
Empirical Software Engineering (2025) 30:42
https://doi.org/10.1007/s10664-024-10563-4

An extended study of syntactic breaking changes in the wild

Dhanushka Jayasuriya1 · Samuel Ou1 · Saakshi Hegde1 · Valerio Terragni1 ·
Jens Dietrich2 · Kelly Blincoe1

Accepted: 1 October 2024
© The Author(s) 2024, corrected publication 2025

Abstract
Libraries assist in accelerating the development of software applications by providing
reusable functionalities. Libraries and applications that declare these libraries as depen-
dencies become their clients. However, as libraries evolve, maintaining the dependencies in
client projects can be challenging if the new version contains breaking changes. Yet, lim-
ited research focuses on analyzing the impact of breaking changes on client projects when
updating dependencies in the wild. Hence, we conduct an empirical analysis using Java
projects built using Maven to investigate the impact of breaking changes introduced between
two library versions. Our dataset included 18,415 Maven artifacts, declaring 142,355 direct
dependencies, out of which 71.60% were not up-to-date. We automatically updated these
dependencies and discovered that 11.58% of the dependency updates resulted in breaking
changes that affected the client, and almost half of them were introduced during a non-major
update. We analyzed the changes in the libraries that contributed towards these breaking
changes, and our results indicate that changes in transitive dependencies were a significant
factor in introducing breaking changes. We further investigated if it was common for clients
to use functionalities of transitive dependencies directly without declaring them. This showed
that over half of the clients use transitive functionality. Therefore, we analyzed actions sug-
gested to resolve these breaking changes introduced by transitive dependencies under the
discussions on open-source platforms, and the frequently suggested action was to exclude
the transitive dependency from the project configuration.

Keywords Software libraries · Software dependency · Breaking changes ·
Software evolution · Transitive dependencies

1 Introduction

Libraries play an essential role in enhancing the efficiency and cost-effectiveness of client
projects, offering reusable source code that is reliable (Mohagheghi et al. 2004; Møller et al.
2020; Foo et al. 2018; Cox et al. 2015). As with any software, these libraries evolve and
release new versions, which comprise new features, improvements for existing features, and
resolving existing issues (Pashchenko et al. 2018). Hence, it is vital for client projects to

Communicated by: Gabriele Bavota

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10563-4&domain=pdf
http://orcid.org/0000-0001-6172-0472

 42 Page 2 of 44 Empirical Software Engineering (2025) 30:42

keep their dependencies updated to benefit from the library while maintaining the security
and overall health of the project (Cox et al. 2015; Pashchenko et al. 2018; Stringer et al.
2020).

However, knowing when the dependency should be updated is a challenge, as the latest
versions of the dependencies can contain backward incompatible changes known as Break-
ing Changes (BCs) that impact clients, causing software failures. For example, renaming a
method the client uses will cause a BC. These BCs can be categorized as source, binary, and
behavioral BCs (Dietrich et al. 2014, 2016). Source BCs result in compilation errors, binary
BCs result in linkage errors, and behavioral BCs cause the application to behave differently
than expected.

Semantic versioning (Preston-Werner n.d.) is the most common approach followed by
library developers to inform dependent clients whether a new version is backward compat-
ible with the previous version (Zhang et al. 2022; Dietrich et al. 2019; Raemaekers et al.
2017; Ochoa et al. 2022b). This versioning scheme uses a three-digit number format of
Major.Minor.Patch, and requires the Minor and Patch releases to be backward
compatible. However, research has found that libraries often violate the semantic versioning
scheme and introduce BCs under Minor or Patch releases (Foo et al. 2018; Raemaekers
et al. 2017; Ochoa et al. 2022b).

Previous studies have focused on analyzing BCs introduced between library versions (Dig
and Johnson 2006; Raemaekers et al. 2017; Koçi et al. 2019; Møller and Torp 2019). Nev-
ertheless, it is equally important to identify the impact these BCs have on clients as not all
BC functionality is used in client code. Raemaekers et al. (2017) and Ochoa et al. (2022b)
analyzed the impact of BCs on client projects, but their studies were limited to only binary
BCs. Furthermore, these studies concentrated on analyzing the impact of BCs introduced
between two adjacent library versions, which potentially underestimate the actual impact on
real-world clients who often lag more than one release behind (Kula et al. 2018; Wang et al.
2020; Salza et al. 2018) and as Stringer et al. (2020) concluded clients will not select the
outdated adjacent version but will update to the currently available version. Therefore, there
is a need for a comprehensive examination of the impact of BCs on clients, including both
source and binary, that extends beyond the adjacent versions.

In this study, we investigate the impact of both source and binary BCs on client projects
while also considering updating the dependencies “in the wild” by updating the client depen-
dency to the latest stable version and examining the impact of BCs clients would encounter.
To accomplish this, we conduct a large-scale empirical analysis of Java projects built using
Maven. We analyzed 18,415 Maven artifacts that declared 142,355 dependencies associ-
ated with 7,454Maven libraries. After updating the dependencies and examining the impact
and reasons for BCs, we detected that changes in transitive dependencies contributed sig-
nificantly to introducing BCs. This motivated us to further analyze the usage of transitive
dependencies in clients and the actions taken to resolve BCs raised due to these transitive
dependencies. Our analysis focused on the following research questions.

RQ1: To what degree are the dependencies in open-source repositories up-to-date?
We analyzed how many clients kept their dependencies up-to-date and how many clients did
not maintain their dependencies. Furthermore, for the outdated dependencies, we categorized
if they required a Major, Minor, or Patch version change to be updated to.

RQ2:Howoftendo client-impactingBCsoccur in thewild?For the outdated dependen-
cies detected, we analyzed if updating the dependency to the latest version would cause any
BCs in the client project and calculated the percentage of impact. SinceBCs could exist before
the latest version, we investigated the exact library version in which the client-impacting BC
was initially introduced.

123

Empirical Software Engineering (2025) 30:42 Page 3 of 44 42

RQ3:What are the common types of client-impacting source BCs?Using a sample of
client-impacting BCs, we conducted an in-depth analysis to understand the common types
of BC changes in libraries that impact client projects

RQ4: Are client-impacting source BCs introduced in non-Major library releases?
We categorized the library versions that introduced client-impacting BCs according to the
semantic versioning levels. Additionally, we detect the most common change that leads to
client-impacting BCs under each semantic level.

RQ5: How often do clients directly rely on transitive dependency functionality? We
extracted all external functions used in the client’s source code. For these external functions,
we mapped them with dependencies, both direct and transitive, to the client to identify how
many of them came from transitive dependencies. Furthermore, we examined whether the
transitive dependency belonged to the same multi-module project as a direct dependency. If
so, they are usually updated together and would not cause BCs to clients when updated. If
it was a completely independent dependency, it could contribute to BCs during dependency
updates.

RQ6: Can compilation error logs alone assist in determining if the BC was related to
a transitive dependency? Using the compilation error logs retrieved and the functionalities
of transitive dependencies used by the client extracted in prior steps, we examined if BCs
related to transitive dependencies could be identified.

RQ7: How do projects currently resolve BCs caused by transitive dependencies?
We looked at discussions related to transitive dependencies under open-source repositories
to identify the steps software developers take to handle, avoid, and resolve BCs related to
transitive dependencies.

The contributions of our study focus on analyzing the impact of source and binary BCs on
client projects. Furthermore, our findings present how software developers in the community
address the BCs raised due to the most frequent client-impacting syntactic BC raised during
dependency updates. The key findings of our research are as follows:

1) 71.60% of open-source projects’ dependencies are not up-to-date, meaning these clients
might not fully utilize the libraries’ functionalities and might contain vulnerabilities.

2) 11.58% of clients would encounter BCs while updating dependencies to the latest stable
version; hence, updating dependencies in clients is not straightforward.

3) Changes in transitive dependencies are a leading cause contributing to 20.36% of client-
impactingBCs. Therefore, client developers should be vigilant about using functionalities
of transitive dependencies without declaring them.

4) Almost half of theBCs (41.58%)were observed during a non-Major dependency update,
which highlights that library developers should be cautious when introducing changes
during library releases.

5) Over half of the open-source clients (61.24%)use transitive dependencies in their projects,
and most of these dependencies (64.79%) did not originate from the same multi-module
project under which a direct dependencywas released. Therefore, most clients using tran-
sitive dependencies may encounter issues when updating dependencies, as the transitive
dependencies the clients use could be updated separately based on the requirements of
the direct dependency.

6) Most BCs related to transitive dependencies can not be detected using only the compila-
tion error logs since they do not accurately reflect code details contributing to the BC to
trace the error location. Therefore, static analysis tools must be improved to capture the
BCs encountered due to transitive dependencies, as we cannot rely on compilation error
logs to assist in this process.

123

 42 Page 4 of 44 Empirical Software Engineering (2025) 30:42

7) Software developers in open-source projects have discussed different maintenance strate-
gies for transitive dependencies. The most frequently applied action to resolve BCs is
excluding transitive dependencies, which will reduce the total dependencies added to
the classpath and will prevent clients from using the transitive dependency functionality.
The other frequent actions are defining the transitive dependency as a direct dependency,
which will provide the correct version required for the client, and updating the direct
dependency, which exposes the transitive dependency to the client project. This will
bring in a new version of the transitive dependency that is compatible to the client.

Our findings provide valuable insights for client-impacting BCs. This paper significantly
extends our previous conference paper (Jayasuriya et al. 2023) by further investigating the
usage of transitive dependency functionality in clients without declaring them under their
project (RQ5). Then, analyzing if BCs related to transitive dependencies could be detected
by only using the compilation error logs (RQ6). Finally, understanding the discussions the
software development community has around transitive dependencies and how to resolveBCs
raised due to the clients directly using features of these dependencies (RQ7). We addressed
these additional questions by analysing the data we gathered for the prior research and
conducting a qualitative analysis on discussions extracted about transitive dependencies from
open-source repositories. To address these additional questions,wemodifiedSection 3,which
includes both the design and the results retrieved for these questions, and Section 4, which
includes the new implications drawn from our study.

The rest of the paper is structured as follows: Section 2 provides the background of our
study. The design of the study and results are included under Section 3. Section 4 includes
a summary of the findings, implications, and threats to validity. The related research that
inspired our study is discussed in Section 5, and finally, Section 6 concludes our work.

2 Background

This section provides a background for the work conducted under this research on source
and binary Breaking Changes(BCs).

Libraries are collections of reusable code exposed as APIs intended to be used by client
projects. As libraries rapidly evolve and release new versions, they could add or modify exist-
ing features, fix existing issues, or enhance performance and security.A client (can be either an
application or a library itself)will use these libraries as a dependency under the project,which
will include the library along with the version or range of versions upon which the client code
depends. Libraries can also depend on other libraries; therefore, when a client uses a library,
it can be exposed to two types of dependencies: direct and transitive. Direct dependencies
are explicitly defined under the project configuration and are required for the build and execu-
tion of the client project as it will directly invoke the library APIs. Transitive dependencies,
also known as indirect dependencies, are not declared under the project configuration but are
necessary for the build and execution of direct dependencies (Kikas et al. 2017). Given that
transitive dependencies can themselves have direct dependencies, this creates a dependency
tree, resulting in multiple levels of transitive dependencies connected with a client project.
Shown in Fig. 1 is a dependency tree generated using the mvn dependency:tree command for
the client ‘org.opennms.newts:newts-metrics-reporter’. According to the dependency tree,

123

Empirical Software Engineering (2025) 30:42 Page 5 of 44 42

[INFO] --- maven-dependency-plugin:2.10:tree (default-cli) @ newts-metrics-reporter ---
[INFO] org.opennms.newts:newts-metrics-reporter:jar:2.0.1-SNAPSHOT
[INFO] +- org.opennms.newts:newts-api:jar:2.0.1-SNAPSHOT:compile
[INFO] | +- com.google.guava:guava:jar:23.0:compile
[INFO] | | +- com.google.code.findbugs:jsr305:jar:1.3.9:compile
[INFO] | | +- com.google.errorprone:error_prone_annotations:jar:2.0.18:compile
[INFO] | | +- com.google.j2objc:j2objc-annotations:jar:1.1:compile
[INFO] | | \- org.codehaus.mojo:animal-sniffer-annotations:jar:1.14:compile
[INFO] | +- com.google.inject:guice:jar:4.0:compile
[INFO] | | +- javax.inject:javax.inject:jar:1:compile
[INFO] | | \- aopalliance:aopalliance:jar:1.0:compile
[INFO] | +- org.slf4j:slf4j-api:jar:1.7.12:compile
[INFO] | +- org.apache.commons:commons-jexl3:jar:3.1:compile
[INFO] | \- org.slf4j:jcl-over-slf4j:jar:1.7.12:runtime
[INFO] \- io.dropwizard.metrics:metrics-core:jar:3.1.1:compile

Fig. 1 Dependency Tree of ’org.opennms.newts:newts-metrics-reporter’ client

this client has two direct dependencies, five transitive dependencies at level one, and an addi-
tional six transitive dependencies at level two. One of the direct dependencies of the client is
‘org.opennms.newts:newts-api’ version 2.0.1-SNAPSHOT, which has its own direct depen-
dency on ‘com.google.guava:guava’ version 23.0. That makes ‘com.google.guava:guava’
version 23.0 a transitive dependency for the client.

Since the transitive dependency functionality is accessible to the clients, some clients use
it directly in their code without declaring the dependency under the project configuration.
Figure 2, shows a code snippet from the ‘org.opennms.newts:newts-metrics-reporter’
client. This snippet invokes the ‘com.google.common.collect.Lists::newArrayList()’ method
defined in ‘com.google.guava:guava’ version 23.0. This illustrates the use of transitive depen-
dency functionality within a client’s source code.

As libraries evolve, they could often introduce unexpected behavior at either compiler,
build, link, or runtime, known as incompatible changes for the clients using them compared to
their previous version.These changes are knownasBreakingChanges (BCs).However, aBC
will impact a client only if the client uses the functionality that introduced the incompatibility.
BCs are broadly categorized into syntactic and behavioral (semantic) BCs. Behavioral BCs
introduce changes to the behavior of the client code when executed and can only be detected

Fig. 2 ’org.opennms.newts:newts-metrics-reporter’ client using functionality of ’com.google.guava:guava’
by invoking com.google.common.collect.Lists.newArrayList() method

123

 42 Page 6 of 44 Empirical Software Engineering (2025) 30:42

Fig. 3 Binary compatible but Source Breaking Change ch.qos.logback:logback-core when updating from
version 1.1.0 to 1.1.1. (https://github.com/qos-ch/logback/compare/v_1.1.0...v_1.1.1)

at runtime and, therefore, require thorough testing (Jayasuriya et al. 2024a). Our study will
only focus on syntactic BCs.

