
Highlights
Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using Gender-
Mag
Faith Culas,Amisha Singh,Atharva Arankalle,Priyanka Dhopade,Kelly Blincoe

• Novel exploration of inclusivity bugs in debugging tools through cognitive style differences.
• Applying GenderMag in a practical debugging environment.
• Empirical evidence from think-aloud sessions reveals inclusivity bugs in debugging, providing insights into how to

make debuggers more cognitively inclusive.

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity
Perspective using GenderMag
Faith Culas∗, Amisha Singh, Atharva Arankalle, Priyanka Dhopade and Kelly Blincoe
Human Aspects of Software Engineering Lab, Waipapa Taumata Rau | University of Auckland, New Zealand

A R T I C L E I N F O
Keywords:
debugging
cognitive styles
software engineering
diversity and inclusion
software tools and practices

A B S T R A C T
Context: Debugging is a critical practice in software engineering that enables software engineers
to ensure the correctness of code by identifying and resolving bugs. It also benefits newcomers as
it helps them go through the codebase, understand its structure, and learn about its functionality.
Recent research has uncovered that some software engineering tools are not well suited to all ways
of thinking, imposing an additional cognitive overhead on individuals whose cognitive styles are not
well-supported by the tool. While biases have been explored in other software tools, little is known
about whether debugging tools exhibit cognitive biases and introduce “inclusivity bugs”.
Objective: This paper addresses this gap by examining inclusivity bugs that newcomers encounter
when using the PyCharm debugger.
Methods: In this study, we performed a controlled lab experiment where we observed 24 software
engineering students with little to no experience as they used the PyCharm debugger for a set of tasks.
We used a think-aloud protocol to capture participants’ thoughts throughout the experiment. Then,
we conducted a thematic analysis, guided by our research question, to identify potential biases in the
tool. We used the GenderMag framework to examine the relationship between cognitive style and the
inclusivity bugs.
Results: We detail our findings on 21 inclusivity bugs which are caused by 2 main reasons:
discoverability and learnability. We identified trends that showed individuals with low self-efficacy,
low motivation, risk-averse tendencies, and those who prefer to learn by processes and gather
information selectively were the ones who faced the most challenges.
Conclusion: The findings provide insights into how debuggers can be made more inclusive. They also
highlight the need for continuous evaluation and adaptation of SE tools and practices to ensure they
meet the needs of all users with diverse cognitive styles to ensure fairness.

1. Introduction
Software engineering (SE) is not just about writing code.

It is a discipline that relies on various tools, practices, and
standards to build software systems and to maintain them
over time. Over the years, many software engineering tools
and practices have evolved to assist software engineers in
designing, building, maintaining, and improving software
systems. There has been extensive research on SE tools and
practices, focusing on identifying issues and recommending
improvements to improve the way we engineer software
(e.g., [1, 2]). However, recent studies have uncovered a pre-
viously overlooked factor: cognitive biases in some widely
used SE tools, such as GitHub [3, 4, 5] and Google’s internal
code review tool [6]. For example, a study of GitHub found
barriers, including lack of visibility, lack of feedback, and
information overload, that impacted people with certain
cognitive styles [3]. Cognition is the “collection of mental
processes and activities used in perceiving, remembering,
thinking, and understanding, and the act of using those
processes”. Research from the field of psychology has shown
people have various cognitive styles [7].

∗Corresponding author
fcul804@aucklanduni.ac.nz (F. Culas); amishas171@gmail.com (A.

Singh); atharvanz@gmail.com (A. Arankalle);
priyanka.dhopade@auckland.ac.nz (P. Dhopade); k.blincoe@auckland.ac.nz
(K. Blincoe)

ORCID(s):

There are many cognitive processes involved in soft-
ware engineering [8]. As a result, if the tools we use to
engineer software are not cognitively inclusive, individuals
with certain cognitive styles can experience barriers and
incur a “cognitive tax”. In this context, “inclusivity bugs”
refer to features of a tool that do not adequately support
users with diverse cognitive styles. We adopt the same
definition as Guizani et al. [5], that is, if groups of users
ultimately complete their tasks but face disproportionate bar-
riers along the way, such as confusion, missteps, or the need
for workarounds, those barriers are considered inclusivity
bugs. In this paper, we refer to a bug in the code as “bug”,
while we refer to a problem impacting the inclusivity of the
software tool as an “inclusivity bug” for clarity.

GenderMag [9] is a validated method to identify inclu-
sivity bugs in software. It leverages personas that consider
five different cognitive characteristics known as the Gender-
Mag facets: Motivation, Self-efficacy, Information process-
ing style, Learning style, and Attitude towards Risk. Gen-
derMag has proven to be effective at identifying inclusivity
bugs in software tools [4, 10] including through large-scale
industry studies [6]. One study on the GitHub interface [3]
identified 12 inclusivity bugs across four common tasks
done by newcomers. Prior research indicates that inclusivity
bugs disproportionately affect certain cognitive styles and
women [3, 4, 5, 9, 6]. While GenderMag has been applied
to several software tools to find inclusivity bugs, most tools
used in the software engineering process have not been

F. Culas et al.: Preprint submitted to Elsevier Page 1 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

studied from a cognitive inclusivity lens. There have been
calls to action to investigate how to make software tools more
inclusive [11].

In this study, we examine the inclusivity of a popular
software debugger. Debugging is essential in software de-
velopment for identifying and resolving bugs and issues.
Debugging software is a complex task that can be time-
consuming, often requiring more effort than creating the
software [12]. Those new to debugging often find it difficult
and frustrating [13]. Debugging tools (or debuggers) are
integrated into popular development environments, such as
Visual Studio Code and JetBrains’ integrated development
environments (IDEs). Debuggers allow software engineers
to examine the state of a running software program. We
examine the inclusivity of the PyCharm debugger through
a think-aloud lab experiment to gather initial perceptions of
the tools from newcomers (those with little or no debugging
experience). PyCharm is a popular Python IDE developed by
JetBrains with an integrated debugger. Our study was guided
by the following research questions:
• RQ1: What inclusivity bugs do newcomers encounter

when debugging with PyCharm?
• RQ2: How do the inclusivity bugs identified in the debug-

ger relate to the GenderMag facets?
The results of the experiment revealed 21 inclusivity

bugs related to 13 features of the debugger caused by two
main issues: discoverability and learnability. Discoverabil-
ity issues are related to barriers in finding features within the
debugger, and learnability issues are related to difficult to use
features. The findings illustrate potential ways debugging
can be made more inclusive.

