we discuss accessibility concerns in online user
feedback specifically. Finally, we explore the role of Large Language Models (LLMs)
in requirements engineering.

2.1 Online User Feedback
In today’s digital landscape, online user feedback is crucial in shaping software devel-
opment. For instance, Ciurumelea et al. explore how reviews impact mobile app release
planning [12], while Palomba et al. highlight the role of crowdsourced reviews in app
evolution [13]. Fu et al. discuss the impact of negative feedback on user satisfaction [14].
Genc-Nayebi and Abran review opinion mining in app store reviews for improved devel-
opment [15], and Pagano and Maalej show how app store feedback guides requirements
engineering [16]. Given the large quantity of feedback that is available online, tech-
niques have been proposed to automatically classify user feedback to help development

1https://zenodo.org/records/14890324
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teams identify useful product improvement insights [17]. For instance, various tech-
niques have been developed to classify user feedback into categories like bug reports
and feature requests (e.g., [18], [19] [20]). Techniques have also been proposed to clas-
sify app reviews into specific categories (e.g, performance, resources, battery, memory,
etc.) [21] [22] [23] and to uncover positive and negative sentiments in app reviews [24].
These classifications can help developers focus on the user feedback that is most likely
to contain product improvement insights.

Building on this work, methods have also been proposed to prioritize online user
feedback. For instance, Etaiwi et al. [9] introduced a consensus algorithm considering
features such as frequency, post date, rating score, and category to prioritize reviews.
By using this algorithm, developers can gain a more comprehensive understanding
of user feedback and make more informed decisions about which issues to address
first. Gao et al. [10] introduced the PAID framework for prioritizing user reviews at
the phrase level. This framework enabled developers to track reviews across different
versions of their applications, providing valuable insights into user feedback over time.
Although effective, this approach was found to require a large number of reviews
for meaningful insights. Malgaonkar et al. [8] proposed an automated prioritization
approach consisting of entropy, frequency, TF-IDF and sentiment methods to rank
informative user reviews. Their approach extended the rule-based approach proposed
by Chen et al. [18].

While general prioritization methods have been applied to categorize user feedback,
these approaches do not account for the unique needs of users with disabilities, such as
those with vision, hearing, or motor impairments. In applications like mobile banking
apps or e-commerce platforms, accessibility issues—such as improper screen reader
support, missing alt text for images, or lack of keyboard navigation—can severely
hinder users with disabilities. By prioritizing accessibility-related feedback, developers
can directly address issues that impact these users, ultimately ensuring that software
applications are usable by all, regardless of ability. This gap in research underscores
the need for new methods that specifically prioritize accessibility-related concerns in
user feedback, ensuring that these issues are given the attention they deserve.

It can also be noted that manual requirements prioritization techniques are
well established in development teams, especially in the context of Agile develop-
ment. For example, MoSCoW, Numerical scale, and Timeboxing/budgeting are well
known within the software industry [25]. This work distinguishes its self by focusing
on the automatic prioritization of requirements, focusing on improving application
accessibility.

2.2 Accessibility Concerns in User Reviews
To ensure the accessibility of digital products, various accessibility guidelines and
frameworks have been established such as the Web Content Accessibility Guidelines
(WCAG) [1] and the BBC Accessibility Guidelines [26]. These guidelines offer valuable
insights into best practices for inclusive design.

In a study conducted by Eler et al. [27], 213 keywords were extracted from the BBC
standards and guidelines [26]. These keywords were employed to identify accessibility
reviews given to 701 distinct apps, available on the Google Play Store. Using a manual
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validation process, they found that only 1.24% (2263) of all reviews left to these apps
were actually related to app accessibility. While the process required considerable
manual effort, the study emphasized the importance of addressing these accessibility-
related issues. However, an automated approach for efficiently identifying such reviews
was not proposed in their work.

AlOmar et al. [2] designed a method to automatically identify accessibility issues
within user reviews. Their approach categorized app reviews into two fundamental
sets: those related to accessibility, and those unrelated to accessibility. They achieved
an 85% accuracy rate. However, the approach did not aim to prioritse the identified
accessibility reviews. Similarly, Aljedaani et al. [11] evaluated six diverse machine
learning techniques to classify accessibility reviews into four distinct types aligned with
accessibility guidelines: Principles, Audio/Images, Design, and Focus. Their evaluation
obtained an accuracy rate of 93%. However, despite the advancements showcased by
these methodologies, a common limitation persists: the absence of a prioritization
mechanism based on the impact to application accessibility.

This study addresses the previously highlighted limitations in prioritizing accessi-
bility reviews, by proposing an approach to prioritize accessibility-related reviews. We
leverage the validated dataset provided by Eler et al. [27] as a foundation for devel-
oping and evaluating an automated approach to prioritize accessibility-related user
feedback.

Our approach stands out as it is not solely focused on prioritizing accessibility
reviews. Instead, it is specifically designed to prioritize them based on their impact on
application accessibility. This unique focus fills a crucial gap left by previous method-
ologies, ensuring that the most critical accessibility concerns are addressed promptly.
By focusing on impact, our approach not only enhances digital product accessibility
but also ensures compliance with legal standards, such as WCAG (Web Content Acces-
sibility Guidelines) [1], which require digital products to be accessible to all users,
including those with disabilities. Additionally, it aligns with ethical principles of jus-
tice and equity, ensuring equal access for all users. This focus on legal compliance and
fairness is key to fostering an inclusive digital environment.

2.3 Large Language Models in Requirements Engineering
In recent years, there has been a strong research focus on developing LLMs, where
deep-learning (DL) models are trained using large volumes of text data. In partic-
ular, transformer-based DL architectures have achieved state-of-the-art performance
in numerous natural language (NL) tasks. Transformer models lead on well estab-
lished NL benchmarks (e.g., GLUE [28], SQuAD [29]), showing excellent performance
in text classification, semantic similarity, sentiment analysis, question and answering,
and more [30].