Syntactic BCs can be further divided into source and binary BCs. Source BCs result in
incompatibilities detected during the compilation time, and Binary BCs result in incom-
patibilities manifested at the load time when linking the client application and the library
binaries (Gosling et al. 2021). Both source and binary BCs stem from syntactic changes
applied to the API that can be detected using static analysis tools. Some of these BCs include
changes to the API signature, deletion, or renaming of a method, class, or an entire package.

Syntactic BCs often exhibit both source and binary incompatibilities, but there can
be some scenarios where this could differ. For example, Fig. 3 displays a source BC in
the ch.qos.logback:logback-core library between versions 1.1.0 and 1.1.1
by introducing a new checked exception to the method signature. The clients using this
function should handle or rethrow this new exception to prevent compilation errors. This
will not be detected as a binary incompatibility as the throws clause is not included as
part of the method descriptor used in the linking process. Figure 4 displays a change in
the net.sourceforge.owlapi:owlapi-distribution library between versions
4.3.1 and 5.0.0 which specializers the return type of a method. This strengthens the
precondition and, therefore, will be source compatible, where the method used to return a
Collection type would now return a List, a subtype of a Collection. However, it will be binary
incompatible since the return type is part of the method descriptor, which is used to identify
the method during the linkage process. Since the matching method descriptor will not be
available during the linkage process, the clients who compiled the code with the prior library
version will throw a NoSuchMethodError when being executed with the new version without
being recompiled at first (Oracle n.d.).

We used Java projects built using APACHE MAVEN (Foundation 2023) as their build
automation tool for the research. The Project Object Model (POM) defined using an XML
file is the fundamental unit inMaven, responsible for the project’s metadata, dependencies,
and additional configurations. One of its core functionalities is dependency management,
which will automatically download the dependencies along with their required dependen-
cies, which will be transitive to the client. The most commonly used remote repository to

Fig. 4 Source compatible but Binary Breaking Change under net.sourceforge.owlapi:owlapi-distribution
when updating from version 4.3.1 to 5.0.0. (https://github.com/owlcs/owlapi/compare/owlapi-parent-4.3.1...
owlapi-parent-5.0.0)

123

https://github.com/qos-ch/logback/compare/v_1.1.0...v_1.1.1
https://github.com/owlcs/owlapi/compare/owlapi-parent-4.3.1...owlapi-parent-5.0.0
https://github.com/owlcs/owlapi/compare/owlapi-parent-4.3.1...owlapi-parent-5.0.0

Empirical Software Engineering (2025) 30:42 Page 7 of 44 42

Fig. 5 Group of multi-module
projects sharing the same groupId

download theseMaven dependencies is theMaven Central 1,whichmaintainsmillions of
software dependencies.When deployed usingMaven, a project is called aMaven artifact. A
Maven artifact is uniquely identified by itsGAV coordinates, including the groupId (G),
representing the organization or group responsible for the dependency, the artifactId
(A) signifying the identifier for the artifact within the group, and the version (V) denot-
ing the artifact’s version. If a project contains multiple modules, it will adopt a parent-child
structure, where a parent will contain multiple child artifacts. In Maven, the multi-module
projects usually follow the pattern of sharing the same groupId or appending an identifier to
the parent’s groupId2 and deferring from the artifactId. Figure 5 shows how the ‘OW2 ASM’
libraries share the the same groupId and they have different artifacts based on the modules.
All these ‘OW2 ASM’ libraries belong to the same multi-module project.

These multi-module projects usually depend on one another and, therefore, are built and
released together.Clientswhouse thesemulti-moduleddependencies usually define avariable
in the build script to consistently refer to the version of all artifacts within the same multi-
moduled project.

<dependency>
<groupId>org.yaml</groupId>
<artifactId>snakeyaml</artifactId>
<scope>compile</scope>
<version>1.30</version>

</dependency>

Listing 1 A Dependency Block in a pom.xml file

When these artifacts are used as dependencies in client projects, additionally to these
coordinates, the scope, which indicates at what life-cycle phase (build, runtime, test) the
dependency will be added to the client’s project classpath, can be included. The dependency
will be declared under the <dependencies> section within the client’s pom.xml file,
which is illustrated under Listing 1.

3 Study Design and Results

This section discusses the study’s design to collect, process, and analyze the data. Illustrated in
Fig. 6 is the overview of the process we followed for the study. We first collected repositories
containing Maven artifacts and analyzed their dependency usage to detect if they maintain
up-to-date dependency versions. Next, we updated the outdated dependencies one at a time
and recompiled the artifacts. The artifacts that failed to compile provided us with the total
client projects that were impacted due to BCs during dependency updates. We extracted the
compilation error for each dependency update that failed to compile, then mapped it with the
change in the library between the two versions that caused the BC to identify the common

1 https://search.maven.org/
2 https://maven.apache.org/guides/mini/guide-naming-conventions.html

123

https://search.maven.org/
https://maven.apache.org/guides/mini/guide-naming-conventions.html

 42 Page 8 of 44 Empirical Software Engineering (2025) 30:42

18,41 5

Fig. 6 Overview of the Study

changes that impact client projects. We used the japicmp tool to extract the client-impacting
syntactic BCs. We compared it with the results from compiling the artifacts after updating
dependencies to investigate if static analysis tools are reliable sources in detecting BCs. We
analyzed if libraries comply with the semantic versioning scheme by analyzing the BCs
introduced during dependency updates at different semantic version levels. As changes in
transitive dependencies were a significant factor in introducing BCs, we extended our study
to identify how many clients rely on transitive dependency functionalities and if compilation
errors could assist in determining if the BCs were related to transitive dependency changes.
Finally, we analyzed discussions on transitive dependencies under open-source repositories
available onGitHub to understand how the software engineering community uses and handles
BC related to transitive dependencies under their projects. The study data, results, and scripts
used to acquire and analyze the data are available in the replication package (Jayasuriya et al.
2024b)

3.1 Experiment Setup

Artifact Collection For the study, we selected Java repositories, as we had to analyze the
source code of the projects, and the researchers had expertise in Java. Additionally Java is
one of the widely used programming languages, and there are many static analysis tools
built to detect both source and binary BCs. We collected the repositories for the analysis
using the Libraries.io dataset (Inc Tidelift 2022), aligning with similar research conducted
in this area (Decan and Mens 2021; He et al. 2021; Alfadel et al. 2021). We considered these
repositories as client repositories for our study. We first selected the Java repositories from
the dataset and applied the following filters. Available on GitHub, as we needed to clone
them to the local machine for further analysis and repositories that are not fork repositories
to avoid analyzing multiple copies of the same repository (Kalliamvakou et al. 2014). Using
the GitHub API 3, we filtered repositories with at least five GitHub stars to ensure the quality

3 https://docs.github.com/en/rest

123

https://docs.github.com/en/rest

Empirical Software Engineering (2025) 30:42 Page 9 of 44 42

Fig. 7 Repository distribution by
Stars and Last Commit Activity

of the repositories following similar research in this area (He et al. 2021;Mujahid et al. 2020).
We cloned the selected repositories to the local machine on June 2021, which provided us a
total of 20,711 repositories. Next, we selected the repositories that have configuredMaven as
their build tool by verifying if they have configured a pom.xml file, which reduces eligible
repositories for the study to 7,019.Weonly considered repositories that compiled successfully
to identify BCs through new compilation errors generated while automatically updating the
dependency under our analysis for RQ2. Compiling the projects was time-consuming as it
required resolving all dependencies to the local repository.Wemaintained the defaultMaven
local repository settings, prioritizing project-specific repository settings if configured in an
individual project’s pom.xml file. If local repository settings were configured for a project,
it would take precedence over the project’s pom.xml file, and Maven would download the
dependencies based on the local repository settings.

Wecompiled the projects using Java 8 and reran the failing projects using Java 11.Wechose
these versions since, as of 2014-2021, the period in which the repositories had committed
activities, they were the only Java releases that received Long-Term Support from Oracle.
After compiling the repositories using theMaven command,we successfully compiled 3,211
and 188 repositories (3,399 repositories in total) on Java 8 and Java 11, respectively. Even
though the number of projects compiled on Java 11 was few, it increased the total number of
successfully built projects by 9%. Figure 7a represents the distribution of GitHub stars for
the these selected projects, where the median number of stars is 36. Further, Fig. 7b shows
the last commit activity of the repositories used for the analysis as of year 2022. More than
half of these projects had their last commit activity within less than an year, as indicated by
a median years since June 2021 being 0.38 years.

Following the same procedure used to compile the repositories, we compiled eachMaven
artifact in these repositories containing a unique GAV coordinate. There were 18,415Maven
artifacts that compiled successfully within the 3,399 repositories. These individual Maven
artifacts will be the client projects we use for the analysis. Our research focuses on examining
the dependencies specified in these clients and evaluating the individual impact of updating
each dependency, following a similar methodology conducted under a prior study (Harrand
et al. 2022).

3.2 RQ1: Dependency Up-To-Dateness

In this section, we answer RQ1: “To what degree are the dependencies in open-source
repositories up-to-date?”

123

 42 Page 10 of 44 Empirical Software Engineering (2025) 30:42

3.2.1 Method

Using Maven commands, we extracted 142,355 direct dependencies declared under the
18,415Maven artifacts. To determine if these direct dependencies were up-to-date, we used
the display-dependency-update Maven command to check if new versions were available.
This command provides the latest versions for the outdated dependencies, and these sugges-
tions could include either a Major,Minor, or Patch update. Some of the suggested library
versions included ‘alpha’, ‘beta’, ‘SNAPSHOT’, and ‘RC’ suffixes in them, which are not
stable releases according to the Maven Repository site and previous studies (Olivera 2022;
Ochoa et al. 2022b). Therefore, we excluded these unstable versions and retrieved the latest
stable versions for the libraries. For our study, we did not consider Java as a dependency for
the project and its potential impacts when updating its version, as Java versions are widely
recognized as being backward compatible (Darcy 2021). Hence, for this research, we main-
tained the Java version as a constant based on which it was successfully compiled initially.
To determine the degree of outdatedness for the dependencies that are not up-to-date, we
developed scripts to assess whether the suggested library version would require a Major,
Minor, or Patch update.

3.2.2 Results

Assessing the current and latest suggested versions for each dependency, we observed that
71.60% of the dependencies in these clients were outdated. This is similar to the findings
of Salza et al. (2018), who reported that 63% of the external libraries in mobile applications
are never updated.

InMaven-built Java projects, dependencies are definedunder different scopes, determining
their inclusion in the project classpath during compilation, runtime, or testing.Table 1 presents
the breakdown of the extracted dependency scopes. It further illustrates that regardless of the
scope of the dependencies all other dependencies except for system scope dependencies are
generally outdated. System scope dependencies are contained within the project JAR and are
not retrieved from the repository, so the latest versions for system scope dependencies are
not suggested.

Table 2 provides the dependency updates suggested broken downaccording to the semantic
version level the update belongs to. For the total dependencies extracted from the clients,
Maven proposed a Major update for 22.10% of the dependencies, a Minor update for
32.58%, and a Patch update for 16.02% of the dependencies. An additional 537 updates
suggested could not be programmatically categorized into what semantic versioning level it

Table 1 Dependencies Analyzed with their Scopes

Dependency Number of Number of outdated Percentage of outdated
Scope Dependencies Dependencies dependencies

compile 57,280 47,326 82.62%

runtime 1,181 958 81.17%

provided 13,588 10,406 76.58%

system 19,629 4 0.02%

import 7 6 85.71%

test 50,670 43,227 85.31%

123

Empirical Software Engineering (2025) 30:42 Page 11 of 44 42

Table 2 Dependency Updates
Suggested Based on the Semantic
Versioning Level

Update Version level Number of updates Percentage of updates

Major 31,464 22.10%

Minor 46,376 32.58%

Patch 22,818 16.02%

belonged to because they did not adhere to the correct semantic versioning scheme. Examples
of some of the unclassified version updates include 9+181-r4173-1 -> 9-dev-r4023-3, 1.r.69-
SNAPSHOT -> 1.r.69.20210929, 2.0.B1 -> 2.0.M1.

Based on these results, dependency updates were suggested for 11,744 clients, indicating
that 43.79% of clients had at least one outdated dependency. This complements the research
conducted by Wang et al. (2020), who reported that 54.9% of projects do not update half
of their dependencies. Comparing with the results 81.5% of the software projects keep their
dependencies outdated, which (Kula et al. 2018) reported the maintenance of dependencies
in open-source projects has increased over time.

Answering RQ1: To what degree are the dependencies in open-source repositories
up-to-date? Our analysis indicated that 71.60% of open-source projects’ dependencies
were not up-to-date. Among these outdated dependencies, 22.10% had a Major update
available, while Minor and Patch updates were available for 32.58% and 16.02%,
outdated dependencies, respectively. Considering all the artifacts used for the analysis,
43.79% had at least one outdated dependency.

3.3 RQ2: Impact of BCs

In this section, we answer RQ2: “How often do client-impacting BCs occur in the wild?”

3.3.1 Method

This section identifies the BCs introduced during dependency updates on client projects. We
considered all Major, Minor, and Patch updates suggested in the previous section, as
prior research confirms that BCs are introduced not only in Major but also in Minor and
Patch versions as well (Raemaekers et al. 2014; Brito et al. 2018a; Ochoa et al. 2022b).
We first focused on detecting BCs introduced due to source incompatibilities between library
versions. This process involved updating the current version of the dependency to the latest
version suggested by Maven and verifying if the dependency update caused compilation
errors. Suppose the update failed to compile; this would signify that a BC could exist in the
latest version. We updated the dependencies to the latest stable version, aiming to replicate
real-world dependency updating practice. In a practical scenario, when a project updates an
outdated dependency, it is more likely to select the latest stable release than the next adjacent
version.

We developed a script to systematically update an individual outdated dependency at a
time in the pom.xml file and compile the client. We applied this process for each outdated
dependency under each client. We could not automatically update 31,085 dependencies,
constituting 30.49% of the total dependencies due to various factors such as the dependency

123

 42 Page 12 of 44 Empirical Software Engineering (2025) 30:42

or its version not being available on the pom.xml file or the dependency version declared as
a variable, which affects the entire project version and its dependencies. When updating the
dependencies for the client projects defined within a parent project, known as child projects,
the dependency could be declared either in the child pom.xml file or the parent pom.xml
file. Therefore, depending on where the dependency was updated, the script compiles either
the child project or both the parent and the child project to assess whether the dependency
update resulted in compilation errors.