2. Background
2.1. Cognitive styles

Systematic differences in how people process informa-
tion, solve problems, and make decisions, referred to as
cognitive styles, emerged as a research focus in the mid-
20th century. Work done by psychologists like Herman
Witkin [14], and Jerome Kagan [15], helped establish that
these cognitive styles are not about ability but about pre-
ferred approaches to thinking. Research from subsequent
decades revealed that cognitive styles are shaped by com-
plex interactions of sociocultural context, educational ex-
periences, and even gender. Gender research showed that
socialization practices, not biological sex itself, influence
whether individuals develop more comprehensive versus
selective information processing styles, with studies by psy-
chologists highlighting how stereotypes and expectations
shape cognitive development from childhood [16, 17, 18].
2.2. GenderMag

GenderMag is a method that helps to identify inclusivity
barriers in software products by considering cognitive style
of potential users [19]. It was developed based on cogni-
tive style research from the field of psychology that exam-
ined gender differences in problem-solving approaches. The

method is based on personas namely, Abi, Pat, and Tim
to portray differences in five cognitive facets: Motivations
to use software, Information Processing Styles, Learning
Style, Computer Self-Efficacy, and Attitudes toward Risk
(see Table 1 for explanations of these different facets). Abi
represents users with low self-efficacy, low motivation, who
are risk-averse, have a process-oriented learning style, and
prefer to gather information comprehensively before taking
action. In the GenderMag method, evaluators conduct a
cognitive walkthrough of a software product by considering
how a persona would use the software. Abi is the most
used persona as these traits often reveal inclusivity bugs
since many software products are designed for users on the
other end of the spectrum for each of these cognitive style
facets. While GenderMag uses personas like Abi and Tim to
represent two ends of the cognitive spectrum, it is important
to note that cognitive styles are not binary. Neither is there
a superior or better style; individuals lie in a continuum of
different styles for each facet.

Using personas can be beneficial in helping users per-
ceive a persona as a real person and empathise with the per-
sona, but there are also limitations [20]. Particularly in the
case of the GenderMag framework, personas can reinforce
gender stereotypes, but the authors emphasize that personas
were not designed to reinforce stereotypes but to compare
differences among them based on the gender differences
found in empirical studies. To further mitigate the effects
of stereotyping, GenderMag uses gender-neutral persona
names (e.g., Abi, short for either Abigail or Abishek) and
provides multiple photos to represent each persona1. Using
multiple photos instead of one promotes gender inclusive-
ness and at the same time does not reduce users’ engagement
with the persona [21]. GenderMag supports customisation
of personas as well [22]. In our study, we do not employ
the GenderMag walkthrough, which involves role-playing
using these personas. Instead, we use real participants to
examine how people interact with the debugger in a lab
experiment and use the GenderMag framework only as a lens
for analysis.

3. Related Work
3.1. Cognition in Software Engineering Tools and

Practices
One lens that has been considered for improving soft-

ware tools is cognitive inclusivity. Research examining cog-
nitive inclusivity in software tools has been explored to see
how users interact with tools such as GitHub [4, 3], Stack
Overflow [2], Visual Studio [9], development tools [23, 22],
and various custom tools like Google’s internal code re-
view tool [6]. These studies identified issues, or “inclusivity
bugs”, that create barriers for individuals with diverse cog-
nitive styles. One study found that software engineers spend
14% of their time fiddling with the UI of software tools,
highlighting the need for more efficient UIs for software
tools [24].

1https://gendermag.org/foundations.php

F. Culas et al.: Preprint submitted to Elsevier Page 2 of 25

https://gendermag.org/foundations.php

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Table 1
GenderMag cognitive facet description for each persona [19]

Facet Persona description
Motivation • Abi: uses technology only as needed for the task. Prefers familiar features

• Pat: exhibits both Abi and Tim characteristics
• Tim: uses technology to learn new features

Self-efficacy • Abi: lower self-efficacy than their peers. Often blames self and might give up as
a result.
• Pat: medium self-efficacy. Keeps trying for a while when problems arise.
• Tim: higher self-efficacy than peers. Usually blames technology when problems
arise. Tries multiple ways before giving up.

Information processing style • Abi and • Pat: Gather and read comprehensively before taking action.
• Tim: Reads selectively. Follows any cues and backtracks.

Learning style • Abi: process oriented
• Pat: exhibits both Abi and Tim characteristics. Tries new features but does so
mindfully.
• Tim: tinkerer but this can be distracting

Attitude towards Risk • Abi and • Pat: risk-averse.
• Tim: risk-taker. Explores new features and enjoys doing so sometimes.

A study on GitHub [3] identified 12 inclusivity bugs
which impacted the Abi persona. The GitHub interface was
subsequently redesigned and evaluated using 75 newcomers,
resulting in an increase in the completion rate of the experi-
ment tasks from 67% to 97% for individuals whose cognitive
styles were unsupported in the original design.

The Abi persona is often attributed to finding the most
inclusivity bugs [25]. Although it may cause concern that
fixing inclusivity issues from an Abi perspective could leave
newcomers with non-Abi traits less supported, results indi-
cate that the performance of all participants improved when
inclusivity bugs are fixed [3]. This underscores the effec-
tiveness of GenderMag and demonstrates how addressing
inclusivity bugs can enhance performance for the entire
population.

Furthermore, studies have shown that cognitive styles
often cluster by gender, leading to inclusivity bugs that
disproportionately affect women [4, 2]. Burnett et al.[9] em-
phasized the importance of considering gender differences
and thus cognitive differences when designing tools, but
argued that such changes do not have to favour one gender
at the expense of another. An effective example of achieving
this is demonstrated by the work of Murphy-Hill et al. [6].
They found that the redesigned edit feature in Google’s
internal code review tool improved its discoverability for
both men and women overall.

While some inclusivity bugs have been found in some of
existing software engineering tools, very few tools have been
studied from this lens. There is a need to study the cognitive
inclusivity of more software engineering tools to improve
their usability for all cognitive styles.
3.2. Novice Debugging

Debugging is an essential practice that can help develop-
ers to read and understand code [26]. Novice software engi-
neers often struggle with debugging [13, 23]. Also, novices

employ different debugging strategies and face greater dif-
ficulty compared to experienced software engineers [27].
In a debugging experiment [23], some participants skipped
through the code or entire nested loops instead of stepping
through the program carefully. This made it challenging
to track variables, leading to confusion as they navigated
the learning curve of understanding the debugger. Another
study found that some students lacked confidence in their
debugging skills and the fixes they applied [28]. Although
it is well known that novices struggle with debugging, it is
rarely taught or given limited emphasis in courses [29, 30].
There has been research in improving debugging tools for
newcomers such as implementing a reverse execution fea-
ture as debugging involves tracing back from the failure to
identify its root cause [31].

Research examining debugging from a cognition per-
spective is fairly limited. An eye-tracking debugging study
reported a strong correlation between debugging skills and
cognitive activities [32]. Another research study on debug-
ging strategies found gender differences in information gath-
ering, with females being more comprehensive and males
more selective before fixing bugs [33]. They explain this
behaviour using the selectivity hypothesis that predicts that
women gather information comprehensively before acting
upon it. While these findings point to different cognitive
approaches to debugging, the role that debugging tools play
in supporting or hindering remains unexplored, especially
when considering the underlying cognitive differences be-
tween individuals. If there are cognitive biases incorpo-
rated in debuggers, this can introduce a “cognitive tax” that
disproportionately affects certain cognitive styles, affecting
debugging performances unfairly. Our study examines de-
buggers from a cognitive inclusivity perspective to fill this
gap.

F. Culas et al.: Preprint submitted to Elsevier Page 3 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

4. Methodology
To answer our research questions, we employ a think-

aloud protocol [34] in a lab experiment, where participants
performed six debugging tasks. The think-aloud protocol
requires the participant to verbalize their thoughts so that the
observer/interviewer can follow and understand the thought
process of the participant. A qualitative approach was used
to answer our research questions to explore the complexity
of the problem in depth and further understand how partici-
pants interacted with the debugger.