In requirements engineering, several recent studies have applied transformer models
to NL tasks. In 2021, Devine et al. evaluated an extensive set of approaches, includ-
ing transformer models, to group semantically similar user feedback. They found that
transformer architectures, led by the Universal Sentence Encoder (USE) [31], outper-
formed the alternatives [32]. Tizard et al. leveraged USE to perform a semantic search,
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identifying matching requirements between user forums and developer issues track-
ers [33]. Similarly, Haering et al. applied DistilBERT to match problem reports in app
reviews to bug reports in issue trackers, achieving promising results.

Mekala et al. applied a BERT-based process to classify user reviews based on
their relevance (or irrelevance) for requirements engineering tasks [34]. Their approach
proved effective even in extremely low-volume dataset environments, outperforming
the previous benchmarks. In 2024, a preliminary study from Sami et al. [35] applied
OpenAI’s GPT-3.5 to automatically prioritize requirements within the agile frame-
work. Their paper details early work, which does not yet include a detailed evaluation
of the approach.

Our study builds on the existing literature by applying transformer models to pri-
oritize user reported issues, based on their impact on application accessibility. We
apply state-of-the-art models that have recently outperform the alternatives on NL
benchmarks, including T5, GPT4o, and o1-mini [30]. We also provide a detailed per-
formance evaluation, based on a manually labeled dataset used as ground-truth, which
is detailed in Section 3.1.

3 Method and Design
In this section, we present the design of our study. First, we describe the evaluation
dataset utilized in this study. Following this, we introduce the state-of-the-art general
prioritization approach, the multi-criteria heuristic prioritization technique proposed
by Malgaonkar et al. [8], which has been selected as the benchmark approach. Next,
we introduce our proposed prioritization methods that leverage features related to
impact on accessibility. Finally, we describe the evaluation methodology.

3.1 Evaluation Dataset
In this study, we utilised the dataset of 2663 accessibility reviews2 that were collected
by Eler et al. [27]. It is worth noting that a separate study by AlOmar et al. [2] also
confirmed these 2,663 reviews to be true-positive accessibility reviews. This validated
dataset can help reduce the risk of errors and inconsistencies in the data, which could
potentially impact the validity of the study’s findings. Therefore, we utilized this
dataset to conduct our analysis and the evaluation of prioritization approaches.

To enable prioritization of these reviews, we manually coded the priority of a subset
of the reviews in this dataset according to their impact on user accessibility (described
below). To conduct a robust and statistically representative analysis, we selected a
random sample of 336 reviews from the dataset. This sample size was determined
based on a 95% confidence level with a 5% margin of error, following best practices in
quantitative research [36]. Random sampling was used to minimize selection bias.

Our manual coding process followed best practices as outlined by Krippendorff et
al. [37]. While other content coding frameworks are available (e.g., Elo and Kyngäs [38],
or Neuendorf [39]), Krippendorff’s guidelines were familiar to the authors, and are well
suited for purpose, with a focus on replicability, and bias mitigation. Additionally, the
use of Krippendorff’s guidelines is in-line with many recent requirements engineering

2https://github.com/marceloeler/data-ihc2019
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studies (e.g., [40] [41], [20], [33]). The manual coding was primarily conducted by two
authors, one with content analysis experience in several previous studies, and one
with limited previous experience. A third author, with significant content analysis
experience, gave guidance and oversight.

To ensure consistent and accurate manual labeling of reviews, we first developed a
guideline for all coders. The creation of this guideline was inspired by the prioritization
guideline used in the study by Malgaonkar et al. [8]. In this study, our prioritization
criteria focused on assessing the impact of the reviews on the app’s usability, aligning
with our overarching goal of enhancing user experience, and removing barriers, for
diverse user groups. While aspects like cost to implement features were not considered
in this study’s prioritization, future work could explore how additional factors can be
incorporated into the priority assessment for real projects.

There were three priority levels for reviews: Low, Medium, and High. Table 1
illustrates the standard that we used for labeling reviews in our study, along with
example reviews that fit into each priority level.

Table 1: Priority Assignment Guideline
Priority Description Review Example

Low

Reviews that mention nice-to-have
enhancements or features with a
limited impact on the core
functionality of the app, typically
reflecting personal preferences rather
than critical issues.

"Nice and useful application. One
thing I would like to recommend
is to have an option to change the
font size of contents."

Medium

Reviews that suggest improvements
that affect app usability but do not
prevent usage altogether, often
addressing issues that would enhance
the user experience for a broader
group of users.

"Having two events at the same
time makes the calendar
unreadable due to poor resizing."

High

Reviews that report issues preventing
or significantly hindering the use of
the app, particularly those related to
accessibility needs. These reviews
often include phrases such as “I can’t
see,” or “I can’t use,”, indicating
urgent concerns that must be
addressed for the app to remain
accessible to the user.

"What happened to the themes?
My eyes are very light sensitive
and I really appreciate dark
themes. As is - I can’t use the app
long enough to really see how good
it may be. Too uncomfortable and
my eyes keep watering."

The Low level was assigned to reviews that had a limited impact on the use of the
app, typically involving nice-to-have enhancements or features. While these reviews
may not be critical for the app’s basic usage, it’s worth noting that some of the
reviewers might have specialized accessibility needs. These suggestions for improve-
ments could potentially enhance the app’s functionality, taking into consideration the
diverse requirements of users with accessibility needs.