By analyzing the execution log, we assessed if the client compiles successfully or not
after each dependency update. In instances where it was successful, it signifies that no BCs
were encountered during the dependency update. Hence, we assigned it as a ’Successful’;
if the build failed, we marked it as a ’Fail’. It is important to note that all build failures
are not necessarily linked to source BCs introduced between library versions. There were
instances where we updated a group of dependencies together since the dependency version
was defined as a shared property, and if the latest version was unavailable for all the grouped
dependencies, this led to a build failure. Therefore, to determine whether the build failure
was related to the latest version being unavailable and to identify the exact version at which
the build failure was introduced, we recompiled the failed clients for the library versions
between the current and the latest.

For every dependency update that resulted in build failures, we wanted to determine the
initial version that introduced this compilation error. This allowed us to identify when the
BC was first introduced and under which semantic version level. For this, we collected all
version numbers released by a library between the current and the suggested latest version
that introduced the BC, using Maven Central (Olivera 2022) repositories. Starting from the
version adjacent to the current one, we created a script to automatically update the declared
dependency and recompile the project for each subsequent version until the version that
introduced the BC was detected.

To validate if potential BCs could be detected using static analysis tools, we used the
japicmp tool (version 0.16.0), which can detect syntactic BCs introduced between two library
versions. We chose this tool as its GitHub repository4 is continuously maintained, having its
last commit recorded in November 2023 (as of January 2024), and this tool has also been
used in prior research (Ochoa et al. 2022a, b). This tool takes in two versions of a jar file
and extracts all changes between the two versions. Then, these changes are classified as
compatible or incompatible, and the incompatible changes are distinguished as either source,
binary, or both source and binary incompatible. Since the japicmp tool needs the jar files
of the library versions to detect the syntactic BCs, we developed a script to download all
dependency jars from the Maven Central repositories using the previously extracted version
numbers. Next, for each library, we passed the consecutive library versions into the japicmp
tool to compute the total source and binary BCs introducedwith each version update.We used
these counts obtained for the source and binary BCs to determine the total BCs introduced
by the versions that did not impact the clients.

To automatically detect whether the BCs reported by the japicmp tool impact the clients,
we extracted the library functionalities used by these clients. Then, we verified if the tool
reported those library functions with BCs. To extract the library functional calls a client
uses at class, method, or field level, we used the ASM Framework (Bruneton et al. 2022).
ASM analyzed the bytecode generated for the clients and detected all the functional calls

4 https://github.com/siom79/japicmp

123

https://github.com/siom79/japicmp

Empirical Software Engineering (2025) 30:42 Page 13 of 44 42

under the client. The analysis at the class level included annotations, class types, and super
types, which included both interfaces and superclasses. We analyzed the method signa-
ture at the method level, including exceptions thrown, annotations used, parameters, and
return types with their generics. We looked at the local variables, method invocations, object
instantiation, exceptions, and try-catch blocks inside a method. Next, we analyzed the fields
defined at the class level, including the field types, generics used in the field type, and the
annotations.

For all the functional calls extracted, we created a script to determine the external func-
tional calls, excluding the inbuilt Java functionality.We thenmapped these calls to the relevant
dependencies by identifying all dependencies linked to the client using the Maven depen-
dency tree command. This command provided both direct and transitive dependencies linked
to the client and the level at which transitive dependencies were linked to the client. In cases
where the same library existed in different versions at various levels of the dependency tree,
we applied the dependency mediation (Foundation 2023) technique to map the external calls
with the nearest dependency linked to the client. This approachmapped all external functional
calls to the dependencies linked to the client.

We cross-referenced the external calls mapped to a library with the reports generated by
the japicmp tool for each adjacent library version to detect if BCs were reported for those
external functional calls. Our analysis only focused on external functional calls mapped to
the direct dependencies, as our research only focused on the impact of BCs arising from
direct dependencies.

3.3.2 Results

For all the outdated dependencies extracted in response to RQ1. We could automatically
update 69.50% (70,840 out of 101,925) of these outdated dependencies, including successful
and failed dependency updates. Out of the total dependencies that could be automatically
updated, 56,003 of the dependency updates, which is 79.05% of the updates, were successful,
while 14,837 of the updates, which represents 20.97% of the updates, failed. Then, for
the failed dependency updates, we recompiled the clients for all library versions between
the current and the latest version to detect the first version that introduced the BC. After
recompiling the clients for all versions between the current and the latest, we identified
that the version that introduced a BC was the latest suggested version for 12.58% of the
dependencies and was a version prior to the latest version for 87.42%.

Analyzing the crash logs associated with these build failures, we observed that only 8,207
instances,which is 55.31%of the total build failures, contained a compilation error in the crash
log. This implies that, among the total dependency updates that were successful and failed,
source BCs were encountered for 11.58% of the updates. This client-impacting source BCs
is higher than reported in prior research (Raemaekers et al. 2017; Ochoa et al. 2022b) which
used the adjacent library version to identify the impact of binary BCs on client projects. It is
noteworthy that this figure accounts for all unique dependencies; however, in some instances,
dependencies that belong to the same sub-module projects (for example, a set of dependencies
with a shared groupId that are released together and therefore must be updated together).
For some instances, a shared parameter was used in the pom.xml file to ensure that the
dependency updates were synchronized among these projects. 1,611 compilation errors were
recorded as unique dependency updates that failed but could be considered duplicate counts
as those dependencies belong to the same sub-module project. If these duplicate compilation
errors were excluded from the total count of source BCs, the impact on client projects would

123

 42 Page 14 of 44 Empirical Software Engineering (2025) 30:42

decrease to 9.31% of the dependency updates but still surpasses figures reported in prior
research (Raemaekers et al. 2017; Ochoa et al. 2022b).

We further analyzed how many dependencies leading to source BCs involved the use of
library internal APIs, as internal APIs do not guarantee API compatibility between versions.
For the library functions used by the clients,we checked if the ‘internal’ keywordwas included
in the package structure. Our results show that 820 client projects (4.8% of the total clients)
used internal APIs from 932 dependencies (0.65% of the total dependencies). When these
dependencies were updated, 192 led to source BCs, accounting for 2.34% of the total source
BCs. This indicates that 20.6% of updates on dependencies using internal APIs led to source
BCs, implying that clients using internal library APIs have a higher risk of encountering BCs
during dependency updates.

From the build failures that did not result in compilation errors, we randomly selected a
subset of 30 logs and manually analyzed them, which revealed that majority of these failures
had unresolved dependencies and Maven configuration issues. For the updates that reported
compilation errors, we counted all the successful builds between the current and the version
introducing the BCs, resulting in a build failure. Considering these successful dependency
updates and the number of dependency update failures, we concluded that BCs resulted
in 4.35% of the updates when updating the dependencies to the adjacent version. Notably,
this aligns with findings from previous studies by Ochoa et al. (2022b) and Xavier et al.
(2017), who updated dependencies to adjacent versions and reported results of 7.9% and
2.54%, respectively, as client-impacting binary BCs. However, it is essential to note that
these figures might not reflect realistic scenarios, as projects are more likely to update to the
latest stable version during dependency updates.

Using the library functional calls made by the client and the output from the japicmp tool,
we verified whether the version reported by the japicmp tool as containing source BCs aligns
with the breaking version identified through detecting compilation errors. We conducted this
experiment to understand if the japicmp tool reports consistent results compared with the
results we obtained through compiling the clients. In 18.53% of the dependency updates that
resulted in compilation errors, the tool also reported source BCs. For 13.90% of instances,
the japicmp tool reported source BCs for a library version released prior to the version in
which the compilation error occurred; for 4.81% of instances, it reported source BCs for a
version released after the version in which the compilation error occurred. Therefore, the
results from the japicmp tool do not align with those obtained by identifying compilation
errors. This mismatch is mainly because the tool analyzes BCs in isolation and not the context
in which it is used by the client when making decisions.

Next, we extracted both source and binary BCs using the japicmp tool for all the depen-
dencies that could be automatically updated. For these dependencies, the tool reported 9,221
binary BCs, which is 13.01% of the total dependency updates, and 11,444 source BCs, repre-
senting 16.15% of the total dependency updates. Notably, the number of source BCs detected
by the japicmp tool exceeds the count of source BCs identified through compiling the clients.
This could be attributed to factors such as the japicmp tool reporting a BC when the super-
class of a class changes, even if the functionality within the new superclass remains the same
as the previous superclass, which does not impact the client. Another instance is when a set
of classes is removed from a library and added as a dependency to the library; this is reported
as a BC since the classes were removed. However, in reality, those classes are still available
for the client as a transitive dependency. Therefore, some of the BCs reported by the japicmp
tool are false positives.

123

Empirical Software Engineering (2025) 30:42 Page 15 of 44 42

Answering RQ2: How often do client-impacting BCs occur in the wild? Our results
indicate that, after updating a dependency in a client and compiling it, the build failed
for 11.58% of the dependency updates. When the dependencies were incrementally
updated to the adjacent version and considering all successful client compilations, BCs
were encountered for 4.35% of the dependency updates. Although the BCs reported by
the japicmp tool exceeded the BCs identified through the analysis of compilation errors,
it is essential to note that some of the BCs reported by the japicmp tool are false positives
because the tool does not assess the context in which the BC functionality is used in the
client code and instead, considers the change in isolation when reporting BCs.

3.4 RQ3: Common BCs

In this section, we answer RQ3: “What are the common types of client-impacting source
BCs?”

3.4.1 Method

We used client-impacting syntactic BCs identified in the previous RQ to conduct a manual
analysis to detect the change in the library that caused the client to fail compilation. For
this, we first extracted the compiler error messages that were generated. When extracting
the messages, we omitted the code-specific information, such as the class or package name
and any reference details, to help us group similar error messages together. We replaced
the code-specific information with a ’...’ notation for consistency. For example, ’ package
org.osgi.util.tracker does not exist’ was converted as ’package ... does not exist’. Following
this approach, we identified 105 distinct types of compilation error messages. In certain crash
logs, multiple compiler error messages were encountered, and the same compilation error
message appeared in different locations within the client code. Each occurrence of a compi-
lation error message was treated as a separate instance, as they could be linked to different
changes in the library, and there were 94,737 compilation errors in total. To conduct the
manual analysis, we first sampled the compilation error messages with a confidence interval
of 95% and an error rate of 5% (Wonnacott andWonnacott 1991), leading to a sample size of
380. We followed the stratified sampling strategy to create a dataset that included all compi-
lation error messages for the analysis. For the selected sample, we created a comprehensive
dataset that included the following details: the crash log, the line number within the crash
log, the compilation error message, the dependency with its current and breaking versions,
the output generated by the japicmp tool, the GitHub URL for the respective client project,
the class where the compiler error occurred, and the Git-Diff Web URL link for the library
versions available on GitHub. We adhered to the thematic analysis for the manual analysis,
an approach designed to identify patterns in qualitative analysis (Cruzes and Dyba 2011). To
label the data, we developed codes representing various types of changes in the libraries that
lead to BCs. We followed an integrated approach (Cruzes and Dyba 2011) when developing
the codes, which allows us to create predefined codes for the analysis and later derive codes
while conducting the manual analysis. We created 101 predefined codes, categorized under
Package, Interface, and Class levels based on syntactic BCs introduced between two library
versions that were presented by prior researchers (Brito et al. 2018a; Dig and Johnson 2006;
Xavier et al. 2017) and using an article which describes these BCs published by IBM (des
Rivières 2017). Two authors, familiar with Java programming, did the manual analysis to

123

 42 Page 16 of 44 Empirical Software Engineering (2025) 30:42

identify the change between the library version that caused the compilation error. Following
the recommendation byO’Connor and Joffe (2020) to applymultiple coding between 10-25%
of the data, we opted to use 20% of the data from the sampled dataset for the multiple coding.
This resulted in a sample size of 68 records, chosen using a stratified sampling technique to
ensure the inclusion of different compilation error messages in the sample set.

To familiarize ourselves with the coding and assess the coding agreement, we randomly
selected four samples from the initial data sample, which were not part of the 68 samples
selected for multiple coding. Each coder independently labeled the samples and then checked
for agreement. Disagreement onmore than one label would cause the agreement to fall below
75%, which is below acceptable (Zach 2021). For our first coding round, the agreement was
below the acceptable threshold; hence, we jointly discussed how we extracted the coding
values and the issues we had while coding. We repeated this process until an agreement of
more than 75% was achieved, and both coders were confident in the coding process.

Then, both coders independently performed the coding for the 68 sample records. To
assess the inter-rater reliability of the coded values, we used Cohen’s Kappa coefficient,
a statistical measure to calculate the coders’ agreement for qualitative analysis (El Emam
1999). The Kappa score is calculated based on the two coders’ agreement and the random
agreement. We obtained a Kappa score of 0.68 for the multiple coded values, indicating
substantial agreement based on the interpretation of the Kappa score value. Since there was
substantial agreement and it took approximately five to ten minutes to analyze one record,
only one of the authors coded the remaining samples in the manual analysis set. The results
are presented in the following section.

3.4.2 Results

Table 3 displays the ten most occurring compilation error messages, with their occurrence
frequencies.

During the manual analysis, we observed that five compilation errors were not repro-
ducible, and another five types were generated under Groovy classes. We excluded these
errors as we only focused on Java-related compilation errors, which reduced the number of
compilation errors to 96. The labels derived from the manual analysis provided more insight
into the library changes that lead to BCs impacting clients. These changes include the new

Table 3 Top Ten Compilation Errors which had the most Occurrences

Compiler Error Occurrence Percentage

cannot find symbol 54,194 57.20%

package ... does not exist 20,405 21.53%

method does not override or implement a method from a supertype 3,186 3.36%

incompatible types: ... cannot be converted to 2,403 2.54%

cannot access 2,333 2.46%

reference to ... is ambiguous 1,722 1.82%

static import only from classes and interfaces 1,587 1.68%

no suitable method found for 1,075 1.13%

is not abstract and does not override abstract method 890 0.94%

method ... cannot be applied to given types 871 0.92%

123

Empirical Software Engineering (2025) 30:42 Page 17 of 44 42

Table 4 Top ten changes in
libraries which causes Source
Incompatibility with its
percentage of occurrence

Library Change Occurrance %

Change result type of method in class 5.68%

Delete package 5.09%

Delete class 3.89%

Rename package 2.10%

Delete type parameters from class 2.10%

Decrease access of constructor in class 2.10%

Delete method from class 1.79%

Delete interface method 1.50%

Delete interface 1.50%

Delete checked exceptions thrown from method in class 1.50%

version of the library being compiled with a version of Java that is incompatible with the
client, a dependency of the library beingmodified, incompatibilities with not updating depen-
dent libraries together, or adding a deprecated annotation to a class, interface, or method.
We encountered incompatibilities due to changes related to the type parameter (generics in
Java), which was introduced in the article by IBM (des Rivières 2017) but was mentioned as
a limitation for the research conducted by Ochoa et al. (2022b).