In the following section, we explain our study design and
analysis methodology. We first conducted a pilot study of all
tasks (see Section 4.2 for details on pilot study), followed
by the main experiment. The analysis was conducted in
parallel with the experiments to ensure that data saturation
was reached before concluding.
4.1. Study design

The think-aloud lab experiment consisted of a one-hour,
individual session for each participant. The experiment ses-
sion began with a short explanation of the goal of the
study and the expected flow of the session. The session was
divided into three sections: the warm-up, observation, and
interview sections. Each section, described below, was semi-
structured, with prompts to guide the discussion, but, based
on the responses, additional questions were asked to gather
more detail or insights into the participants’ responses, al-
lowing unforeseen information to be collected as well.

1) Warm-up: The warm-up section was designed to
take about five minutes to make the participant comfortable
and settle in. In this section, we asked a few introductory
questions, such as: “Are you enjoying your degree so far?”,
“What are your pronouns?”, “What career do you aspire to
go into after this degree?”, and “What do you know about
debugging code?”.

2) Observation: The main section is the observation
where the participant was required to complete six debug-
ging tasks using the PyCharm Community Edition IDE. The
six tasks had to be completed in order. Each task involved
one to two bugs inserted into a single python code file. The
code used in these tasks was adapted from an prior code
comprehension study [35]. This code was selected because
it was validated by that prior study to be complex enough to
be non-trivial, yet still understandable in under 30 minutes,
ensuring participants would not become fatigued. The prior
study was conducted at the same university (University of
Auckland), so we drew from a similar participant pool. Bugs
were manually inserted in the code for each task by the
research team (see below Listing 1 for a small code snippet
of one of the tasks).

1 # This function determines if the date that is

inputted is a valid date or not

2 # Day , month and year are numeric inputs to the

function

3 def is_valid_day_in_month(day , month , year):

4 month_length = LENGTH_OF_MONTH[month]

5 if month == FEBRUARY and is_leap_year(year):

6 month_length + 1

7 return day > 0 and day < month_length

Listing 1: Task 2 Python code
The bugs inserted reflected common errors made by

novice software engineers, such as issues with loop counters
and conditional operators, as identified in a three-decade
literature review by Alzahrani et al. [36]. For example, in
line 4 of Listing 1, we see a common error which is array
indexing. Unit test cases were also added since using test
cases can help participants both identify the cause of the bug
and to verify that the program behaves correctly after the bug
fixes. The six tasks were as follows:

Task 1: In the first task, the participants had to fix one
small bug in a single line of code. The goal of Task 1 was
for the participants to familiarise themselves with the IDE,
the think-aloud protocol, and the experiment flow. They were
not required to use the debugger to fix the bug.

Task 2: In the second task, which was slightly more
complex than Task 1, the participants had to fix two bugs.
While using the debugger would help the participants to
observe the state of the program, no explicit instruction was
given to use the debugger to find the bugs in this task. The
goal of Task 2 was to enable us as researchers to observe each
participant’s debugging methodology and approach, without
being given explicit instruction to use the debugger available
in PyCharm. This allowed us to observe how they completed
the task in a way that felt natural and comfortable to them.

Task 3: In the third task, the participants were intro-
duced to the debugger in PyCharm, if they hadn’t already
used it. This task did not require the participants to fix
any bugs in the code but rather allowed us to observe how
successful each participant was in finding, running, and
using the debugger to suspend the program and observe the
state of the code at a particular point in execution.

Task 4: This task was a continuation of the same code
in Task 3, with the goal of observing how successful each
participant was in using basic debugger features (e.g., “step
over”), examining variables, and fixing the bugs planted in
the code. This task had two bugs to be fixed.

Task 5: The fifth task was designed to be the most chal-
lenging. Using the debugger, participants were required to
find and fix two bugs planted in the code. The key difference
in this task was that the bugs planted in the code were in a
nested function. Therefore, we were interested in observing
how successful each participant was in using more complex
debugger features, such as “step in” and “step out”.

Task 6: In the final task, each participant was prompted
to explore the PyCharm debugger independently and further
investigate any features they wanted to on their own. The
purpose of the task was to observe how each participant used
the debugger and its features without a specific end goal in
mind, as well as to identify which features participants were
drawn to and their reactions to these features.

3) Interview: The third and final section of the experi-
ment, the interview, was designed to enable the participant

F. Culas et al.: Preprint submitted to Elsevier Page 4 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

to reflect on the tasks and also to clarify things that hap-
pened during the observation. Open-ended questions were
used (e.g., “How did you find the overall experience of
debugging?”, “What did you find the most challenging about
debugging or using the debugger?”).

Our replication package contains full details of the study
design, including the python code used in the debugging
tasks as well and the full list of interview questions [37].
4.2. Pilot Study

Before recruiting participants, we conducted a pilot
study to assess the feasibility of the experiment design and
ensure that the tasks were both achievable within the given
time and relevant to the research objectives. The pilot study
included four participants, all of whom were final year un-
dergraduate or first year postgraduate software engineering
students with limited or no experience in debugging. These
participants were recruited prior to sending out invitations to
the wider networks for the actual study. The insights gained
from the pilot study resulted in us modifying some aspects
of the experiment design. The most significant changes were
done to Task 1 and Task 4.

Task 1, although short and intended as an introductory
task, was time-consuming for the pilot study participants due
to the complexity of a conditional statement in the code used
for the task. As a result, the code was refactored to improve
clarity by simplifying the conditions. For Task 4, the change
was to introduce an additional bug, as the original bug was
too easy to identify, which contradicted the goal of the task.

The data from the pilot study was not used in our final
analysis.
4.3. Ethical Considerations

The study was approved by the University of Auckland
Human Participants Ethics Committee (UAHPEC). Partic-
ipants were provided with a Participant Information Sheet
(PIS), which outlined the purpose of the study, how partici-
pants would be involved in the experiment, and their right to
withdraw at any time. Participation was entirely voluntary.

Participants provided informed consent through a signed
hard-copy consent form before taking part in the study. All
information extracted from the sessions was de-identified,
removing all personal details and stored without referencing
any identifiable individuals. Each participant was assigned
an ID (e.g. P1). Any potentially identifying information
found during the anonymization process was kept confiden-
tial and accessible only to the research team.

Participants were given a $20 voucher as a token of
appreciation for their time.
4.4. Participant Recruitment

The study was advertised in university forums and using
flyers among software engineering and computer science
students, at the University of Auckland. Anyone interested
in taking part in the experiment was asked to fill out a short
questionnaire to express their interest and provide informa-
tion about themselves. This questionnaire included questions
to assess their cognitive style and questions about their

gender and programming and debugging experience. Gender
was collected since prior research has found that women are
often disproportionately disadvantaged by cognitive biases
in software tools [10].

To assess participants’ cognitive style, we used the ques-
tions from the GenderMag facet questionnaire, which has
been validated in prior research [38]. This includes 14 ques-
tions, each of which is answered using a 9-point Likert agree-
ment scale. One of the statements in the questionnaire, for
example, is “I want to get things right the first time, so before
I decide how to take action, I gather as much information as
I can”, which is used to assess the participant’s information
processing style.

A full copy of the recruitment questionnaire is available
in our replication package [37].
4.5. Participants

From the 43 responses we received to the recruitment
questionnaire, we invited 40 participants to participate in
the experiment. The same invitation was distributed in three
rounds through software engineering and computer science
university forums and flyers. Each recruitment round lasted
approximately one month, taking place between October
2024 and March 2025, with a break during the Decem-
ber–January university holiday period. We only selected
participants with some programming experience but no or
minimal debugging experience based on their questionnaire
responses, as our focus was on newcomers encountering
inclusivity bugs. Gender and cognitive styles were also
considered for participant selection as we wanted a diverse
range of cognitive styles across the participants.