The Medium level encompassed reviews that had a moderate impact on the use
of the app. These reviews typically highlighted issues that should be addressed or
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enhancements that would improve user experience. While not critical, these issues or
suggestions had a noticeable impact on the app’s usability, taking into account the
diverse needs of users, including those with specialized accessibility requirements.

The High level was assigned to reviews that significantly reduced or prevented
the use of the app. These reviews represented must-have enhancements or features
that were crucial for users, particularly those with specialized accessibility needs.
Issues falling into this category had a severe impact on user experience and required
immediate attention.

After developing the labeling standard guidelines, two coders independently man-
ually analysed and assigned a priority label (high, medium, or low) to each review in
our random sample. This process was performed in multiple rounds, with meetings to
discuss and reconcile disagreements between coders. The discussions during meetings
were focused on understanding each coder’s perspective, clarifying any ambiguities in
the guidelines, and finding common ground for assigning the most appropriate pri-
ority label. By engaging in this collaborative process, the coders aimed to minimize
subjective biases and achieve a more objective and reliable assessment of the review
priorities. In cases where the two coders were unable to reach an agreement after
discussion, the respective reviews were discarded. In total 29 reviews were excluded
due to coder disagreement. Upon inspection, we found that 23 out of the 29 excluded
reviews (approximately 79%) contained mixed sentiments. For example, one review
states: "This app is super useful! Kudos to the developer. I have just one issue of low
contrast UI. The text throughout the app is hard to read at daylight. Other than that
this app is great!" While the issue of low-contrast text may be serious for some users,
the overwhelmingly positive tone made it difficult to assign a clear priority label, as
different interpretations of the reviews led to disagreements among coders. Since our
prioritization task requires clear judgments about the urgency of accessibility issues,
we opted to exclude these ambiguous cases to maintain the consistency and reliability
of the labeled dataset. Other excluded reviews were too vague (e.g., "ALLOW ME
TO CHANGE THE VOLUME. ") or lacked sufficient context to determine the scope
or severity of the accessibility concern. As a result, the final dataset consisted of 307
reviews. The impact of this reduction in sample size on the representativeness of the
sample is further discussed in the Threats to Validity (Section 5.2).

The reliability of the manual labeling process was assessed by calculating intercoder
reliability using the ReCal tool [42]. The results of this analysis (presented in Table 2)
demonstrated a high level of agreement between the two main annotators, validating
the accuracy and consistency of the labeling process. After resolving disagreements,
a final dataset consisting of 307 reviews was retained for analysis. The reviews were
categorized into three priority levels: High priority: 30 reviews, Medium priority: 81
reviews, Low priority: 196 reviews. The detailed distribution of reviews is shown in
Table 3.

Table 2: Intercoder reliability
Dataset Initial Agreement Cohen’s Kappa
336 accessibility reviews 91.4% 84.1%
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Table 3: Ground truth dataset
Label Review Numbers
High 30
Medium 81
Low 196
Total 307

3.2 Existing Prioritization Tool
In this paper, we chose the multi-criteria heuristic prioritization technique proposed
by Malgaonkar et al. [8] as our benchmark method. This decision was made after
careful consideration of several factors that establish its suitability and effectiveness for
our research objectives. Firstly, the chosen technique has demonstrated high accuracy
in prioritizing general app reviews. This is crucial for our study, as by selecting a
benchmark method with a proven track record of accurately identifying general app
reviews, we can ensure the reliability and validity of our comparisons.

Secondly, this prioritization technique is open source3 and offers flexibility in its
application. This adaptability is essential for addressing the specific requirements
and challenges of our research domain. Furthermore, the functionality of the selected
technique covers all the necessary data analysis steps, including pre-processing. This
comprehensive coverage ensures that our benchmark method provides a complete
framework for evaluating and comparing the effectiveness of our proposed approach.

3.2.1 Implementation of Existing Tool

The existing prioritization tool, multi-criteria heuristic prioritization technique, was
initially designed to identify and rank general app reviews based on various factors.
It employed a combination of features, including entropy, frequency, TF-IDF, and
sentiment score to prioritize the app reviews. The general priority (PR) score of a
review (R) is calculated according to function 1, which takes into account these various
features to prioritize reviews that are deemed the most informative and relevant.

PR = α · ER + β · FR + γ · TF-IDFR + δ · (−(SCR)) (1)

In equation 1, ER, FR, TF − IDFR, and SCR represent the normalized priority
score of reviews generated by the entropy variable, frequency variable, TF-IDF vari-
able, and sentiment variable, respectively, and the values of all constants should be set
in such a way that it satisfies the constraint α+β+γ+δ = 1. In their study, these four
constants were all set to 0.25, achieving an overall accuracy of 77.22% while prioritiz-
ing general app reviews. The value of 0.25 was chosen as it represents the default seed
value for these variables, as recommended by prior research [43]. This default recom-
mendation provides a balanced starting point for the prioritization model, ensuring a
consistent and fair evaluation across different datasets.

3https://tinyurl.com/y4hynj5j
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3.3 New Prioritization Approach
We evaluated both traditional machine learning (ML) algorithms, as well as state-of-
the-art large language models (LLMs) in prioritizing accessibility focused app reviews.
The ML approach is detailed below in Section 3.3.1, and then the LLMs approach is
detailed in Section 3.3.2. The evaluation results for both approaches are given in the
results (Section 4).

3.3.1 Traditional Machine Learning Prioritization

In this section, we applied machine learning (ML) techniques to prioritize accessibility-
related reviews. The process involves several stages: dataset splitting, feature
extraction, model training, and model evaluation.