The manual analysis showed that changes in transitive dependencies were the most com-
mon factor, which led to 20.36% of the BCs. This situation arises when the client under
analysis uses the functionality of the dependencies of the direct dependency.When the depen-
dencies of the direct dependency change and those changes are not compatible with the client
using them, it leads to BCs. Incompatibility with another library when updating a dependency
independently and incompatibilities related to the Java version used to compile the library
occurred 3.89% and 3.45% of the instances, respectively.

Table 4 shows the top ten changes in the library that led to source incompatibilities
and their corresponding occurrence percentages. The results indicate that changing the
result type of a method5 in a class is a common change across libraries which intro-
duced source incompatibilities to clients. This change is shown under Fig. 8, which shows
that the ‘getParentNode’ method, which previously returned the Node Type object, has
now changed to return an Optional Type Node object, which causes BCs to clients using
this API. Deleting an API package or a class were the other changes that significantly
impacted clients. Figure 9 shows that the ‘org.mockito.runner’ package was removed
there for the ‘MockitoJUnitRunner’ class was also removed, which led to BCs in clients.
Figure 10 shows that the package ‘org.axonframework.commandhandling’ was renamed to
‘org.axonframework.commandhandling.annotation’, which again led to BCs for clients using
API end points from the ‘TargetAggregateIdentifier’ class.

Our analysis showed that the same BC can impact clients differently based on how the
functionality is used. For instance, the ‘Change result type of method in class’ BC will affect
clients based on how the method’s return value is used. It could be used in a loop iteration,
conditional statement comparison, or amethod on the value returned. If the return type differs
for all these scenarios, it will impact the client. Thus, understanding the context in which the
dependency is used is crucial for the dependency update process. Throughout the analysis,

5 The term ’changing the result type’ was taken from des Rivières (2017) and can also be referred to as
‘changing the return type’ of a method.

123

 42 Page 18 of 44 Empirical Software Engineering (2025) 30:42

Fig. 8 Change result type of method in class under com.github.javaparser:javaparser-core when updat-
ing version from 2.5.1 to 2.24.0 (https://github.com/javaparser/javaparser/compare/javaparser-parent-2.5.1...
javaparser-parent-2.24.0)

we encountered challenges in determining the cause of specific compilation errors by only
considering the possible syntactic changes. 16 of the samples (4.97%) analyzed were related
to code generation libraries, and the incompatibility for these samples did not arise from a
syntacticBC introduced between the twoversions of the library. Through analyzing the source
code changes between the library versions, we concluded that the issue was linked to the
changes in the logic that is used to generate code in the client’s code base during compilation.
Therefore, changes in code generation libraries that lead to BCs in client projects will differ
from other changes that cause syntactic BCs and, as a result, might not be detected as BCs
by the static analysis tools. We could not identify the cause for the BCs for another 22
samples(6.83%), and we assume it to be associated with transitive dependency changes.

Answering RQ3: What are the common types of client-impacting source BCs? The
results of the manual analysis indicated that changes in transitive dependencies were
the most common reason for the syntactic BCs that impact clients during dependency
updates. Notably, the two most common changes in the library that contributed towards
sourceBCswere changing the result type of amethod in a class and deleting anAPI pack-
age. The other library changes that caused syntactic BCs did not significantly contribute
compared to all changes.

3.5 RQ4: Library Compliance to the Semantic Versioning Scheme

In this section, we answerRQ4: “Are client-impacting source BCs introduced in non-Major
library releases?”

3.5.1 Method

For the library versions that introduced syntactic BCs, we analyzed whether they included
non-Major releases and identified the common change under those releases that contributed
towards client-impacting syntactic BCs under each semantic versioning level. Additionally,
we explored how the BCs arise due to direct and transitive dependencies distributed under
the semantic version levels.

Fig. 9 Delete Java Package under org.mockito:mockito-core when updating from 1.10.19 to 4.0.0 (https://
github.com/mockito/mockito/compare/v1.10.19...v4.0.0)

123

https://github.com/javaparser/javaparser/compare/javaparser-parent-2.5.1...javaparser-parent-2.24.0
https://github.com/javaparser/javaparser/compare/javaparser-parent-2.5.1...javaparser-parent-2.24.0
https://github.com/mockito/mockito/compare/v1.10.19...v4.0.0
https://github.com/mockito/mockito/compare/v1.10.19...v4.0.0

Empirical Software Engineering (2025) 30:42 Page 19 of 44 42

Fig. 10 Rename Java Package under org.axonframework:axon-core when updating from 2.1.2 to 3.0-M1
(https://github.com/AxonFramework/AxonFramework/compare/axon-2.1.2...axon-3.0-M1)

3.5.2 Results

Table 5 presents the counts for the syntactic BCs that impact clients at different semantic
version levels. Specifically, 58.41% of the BCs resulted during a Major update, while
33.49% and 8.09% resulted during Minor and Patch update, respectively. Consequently,
non-Major updates accounted for nearly half of the identified BCs.

Among the manually analyzed data sample, 147 instances belong to Major updates, 138
to Minor updates, and 45 to Patch updates. The most common changes in the libraries
under Major updates that resulted in BCs in clients were changing the result type of a
method in a class, deleting a class, renaming an API package, and deleting an API package.
For Minor updates, the common BCs changes were deleting an API package, changing a
static method to a non-static method in a class, and changing the result type of a class method.
No BC significantly contributed to incompatibilities during Patch updates.

We analyzed how BCs introduced by direct and transitive dependencies were distributed
across various semantic version levels. As depicted in Table 6, Major updates more
frequently contained BCs introduced by direct dependencies than non-Major updates. Con-
versely, BCs introduced by transitive dependencies are notably common in non-Major
updates. Even though the semantic versioning scheme defines rules when BCs are allowed
during library releases, many developers will not be aware of the BCs introduced by transitive
dependencies.

Answering RQ4: Are client-impacting source BCs introduced in non-Major library
releases?Most BCs impacting clients were introduced duringMajor updates. However,
violating the semantic versioning scheme, 41.58% of the BCs were introduced during
a non-Major update. When focusing on BCs introduced due to transitive dependency
changes, it was evident that non-Major updates contained most of these BCs.

3.6 RQ5: Transitive Dependency Usage

In this section, we answer RQ5: “How often do clients directly rely on transitive dependency
functionality?”

Table 5 Update level in libraries
and the number of impacted
artifacts

Update Level Number of Impacting Artifacts Percentage

Major 4,742 58.41%

Minor 2,719 33.49%

Patch 657 8.09%

123

https://github.com/AxonFramework/AxonFramework/compare/axon-2.1.2...axon-3.0-M1

 42 Page 20 of 44 Empirical Software Engineering (2025) 30:42

Table 6 Distribution of BC
introduced by Direct and
Transitive Dependencies at each
Semantic Versioning Level

Source of BC Semantic Version Level
Major Minor Patch

Direct Dependency 48.68% 37.72% 13.60%

Transitive Dependency 38.57% 54.28% 7.14%

3.6.1 Method

According to our analysis of the prior RQs, transitive dependency changes had a significant
impact on introducing BCs to client projects. Therefore, we conducted an analysis to deter-
mine the degree to which clients directly use the functionality of transitive dependencies, as
described in the discussion on transitive dependencies in Section 2. We used the methodol-
ogy explained in section 3.3.1, which uses the ASM framework to extract the direct use of
transitive dependency functionalities from client projects. The detected transitive functional-
ities provided an understanding of how often transitive dependency functionalities are used
in client projects. Then, we used the mvn dependency:tree command to identify the
level at which a transitive dependency is connected to the client project, providing us with
the level to which transitive dependencies are utilized.

Further, for the collected transitive functionality that clients used, we checked how many
of them were related to the same multi-module project. Using the functionality of a multi-
module project should not ideally cause issues as they are guaranteed to work together by the
library developers and are compatible with one another, known as blossom compatible (Dann
et al. 2023). Thus, they are updated and released together tomaintain compatibility. However,
transitive dependencies that do not belong to the same group of projects can create issues as
they will change and can be updated on the requirement of the direct dependency defining
it. Therefore, we examined the groupIds of the transitive dependencies and their associated
direct dependency to identify how many were part of the same multi-module project.

3.6.2 Results

We observed that 61.24% of all clients directly used functionalities of at least one transitive
dependency connected with the project via direct dependencies. This observation aligns
with the research of Kikas et al. (2017), who confirm that transitive dependency usage is
widespread in software ecosystems like Javascript.

The bar chart in Fig. 11 displays the distribution of clients utilizing transitive dependency
functionalities at various levels. This chart illustrates that 57.44% of clients utilized transitive
dependency functionality at level one. While the usage of level two and level three transitive
dependency functionalities was less prevalent than at level one, it accounted for 25.91% and
7.70% of usage, respectively.

We only extracted transitive dependencies up to level ten, and we observed that none of
the clients used the functionality of transitive dependencies beyond level seven. Only two
clients utilized transitive dependency functionalities at level seven, contributing to 0.01% of
the total clients analyzed.

We observed that a client using a functionality of a transitive dependency, which is deeper
in the dependency tree than a level one transitive dependency did not always use functionali-
ties of transitive dependencies at prior levels. Additionally, 16.34% of clients did not use the

123

Empirical Software Engineering (2025) 30:42 Page 21 of 44 42

Fig. 11 Bar Chart representing maximum level of Transitive Dependency usage in client projects

direct dependencies’ functionality; from those clients, 41.58% did use the transitive depen-
dencies’ functionality. This led us to analyze if all direct dependencies contained source code
that exposed APIs for the client projects. If not, was the dependency a wrapper that aggre-
gates all related dependencies to be included in the project so that one dependency could be
defined instead of many dependencies?

An example for a wrapper dependency is illustrated in Fig. 12. When extracting the con-
tents of the org.junit.jupiter:junit-jupiter library version 5.10.3 using the
Java JAR command, it is evident that the JAR file does not contain any source files; it only
includes the manifest, license, and module-info files. However, the module-info.class
file specifies the modules to be imported when this library is used as a dependency. There-
fore,Maven will include the junit-jupiter-api, junit-jupiter-params, and junit-jupiter-engine
dependencies when this library is defined as a dependency in a client project. To identify
how many of the dependencies were used as a wrapper, we extracted all the files included
under a jar file to verify if it included any source files. This analysis showed us that 16.33%
of the clients had at least one direct dependency that did not contain source files. From clients
that contained direct dependencies that did not contain source files, 51.89% used transitive
dependency functionalities via the direct dependency.

These findings regarding transitive dependency usage in clients contribute to our under-
standing of why most incompatibilities during dependency updates are associated with
changes in transitive dependencies.

Our results on howmany transitive dependencieswere related to the same group of projects
as the direct dependency revealed that 35.21%, consisting of 14,680 transitive dependencies
belonged to the same multi-module project a direct dependency was released under. This
implies that the majority, accounting for 64.79%, which is 27,017 transitive dependencies,

Fig. 12 org.junit.jupiter:junit-jupiter library version 5.10.3 which aggregates other dependencies

123

 42 Page 22 of 44 Empirical Software Engineering (2025) 30:42

did not originate from a related group of projects. Transitive dependencies not related to
the same group of projects could be problematic when used by client projects as they will
be updated independently or migrated based on the requirements of the direct dependency
declaring it.

Answering RQ5: How often do clients directly rely on transitive dependency function-
ality? The study conducted to verify the transitive dependency usage in clients showed
that 61.24% of the clients had used transitive dependency functionality in their code.
Notably, most of these transitive dependencies (64.79%) did not originate from the same
multi-module project as the direct dependency.

3.7 RQ6: Detecting BCs Related to Transitive Dependencies

In this section, we answer RQ6: “Can compilation error logs alone assist in determining if
the BC was related to a transitive dependency?”

3.7.1 Method

We analyzed compilation error logs to identify if they could be used to detect BC caused
by a change in a transitive dependency. We used the transitive functionality calls extracted
for RQ5 (methods described in Section 3.6.1) for this purpose. We created a script to divide
these functionalities into package, class, method, and field and searched the logs since the
fully qualified name of the class and the method or field will not appear together in the error
logs. Therefore, when a BC was reported during a dependency update, we created a script to
verify if any transitive dependency functionalities extracted were available in the compila-
tion error logs. We searched if the compilation error logs included packages with the class or
method names. This process is explained in Fig. 13, where the client directly invokes func-
tions from commons-httpclient:commons-httpclient:3.1, a transitive dependency available
through the direct dependency net.sourceforge.htmlunit:htmlunit:2.5. The functional call is
identified using the previously described steps for detecting transitive functionality usage.
This functional call is then matched with the compilation error generated when updating the
net.sourceforge.htmlunit:htmlunit dependency from version 2.5 to 2.7.

Fig. 13 Match compilation error with the transitive dependency functional call

123

Empirical Software Engineering (2025) 30:42 Page 23 of 44 42

3.7.2 Results

The automatic search through the compilation errors showed that only 3.62%, which
accounted for 297 instances of the BCs, was caused due to a transitive dependency. The auto-
mated search did not report a high number as the manual analysis, which reported 20.36% of
the BCs were caused by a transitive dependency change. Therefore, we randomly sampled
some data from the manual analysis that reported the cause of the BC as a change in the
transitive dependency but was not reported by the automatic analysis. Then, the first author
manually analyzed the compilation error logs and the change in the transitive dependency
to determine the reason for this low count in the automatic analysis. The highest recurring
transitive change (18.57%) reported in the manual analysis was due to the migration of Java
EE to Jakarta EE (Community for Java and developers 2020). This change was not recorded
under our automated search as we marked all ‘javax.’ related packages as inbuilt Java pack-
ages. Therefore, these functionality calls were not reported as BCs caused due to transitive
dependency changes.

Since some compilation error messages did not include the fully qualified name of the
class or the method in the error log, they could not be linked with a transitive dependency
functionality using the automatic analysis. These logs just reported the type of the compilation
error, for example, error: unreported exception IOException; must be
caught or declared to be thrown. Some compilation errors only included the
method name and did not report the package and class to which it belonged. This finding
alignswith the research conducted byBecker et al. (2019), which states that compilation error
messages are not helpful in accurately reflecting the true programming change that introduced
the issue. Since we only considered the compilation error logs and the functionalities of the
transitive dependency for the automatic analysis, it could not accurately identify all BCs
caused by transitive dependency changes. For the manual analysis, since we considered
more factors mentioned in Section 3.4.1, we could identify that the cause was due to transitive
dependency changes.