The invited participants were contacted through email
and were asked to book a suitable time for the experiment.
Out of the 40 who were invited, 12 cancelled and did not
schedule a time with us. Three participants did not show up
despite having booked a time. One participant was excluded
from the analysis because they demonstrated higher experi-
ence during the study. We included postgraduate students in
our recruitment criteria as well. The University of Auckland
has a diverse student body, with many international students,
some of whom enter postgraduate study directly after com-
pleting a bachelor’s degree. Also, the software engineering
bachelor’s degree at the University of Auckland is industry-
focused. So even undergraduate students are taught debug-
ging briefly. The one participant who demonstrated more
extensive experience and was excluded from the analysis was
actually an undergraduate. We only included students with
little or no debugging experience. Postgraduate students also
come from a wide range of backgrounds, such as computer
systems or machine learning, often with minimal debugging
experience. We also included two postgraduate students
in our pilot study to assess whether postgraduate students
would also be suitable participants.

In the first two rounds, due to a lower number of will-
ing participants, we did invite three participants who had
selected “I use them very often” when asked about their
debugger experience. During analysis, we excluded one

F. Culas et al.: Preprint submitted to Elsevier Page 5 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

participant who clearly had prior debugger experience. The
other two had rated their experience higher but appeared to
overestimate their familiarity, still behaving like newcomers
when using the debugger. In the last round of recruitment,
we only invited participants who reported minimal or no
experience with debuggers. Three participants were declined
in the final round of data collection. Two were declined since
they reported frequent use of the debugger. In addition, one
participant, who identified as a man, was declined to improve
gender diversity of the participant sample.

Among the 24 participants who were included in the
final analysis, 10 identified as women, 13 as men, and one
chose not to disclose their gender. Overall, while there were
varying levels of programming experience, all participants
included in the study had little to no experience in de-
bugging. Four participants had never used Python but had
experience with other languages such as Java, 11 used it
sometimes, and nine used it very often. For debugging tools,
eight had never used them, 14 used them sometimes, and
the two who reported using them very often had minimal
overall experience and were included in the analysis. Sixteen
of the participants were undergraduate students and eight
were either first or second year postgraduate students.
4.6. Study Execution

The study was conducted in person in the Human As-
pects of Software Engineering Lab at the University of Auck-
land. The sessions were individual, and the participant and
observers were present in the same room. After receiving
participant consent, data was recorded through audio and
screen recording of the device used to complete the debug-
ging tasks, allowing researchers to review the interactions
the participants had with the PyCharm debugger. Sessions
were held over the course of 3 months. There were a total
of 24 sessions, with 20 hours of recorded audio and screen
recording.

The experiment sessions were conducted in three rounds
with analysis occurring iteratively between each round. We
stopped collecting data when no new inclusivity bugs were
identified in a round and saturation was reached. During
the first round, two undergraduate students jointly observed
five participants. In subsequent rounds, participants were
observed by a single observer (a PhD student). To ensure
consistency across rounds, the PhD student joined one of
the sessions of the first round as a distant observer. The
second round included 13 participants, and the third round
included six participants. According to Guest et al. [39], in
qualitative analysis, saturation typically occurs within the
first twelve interviews, although basic elements for meta-
themes can be observed as early as six interviews. We
reached saturation after 18 experiments (the last experiment
of the second round), when no new inclusivity bugs were
identified. To confirm saturation, we conducted a third round
of experiments in March 2025. No new inclusivity bugs
emerged in the last round.

4.7. Data Analysis Methodology
To answer our first research question, we conducted a

reflexive thematic analysis of experiment transcripts to iden-
tify inclusivity bugs in the debugger, which can be barriers to
effective use of the tool. For the second research question, we
analysed the data through the lens of GenderMag to identify
trends in cognitive styles disproportionately impacted by the
tool’s design.
4.7.1. Reflexive Thematic Analysis

Since the initial publication by Braun et al. [40] on
thematic analysis (TA), the term has evolved due to the
nature of how qualitative analysis can be creative and flexible
but also subjective to the knowledge of the researcher. So
TA has now been revised and re-termed as reflexive TA. Our
study is grounded in an interpretivist philosophical stance,
recognizing that software engineering research involves un-
derstanding not just the technical aspects but also the hu-
man behaviour that shapes software development processes.
Thus, reflexive TA is well suited. We did not use code reli-
ability measures because, consistent with the principles of
reflexive thematic analysis, we view researcher subjectivity
as a valuable resource in knowledge production rather than
a bias to be minimized, and coding reliability metrics are
meaningless with this epistemological stance [41].

First, we generated transcripts from the recorded ses-
sions. The transcripts were generated by listening to the
audio recordings alongside the screen recordings, capturing
both the verbal responses and actions of the participants. For
example: <starts reading code again from line 1 including
class variables> “Yeah. OK unit test January, February, ...,
December. That seems to be in order. length of the month.”
Actions were recorded inside <>. This was necessary be-
cause the experiment focused on participants’ interactions
with the user interface, and some insights could only be fully
understood by linking verbal responses to on-screen actions.
To ensure the quality of the transcripts, the recordings were
watched at least twice.

Next, we created a relevant data set from the generated
transcripts. This was done by applying the sensemaking
model for end-user debugging [33] adapted from Pirolli et
al. [42]. The model highlights three sensemaking loops:
the bug fixing sensemaking loop, environment sensemaking
loop, and the common sense/domain sensemaking loop. The
model also includes a sub-loop known as the foraging (in-
formation gathering) sub-loop. We applied all components
of the model except the domain sensemaking loop, as it
focuses on reasoning that involves recalling domain-specific
knowledge. Since the tasks for the lab experiment involved
basic leap year calculations and did not require domain
knowledge, this loop was not relevant in this context.

Using the model, when preparing the data set, we cat-
egorized events in the session timeline as bug fixes, in-
teractions with the environment/tool, and foraging aligning
with the relevant sensemaking loops. There were a large
number of foraging events, so we further categorized these
events based on where participants searched for information:

F. Culas et al.: Preprint submitted to Elsevier Page 6 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Figure 1: Thematic analysis process (both inductive and deductive)

foraging code, foraging test cases, foraging logs, foraging
using debugger, and foraging documentation. For example,
when participants read lines of code, including code com-
ments, the activity was recorded as “foraging code”. When
participants tried to understand the code using the debugger,
the activity was recorded as “foraging using debugger”. We
included only the level of detail necessary for our analysis
in the extracted data set; for instance, P18 after her bug fix
ran the test cases and was surprised all test cases passed as
she assumed she had to fix two bugs. She spent 6 minutes
evaluating the test cases, even though her understanding of
the code was correct and all test cases passed. This was
simply recorded as <P18: sounds surprised as all test cases
pass.>“That because I thought I need to do 2 fixes, but
it fixed both test cases. Now I’m going to check whether
that’s correct or not?"<participant checks two test cases
individually going through the code linearly by mentally
calculating and then says>“Peace of Mind. OK. OK. OK.”
All activities in the transcript were categorised into events
as bug fixes, interactions with the tool, or one of the types of
foraging before moving onto further analysis. See the left
panel of Figure 1 for an example of a transcript with the
events categorised.