Data Splitting

The dataset, comprising 307 samples, was divided into a training set (80%) and a
testing set (20%). The training set was used for model development and hyperparam-
eter tuning, while the test set was reserved for evaluating the performance of the final
models. The model training is detailed later in this section (under, Model Training
and Hyperparameter Tuning), and the evaluation is detailed in Section 3.4.

Feature Extraction and Selection

General Priority Score: To get the general priority score, we first calculated the
priority scores of the accessibility reviews by calling the multi-criteria heuristic prior-
itization method [8]. To ensure consistency and reliability, we used the same variable
settings as applied in the original study. This step is necessary to eliminate any
potential bias that may have been introduced by using different settings. Next, we con-
verted these numerical scores into meaningful categories, namely "High", "Medium",
and "Low". The numerical ranges for these categories were determined based on the
thresholds and guidelines established in Malgaonkar et al. [8]. Specifically, these ranges
were designed to align with their approach for balancing scores across categories
while maintaining meaningful differentiation between them. The numerical thresh-
olds are detailed in Table 4. These thresholds were directly derived from prior work
and validated through their alignment with domain-specific prioritization frameworks,
ensuring that the conversion accurately reflects practical priorities.

Table 4: Priority score and numerical range conversion
Priority Label Numerical Range
Low 0 - 0.3
Medium 0.4 - 0.6
High 0.7 - 1.0

User Ratings: User ratings refer to a mechanism that allows users to express their
opinion or evaluation of a product, service, or experience. It has been widely utilized in
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various studies for prioritizing reviews (e.g [44], [45], [18], [9]). A rating score of 1 indi-
cates the lowest level of satisfaction or quality, which means the user had a very poor
experience with the product or service, while a rating score of 5 indicated the high-
est level, which means that the user had an excellent experience. Notably, low rating
scores often correlate with difficulties in using or accessing the app, highlighting the
critical connection between user satisfaction and accessibility/usability challenges [46].
The distribution of user ratings in the labeled dataset is shown in Figure 1. The high-
priority reviews tend to have lower users ratings, with an average of 1.9. The lower
priority reviews tend to have higher user ratings, with the medium-priority average
being 3.3, and the low-priority average being 4.6.

Fig. 1: User rating proportions in labeled app reviews. User ratings (x-axis) are
given with an app review. A rating of 1 indicates the lowest level of satisfaction,

while a rating score of 5 indicates the highest satisfaction level. The proportion of
different ratings, per manually labeled priority level (high, medium, low), are shown.

Model Training and Hyperparameter Tuning

We trained seven different ML algorithms-Support Vector Machines (SVM), Ran-
dom Forest (RF), Gradient Boosting Machines (GBM), and others to prioritize
accessibility-related reviews. Each model undergoes hyperparameter tuning to maxi-
mize performance, followed by model evaluation using several key metrics.

To optimize the performance of each model, we used grid search, a method that
systematically tests all possible combinations of hyperparameters within a predefined
search space. We selected grid search for the following reasons:

Parameter Space Size: Since the parameter space for our models is relatively small,
grid search is computationally feasible and provides a thorough search for the best
hyperparameter combination.
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Reproducibility: Grid search ensures high reproducibility of results, which is crucial
for validation and transparency in machine learning experiments.

While methods like random search and Bayesian optimization are more efficient for
larger search spaces, grid search is appropriate for our study’s scope. We also combine
grid search with k-fold cross-validation (with k=5) to ensure the hyperparameters are
optimized across different data subsets, enhancing the robustness and generalization
of the model.

Model Evaluation

Model performance was evaluated using the weighted F1 score, which is particularly
suitable for imbalanced datasets. This metric provides a balanced measure of pre-
cision and recall, accounting for the unequal distribution of classes in our dataset.
Additionally, we tracked the standard deviation of F1 scores across the folds of cross-
validation to assess the stability of each model’s performance. A lower standard
deviation indicates more consistent performance across different subsets of the training
data.

The final evaluation of each model was conducted on the separate test set to assess
its real-world performance. This step ensures that the model’s ability to generalize to
unseen data is accurately measured. A detailed explanation of the evaluation metrics
and the rationale behind their selection can be found in Section 3.4.

3.3.2 Large Language Model Prioritization

In addition to traditional ML models, we also evaluated state-of-the-art large language
models (LLMs) in prioritizing accessibility focused app reviews. We investigated two
distinct approaches, based on different model architectures, which are described in
detail below.

Classification with Text Embeddings

Language models that directly output vectorized text embeddings have been shown
to achieve state-of-the-art performance on a variety of natural language tasks, includ-
ing text classification [47], [33]. Once vectorized, text embeddings that are closer
in the high-dimensional vector space can be considered more semantically similar.
Classification is performed by first creating an embedded centroid representing each
possible classification, then embedding the text documents to be classified, and finally
identifying their respective closest class centroid. This process is described in detail
below.
Algorithm selection: In this work we applied Sentence-T5 to generate text embed-
dings. Sentence-T5 was selected as it has been found to outperform other leading
models (e.g., USE [31], Sentence-BERT [48]), including in requirements engineering
tasks [47], [30]. While Sentence-T5 is an excellent option for this study, we discuss the
potential evaluation of alternative models in the Threats to Validity (Section 5.2). To
measure the distance between text embeddings (and therefore semantic similarity),
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we applied cosine distance. Cosine distance has previously been found to outper-
form other similarity measures for dense vector embeddings, such as Sentence-T5
embeddings [49], [33].
Preprocessing: For each app review, it’s associated user rating was prepended to it’s
review text, with a label (i.e., User rating: {rating}) before embedding, so the model
could use it in it’s prediction. An additional label was also added before the app review
text (i.e., App review: {review-text}), to clearly identify it.
Classification process: An illustrative example of the classification process is shown
in Fig. 2. Similar to the process outlined by Tizard et al. [33], we first randomly selected
a subset (detailed below) of the labeled app reviews, per possible classification (High,
Medium, Low), as class references reviews. Next, we embedded each class reference
review using Sentence-T5, and averaged the embeddings, per class, to find the three
class centroids. The reference app reviews were then removed from the dataset, with
the remaining reviews used for the evaluation.