If the transitive dependencies introduce binary breaking changes, they may cause linkage
errors at runtime, which would not be detected during compilation. Additionally, if changes
in the indirect dependencies break their contract with the direct dependency, since the direct
dependency is not re-compiled, this does not result in a compilation error as well.

Answering RQ6: Can compilation error logs alone assist in determining if the BC
was related to a transitive dependency? Compilation error logs can assist in detecting
BCs caused by transitive dependencies. However, we cannot solely rely on compilation
error logs to determine if the BCs were caused by transitive dependencies because the
compilation errors might not accurately reflect the true programming change that led to
the BC.

3.8 RQ7: Discussions of Transitive Dependencies

In this section, we answer RQ7: “How do projects currently resolve BCs caused by transitive
dependencies?”

123

 42 Page 24 of 44 Empirical Software Engineering (2025) 30:42

3.8.1 Method

Client projects frequently rely on features provided by transitive dependencies. As such,
we expect discussions around transitive dependency usage and BCs encountered due to
using transitive dependencies in open-source communities. Therefore, we examined the pull
requests and issues raised under popular GitHub repositories to gather insights into how
transitive dependency-related BCs are handled or avoided in open-source repositories. We
selected the top 100 most-starred Java repositories on GitHub as of November 2023 instead
of the repositories used in the previous research questions, as they are the most popular or
recognized repositories in the community and, thus, could give us more direction into using
transitive dependencies.

We used the GitHub GraphQL API6 to extract the discussions under the pull requests and
the issues in the repositories. For the discussions extracted, we first checked if they included
the keywords transitive dep, deep dep and indirect dep in the title, descrip-
tion, or comments. We used ‘dep’ in the keywords as, in some discussions, dependencies
were abbreviated, and using ‘dep’ would cover both dependency and dependencies. There
were only 491 discussions that matched these keywords. Therefore, we randomly sampled
these discussions with a confidence interval of 95% and an error rate of 5% (Wonnacott and
Wonnacott 1991), which provided us a sample of 216. The first author reviewed the sampled
discussions on a high level, checked for any additional keywords we could use to expand our
search terms to acquire more results, and discussed them with the other authors. This pro-
cess generated keywords such asdependency hell,shaded,shading,shadowing,
classpath hell, class path hell, jar hell, version conflicts which
we included and extracted 873 discussions matching the expanded set of keywords giving us
a total of 1,364 discussions for the analysis.

First, one author went through the discussions extracted as a keyword match to determine
if the discussions just mentioned the keywords during a discussion or if the discussion was
actually around transitive dependencies. During this process, the discussions linked to each
other were eliminated from the analysis as they discussed the same scenario with the same
solution or remediation plan. Next, we followed the thematic analysis technique (Cruzes and
Dyba 2011) similar to the approach followed in section 3.6.1.We labeled the data by assigning
them codes based on the inferential information gathered through reading the discussions.
Following a similar approach in section 3.6.1, two authors familiarized themselves with the
coding by independently coding four samples at a time and then discussing the codes and
repeating this process until an agreement above acceptable was reached (Zach 2021). Then,
the two authors separately labeled 15% of the total discussions and calculated the inter-rater
reliability. We used Cohen’s kappa to measure the inter-rater reliability, which was 0.64,
indicating substantial agreement between the two authors. After that, one author labeled the
rest of the issues for the qualitative analysis.

We focused on analyzing these discussions to understand how developers address BCs
raised due to transitive dependencies.During the initial discussions during the coding process,
we saw that some transitive dependency discussions focused on issue fixes related to BCs,
and some focused on measures taken to avoid them. However, some of the discussions
we analyzed only discussed BCs raised due to transitive dependencies and no direction on
handling or overcoming these BCs were discussed. Additionally, some discussions were
around the dependency update practices. Therefore, we excluded these types of discussions
from our analysis, leaving us with 192 discussions.

6 https://docs.github.com/en/graphql

123

https://docs.github.com/en/graphql

Empirical Software Engineering (2025) 30:42 Page 25 of 44 42

3.8.2 Results

Wegenerated 22 codes in total for the discussions around transitive dependencies. Some codes
provided direction to solve or avoid BCs raised due to transitive dependencies and provided
suggestions or best practices.Weexcluded twocodes thatwere specific to howEclipse handles
dependencies and source code changes related to using transitive dependency functionality,
which were discussed under two separate discussions. Table 7 provides the remaining codes
generated for the discussions and is further explained below.

1. Exclude Transitive Dependency The most common action suggested during these dis-
cussions was to exclude the transitive dependencies brought in by a direct dependency using
the project configuration. This was also provided as a recommendation to limit the number of
transitive dependencies exposed by libraries. This configuration changewasmostly applied to
resolve BCs raised due to transitive dependencies or as a preventative strategy. As repository

Table 7 Actions and Recommendations (codes) suggested under discussions on transitive dependencies

Actions and Recommendations (code) Frequency

1 Exclude Transitive Dependency 66

2 Define Transitive as a Direct Dependency 42

3 Update Direct Dependency 33

4 Change Direct Dependency Scope 10

5 Shade Classes of the Dependency 8

6 Add optional parameter true for Direct Dependency 6

7 Use functionality exposed through Transitive
Dependencies

6

8 Remove Direct Dependencies 6

9 Divide functionalities into separate modules and
deploy them separately

5

10 Turn additional features off by default in
Libraries

4

11 Embed all required Dependencies to the deployment
file

4

12 Maintaining compatibility between versions 4

13 Use a SBOM to maintain the Dependencies(both
Direct and Transitive) required for the project

3

14 Define fixed version numbers for all Dependencies 3

15 Include repositories to download Transitive
Dependencies under the configuration

2

16 Should not exclude all Transitive Dependencies
from the configurations

2

17 Replace Direct Dependencies 1

18 Add version constraints on Transitive Dependency
(Gradle)

1

19 Publish artifacts to remote repositories 1

20 Do not shade class if it is available under a
Dependency

1

123

 42 Page 26 of 44 Empirical Software Engineering (2025) 30:42

square/retrofit issue, 1536 suggests ‘Actually Simple XML has transitive dependencies which
are already included in Android, apparently. You need to exclude them from the converter-
simplexml dependency per the“Android" section here:’; was required to resolve a BC. This
action helps to avoid having multiple versions of the same dependency in the classpath and to
remove unwanted dependencies, which lead to BCs in the project. This action was illustrated
under the keycloak/keycloak repository’s issue 15915 to resolve a security issue raised: ‘I
think we should be able to fix this CVE if we change the liquibase-core dependency in the
parent pom.xml like that:’

<dependency>
<groupId>org.liquibase</groupId>
<artifactId>liquibase-core</artifactId>
<version>${liquibase.version}</version>
<exclusions>

<exclusion>
<groupId>org.yaml</groupId>
<artifactId>snakeyaml</artifactId>

</exclusion>
<exclusion>

<groupId>org.apache.commons</groupId>
<artifactId>commons-text</artifactId>

</exclusion>
</exclusions>

</dependency>

However, since our analysis shows that most clients use transitive dependency function-
ality, excluding the transitive dependency from the configuration might not be the best action
for our analyzed projects.

2. Define Transitive as a Direct Dependency The second frequent action was to define the
transitive dependency as a direct dependency under the project,whichwill help inmaintaining
the correct version of the dependency required for the project similar to the comment in
SeleniumHQ/selenium issue 2362 that discusses ‘... commons-io is a transitive dependency,
you shouldn’t be relying on selenium providing it for you and you should declare it as
a separate library / dependency for your project.’. Also, there were instances where this
action was required as an adaptive measure when the new version of a direct dependency
excluded one of its transitive dependencies, whichwas required by the project asmentioned in
JakeWharton/butterknife repository’s pull request 562: ‘Robolectric 3.1 removes its transitive
dependency on com.google.android:support-v4:r7 so I had to include it manually.’

3. Update Direct Dependency The third most suggested action was to update the direct
dependency that brings in a transitive dependency that might cause BCs. As suggested in
keycloak/keycloak repository’s issue 20319, which states ‘Quarkus team released 3.0.3.Final
a few hours ago. It is important to upgrade to fix a couple of CVEs on transitive dependencies,
plus a couple of bug fixes present on this release.’, updates were generally suggested to ensure
the system avoids any security issues in the future as a preventativemeasure. Further updating
the direct dependency could bring in the correct version of the transitive dependency that

123

Empirical Software Engineering (2025) 30:42 Page 27 of 44 42

is compatible with the project as mentioned in Repository ReactiveX/RxAndroid issue 584
‘Please consider an upgrading to the new version of RxJava which uses reactive-stream ...’.

4. ChangeDirectDependency Scope Another commonly suggested action to prevent future
BCs was to change the scope of direct dependencies. By doing so, the dependency features
would be restricted to specific lifecycle phases of the project. For instance, the ‘test’ scope
restricts the dependency to test classes, and the ‘provided’ scope requires the dependency
to be supplied by the runtime JDK or the container in which the project is deployed. A
discussion that mentions this was under ReactiveX/RxJava repository’s issue 154: ‘Yes, itś
“runtime" for running the tests, but not for production usage, which is why they are marked
as provided and not needed as transitive dependencies’.

5. Shade Classes of the Dependency Shading allows you to copy and rename dependency
code within your project, creating a private copy of the code. This enables direct access to
those features without relying on external dependencies, thereby avoiding the addition of
unnecessary transitive dependencies to the classpath. It also ensures consistent functionality
throughout the project, eliminating concerns during dependency updates. This is explained
in repository spring-projects/spring-boot pull request 24264, which states, ‘Other projects
should shade ASM themselves rather than tying themselves to Spring.’.

6. Add optional parameter true for Direct Dependency The action to set the optional
parameter true when defining the dependency forces any project that requires transitive
dependency functionalities to declare them as direct dependencies in the project. This would
eventually be beneficial for the clients using this as a dependency as it adds fewer depen-
dencies to the client classpath, so it will be easier to maintain the project as suggested
under spring-projects/spring-framework repository’s issue 8995: ‘Instead of depending on
commons-logging 1.1 with exclusions for every logging facility, it would be cleaner to depend
on version 1.1.1, which has transitive dependencies declared as optional’.

7. Use functionality exposed through Transitive Dependencies As an adaptive strategy,
projects could use functionality exposed through transitive dependencies as it is already
available in the classpath since re-declaring it will only add a new dependency version,
which may lead to version conflicts. Repository iluwatar/java-design-patterns mentions this
action under pull request 867: ‘As i see, junit-jupiter-api is is a transitive dependency of
junit-jupiter-engine. So should we remove junit-jupiter-api dependency in where we already
have junit-jupiter-engine?’.

8. Remove Direct Dependencies Removing unused direct dependencies helps maintain
the project dependencies and reduces the likelihood of BCs due to transitive dependen-
cies by reducing the number of dependencies in the classpath. An example of this action
was provided as a description under eugenp/tutorials repository pull request 13568: ‘Could
com.baeldung.web: spring-boot-rest: 0.0.1-SNAPSHOT drop off redundant dependencies?’

9. Divide Functionalities Into Separate Modules and Deploy them Separately This
action helps both developers of the project and clients who use this project as a depen-
dency. For developers of the project, having separate modules will allow them to declare
different versions of dependencies for the different modules as required. The pull request
25 on spring-projects/spring-boot discusses this benefit ‘Changes have been separated to
the new projects submodule to workaround the problem of having two versions of tomcat

123

 42 Page 28 of 44 Empirical Software Engineering (2025) 30:42

dependencies simultaneously on the classpath at compile time.’. For client projects, the ben-
efit is that when features are separated intomodules, they can define the specific dependencies
required in the configuration and also have the option to exclude them if necessary. This is
explained under spring-projects/spring-framework issue 19081 ‘I’m considering to move our
Log/LogFactory variant, which is completely self-contained, to a separate spring-jcl.jar. ...’
reply ‘I think spring-jcl.jar is a good idea, especially since it gives users the option to exclude
it if such a need should arise.’.

10. Turn Additional Features Off by Default in Libraries When releasing new features,
maintain only the core features enabled while disabling additional features in libraries that
can cause BCs for clients, as suggested in issue 3392 of the alibaba/fastjson repository. ‘IMO,
the autoDiscover functionality should be disabled by default so that existing application logic
does not break.’

11. Embed all Required Dependencies to the Deployment File This action was suggested
as a best practice to define all required dependencies in the deployment or configuration
file. This ensures that all necessary dependencies are bundled with the project JAR file,
benefiting clients using this project as a dependency, as explained in pull request 4302 of the
Anuken/Mindustry repository. ‘This task will download all dependecies, including transitive
dependencies. This is very useful when packaging Mindustry for a distribution...’.

12. Maintaining Compatibility Between Versions Library developers were cautious about
updating certain dependencies in the project to maintain compatibility between library ver-
sions. This was expressed under airbnb/lottie-android issues 2392 ‘I can’t upgrade to okio
2.0 because it would pull in Kotlin as a transitive dependency which I’d prefer not to do in
case there are any apps that (for some reason) aren’t using Kotlin yet.’.

13. Use a SBOM to Maintain the Dependencies(both Direct and Transitive) Required for
the Project A practice mentioned for dependency management was defining a Software Bill
of Materials(SBOM) file. This machine-readable inventory contains the direct and transitive
dependencies in a separate POM file. This allows the project to keep track of all the required
dependencies for the project and enhances its security by improving the transparency of
all connected dependencies (Xia et al. 2023). Their research indicates that while SBOMs
bring transparency to software projects by enabling accountability and security, they are not
yet widely adopted in OSS, and there is a lack of maturity in SBOM tooling. However, we
anticipate that the use of SBOMs will increase due to software compliance mandates by
the US government and the EU, with other governments expected to follow (Biden 2021;
European Commission 2024). The benefit of using SBOMs for dependency management is
explained under square/retrofit issues 3231 ‘Notice how you just leave the versions off when
you use a BOM. This can help reduce the number of dependency compatibility surprises one
can encounter, especially if a transitive dependency brings in a newer version of one of the
components (it’ll be reduced to the BOM’s version).’.