After generating the transcripts and extracting the rel-
evant dataset, we used thematic analysis to analyse our
data, following the six-phase process outlined by Braun and
Clarke [40].

1) Familiarizing yourself with your data: During tran-
script generation described above, the coder (the first author)

watched all recordings at least twice. She also read and re-
read the extracted data set to become familiar with the data.

2) Generating initial codes: When generating the initial
codes we used a combination of both deductive (research
question driven) and inductive (data driven) approaches.

The deductive codes were related to the features of the
debugger. The barriers encountered during interaction with
the tool event were iteratively coded into 13 distinct features
of the PyCharm debugger driven by our first research ques-
tion focusing on interactions with the debugger. Participants
interacted with several debugger features, such as adding
breakpoints, starting the debugger, viewing variables, and
examining test results.

Alongside with the deductive codes, we also applied
an inductive approach to understand why certain features
became barriers. When coding we considered both seman-
tic and latent levels. In thematic analysis, semantic level
codes capture the explicit content of the data and the latent
level codes go beyond what is said to interpret underlying
meanings. For example, when looking for the debugger start
button, P1 reached out for help and when shown how to, says
“Ah I just don’t see that”. This was eventually coded into
“hidden in plain sight feature”. To explain an example from
a latent level, P20 confused about why the wrong task was
running said: “You know what I was confused about. If I go to
task three and four and I start playing, why is it still playing
task five? Is it just always gonna save the previous one?”
This was due to the participant not knowing that the run
configurations had changed. This was interpreted as “lack

F. Culas et al.: Preprint submitted to Elsevier Page 7 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Table 2
Number of participants across each facet tagged as Abi-like, Pat-like, and Tim-like. For the Pat-like participants, we show a
further breakdown showing where they fall in the quartiles.

[min-Q1] (Q1-Q2) Q2 (Q2-Q3) [Q3-max] Total no. of
Facet Abi Pat (towards Abi) Pat Pat (towards Tim) Tim participants

Motivation 6 5 3 0 10
}Self-efficacy 6 5 2 2 9

Information processing style 7 4 4 3 6 24
Learning style 6 4 5 1 8

Attitude towards risk 6 6 0 6 6
Total 31 24 14 12 39

of feedback from tool” due to no response from the tool
indicating the user that run configurations have changed.

In our study, the first author coded the extracted data set.
The coder primarily relied on transcripts but occasionally
re-watched participant videos to clarify specific moments
when additional context was needed. Rather than treating
the researcher’s perspective as a bias to eliminate, reflex-
ive TA acknowledges that their experiences, interests, and
professional background can provide valuable insights into
the data. To support transparency, we have also included a
positionality statement (see Section 4.7.4).

3) Searching for themes: In this phase, the initial codes
were sorted and grouped into higher-level initial themes.
Since we had both semantic and latent codes, we searched
for both explicit and interpretive themes.

For example, the scenario mentioned above, the code
“hidden in plain sight” contributed to the initial theme of
“lack of visual cues”. Codes “poor labelling” and “lack of
feedback from tool” also contributed to the initial theme of
“lack of visual cues”. The code “lack of feedback from tool”
also contributed to another theme “ unclear feedback to make
sense” if the lack of feedback made it hard to make sense of
what the feature does but not in finding the feature (see the
right bottom panel of Figure 1).

4) Reviewing themes: During this phase, the themes were
reviewed and, based on their relevance to the research ques-
tion, some were merged, split, or discarded. For example,
"lack of visual cues", "information overload", "no visibility",
all were coded into one high level theme - discoverability.
This was done through iterative discussions between the
authors.

5) Defining and naming themes: All themes were defined
with descriptions of their scope and content. The names
were selected to capture the core essence of each theme. All
authors reviewed the theme names and their descriptions.

6) Producing the report: The final phase involved se-
lecting example quotes for each theme and explaining the
themes in the manuscript. Again, this was reviewed by all
authors.
4.7.2. GenderMag Analysis

To identify the cognitive style of each participant, we
used their responses to the GenderMag facet questionnaire to
calculate a score for each of the five facets [38]. After reverse
scoring any negatively worded questions, the scores are

summed for each facet. While the original scoring method
allocated anyone over the median as Tim-like and anyone
under the median as Abi-like [38], we choose to also include
Pat-like to have a more detailed view of the facets. For each
facet, participants were labelled as Abi-like if their score
was less than or equal to the first quartile (25%) and Tim-
like if their score was greater than or equal to the third
quartile (75%). Those whose scores fell between the first
and third quartiles were labelled as Pat-like. The Pat-like
category reflects a range of traits, as participants may exhibit
a mix of Abi-like and Tim-like tendencies. For clarity, we
described these participants as leaning “towards Abi” or
“towards Tim,” without allocating them fully to either Abi
or Tim (see Table 2).

Even though GenderMag brought to life three facets,
Abi, Pat and Tim, they also remind the users that these facet
values lie in a continuous scale and there are a range of facets
that can be considered [38]. While Pats have a unique mix of
both Abi and Tim traits, for 2 facets, information processing
style and risk attitude, they align with Abi [19]. Keeping this
in mind, in our analysis, we have not assigned Pat randomly
to either Abi or Tim, but rather presented the facet scores as
it is, on the spectrum of each of the facets. This approach
allowed us to make a finer-grained comparison across all
three personas and to include Pat in the results. The scores
are not absolute but rather a comparison of the facets within
the sample.

To analyse the relationship between the identified in-
clusivity bugs and the GenderMag facets, we plotted the
distribution of participants’ facets scores and visually com-
pared the participants who experienced the most number of
inclusivity bugs (greater than or equal to the third quartile
in terms or number of bugs encountered) and the least
number of inclusivity bugs (less than or equal to the first
quartile). The GenderMag facet scores were normalized for
the plots to improve readability. We looked to see if those
who experienced the most bugs tended to cluster into any of
the personas for each facet (e.g., Abi).

With relation to interpretation of the GenderMag facets
with the participant behaviour, we would like to highlight
that we did not code facets to our data. After identifying
the inclusivity bugs in the debugger using TA, we examined
each of the five facet scores separately to enable a deeper
understanding of the relationship between cognitive style

F. Culas et al.: Preprint submitted to Elsevier Page 8 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

and inclusivity bugs. Then we backtracked into our tran-
scripts to find illustrative quotes and behaviour that show
the relationship between facet tendencies and the inclusivity
bug. When looking for matching patterns in our data we used
exemplar quotes to ground our interpretations from previous
GenderMag studies [10, 5]. For example, ”...this leads me
to a page with the bare minimum of instructions... I have no
idea where to go from here”, demonstrates Abi-like learning
style.

However, as the facets cannot be fully separated, the
selected quotes do not indicate that only a single facet was
involved in a particular inclusivity bug. We discuss more
about the interweaving between the facets in Section 5.2.2.
We also would like to highlight that inline with the goal of
the experiment, we were not interested to see if participants
fix all bugs but rather how they use the debugger to fix the
bugs and the barriers associated with it.
4.7.3. Operational Definition of an Inclusivity Bug

In our study, we use the definition of an inclusivity bug
from Guizani et al. [5]. If users ultimately complete their
tasks but face disproportionate barriers along the way, such
as confusion, missteps, or the need for workarounds, those
barriers are considered inclusivity bugs. For example, P20
immediately noticed that the run configurations had changed
and quickly adapted by finding a workaround; however, it
was not a barrier to carrying on with the tasks.