During evaluation, the app reviews, not used as references, were each embedded
using Sentence-T5, and the semantic similarity scores to the three class centroids were
calculated. The most semantically similar class was taken as the prediction for each
app review. Finally, the predicted class for each review is assessed as being correct
when it matches the manually assigned label. The evaluation metrics are described in
detail in Section 3.4.

To evaluate this approach, we applied k-fold cross validation, a common technique
for evaluating the performance of a classifier [50]. Here, we used five-fold cross valida-
tion, a good option according to the variance bias trade-off [51]. Specifically, each of
the five folds takes a turn being the test dataset, with the other folds acting as ref-
erence reviews to form the centroids (i.e., the training data). This was repeated five
times, to use each fold as the test set. Finally, the evaluation metrics were averaged
across the five runs. As there were no parameters tuned for this model, all data was
used in the cross-valuation.

Classification with Text-to-Text Models

Pre-trained text-to-text models take a sequence of input text and generate correspond-
ing output sequences. This model architecture has been found to achieve excellent
performance in many natural language tasks, including text classification [30].
Algorithm selection: In this work we evaluated OpenAI’s GPT-4o, and o1-mini text-
to-text models, through their developer API4. OpenAI’s models were selected as they
have achieved best-in-class performance on many natural language benchmarks [52].
The focus on GPT-4o and o1-mini is further discussed in the Threats to Validity
(Section 5.2)
Classification process: The input text for a language model is often called a prompt,
with prompt engineering emerging as a research focus. We followed current best prac-
tices in prompt engineering (detailed below), as described by Sahoo et al. [53], in their
survey of prompt engineering techniques. The prompts we applied to both models are
shown in Fig. 3. We passed each review to be classified in its own API call (307 total
calls), with no information retained between each call.

4https://platform.openai.com/docs/quickstart
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Fig. 2: Illustrative example: Predicting the classification priority for each app
review. Each review is vectorized with Sentence-T5 and the most semantically

similar class is calculated.

Fig. 3: GPT-4o and o1-mini API input messages (prompts).

For each API call, we passed both an unchanging system message, and a review
message, containing the app review to be classified, with its associated user rating. Our
system message, gives context to the model about the task to be performed, including
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the model’s role (helpful assistant), problem domain (mobile app reviews), and the
classification task description and scale. Additionally, each possible classification is
given an associated numerical identifier (*1*, *2*, *3*) to easily identify the models
classification within it’s text output, using standard string matching (Python).

We chose to use zero-shot prompting, where no reference examples are given in
the prompt messages. Using zero-shot ensures the model will not over-fit to any given
examples, and is evidence for the generalizability, and ease of implementation of the
approach. We achieved promising results with zero-shot prompts (see Section 4), how-
ever few-shot (or more) prompting has the potential to improve performance. Our
focus on zero-shot prompting is discussed in the Threats to Validity (Section 5.2).

Finally, reasoning approaches like Chain-of-Thought (CoT) prompting can encour-
age the model to take a step-by-step reasoning approach, often improving perfor-
mance [53]. For example, including in the prompt, "Let’s think step-by-step" will
generate reasoning chains in the output text. In this work, we did not explicitly prompt
Chain-of-Thought reasoning, but instead, in addition to the standard GPT-4o model,
also called the o1-mini model, which has been configured to undertake a reasoning
approach [54]. We found the reasoning o1-mini model modestly improved performance
over the standard GPT-4o (see Section 4).

During the evaluation, the predicted class for each app review is assessed as being
correct when it matched the manually assigned label. The evaluation metrics are
described in detail in Section 3.4. Unlike the other approaches evaluated in this work,
this text-to-text approach had no "training data" (zero-shot), and therefore all 307
labeled app reviews were used directly used as test data.

3.4 Evaluation Methodology

Evaluation Metrics

To assess the effectiveness of the prioritization techniques, we employed multiple clas-
sification performance metrics, as summarized in Table 5. Given the inherent class
imbalance in our dataset, we employed weighted average scores as our evaluation
metrics. Here the evaluation parameters (i.e., TP, FP, TN, FN ) and the associated
metrics are first found for each individual class, then averaged based on each classes
prevalence, or weight (Wi), in the total dataset [55]. Weighted metrics are particularly
suitable for imbalanced classification scenarios, as they assign a proportional weight
to each class based on its prevalence in the dataset. This ensures that minority classes
are adequately represented, preventing the evaluation from being skewed by majority
classes [56].

4 Results
In this section, we delve into the analysis and interpretation of the results obtained
from our research, focusing on addressing the research questions that guided our study.
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Table 5: Performance Metrics and Definitions
Metric Formula Definition

Precision
(Weighted)

∑N
i=1 wi

TPi
TPi+FPi

The weighted average precision
across all classes, adjusting for
class imbalance to prevent bias
toward majority classes.

Recall
(Weighted)

∑N
i=1 wi

TPi
TPi+FNi

The weighted average recall
across all classes, ensuring
fair representation of minority
classes.

F1 Score
(Weighted)

∑N
i=1 wi

2×PrecisioniRecalli
Precisioni+Recalli

The weighted harmonic mean
of precision and recall, balanc-
ing both metrics to account for
class imbalance.

4.1 RQ1 Results
[RQ1] What is the effectiveness of the existing prioritization method (multi-criteria
heuristic prioritization technique) in prioritizing accessibility reviews?