14. Define fixed version number for all Dependencies It is advisable to specify a fixed
version number for all project dependencies. If a version is not defined, the dependency
resolution mechanism will default to the latest available version. However, the latest version
available at the time of development may not remain compatible as the library evolves. Also
Discussed underOpenAPITools/openapi-generator repository’s pull request 13593 ‘I believe,
the problem is with the pom template(s) missing a version field for the spring-boot-maven-

123

Empirical Software Engineering (2025) 30:42 Page 29 of 44 42

plugin, which causes maven to pick 3.0.0, which again has transitive dependencies built for
java 17.’ Further, defining a fixed version for a dependency, rather than using a version range,
is preferable when aiming to avoid conflicting versions within that range. By specifying a
particular version, you ensure the project uses the one that is compatible.

15. IncludeRepositories toDownloadTransitiveDependenciesUnder theConfiguration
To avoid downloading transitive dependencies from different remote repositories and to pre-
vent dependency resolution problems, it is advisable to configure a specific repository for
downloading these dependencies. This issue was discussed under apache/skywalking issues
6867 ‘... we still have some (transitive) dependencies that downloaded from jcenter, we should
find them out and point the download address to maven central.’

16. Should not Exclude All Transitive Dependencies from the Configurations When
managing dependencies, it is not advisable to exclude all transitive dependencies from the
configurations, as some are essential for the linkage and runtime of the projects. This benefit
of having transitive dependencies was discussed in airbnb/lottie-android issue 1538: ‘I think
somehow in your build, you are excluding the okio transitive dependency. Make sure you are
not excluding okio and this problem should go away.’

17. Replace Direct Dependencies Replacing a direct dependency with another was recom-
mendedwhen an alternative library offering the same functionalitywas available andprovided
greater benefits to the project than the previously used dependency. Discussed under spring-
projects/spring-framework repository issue number 8333. ‘The problem can be resolved in
one of three ways: ... (Better) Replace commons-logging.jar with jcl104-over-slf4j.jar (See
http://www.slf4j.org/manual.html#gradual)

18. Add Version Constraints on Transitive Dependency (Gradle) Including dependency
constraints allows us to define a version or version range for both direct and indirect depen-
dencies. This method is preferred for applying constraints to all dependencies within a
configuration to avoid conflicting versions or versions with vulnerabilities or bugs. The
suggestion was discussed under OpenAPITools/openapi-generator issue number 14901 ‘You
can constrain the version of transitive dependencies in gradle.’.

19. Publish Artifacts to Remote Repositories In general, all libraries should publish their
artifacts to a remote repository for client use. This request was specifically made to avoid
dependency resolution problems in the future, as the library in question was going to be
removed. Discussed under elastic/elasticsearch repository’s pull request 68926 ‘Eventually
this library is going to go away entirely and it’s actually not really required at runtime by any
of these transitive dependencies, but to ensure we don’t incidentally introduce any breaking
dependencies in the meantime the safest thing is just to publish the artifact to address the
dependency resolution errors.’.

20. Use Functions from Jar Dependency Instead of Shading This action was recom-
mended by clients using a library, requesting the library to use a direct dependency API
functional call instead of shading it. This is because, when a class is already available on the
class path and another shaded version exists, it can cause issues during runtime resolution.
Therefore, a client of OpenAPITools/openapi-generator raised this as a concern under issue
3034. ‘We would like an unshaded version of the jar to be available so we can depend on it
without including duplicate dependencies in our class path’.

123

http://www.slf4j.org/manual.html#gradual

 42 Page 30 of 44 Empirical Software Engineering (2025) 30:42

Overall, some of these actions, such as defining a transitive dependency as a direct depen-
dency under the project or encouraging the developers to do so, might resolve issues caused
by BCs for that scenario but might introduce issues such as dependency hell if too many
dependencies are defined under the project.

AnsweringRQ7: How do projects currently resolve BCs caused by transitive dependen-
cies? According to our analysis of open-source discussions on transitive dependencies,
the most common actions to resolve issues due to transitive dependencies are excluding
transitive dependencies, defining the transitive dependency as a direct dependency, and
updating the direct dependency that brings in the transitive dependency.

4 Discussion

In this section, we present the implications of the results based on our findings and threats to
validity.

4.1 Implications of the Study

We can derive several practical implications from our study from the perspective of library
developers, client developers, and researchers.

4.1.1 Implications for Library Developers

Library developers should be vigilant when applying changes during non-Major updates, as
these versions should not introduce BCs. However, our study reports under RQ4 that almost
half of the BCs were introduced in non-Major updates.

Our analysis on RQ5 showed that some libraries are made available as a package aggre-
gation artifact that bundles all compatible components required for the functionality. Thus,
this could be a potential pattern for libraries part of a multi-module project, allowing them to
be released as one library that client projects will use. This will prevent clients from facing
incompatibilities during dependency updates, as they will only be required to update one
library version.

4.1.2 Implications for Client Developers

Client developers should think twice before using the functionality of transitive dependencies.
As our results indicate, under RQ5, more than half of the clients directly use transitive
dependency functionality, and most of these used transitive dependencies did not belong to
the same multi-module project as the direct dependency. These transitive dependencies will
be updated independently under the direct dependency and can also be removed in future
releases. Thus, the use of transitive dependencies often leads tomanyBCs during dependency
updates, and these BCs were most common during non-Major dependency updates.

123

Empirical Software Engineering (2025) 30:42 Page 31 of 44 42

Moreover, our findings indicate that the impact of a BC on clients varies based on how
the breaking functionality is used in their code. Therefore, when addressing incompatibil-
ities related to BCs, client developers must consider the context in which the functionality
is used. When applying dependency updates in isolation, careful consideration is needed
to determine whether the updated dependency relies on another dependency or vice versa.
This is crucial because updating a dependency in isolation may lead to incompatibilities
with other dependencies in the artifact. Further clients should be cautious when using tran-
sitive dependencies which are not related to the same multiple module project as their
changes are released separately and the direct dependency can decide to migrate from
that transitive library to another library. These changes could lead to BCs in the client
projects.

Clients should focus on updating dependencies regularly as our results show that most
dependencies in open source projects are not kept up-to-date. If the dependencies are not
updated regularly the clients might not fully utilize the libraries’ features, and it could include
potential vulnerable code, which might get resolved in later versions.

4.1.3 Implications for Researchers

Investigating techniques to capture clients’ use of transitive dependency functionalities and
their contributions to BCs during dependency updates is a much-needed research area. Tools
should be developed to detect the use of transitive dependencies so that clients are aware
that they are using functionalities of dependencies that are not defined directly under their
project configurations. This would help reduce the risk of encountering BCs due to transitive
dependencies during updates. Our results indicate that changes in transitive dependencies
are a significant factor in introducing BCs during dependency updates; hence, analyzing
all dependencies connected to a client project when updating a dependency will provide a
comprehensive understanding of all potential BCs that impact a client project.

Current static analysis tools offer a lower granularity level in reporting library changes,
such as whether a field, method, or class was removed. However, our findings on RQ3
reported that removing an entire API package was the second most common BC between
library versions, and this was not clearly indicated by the tool since it focused on lower-level
granularity. Therefore, these tools can be improved to report BCs at a more appropriate level
of granularity, which will help project maintainers better understand and address BCs.

4.2 Catalog of Changes to Remediate and Avoid BCs Due to Transitive Dependencies

We built a catalog of changes based on the actions suggested in handling and preventing
the BCs raised by transitive dependency changes. The Catalogue of Refactoring
site (Fowler n.d.) proposed by Fowler and Beck (1997) using the pattern language structure
inspired us to develop this structure. The catalog of changes we propose will assist devel-
opers in avoiding BCs and will remediate current BCs that the developers experience due to
transitive dependencies. The change catalog provides actions recommended for client and
library projects separately.

In the diagrams, ‘C’ represents a client. ‘D’ within in a continuous circle denotes a direct
dependency, while ‘D’within a dotted circle denotes a transitive dependency. Arrows indicate
connections to a project or suggest inclusion or usage. Text, arrows, or lines in green indicate

123

 42 Page 32 of 44 Empirical Software Engineering (2025) 30:42

that the elements should be included, whereas those in red indicate that the elements should
be removed or avoided.

4.2.1 Changes proposed for Client Projects

Exclude Transitive Dependency Figure 14a represents the change of excluding the tran-
sitive dependency. This change can be applied by changing the configuration file, which
includes the dependency information. For a Maven project, this change will be included in
the POM.xml file. Listing 2 illustrates how a transitive dependency can be excluded from a
Maven project, which would prevent it from being included in the project classpath.

(a) Exclude Transitive Dependency
(b) Define Transitive as a Direct De-
pendency

(c) Remove Direct Dependency
(d) Use SBOM File to Maintain All
Dependencies

(e) Use Transitive Dependency Func-
tionality

(f) Should not exclude All Transitive
Dependencies

Fig. 14 Catalog of Changes For Client Projects

123

Empirical Software Engineering (2025) 30:42 Page 33 of 44 42

<dependency>
<groupId>org.yaml</groupId>
<artifactId>snakeyaml</artifactId>
<scope>compile</scope>
<version>1.30</version>
<exclusions>

<exclusion>
<groupId>org.apache.commons</groupId>
<artifactId>commons-text</artifactId>

</exclusion>
</exclusions>

</dependency>

Listing 2 ADependency Block after excluing a Transitive Dependency for the client projects from the pom.xml
file

DefineTransitive as aDirectDependency Figure 14b illustrates defining a transitive depen-
dency as a direct dependency for the project. The dependencies should be included in the
project configuration file. This will allow the project to define the correct dependency version
compatible with the project.

Remove Direct Dependency Figure 14c shows removing a direct dependency declared
under the project configuration. The direct dependencies recommended for removal are typ-
ically either unused by the project or may already be available in the required version as a
transitive dependency. Removing unnecessary dependencies will reduce the total number of
dependencies included in the project classpath.

Use SBOM File to Maintain All Dependencies Figure 14d shows that all required depen-
dencies, including direct and transitive dependencies, can be maintained using a Software
Bill Of Materials (SBOM) file. Using a single location to manage all dependencies improves
the project’s maintainability.

Use Transitive Dependency Functionality Figure 14e illustrates that client projects should
use transitive dependencies when appropriate, without defining them as direct dependencies.
This approach is highly recommended for dependencieswithin the samemulti-module project
or for dependencies that fall under a wrapper dependency.

Should not exclude All Transitive Dependencies Figure 14f shows that certain transitive
dependencies are necessary during linkage or runtime for the direct dependency. Therefore,
excluding all transitive dependencies from a project is not advisable.

4.2.2 Changes proposed for Library Projects

Include Optional Parameter for Direct Dependency Figure 15a displays that the optional
parameter can be included in the direct dependency configuration. Adding the optional
parameter would prevent the dependency from being included in the classpath of the clients
using it.

123

 42 Page 34 of 44 Empirical Software Engineering (2025) 30:42

(a) Include Optional Parameter for
Direct Dependency

(b) Divide Functionality into Sepa-
rate Modules

(c) Turn Additional Features Off by
Default

(d) Embed All Required Dependen-
cies to the Jar File

(e) Maintaining compatibility be-
tween two library versions

(f) Publish artifacts to remote reposi-
tories

(g) Do not shade class i t is available
under a dependency

Fig. 15 Catalog of Changes For Library Projects

123

Empirical Software Engineering (2025) 30:42 Page 35 of 44 42

Divide Functionalities to Separate Modules and Deploy them Separately Figure 15b
illustrates that functionalities that can be isolated should be extracted as separate modules,
adhering to the principle of separation of concerns. This enhances project maintainability.
These modules can then be deployed as independent JAR files, allowing clients to rely on
only the necessary JARs.

Turn Additional Features Off by Default Figure 15c illustrates that the features additional
to the core functionality of the libraries must be turned off by default. Then, the clients who
need those additional features can turn them on as required for their projects, and this would
not cause BCs for clients not needing the functionality.

Embed All Required Dependencies to the Jar File Figure 15d displays that the jar file
should include all dependencies required for the functionality of the project. This ensures
that the client projects using these libraries would not encounter BCs related to missing
dependencies necessary for using the library.

Maintaining Compatibility Between Two Library Versions Figure 15e highlights the
importance of library developers maintaining compatibility between versions to avoid intro-
ducing BCs.

Publish Artifacts to Remote Repositories Figure 15f shows that libraries should upload
their artifacts to remote repositories for client projects to access.

Do not Shade Class if it is Available Under a Dependency Figure 15g displays that if
the dependency is already available under the class path use the dependency functionality
without shading it.

4.2.3 Changes Proposed for Both Client and Library Projects

Update Direct Dependency Figure 16a demonstrates the update of the direct dependency
of the project. The primary motivation behind this action was to update direct dependencies
containing vulnerabilities for security purposes. This would allow the transitive dependency
to be updated indirectly as well.

Shade Classes of the Dependency Figure 16b illustrates that the dependency classes
required for the project will be shaded (copied) under the project itself. This will allow the
project to access the shaded class functionality directly and not depend on the dependency
class functionality. For client projects, this would be helpful to avoid compatibility issues
with defining new dependencies, and for libraries, it will reduce the number of dependencies
introduced to the client’s classpath.

ChangeDirectDependency Scope Figure 16c shows that the scope of the direct dependency
should be changed. This was suggested mainly for client projects to keep the dependencies
required for testing purposes separate from the compile and runtime dependencies. For library
projects, it was advised to use the ‘provided’ scope for the dependencies to prevent it being
included in the client’s classpath.

123

 42 Page 36 of 44 Empirical Software Engineering (2025) 30:42

(a) Update Direct Dependency (b) Shade Classes of the Dependency

(c) Change Direct Dependency Scope (d) Replace Direct Dependencies

(e) Include Repositories to Download
Transitive Dependency

(f) Define fixed version numbers for
all Dependencies

(g) Add version constraints on Tran-
sitive Dependency

Fig. 16 Catalog of Changes For Both Clients and Library Projects

ReplaceDirectDependencies Figure 16d shows that, depending on the requirements, itmay
be more beneficial to replace the current direct dependency with an alternative dependency.

Include Repositories to Download Transitive Dependencies Under the Configuration
Figure 16e illustrates the code block that should be included in the project configuration
file if a direct or transitive dependency needs to be downloaded from a specific repository

123

Empirical Software Engineering (2025) 30:42 Page 37 of 44 42

rather than Maven Central. Alternatively, the repository can be also defined in the Maven
‘settings.xml’ file.

Define Fixed VersionNumbers for all Dependencies Figure 16f demonstrates that projects
should specify a version for all defined dependencies. Additionally, it is recommended to use
a fixed version rather than a range of versions.

Add Version Constraints on Transitive Dependency Figure 16g displays that constraints
on both direct and transitive dependencies can be specified in the configuration file based on
the project requirements.