P20: “OK, so play it again. Oh.” <run configu-
rations are still at task1. Participant notices that
its still running first task> “Oh, oh, I must play
this. I have no doubt this works. I’m gonna guess
yes. OK.” <takes a go at a workaround running
the play from the gutter> “So let’s pass the 1st
others failed. Actually. Oh, it’s not in order. OK,
it’s passed the last one, but not these two. I see.
OK”.

But for P4 this feature of changing configurations be-
came a barrier.

P4: “I don’t see the other 2 test cases.” <par-
ticipant still not got the hang of the configura-
tion changing.> “but it says passed 0. I think it
passed”.

Examples illustrating each type of barrier in our study
are shown in Table 3.
4.7.4. Positionality statement

When using reflexive TA, the research team’s experi-
ences and professional backgrounds become tools for in-
terpreting the data, so it is important to acknowledge our
position. The research team comprised of three students and
two experienced researchers. The first author, a doctoral
student, is an experienced software engineer with industry
experience across three companies in two countries, and has
first-hand knowledge of the challenges of using software
engineering tools working across multiple teams. The two

experienced researchers, both affiliated with the university,
bring expertise in research and teaching in engineering.
The other two team members were final-year undergraduate
students from the University of Auckland.

5. Results
Before presenting the findings to answer our research

questions, we first give an overview of the participants’ task
performance and debugging choices. Even though most of
the participants were able to find all of the bugs, only just
over 70% were able to fix them all. This was due to the
first task, which contained a bug in a conditional statement
with boolean expressions (see line 5 of Listing 2). Excluding
Task 1, nearly 85% of the participants were able to fix the
remaining bugs.

1 def is_leap_year(year):

2 if year % 4 != 0:

3 return False

4
5 if year % 100 == 0 or year % 400 != 0:

6 return False

7
8 return True

Listing 2: Task 1 Python code

5.1. Identifying inclusivity bugs with the
PyCharm debugger

We identified 21 inclusivity bugs (see Table 4) related
to 13 features of the debugger that pose as barriers for
newcomers. From our thematic analysis, we identified two
main factors causing the inclusivity bugs: Discoverability
and Learnability.
5.1.1. Factors causing the inclusivity bugs

First, we explain these two main factors causing the
inclusivity bugs. Then, we explain how they manifested in
each of the 13 features.
1. Discoverability: The degree to which users can inde-

pendently locate features or functionality without requir-
ing external assistance. There are many factors that can
reduce discoverability. Some of the factors that were
found in this study were information overload due to
cluttered interface, suboptimal placement, lack of visual
cues, hidden or collapsed elements. Poorly chosen names
or the absence of descriptive labels can make it difficult
to understand the purpose of features and thus leading to
non-discoverability.

2. Learnability: The degree to which users can understand
and use a new feature. Insufficient or unclear feedback
can slow down the sense-making process. Sense-making
is a key part of learning, as users need to understand
the tool’s responses and form appropriate goals and next
steps to effectively navigate and understand what features
do.
Each feature with inclusivity bugs had either a discover-

ability bug, a learnability bug, or both.
F. Culas et al.: Preprint submitted to Elsevier Page 9 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Table 3
Examples of participant actions and verbal utterances showing how features were coded as inclusivity bugs using the definition
from Guizani et al. [5]

Reason for classifying as inclusivity bug Participant actions and verbal utterances

Confusion P12: <participant goes line by line using debugger>...“I’m not sure what
just happened”. <Continues clicking step into my code and goes into next
test case...still uses only step into my code. Gets confused which test case
as still runs whole test suite.> “I’m not entirely sure how the debugger
works”

Missteps P14: “Ah I see what you mean, I think there is watch” <starts right clicking
on the line with breakpoint and looks for watch.... Participant fixated on
finding the variables using the watch feature of the debugger as he had
heard of it before but wasn’t aware that he couldn’t see the variables
because the debugger was not running.>

Workarounds P13: “Is this testing for 1904?”.... <uses print statement to see the outputs
of the boolean logic. Prints year also to make sure which test case ran.
Checks logs with the print statements to make sense of what the outputs
are.>

No progress P8: <introduced the stepping buttons at Task5 as participant continues
only with resume and it’s very hard to follow through variables>“these
ones?” <participant chooses to use step-over>... “Yeah. Yeah. So I think
that did help as well. ”

Asks for help P6: <clicks debugger but no progress as no breakpoints. Puts breakpoint
but keeps clicking the run button this time as debugger didn’t make sense
last time. Looks for the debugger. Gives up after looking for it. Goes back
to reading the code.> “can you show me how to use debug in Pycharm
and see the variables?”

5.1.2. Inclusivity Bugs in PyCharm
In this section, we describe the inclusivity bugs impact-

ing each of the 13 features. Recall that even if participants
ultimately find and make use of the feature, we still classify
it as an inclusivity bug if they encountered barriers along the
way.
Feature 1: Setting breakpoint and starting debugger ses-
sion
This feature had two inclusivity bugs: discoverability and
learnability. In Task 3, participants were guided to suspend
the program at a particular line. However, nearly a third of
them (seven participants) found this challenging.

Discoverability: Five participants had difficulty figuring
out how to set a breakpoint to suspend the program at a
specific line. One participant consulted the documentation
and, lots of tinkering, managed to place the breakpoint.
Others couldn’t figure it out and either asked for help or were
given help when they couldn’t progress further. Breakpoints
must be placed on the gutter, which is located on the left of
the code editor (see Figure 2). The gutter also contains the
run button and the line numbers appear unclickable, which
may have contributed to their difficulty.

P16: <participant tries clicking on the gutter line
numbers but breakpoints don’t get inserted.> “I
need to put more points. How to put? Using this?”
<clicks view breakpoints button as an alterna-
tive>

Learnability: A key step to starting the debugger and
suspending the program is by setting breakpoints first. Un-
derstanding how to use the breakpoint before starting the
debugger and what it does was a barrier for two partici-
pants. In Task 3, when participants were asked to suspend
the program at a specific line, P8 successfully places the
breakpoint by clicking on the line and then mentions: "I am
not completely sure what it does. Does it like remove the
line?”. He successfully finds the debugger icon but removes
the breakpoint before starting the debugger and was not sure
whether the debugger had started. P16, despite receiving
help and successfully setting her first breakpoint, continued
to struggle with setting breakpoints throughout the experi-
ment. She repeatedly used the manage Breakpoints window,
which, while allows breakpoint to be added, also contains
several other options that can overwhelm a newcomer

P16: <Even after interviewer helped participant
with placing breakpoint but again when placing
next breakpoint>“I want to put a breakpoint in
line 12 but its very difficult for me”

She struggled to use the manage breakpoints window
to add new breakpoints and needed multiple attempts and
assistance to fully grasp the feature.
Feature 2: Finding the debugger icon to start the debugger

F. Culas et al.: Preprint submitted to Elsevier Page 10 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Table 4
Number of participants who encountered inclusivity bugs categorised by debugger feature and cause (discoverability and
learnability). - indicates no inclusivity bug

Feature description Discoverability bug Learnability bug
1 Setting breakpoint and starting debugger session 5 2

2 Finding the debugger icon to start the debugger 3 -

3 Stopping debugger session 1 -

4 Setting breakpoint at the correct line - 7

5 Following the execution point 1 2

6 Stepping through program 3 21

7 Examining variables 4 4

8 Managing breakpoints in the middle of a debug session - 7

9 Evaluating expressions 6 7

10 Resuming program 4 5

11 Exploring test results 13 1

12 Running or debugging tests 14 -

13 Changing run configurations 6 3
Total instances of inclusivity bugs 60 59

Figure 2: The gutter area highlighted in yellow with the debug icon hidden in gutter. It needs to be right clicked to open debug
option (see left), Pop-up dialog in Pycharm when stopping current session (see top-right) and Evaluate expression dialog (see
bottom-right)

This feature posed as a challenge due to not being able to be
discovered easily. Only three of the participants found this
as a barrier.