Table 6 presents the evaluation of the multi-criteria heuristic prioritization tech-
nique in prioritizing accessibility reviews, focusing on three priority levels: High,
Medium, and Low. The performance metrics include precision (Prec.), recall (Rec.),
F1-score (F1), and support (the number of reviews in each priority category). Addi-
tionally, accuracy (Acc) and weighted average metrics are provided to summarize the
method’s overall performance on the dataset.

Overall, the existing method achieves a weighted precision of 77.0%, a recall of
65.0%, and an F1 score of 69.0%. These results indicate moderate effectiveness in
prioritizing accessibility reviews, with significant variations across different priority
levels.

For the "High" priority level, precision and F1 scores were notably low, reflect-
ing the method’s difficulty in accurately identifying and prioritizing reviews with
high-severity issues. This can be attributed to the small support size and the inher-
ent challenges in distinguishing features associated with high-priority accessibility
concerns.

In contrast, the technique demonstrated strong performance for the "Low" priority
level, achieving a precision of 88.0% and a robust F1 score of 77.0%. This indicates
that the method effectively identifies and prioritizes reviews with low severity, with a
high proportion of true positives among the predicted "Low" priority reviews.

For "Medium" priority reviews, the method exhibited moderate effectiveness, with
a balance between precision, recall, and F1 score, though these metrics leave room for
further refinement to better address medium-severity accessibility issues.

The results highlight that while the multi-criteria heuristic prioritization technique
performs well for "Low" priority reviews, it struggles significantly with "High" priority
reviews due to limited support and feature differentiation challenges. Medium-priority
reviews also require methodological enhancements to achieve greater accuracy and
consistency. Later we will discuss this in Section 5.
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Table 6: Performance of the multi-criteria heuristic prioriti-
zation technique across priority levels

Priority Level Acc.(%) Prec.(%) Rec.(%) F1(%)
High 6.7 6.7 50.0 11.8
Medium 21.0 21.0 40.5 27.9
Low 89.8 89.8 67.7 77.0
Weighted Avg 63.5 79.3 63.5 69.4

Answer to RQ1: The selected benchmark prioritization technique demon-
strates moderate performance in accessibility review prioritization, with an F1
score of 69.4%. It performs well on low-priority (Low) reviews, achieving high
precision and recall. However, it is less effective on high-priority (High) and
medium-priority (Medium) reviews, indicating that the method is less effective
in handling complex or critical accessibility issues.

4.2 RQ2 Results
[RQ2] Can a prioritization tool specifically designed to identity accessibility issues
outperform a state-of-the-art general prioritization tool?”

To address RQ2, we evaluated the performance of our proposed approach against
the existing benchmark method, evaluated in RQ1. For our approach, We consid-
ered seven traditional ML algorithms, as well as three LLM-based methods. Table 8
presents the performance of each approach when applied to our manually labeled
accessibility dataset (see Section 3.1). The evaluated algorithms are ordered by their
respective weighted F1-scores, with accuracy, weighted precision, weighted recall, and
the standard deviation of the F1-score also presented.

To aid in the reproducibility of our results, we provide the selected main parameters
of the ML techniques used in our study. These parameters are summarized in Table 7.

Table 7: Best hyperparameters for each ML algorithm
Algorithm Hyperparameter Value
MNB alpha 0.1
DT max_depth 5

min_samples_split 10
SVM C 10

kernel linear
RF max_depth 5

n_estimators 200
ETC max_depth 5

n_estimators 50
GBM learning_rate 0.01

n_estimators 200
AdaBoost learning_rate 0.01

n_estimators 50
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Table 8: Comparison of different algorithms’ performance
Algorithm Acc.(%) Prec. (%) Rec. (%) F1-Score (%) Std. Dev. (F1%)
o1-mini 84.0 83.8 84.0 83.6 NA
GPT-4o 83.4 83.4 83.4 82.9 NA
Sentence-T5 79.7 83.1 79.7 80.2 4.75
ETC 77.4 78.1 77.4 77.4 1.92
RF 75.8 77.6 75.8 76.5 1.86
GBM 72.6 74.6 72.6 73.4 4.36
SVM 72.6 73.2 72.6 72.9 4.42
DT 71.0 72.3 71.0 71.6 4.56
ADA 74.2 67.2 74.2 70.5 4.29
MNB 64.5 41.6 64.5 50.6 1.03

Note: All metrics (Precision, Recall, F1-Score) reported are weighted averages, calculated according to the
class distribution in the dataset. For algorithms using cross-validation, the reported values represent the
mean of the scores across all folds. The standard deviation (Std. Dev.) of the F1-Score is provided for models
that employed cross-validation; for models without cross-validation (e.g., o1-mini and gpt-4o), "NA" (Not
Applicable) is noted.

Overall, nine of the ten evaluated algorithms outperformed the benchmark tool’s
69.4% F1-score. OpenAI’s o1-mini model achieved the top F1-score of 83.6%, outper-
forming the baseline by +14.2%. Additionally, our proposed approach demonstrated
more consistent performance across the three possible classifications (high, medium,
low). The per-class performance for the top performing o1-mini model is presented
in Table 9, with the per-class performance of all evaluated algorithms given in our
replication package.

o1-mini significantly outperformed the baseline across all three classes. In the
important high-priority class, o1-mini achieved an F1-score of 71.6%, compared to just
11.8% for the baseline (+59.8% ). In the medium-priority class, o1-mini achieved an F1-
score of 66.7% compared to 27.9% (+38.8% ). Finally, in the low-priority classification,
o1-mini achieved 92.5% compared to 77.0% (+15.5% ).