All actions, except for “Change Direct Dependency Scope", “Add optional parameter true
to direct dependency," and “Add constraints on transitive dependency versions” are generic
and applicable to other programming languages. Dependency scopes in Java Maven and
Gradle differ from those in other languages, and the optional parameter may not be available
in other languages. Therefore, these three actions are more specific toMaven-built or Gradle-
built Java projects. The configuration changes proposed to resolve transitive dependency
issues could introduce new issues if required dependencies are excluded from the classpath
or if introducing new dependencies results in version conflicts. Thus, developers should be
cautious when implementing these changes.

4.3 Threats to Validity

A threat to construct validity lies in the approach used to select successfully compiled clients
for the study. Since some repositories contained multiple modules which were considered as
clients, and these clients relied on the binaries of the other clients under the same repository
we could not use the Maven compile command on individual clients. Instead, we had
to use the Maven install command on the clients to generate the required binaries.
Therefore, clients that compiled successfully but failed to be packaged into executables were
excluded. Hence, we could have disregarded some BCs existing in these clients. Adding to
this construct validity, we selected the repositories for analysis using the 2020 Libraries.io
dataset and began the experiments in 2021. Consequently, most projects in our dataset have
been active in recent years. There are some projects with significant periods of inactivity as
well as projects with a small number of stars. Future work can validate our findings using a
more recent dataset.

Another threat to construct validity is not extracting some transitive dependency calls
through our analysis. For instance, when a client class (A) inherits a superclass (B) from its
direct dependency, and this superclass (B) inherits a superclass (C) from its direct dependency,
which is transitive to the client. Our analysis did not cover that granularity of transitive
dependency functionality extraction. Therefore, if the class C from the transitive dependency
was removed or changed in the above instance, this could introduce BCs on the client end.
Consequently, we might have underestimated the impact of transitive dependency changes.

Another construct validity is that when extracting the transitive dependency functional
calls, we excluded the functional calls belonging to the ‘javax’ package as we considered
those functionalities linked to the inbuilt Java functionality.However, this exclusion prevented
us from automatically capturing the migration of Java EE to Jakarta EE, when using the
compilation error logs to identify BCs introduced due to transitive dependencies.

123

 42 Page 38 of 44 Empirical Software Engineering (2025) 30:42

For the analysis of detecting BCs, we included both the library internal APIs used by
clients and the library APIs that were deprecated in previous releases and then removed,
leading to BCs. This is another construction validity. We considered them as part of the
analysis because, during dependency updates, client developers would encounter the same
BC impact regardless of whether the APIs are internal or deprecated. However, it would be
interesting to analyze them separately.

A threat to the conclusion validity of our research could have occurred when labeling the
cause of the BCs and the discussions around transitive dependencies. However, we tried to
mitigate this threat by involving two coders and calculating the inter-rater reliability of the
labeled data.

External validity to the study is in generalizing the results of this study to other program-
ming languages. We focused on more than 18,000 Java projects built based on the Maven
built tool that altogether used more than 7,000 unique Java libraries. As with any other empir-
ical research in this area (Ochoa et al. 2022b; Raemaekers et al. 2017; Harrand et al. 2022),
our findings cannot be generalized across other programming languages. Additionally, we
compiled these projects using Java 8 and Java 11 and did not consider other Java versions
or Java itself as a dependency. Our results on BCs reported that only 3.45% were due to a
Java version incompatibility; therefore, including additional Java versions would have kept
our findings relatively the same.

5 RelatedWork

We reviewed the most closely related work on library evolution, the BCs introduced, and
its impact on clients. According to our knowledge we are the first to conduct a large-scale
empirical study covering the impact of both source and binary BCs on clients.

Library Evolution andBreakingChanges How libraries evolve, their practices, and stability
is a much researched area (Dig and Johnson 2006; Koçi et al. 2019; Møller and Torp 2019;
Xavier et al. 2017). Dig and Johnson (2006) analyzed the API changes and their compatibility
to introduce that API changes comprise breaking and non-breaking changes. They introduced
a catalogue of BCs and showed that refactoring contributes to 80% of the breaking API
changes. In another study conducted on Java APIs, Dietrich et al. (2014) report that 75%
of the adjacent library versions are incompatible. Jezek et al. (2015) continued this study
and reported that 80% of the adjacent library versions break compatibility. Further adding
to these findings, Xavier et al. (2017) reported that more popular and active libraries tend to
contain more BCs in their releases. These studies demonstrate that BCs are common under
library releases, which leads us to study syntactic BCs in this research.

Given that BCs can lead to failures in client projects, it is crucial to inform clients when
such changes are introduced. The recommended practice is to document BCs in changel-
ogs and release notes (Brito et al. 2018b, 2020). However, existing research indicates that
documentation for less than 50% of BCs is available (Koçi et al. 2019). Considering this,
clients face uncertainty regarding when it is safe to update their dependencies. The semantic
versioning scheme allows library developers to signal when BCs are introduced releases.
Yet, studies show that libraries often violate the semantic versioning principles and intro-
duce BCs even in non-Major releases (Raemaekers et al. 2014, 2017; Jezek et al. 2015;
Dietrich et al. 2019). Our research aligns with these findings, presenting evidence that BCs
are indeed introduced in Minor and Patch releases. It is noteworthy that while previous

123

Empirical Software Engineering (2025) 30:42 Page 39 of 44 42

studies focused on BCs between library versions, our approach uniquely assesses the impact
of these BCs on client projects.

Breaking Change Impact on Clients Recent research has analyzed the impact of syntactic
BCs have on clients when updating their dependencies (Bavota et al. 2013; Jezek et al. 2015;
Xavier et al. 2017; Raemaekers et al. 2017; Ochoa et al. 2022b). Xavier et al. (2017) reported
2.54% of total clients are impacted by BCs, while (Bavota et al. 2013) concluded that around
5% of the total source code in client projects are impacted by BCs. However, these studies
determined if the client uses the BC functionality by analyzing the import statements of a
class. This could both overestimate the impact of certain BCs as well as underestimate the
impact as not all BC functionality is available as direct imports in classes.

Raemaekers et al. (2017) reported that binary BCs significantly impact clients by inject-
ing each binary BC one at a time. However, applying BCs in isolation will overestimate the
impact as BCs could rely on other changes to the code and might not cause BCs if updated
together with all changes. Ochoa et al. (2022b) replicated the prior study and reported that
7.9% of the clients are impacted due to binary BCs. Both Raemaekers et al. (2017) and Ochoa
et al. (2022b) focused only on binary BCs, and additionally, our research analyzed the impact
of both source and binary BCs on clients. Furthermore, all of the previous researchers con-
ducted their research by analyzing the impact of the adjacent version available for the library,
which does not create a realistic scenario when updating dependencies. Thus, we updated
the libraries to the latest stable version when conducting our research.

BCDetection Tools BC detection tools use static analysis techniques to detect BCs between
library versions. Some of these tools include Clirr 7, Japicmp 8, JapiChecker, JapiTool 9,
SigTest 10,ApiDiff (Brito et al. 2018a) andRevapi 11 which consider both source and binary
code analysis to detect BCs introduced between two library versions. Notably, all these tools
report the potential BCs introduced from the library perspective, which can contain many
false positives for clients utilizing these libraries as they only use a much smaller subset of
these reported BCs. Ochoa et al. (2022b) designed Maracas, a tool to automatically detect
breaking declarations in a new library release used in client code through static analysis.
However, Maracas has limitations in detecting breaking declarations implemented through
inheritance hierarchies, overridden methods, and exception handling that affect its ability
to identify BCs comprehensively. In contrast, our approach reports BCs without relying on
the outcomes of static analysis tools, thereby overcoming the limitations associated with
existing tools and distinguishing our work from the previous study (Ochoa et al. 2022b). We
discovered that changes in transitive dependencies contributed significantly to introducing
BCs to clients. However, these static analysis tools used to detect BCs will not detect the
BCs introduced by transitive dependencies as they apply their analysis on multiple versions
of the same library and will not consider the libraries they depend on.

Transitive Dependencies Exploring transitive dependency usage and its implications in
introducing BCs has received limited attention from researchers. Some studies report tran-
sitive dependencies can introduce vulnerabilities in clients (Pashchenko et al. 2018; Prana

7 https://clirr.sourceforge.net/
8 https://github.com/siom79/japicmp
9 https://packages.debian.org/stretch/devel/japitools
10 http://wiki.apidesign.org/wiki/SigTest
11 https://revapi.org/revapi-site/main/index.html

123

https://clirr.sourceforge.net/
https://github.com/siom79/japicmp
https://packages.debian.org/stretch/devel/japitools
http://wiki.apidesign.org/wiki/SigTest
https://revapi.org/revapi-site/main/index.html

 42 Page 40 of 44 Empirical Software Engineering (2025) 30:42

et al. 2021; Düsing and Hermann 2022; Pashchenko et al. 2022), and researchers (Kula et al.
2014; Han et al. 2020) have highlighted that it is an essential future work to understand
how transitive dependencies contribute to the evolution of libraries. Yet, there is a notable
absence of research on how transitive dependency changes contribute to syntactic BCs in
clients during dependency updates, and since our findings indicated that changes in transi-
tive dependencies significantly impact clients, we were inspired to investigate further about
transitive dependencies.

6 Conclusion

This paper presents an empirical analysis of the impact of BCs on client projects while
updating their dependencies, using 142,355 direct dependencies declared in 18,415 clients.

The study revealed that a significant portion of the dependencies in clients, precisely
71.60%, were not up-to-date with the latest available versions for the libraries, and these
outdated dependencieswere distributed across 43.79%of the clients analyzed.Whenupdating
these outdated dependencies to their latest versions, 11.58% encountered failures due to BCs
impacting the artifacts, and almost half of these BCs were introduced during a non-Major
update, violating the semantic versioning principle. The most common change within the
library code that led towards aBCwas changing the result type of amethod.Themost common
change in the library that led to client incompatibilities is changes in transitive dependencies,
which was supported by the results that 61.24% of the clients use transitive dependency
functionalities. Most compilation errors caused by a BC will not assist in determining if a
transitive dependency change caused it. Even thoughmost projects use transitive dependency
functionality, the software engineering community’s recommended practice to avoid BCs
caused by transitive dependencies is to exclude them from the project configuration.

For future work, we aim to broaden our research by including Java projects using Gradle
as their build tool. Additionally, we intend to apply similar methodologies to other statically
typed programming languages to detect the impact of BCs introduced by their respective
libraries. Further, we will analyze the impact of behavioral BCs on client projects, as they
have received limited attention in current research, and will help provide the overall impact
of BCs on clients during dependency updates.

Acknowledgements This work was supported by the Marsden Fund Council from Government funding,
administered by the Royal Society Te Apārangi, New Zealand. The work of the fifth author was supported
by a gift by Oracle Labs Australia. In addition, the authors wish to acknowledge the Centre for eResearch
at the University of Auckland for their help in facilitating this research (http://www.eresearch.\discretionary-
auckland.ac.nz).

Data Availability Statement All study results, data, and scripts are available at Jayasuriya et al. (2024b).

Declarations

Conflict of interest The authors declare that one of the authors is an editor at the journal and we have no other
conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

123

http://www.eresearch.discretionary {-}{}{}auckland.ac.nz
http://www.eresearch.discretionary {-}{}{}auckland.ac.nz

Empirical Software Engineering (2025) 30:42 Page 41 of 44 42

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alfadel M, Costa DE, Shihab E (2021) Empirical analysis of security vulnerabilities in python packages. In:
International Conference on Software Analysis, Evolution and Reengineering (SANER ’21). IEEE, pp
446–457. https://doi.org/10.1109/SANER50967.2021.00048

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2013) The evolution of project inter-dependencies
in a software ecosystem: the case of apache (ICSM ’13). IEEE, pp 280–289. 9780769549811. https://
doi.org/10.1109/ICSM.2013.39

Becker BA, Denny P, Pettit R, Bouchard D, Bouvier DJ, Harrington B, Kamil A, Karkare A, McDonald C,
Osera P-M, Pearce JL, Prather J (2019) compiler error messages considered unhelpful: the landscape
of text-based programming error message research. In: Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (Aberdeen, Scotland UK) (ITiCSE-WGR
’19). Association for ComputingMachinery, NewYork, NY, USA, pp 177–210. 9781450375672. https://
doi.org/10.1145/3344429.3372508

Biden JR Jr (2021) Executive Order on Improving the Nation’s Cybersecurity. https://www.whitehouse.
gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/

Brito A, ValenteMT, Xavier L, Hora A (2020) You broke my code: understanding the motivations for breaking
changes in APIs. Emp Softw Eng 25(2):1458–1492. https://doi.org/10.1007/s10664-019-09756-z

BritoA,Xavier L,HoraA,ValenteMT (2018a)APIDiff: detectingAPI breaking changes. In: 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER ’18). IEEE, pp 507–511.
https://doi.org/10.1109/SANER.2018.8330249

BritoA,Xavier L,HoraA,ValenteMT (2018b)Why andhowJava developers breakAPIs. In: 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER ’18). IEEE, pp 255–265.
https://doi.org/10.1109/SANER.2018.8330214

Bruneton E, Kuleshov E, Loskutov A, Forax R (2022) ASM. https://asm.ow2.io/
Cox J, Bouwers E, van Eekelen M, Visser J (2015) Measuring dependency freshness in software systems. In:

International Conference on Mobile Software Engineering and Systems (MOBILESoft ’15). IEEE, pp
109–118. https://doi.org/10.1109/ICSE.2015.140

Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering. In: 2011
International Symposium on Empirical Software Engineering and Measurement(ESEM). IEEE, pp 275–
284. https://doi.org/10.1109/ESEM.2011.36

Dann A, Hermann B, Bodden E (2023) UPCY: safely updating outdated dependencies. In: 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). pp 233–244. https://doi.org/10.1109/
ICSE48619.2023.00031

Darcy J (2021) Kinds of compatibility. https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
Decan A, Mens T (2021)What do package dependencies tell us about semantic versioning? IEEE Trans Softw

Eng 47, 6 (6 2021), 1226–1240. 19393520. https://doi.org/10.1109/TSE.2019.2918315
des Rivières J (2017) Evolving Java-based APIs 2. https://wiki.eclipse.org/Evolving_Java-based_APIs_2
Dietrich J, Jezek K, Brada P (2014) Broken promises: an empirical study into evolution problems in Java

programs caused by library upgrades. In: Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE 14). pp 64–73. https://doi.org/
10.1109/CSMR-WCRE.2014.6747226

Dietrich J, Jezek K, Brada P (2016) What java developers know about compatibility, and why this matters.
Empirical Softw Engg 21, 3, 1371–1396. 1382-3256. https://doi.org/10.1007/s10664-015-9389-1

Dietrich J, Pearce D, Stringer J, Tahir A, Blincoe K (2019) Dependency versioning in the wild. In: 16th
International Conference on Mining Software Repositories (MSR ’19). pp 349–359. https://doi.org/10.
1109/MSR.2019.00061

Dig D, Johnson R (2006) How Do APIs Evolve? A Story of Refactoring: Research Articles. J Softw Mainte-
nance and Evol: Res Pract 18, 2, 83–107. 1532-060X https://doi.org/10.1002/smr.328

Düsing J, Hermann B (2022) Analyzing the direct and transitive impact of vulnerabilities onto different artifact
repositories. Digital Threats 3, 4, Article 38, 25 pages. https://doi.org/10.1145/3472811

El Emam K (1999) Benchmarking Kappa: Interrater agreement in software process assessments. Empir Softw
Eng 4(1999):113–133

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330214
https://asm.ow2.io/
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1109/ICSE48619.2023.00031
https://doi.org/10.1109/ICSE48619.2023.00031
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
https://doi.org/10.1109/TSE.2019.2918315
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1007/s10664-015-9389-1
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/3472811

 42 Page 42 of 44 Empirical Software Engineering (2025) 30:42

European Commission (2024) EU Cyber Resilience Act. https://digital-strategy.ec.europa.eu/en/policies/
cyber-resilience-act

Foo D, Chua H, Yeo J, Ang MY, Sharma A (2018) Efficient static checking of library updates. In: 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2018). ACM, pp 791–796. 9781450355735. https://doi.org/10.1145/
3236024.3275535

Fowler M (n.d.) Catalog of Refactorings. https://refactoring.com/catalog/
Fowler M, Beck K (1997) Refactoring: Improving the design of existing code. In: 11th European Conference.