Discoverability: The small debugger icon being in the
right top corner and also hidden collapsed in the gutter/test
runner tab makes it hard to be seen (see Figure 2). P1
received a hint to help her as she was unable locate the debug
icon and said, “Ah, I just don’t see that”. Another participant,
P14 set the breakpoint but ran the tests without the debugger

(using the run button and not the debug button) and assumed
the debugger started looking at the expected and actual value
printed in the test logs. He was eventually provided a hint as
well to try running the test cases differently.

F. Culas et al.: Preprint submitted to Elsevier Page 11 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

P14: “Is what I am looking at the debugger. I
am expecting one thing and its giving something
else. My immediate thought would be to follow the
calculations that lead to these numbers. How does
it get there? You told me run the debugger and
then I found these issues and then I trace it back
where and I run the debugger there and from there
till I find something that works.” <interviewer
asked participant to examine state of the code at
specified line> “Ah I see what you mean, I think
there is watch” <starts right clicking on the line
with breakpoint and looks for watch>

Feature 3: Stopping debugger session
Only one participant encountered this discoverability

inclusivity bug.
Discoverability: After successfully setting the break-

point and starting the debugger, one participant, did not
know to stop the debugger. He tried to start the debug-
ger again without stopping the previous debugging session,
which resulted in a pop-up window appearing prompting
him to stop and rerun the debugger (Figure 2). He was
confused and hesitant to click on the stop and rerun button.
Feature 4: Setting breakpoints at the correct line
This feature was identified as a barrier due to a single
inclusivity bug: learnability.

Learnability: After figuring out how to set the break-
point, figuring out where to set it was a challenge for nearly
a third (seven) of the participants. Breakpoints must be set
on any executable line of code and not the method signa-
ture. Some participants set the breakpoint in the method
signature, and, as this does not suspend the program, they
struggled to progress with the debugger. Some participants
set the breakpoint at the return statement line and were
confused as to why they cannot observe the other variables.
Four participants struggled but were eventually able to make
sense of it, but three of them had to be guided to change
the breakpoint to the line that needed to be examined. P5,
one of the participants who eventually placed the breakpoint
correctly at the desired location, after a bit of a struggle,
expressed self-doubt, saying "I am not sure whether I have
put the breakpoints correctly or not”.
Feature 5: Following the execution point
This feature exhibited two inclusivity bugs.

Discoverability: Only one participant, P8, after success-
fully starting the debugger does not realize what happened
and reached out for help saying: "Can you explained to me
what happened?”. He does not realize the code has been
suspended at the highlighted line of code, and he does not
see the variable tab in the debug tool window.

Learnability: Two participants who noticed the blue
highlighted execution point, tried to make sense of it. They
were confused as to whether the line was already execute or
not. But gave up and eventually asked for help.

P1:“does it stop before this line or after this
line?”

Feature 6: Stepping through the program
A very important step needed to navigate through the code
using the debugger while also having control of the execu-
tion of the code are the stepping functions of the debugger.
The stepping buttons are located on the debug window
toolbar. This feature exhibited both inclusivity bugs, and
only three (12%) of the 24 participants were able to find and
make sense of the step-over button, making it a significant
barrier.

Discoverability: Finding the stepping buttons was a bar-
rier to three participants. P1 reached out for help to find
the stepping buttons and was pointed towards the stepping
buttons. Even after showing the stepping buttons, P1, when
looking to navigate into the nested function, hovers over all
the stepping buttons but does not click on them as she doesn’t
realize what the labels mean. She later commented if “step
into” had been named “step into function” it would have been
more helpful. Another participant, P20, was able to discover
the stepping buttons easily but mentioned that the stepping
icons are so small and it would be better if the order of
them were changed. He said, the step-into-my-code is more
important than step-into. P4 on the other hand wanted to use
the debugger during Task 2 and says “I want to step through,
to see line by line but I am not sure how to do that". She
goes on to click around for some time and eventually sees
the stepping buttons with no assistance due to her tinkering
but when clicked on the step-over, gets confused as it takes
her into library classes.

P4: “I think I did step-over and it took me some-
where else. I don’t know which one I want to
use..... I assume I step over now. I am scared it
will take me somewhere else”

P8, being one of the three who found it hard to find the
stepping buttons, clicks only the resume button to navigate
the code. Due to the participant’s failure to see the stepping
button, completing the task became more challenging as it
was hard for him to keep track of the variables as the resume
button doesn’t go through each line of the code. However, as
he was continuing the tasks only with the resume button, he
was eventually given a hint at Task 5 pointing towards the
stepping buttons.

Learnability: This bug was the most frequently encoun-
tered, affecting 21 participants. One participant, P1, while
stepping through the code mentioned: “I feel like it will be
easier for people who know how to use it, but I don’t” and
abandoned the stepping functions and resorted to adding and
removing breakpoints and restarting the debugging session
every single time a new breakpoint was needed. Understand-
ing the differences and purposes of each stepping button was
not very intuitive.

F. Culas et al.: Preprint submitted to Elsevier Page 12 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

P18: “Step over and step into what’s the difference
between these two? I don’t know what’s the differ-
ence between this two. OK and step out is going
back. But if I want to go back to my code only
I can click that blue arrow thing.” <points step-
into-my-code> “And I’m bit confused with step
over and step into.”

Feature 7: Examining variables
The Variables pane of the Threads&Variables tab of the
PyCharm debugger window allows the user to examine the
values stored in the objects of the program. This feature was
both a discoverability and learnability inclusivity bug.

Discoverability: Finding the variables tab was challeng-
ing task for four of the participants. To highlight a few
scenarios, one participant, P19 reached out for the documen-
tation for help but still struggled saying “I’m still looking for
threads and variables tab” and eventually was given a hint to
look at the bottom debug window. Another, P4 was looking
for the variables in the right place, but as the wrong thread
was selected in the frame stack, the correct objects were
not showing up. The Frames pane within the variables tab
shows all threads of the application. Since she had selected
the wrong thread, she needed a lot of tinkering to be able to
locate the current thread. Another, P10, on the other hand
gave up quickly and asked for help saying “sorry not able to
find”.

Learnability: Four others, even though discovered the
variables pane easily, found it uncomfortable to use and
preferred printing the values on the console.

P9: “Is end month starting from 0 or 1? I’m low
key tempted to console log stuff”

Feature 8: Managing breakpoints in the middle of a debug
session
This feature had a single cause for being identified as an
inclusivity bug, which was its barrier in learnability.