Table 9: Performance of o1-mini across priority levels
Priority Level Acc.(%) Prec.(%) Rec.(%) F1(%)
High 93.8 64.9 80.0 71.6
Medium 84.0 74.2 60.5 66.7
Low 90.2 90.7 94.4 92.5
Weighted Avg 84.0 83.8 84.0 83.6
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Answer to RQ2: We found that an LLM based approach (o1-mini), specif-
ically designed to identify acceptability issues, outperformed Malgaonkar et
al.’s [8] general prioritization tool, in prioritizing accessibility-reviews. Our pro-
posed approach achieved an F1-score of 83.6%, compared to the existing tool’s
69.4% (+14.2%).
Additionally, the proposed approach outperformed the baseline within all three
priority classifications, especially in identifying the important high-priority
class (+59.8% F1-score).

5 Discussion
In this section, we discuss the implications of our research. We also describe potential
threats to the validity of our results, and outline avenues for future research to further
enhance the effectiveness of accessibility prioritization methods.

5.1 Implications
The following section discusses the implications of our findings, and makes recommen-
dations for both practitioners and researchers.

Identifying accessibility requirements in practice: Previous work found
accessibility requests only make up 1.24% of all app reviews [27]. Therefore, stan-
dard methods that prioritize issues based on their popularity will almost certainly
miss many significant accessibility issues. Similar equity issues in "crowd-sourcing"
software requirements online have been highlighted in previous work. For example,
Tizard et al. found that online feedback platforms, such as app stores, are signifi-
cantly over-represented with men (compared to women), and users 35-44 years old,
compared to those older and younger [57, 58]. As there is no direct method to identify
user demographics on app stores, requirements sourced from app stores will inevitably
under-represent less vocal groups (e.g., women). Tizard et al. proposed that alternative
channels would be needed to engage these underrepresented groups.

In line with these recommendations, extra steps are needed to ensure accessibility
related feedback is not missed, given their sparsity. We envision Accessibility Rank
being used as part of a pipeline to help developers identify the most pressing acces-
sibility concerns of their users. Starting with an unfiltered set of app reviews (for a
single application), requirements engineers would first identify accessibility-relevant
reviews, using an existing accessibility classification tool, such as that proposed by
AlOmar et al. [2]. Next the identified accessibility reviews would be prioritized using
Accessibility Rank, to help identify the most severe issues impacting the use of the
application. Finally, development teams can weigh the high-priority accessibility issues
against those found with traditional methods, considering not only business factors,
but also equity within their user-base.

Importance of accessibility: With business pressures, such as time and resource
constraints, accessibility is often overlooked in modern software development. Leverag-
ing automated tools, such as Accessibility Rank, can help development teams efficiently
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identify their users’ most salient accessibility needs, and yield significant benefits.
Our prioritization approach focuses on app usability and accessibility, distinguishing
it from general prioritization approaches. While other approaches prioritize reviews
based on criteria such as request frequency, we not only consider this, but emphasise
the impact on access to the application.

Although accessibility requests only make up 1.24% of all app reviews [27], this
likely significantly under-represents the needs of actual user-bases, as accessibility
needs in the general population are much higher than 1.24%. For example, as of 2021,
the World Health Organisation estimated that approximately 1.3 billion people – about
16% of the global population, live with some form of disability [59].

Additionally, designing products with the needs of under-represented users in mind
can lead to improvements that benefit a much broader audience. Take closed caption-
ing for example, originally introduced to assist individuals with hearing impairments.
Over time, its usefulness has expanded, particularly with the rise of social media. Cap-
tions now enhance accessibility for all users, allowing them to watch videos without
sound while scrolling through their feeds or even engage with content in different lan-
guages [60]. Therefore, addressing accessibility concerns is not only important from an
equity stand-point, but may also benefit an application by growing its user-base.

5.2 Threats to Validity

5.2.1 Internal Validity

One potential threat to internal validity in this study stems from the manual (pri-
ority) labeling of accessibility reviews, which introduces the possibility of bias. To
mitigate this, we developed a labeling guideline, offering detailed descriptions for each
priority level, along with illustrative examples. This framework aimed to standardize
the labeling process and enhance consistency. However, it is important to note that
the guideline might have unintentionally introduced bias, especially if it did not fully
capture the diverse range of accessibility concerns or if it emphasized certain types of
feedback over others. In future studies, a more inclusive review of the guidelines by
accessibility experts and user feedback could help ensure that they comprehensively
address all aspects of accessibility needs.

To further reduce bias, we employed two independent coders who achieved an inter-
coder reliability of 91.4%, demonstrating a high level of agreement. Disagreements
between the coders were resolved by excluding those reviews from the truth set, ensur-
ing that only consistent classifications were included in the final analysis. Although
this approach helped maintain the accuracy of the dataset, it is important to acknowl-
edge that the exclusion of reviews due to disagreements may still introduce some bias,
particularly if the ambiguous reviews were systematically different from the rest in
terms of content or priority. The percentage of discarded reviews remained low, at
8.6%, which suggests a limited impact on the overall validity of our findings. However,
further analysis into the characteristics of the excluded reviews could provide addi-
tional insights. For example, if these reviews were disproportionately from the "high"
or "medium" priority categories, their exclusion might have impacted the distribution
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of priorities. Additionally, exploring alternative methods of resolving coder disagree-
ments, such as employing more annotators, might help preserve more reviews while
still ensuring the quality of the labeling process.

Additionally, the dataset used in this study was imbalanced, with varying quantities
of reviews across different priority classes (low, medium, and high). The dispropor-
tionate representation of the different priority levels could influence the prioritization
results, as models might be biased toward the majority class. To address this, we
employed weighted evaluation metrics, such as weighted average score, which help
mitigate the impact of class imbalance by giving more importance to minority
classes, ensuring a more balanced assessment. While this approach reduces the risk of
imbalance-related bias in the evaluation phase, it is important to acknowledge that
the skewed distribution of the dataset could still impact the model’s generalizability
to real-world scenarios, where such imbalances are often present.