Jyväskylä, Finland
Gosling J, Joy B, Steele G, Bracha G, Buckley A, Smith D, Bierman G (2021) The Java language specification.

Oracle America, Inc
Han J,DengS,LoD,ZhiC,Yin J,XiaX (2020)An empirical study of the dependency networks of deep learning

libraries. In: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). pp
868–878. https://doi.org/10.1109/ICSME46990.2020.00116

Harrand N, Benelallam A, Soto-Valero C, Bettega F, Barais O, Baudry B (2022) API beauty is in the eye
of the clients: 2.2 million Maven dependencies reveal the spectrum of client–API usages. J Syst Softw
184(2022), 111134. 0164-1212. https://doi.org/10.1016/j.jss.2021.111134

He H, He R, Gu H, Zhou M (2021) A Large-Scale Empirical Study on Java Library Migrations: Prevalence,
Trends, and Rationales (ESEC/FSE ’21). ACM, pp 478–490. 9781450385626. https://doi.org/10.1145/
3468264.3468571

Inc Tidelift (2022) Libraries.io - The Open Source Discovery Service. https://libraries.io/data
Java Community for Java and JVM developers (2020) Transition from Java EE to Jakarta EE. https://blogs.

oracle.com/javamagazine/post/transition-from-java-ee-to-jakarta-ee
Jayasuriya D, Terragni V, Dietrich J, Ou S, Blincoe K (2023) Understanding Breaking Changes in the Wild.

In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis
(, Seattle, WA, USA,) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA, pp
1433–1444. 9798400702211. https://doi.org/10.1145/3597926.3598147

JayasuriyaD, TerragniV,Dietrich J, BlincoeK (2024a)Understanding the Impact ofAPIs Behavioral Breaking
Changes on Client Applications. Proc. ACM Softw. Eng. 1, FSE, Article 56, 24 pages. https://doi.org/
10.1145/3643782

Jayasuriya D, Terragni V, Dietrich J, Ou S, Blincoe K (2024b). Replication Package For An Extended Study
of Syntactic Breaking Changes in the Wild. https://doi.org/10.5281/zenodo.7978506

Jezek K, Dietrich J, Brada P (2015) How Java APIs Break - An Empirical Study. 65, C, pp 129–146. 0950-5849
https://doi.org/10.1016/j.infsof.2015.02.014

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The Promises and Perils
of Mining GitHub. In: 11th Working Conference on Mining Software Repositories (Hyderabad, India)
(MSR 2014). Association for Computing Machinery, New York, NY, USA, pp 92–101. 9781450328630.
https://doi.org/10.1145/2597073.2597074

Kikas R, Gousios G, Dumas M, Pfahl D (2017) Structure and Evolution of Package Dependency Networks.
In: 14th International Conference on Mining Software Repositories (MSR ’17). IEEE, pp 102–112.
9781538615447. https://doi.org/10.1109/MSR.2017.55

Koçi R, Franch X, Jovanovic P, Abelló A (2019) Classification of Changes in API Evolution. In: 23rd Inter-
national Enterprise Distributed Object Computing Conference (EDOC ’19). IEEE, pp 243–249. https://
doi.org/10.1109/EDOC.2019.00037

Kula RG, De Roover C, German D, Ishio T, Inoue K (2014) Visualizing the evolution of systems and their
library dependencies. In: 2014Second IEEEWorkingConference onSoftwareVisualization. pp 127–136.
https://doi.org/10.1109/VISSOFT.2014.29

Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies?
Emp Softw Eng 23, 1, 384–417. 1382-3256. https://doi.org/10.1007/s10664-017-9521-5

Mohagheghi P, Conradi R, Killi OM, SchwarzH (2004) An empirical study of software reuse vs. defect-density
and stability. In: Proceedings of the 26th International Conference on Software Engineering (ICSE ’04).
IEEE Computer Society, USA, pp 282–292. 0769521630

Møller A, Nielsen BB, Torp MT (2020) Detecting Locations in JavaScript Programs Affected by Breaking
Library Changes. Proc. ACM Program. Lang. 4:1–25. https://doi.org/10.1145/3428255

Møller A, Torp MT (2019) Model-based testing of breaking changes in node.Js libraries. In: 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, pp 409–419. 9781450355728. https://doi.org/10.1145/3338906.
3338940

123

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3236024.3275535
https://refactoring.com/catalog/
https://doi.org/10.1109/ICSME46990.2020.00116
https://doi.org/10.1016/j.jss.2021.111134
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.1145/3468264.3468571
https://libraries.io/data
https://blogs.oracle.com/javamagazine/post/transition-from-java-ee-to-jakarta-ee
https://blogs.oracle.com/javamagazine/post/transition-from-java-ee-to-jakarta-ee
https://doi.org/10.1145/3597926.3598147
https://doi.org/10.1145/3643782
https://doi.org/10.1145/3643782
https://doi.org/10.5281/zenodo.7978506
https://doi.org/10.1016/j.infsof.2015.02.014
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1109/EDOC.2019.00037
https://doi.org/10.1109/VISSOFT.2014.29
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940

Empirical Software Engineering (2025) 30:42 Page 43 of 44 42

Mujahid S, Abdalkareem R, Shihab E, McIntosh S (2020) Using Others’ Tests to Identify Breaking Updates.
In: 17th International Conference on Mining Software Repositories (MSR ’20). ACM, pp 466–476.
9781450375177. https://doi.org/10.1145/3379597.3387476

Ochoa L, Degueule T, Falleri J-R (2022a) BreakBot. In ACM/IEEE 44th International Conference on Soft-
ware Engineering: New Ideas and Emerging Results (ICSE-NIER ’22). ACM. https://doi.org/10.1145/
3510455.3512783

Ochoa L, Degueule T, Falleri J-R, Vinju J (2022b) Breaking bad? Semantic versioning and impact of breaking
changes in maven central: an external and differentiated replication study. Empirical Softw. Engg. 27, 3,
42 pages. 1382-3256. https://doi.org/10.1007/s10664-021-10052-y

O’Connor C, Joffe H (2020) Intercoder Reliability in Qualitative Research: Debates and Practical Guide-
lines. International Journal of Qualitative Methods 2020:160906919899220. https://doi.org/10.1177/
1609406919899220

Olivera FR (2022) MVN Repository: repository stats. https://mvnrepository.com/repos
Oracle (n.d.) Java Virtual Machine Specification: Chapter 5. Loading, Linking, and Initializing. https://docs.

oracle.com/javase/specs/jvms/se8/html/jvms-5.html
Pashchenko I, Plate H, Ponta SE, Sabetta A,Massacci F (2018) Vulnerable Open Source Dependencies: Count-

ing Those That Matter. In: ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’18). ACM. 9781450358231. https://doi.org/10.1145/3239235.3268920

Pashchenko I, Plate H, Ponta SE, Sabetta A, Massacci F (2022) Vuln4Real: A Methodology for Counting
Actually Vulnerable Dependencies. IEEE Trans Softw Eng 48(5):1592–1609. https://doi.org/10.1109/
TSE.2020.3025443

Prana GAA, Sharma A, Shar LK, Foo D, Santosa AE, Sharma A, Lo D (2021) Out of sight, out of mind? How
vulnerable dependencies affect open-source projects. Empir Softw Eng 26(2021):1–34

Preston-Werner T (n.d.) Semantic Versioning 2.0.0. https://semver.org/
Raemaekers S, van Deursen A, isser J, (2017) Semantic versioning and impact of breaking changes in the

Maven repository. J Syst Softw 129(140–158):0164–1212. https://doi.org/10.1016/j.jss.2016.04.008
Raemaekers S, van Deursen A, Visser J (2014) Semantic Versioning versus Breaking Changes: A Study of the

MavenRepository. In: 14th InternationalWorkingConference onSourceCodeAnalysis andManipulation
(SCAM ’14). IEEE, pp 215–224. https://doi.org/10.1109/SCAM.2014.30

Salza P, Palomba F, Di Nucci D, D’Uva C, De Lucia A, Ferrucci F (2018) Do Developers Update Third-Party
Libraries in Mobile Apps? (ICPC ’18). Association for Computing Machinery, New York, NY, USA, pp
255–265. 9781450357142 https://doi.org/10.1145/3196321.3196341

Stringer J, Tahir A, Blincoe K, Dietrich J (2020) Technical Lag of Dependencies in Major Package Managers.
In: 2020 27th Asia-Pacific Software Engineering Conference (APSEC). pp 228–237. https://doi.org/10.
1109/APSEC51365.2020.00031

The Apache Software Foundation (2023) Apache Maven Project. https://maven.apache.org/
Wang Y, Chen B, Huang K, Shi B, Xu C, Peng X, Wu Y, Liu Y (2020) An Empirical Study of Usages, Updates

andRisks of Third-Party Libraries in Java Projects. In: InternationalConference onSoftwareMaintenance
and Evolution (ICSME ’20). IEEE, 35–45. https://doi.org/10.1109/ICSME46990.2020.00014

Wonnacott TH, Wonnacott RJ (1991) Introductory Statistics
Xavier L, Brito A, Hora A, Valente MT (2017) Historical and impact analysis of API breaking changes: A

large-scale study. In: 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER ’17). IEEE, pp 138–147. https://doi.org/10.1109/SANER.2017.7884616

Xia B, Bi T, Xing Z, Lu Q, Zhu L (2023) An Empirical Study on Software Bill of Materials: Where We Stand
and the Road Ahead. In: Proceedings of the 45th International Conference on Software Engineering
(Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, pp 2630–2642. 9781665457019. https://doi.
org/10.1109/ICSE48619.2023.00219

Zach (2021) What is Inter-rater Reliability. https://www.statology.org/inter-rater-reliability/
Zhang L, Liu C, Xu Z, Chen S, Fan L, Chen B, Liu Y (2022) HasMy Release Disobeyed Semantic Versioning?

Static Detection Based on Semantic Differencing. In: EEE/ACM International Conference on Automated
Software Engineering (ASE ’22). ACM. 9781450394758. https://doi.org/10.1145/3551349.3556956

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/3379597.3387476
https://doi.org/10.1145/3510455.3512783
https://doi.org/10.1145/3510455.3512783
https://doi.org/10.1007/s10664-021-10052-y
https://doi.org/10.1177/1609406919899220
https://doi.org/10.1177/1609406919899220
https://mvnrepository.com/repos
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1109/TSE.2020.3025443
https://doi.org/10.1109/TSE.2020.3025443
https://semver.org/
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1145/3196321.3196341
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://maven.apache.org/
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/SANER.2017.7884616
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1109/ICSE48619.2023.00219
https://www.statology.org/inter-rater-reliability/
https://doi.org/10.1145/3551349.3556956

 42 Page 44 of 44 Empirical Software Engineering (2025) 30:42

Authors and Affiliations

Dhanushka Jayasuriya1 · Samuel Ou1 · Saakshi Hegde1 · Valerio Terragni1 ·
Jens Dietrich2 · Kelly Blincoe1

B Dhanushka Jayasuriya
djay392@aucklanduni.ac.nz

Samuel Ou
sou323@aucklanduni.ac.nz

Saakshi Hegde
sheg158@aucklanduni.ac.nz

Valerio Terragni
v.terragni@auckland.ac.nz

Jens Dietrich
jens.dietrich@vuw.ac.nz

Kelly Blincoe
k.blincoe@auckland.ac.nz

1 University of Auckland, Auckland, New Zealand
2 Victoria University of Wellington, Wellington, New Zealand

123

http://orcid.org/0000-0001-6172-0472

	An extended study of syntactic breaking changes in the wild
	Abstract
	1 Introduction
	2 Background
	3 Study Design and Results
	3.1 Experiment Setup
	3.2 RQ1: Dependency Up-To-Dateness
	3.2.1 Method
	3.2.2 Results

	3.3 RQ2: Impact of BCs
	3.3.1 Method
	3.3.2 Results

	3.4 RQ3: Common BCs
	3.4.1 Method
	3.4.2 Results

	3.5 RQ4: Library Compliance to the Semantic Versioning Scheme
	3.5.1 Method
	3.5.2 Results

	3.6 RQ5: Transitive Dependency Usage
	3.6.1 Method
	3.6.2 Results

	3.7 RQ6: Detecting BCs Related to Transitive Dependencies
	3.7.1 Method
	3.7.2 Results

	3.8 RQ7: Discussions of Transitive Dependencies
	3.8.1 Method
	3.8.2 Results

	4 Discussion
	4.1 Implications of the Study
	4.1.1 Implications for Library Developers
	4.1.2 Implications for Client Developers
	4.1.3 Implications for Researchers

	4.2 Catalog of Changes to Remediate and Avoid BCs Due to Transitive Dependencies
	4.2.1 Changes proposed for Client Projects
	4.2.2 Changes proposed for Library Projects
	4.2.3 Changes Proposed for Both Client and Library Projects

	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