Another potential internal validity concern is related to the selection of features
utilized by the proposed approach. While we focused on these key features, it is
acknowledged that additional, unexplored features could also be highly informative for
prioritizing accessibility reviews. Factors such as implementation cost and other con-
textual features may play a significant role in determining the priority of accessibility
issues. Although our analysis is limited to the features explored in this work, this study
presents a promising first step in developing a prioritization method. Future work
should aim to expand the set of features, incorporating both technical and practical
aspects, to create a more comprehensive and realistic prioritization framework.

In terms of model selection, we evaluated seven traditional ML models, and three
LLMs, that have demonstrated excellent performance in related applications [30].
Additionally, we focused on zero-shot prompting in our text-to-text LLM classifier
(see Section 3.3.2), to demonstrate the generalizability of the approach. Future work
can investigate the effectiveness of alternatives models and techniques (e.g., few-shot
prompting), especially as new state-of-the-art LLMs are developed. While effective
alternative models may exist, our proposed approach significantly outperformed the
benchmark, and represents a promising step in the automatic identification of user
reported accessibility issues.

5.2.2 External Validity

A potential threat to external validity is the impact of the reduced sample size on
statistical confidence. During the labeling process, 29 reviews were excluded. As a
result, the margin of error slightly increased from ±5.0% to ±5.3%, introducing a
minor increase in uncertainty. However, the confidence level remains 95%, ensuring
the findings are still statistically robust. While this reduction in sample size slightly
decreased the confidence level of our results, the effect was minimal and does not
significantly impact the validity of the findings.

Another potential threat is the generalizability of our findings. Our evaluation uti-
lized a dataset from a previous study [27], specifically centered on English-language
reviews, which may not fully represent accessibility concerns expressed in other lan-
guages. Future studies should explore multilingual datasets to assess the applicability
of our approach across diverse linguistic contexts.
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Additionally, our dataset was derived solely from the Google Play Store, excluding
other platforms such as the Apple App Store. Since accessibility issues and review
patterns may vary across platforms, our findings may not be fully generalizable to
other app ecosystems. Expanding this research to include multiple platforms could
provide a more comprehensive understanding of accessibility-related feedback.

5.3 Future Work
Based on the threats to validity and limitations of our study, there are several poten-
tial avenues for future work. One possible direction would be to explore the impact
of additional features on the prioritization of accessibility reviews. While our current
approach concentrates on some prominent features, it is worth exploring the inclusion
of additional factors, such as cost to the implement, to further enhance the optimiza-
tion of accessibility review prioritization. Additionally, researchers could investigate
the impact of different ML algorithms on the prioritization of accessibility reviews, as
well as explore the use of different deep-learning methods and LLMs, to improve the
accuracy and effectiveness of our approach.

In addition, future work can extend the current scope of accessibility reviews prior-
itization approach by further developing the ground truth dataset. This could involve
adding more accessibility reviews from sources beyond Google App Stores and incor-
porating non-English reviews. By doing so, we can gain a better understanding of the
accessibility-related phrases that are commonly used in app reviews. This expanded
dataset will enable us to improve the accuracy and effectiveness of our approach, as
well as provide valuable insights into the language and terminology used by users when
discussing accessibility issues. Additionally, expanded dataset will allow us to explore
other potential features that may impact the prioritization of accessibility reviews,
further enhancing the flexibility and customization of our approach. We also plan to
explore the impact of these excluded cases on the model’s performance in future work
to better understand how they might influence the results.

6 Conclusion
In this study, our primary goal was to design an effective method for prioritizing
accessibility reviews. We began by exploring the multi-criteria heuristic prioritization
technique [8], which has shown strong performance in prioritizing general app reviews.
However, we identified that this technique, while effective in its broader application,
lacked the specificity necessary for addressing accessibility-related concerns.

To address this gap, we introduced Accessibility Rank, a novel approach that com-
bines the multi-criteria heuristic prioritization technique with machine learning (ML)
and large language models (LLMs). We evaluated several different algorithms as part
of this new framework, and found that the o1-mini model outperformed the others,
leading to its integration into our final approach.

Our evaluation demonstrated that Accessibility Rank (o1-mini) significantly out-
performs the benchmark approach in prioritizing accessibility reviews. With a weighted
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F1 score of 83.6%, our model showed a substantial improvement over the bench-
mark’s weighted F1 score of 69.4%, highlighting its superior capability in accurately
prioritizing accessibility issues.

Additionally, Accessibility Rank excels not only in overall performance but also
across individual labels, offering improved accuracy in prioritizing accessibility con-
cerns with nuanced differentiation across various categories. This makes our approach
more effective in addressing the diverse range of accessibility issues that may arise in
app reviews.

While this study has provided valuable insights into the potential of Accessibility
Rank, there are several opportunities for future enhancements. Expanding the dataset
to include reviews from additional platforms beyond the Google Play Store and inte-
grating other state-of-the-art LLMs could further improve the relevance and accuracy
of our approach. Furthermore, refining the model’s ability to handle a wider variety of
accessibility issues will help ensure it remains robust and adaptable to evolving needs.

In conclusion, the development of Accessibility Rank represents a significant step
forward in helping development teams prioritize accessibility concerns within app
reviews. This tool not only improves product development processes but also fosters
a more inclusive user experience. Moving forward, we remain committed to advanc-
ing this research and exploring new methodologies to refine accessibility prioritization,
contributing to a more accessible and equitable digital environment for all users.
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