Learnability: It was not intuitive that breakpoints could
be added or removed during the debugger session without
having to restart the session. This became a disadvantage
to seven of the participants as they kept restarting the de-
bug session which was time consuming and hard to follow
through the code execution.
Feature 9: Evaluating expressions
This feature of the debugger helps to evaluate expressions or
code fragments.

Discoverability: In our study, this feature would be
handy to evaluate in the case where multiple conditions are
in a single expression but out of the 24 participants, only
five explicitly asked how to evaluate expressions, looked
for the feature, and found it. The feature was not intuitive.
13 participants didn’t look for it at all and continued with
their tasks. The six participants who found this barrier didn’t
use the term “evaluate expressions,” but their workaround
with the use of print statements or splitting up conditions
suggested they were trying to inspect or check expressions.

Learnability: Even the five participants who found it,
couldn’t make sense of how to use it. P19 mentioned, “it
looks like a calculator. Don’t know what it does”, and
moves on. P7 mentioned, “evaluate expression. my guess
it evaluates it without going into the line” and then clicks
on it and an empty window opens and says “oh alright, that
doesn’t do anything” (see Figure 2). When explained what it
does, participants mentioned that’s its one of the most useful
features in the debugger but its not intuitive.
Feature 10: Resuming program
When the debugger is suspended at a breakpoint, the resume
button allows the program to continue running until the
next break point (if any) or until the program terminates,
eliminating the need to step through each line manually. This
feature was found as a bug under both causes.

Discoverability: Three participants specifically asked
about resuming but did not succeed in finding the feature.
P7 spent time looking for it, and while they were able to
find the button, it did not work as they anticipated since the
breakpoint was not placed correctly, so they ultimately gave
up saying:

P7: ”how do I run till the next breakpoint? is it
resume. Nope that ran the whole thing. I don’t
want to step through all 3 lines of the loop. I know
its possible, but how do I do that?" <the break-
point must be in the first line of loop to continue to
next loop. But participant has placed breakpoint
one line above it and clicking resume finishes the
program. So participant searches for ‘run until
next breakpoint’ but documentation overwhelm-
ing. Looks for continue for some time and gives up
eventually as he wants to progress with the task>
“OK i guess I’m gonna, ill just step through every
single line.”

Even though he found the feature, he did not realise
that is what the feature is for as the breakpoint was placed
incorrectly, thus making the feature not discoverable. One
participant who looked for the continue/resume button gives
up looking for it and finds it later when continuing with the
tasks, another participant was stuck in other library classes
for quite some time and had to be pointed out to resume the
program even though they did not ask for the feature.

Learnability: Out of the participants who found it, only
two made sense of what the feature does. The rest (five
participants) either misinterpreted its function or did not
know how to use it and were reluctant to use the feature. For
example, P9 struggled to understand the button’s function-
ality after using it and expressed risk-averse feelings, stating
"I don’t trust resume program any more. I don’t know what
it does. So I’m gonna step over”. P20 misunderstood the
functionality of the resume button as skipping over the loops.
Feature 11: Exploring test results
The Test Runner tab opens in the Run tool window when
a testing/debugging session starts. The left pane of the tab

F. Culas et al.: Preprint submitted to Elsevier Page 13 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

shows the tree view of test cases along with their statuses
including whether they have failed or passed. This feature
had both discoverability and learnability barriers.

Discoverability: Find the test runner tab was a barrier
for just over half (13) of the participants. Participants who
faced this barrier spent time trying to understand the logs
and figuring out what test cases failed and the reason for the
failure. The test results in the test runner tab is right next to
the console and error logs, but due to the cluttered interface
was difficult to find. Two participants even made guesses P2:
“I assume it’s the first one that passed” and carried on with
the task. P18 was relieved that she didn’t have to check which
test cases failed, “OK. Oh, all three test cases failed. Oh,
yes. Three failed. OK, I don’t need to check.” as she had not
figured out that the test results can be easily explored using
the test runner tab. When asked why she did not see the test
runner tab, her response was, “maybe because it was hidden
like this and it was not very visible. Maybe I saw it, but I I
didn’t mind to explore.”

Learnability: Only one participant who found the test
runner tab found it difficult to understand what it means. P4,
who found the feature easily, struggled to understand what
the icons and statuses on the test cases represented.

P4: "I haven’t really got the hang of to tell which
one has failed.”

Feature 12: Running or debugging tests
Test cases can be run or debugged individually or as a whole.
This was a feature which was hard to be found by 14 (58%) of
the participants. The individual run icons for each test case
are located on the gutter of the IDE. The default Python3 unit
test behaviour is that test cases are run in an arbitrary order
unless specified otherwise. Also to debug them individually,
either the gutter run/test runner tab icon next to the desired
test case must be expanded (see Figure 2) revealing the
debug icon or the run configurations must be changed (this
was classified as another barrier - Feature 13)

Discoverability: Figuring out how to control the execu-
tion of each test case was beneficial for those who discovered
this feature. P9 mentioned, “I don’t want it to run like the
whole test suite” and looks how to run test cases individually
but doesn’t find the debug in the gutter but tinkers around
and opts to right click the test case and chooses debug.
Those who faced this barrier found workarounds to keep
track of which test case was being debugged by following
variables and printing variables but it was not easy to follow
if breakpoints were not placed in the right places (as some
breakpoints are not reachable for some tests).

P15: “I have no idea what I am or how I am
debugging the tests.”

P4: “I want the first test case to fail. I don’t know
why its going to the last test case. It has already
passed”

Feature 13: Changing run configurations
This had both a discoverability bug and learnability bug.

Discoverability: Six of the participants encountered is-
sues with the run configurations being changed in PyCharm.
They were unaware that the configurations had changed and
were confused why the expected testcases were not being
run. One of them who faced this barrier figured out an
alternate way to run the desired file after some tinkering by
right clicking on the file and running it directly. The other
five were given hints due to confusion about what happened.

P24: “No, at the beginning there was like a screen
which basically told me everything I passed and
everything I failed. So you want to see everything
that yes, do I need to unclick these?” <asks should
she remove the breakpoints. participant hasn’t
realised run configurations have changed and only
one test case running>

Learnability: Three participants had difficulty in using
the feature. P9, realised that the configurations changed, and
correctly clicks on the run configuration option but was not
clear on how to change it back to the current file being tested.

P9: “am I allowed to figure out here?” <clicks
on the run configurations> “its nothing important
here”

Two other participants had to be repeatedly reminded to
change the run configurations. Although they knew where
to make the change (so not a discoverability bug), they were
often confused during the course of the experiment because
they didn’t realize the configuration had changed. This was
mainly due to lack of feedback from the tool that the run
configurations had been changed.

RQ1
What inclusivity bugs do newcomers encounter
when debugging with PyCharm?

Answer: We identified 21 inclusivity bugs related
to 13 features of the debugger that newcomers en-
counter when debugging with Pycharm caused by
two reasons: discoverability and learnability.

5.2. Analysing relationship between the identified
inclusivity bugs and the GenderMag facets

We answered our second research question by comparing
GenderMag facet scores with the likelihood of facing inclu-
sivity bugs. We do this considering first the overall number
of inclusivity bugs participants faced, followed by looking at
the number of inclusivity bugs broken down by the two main
factors of discoverability and learnability. Figure 3 shows the
participants who encountered the least and most inclusivity
bugs using the quartiles as the cut-offs. Figures 4 and 5 are
the distribution of participants who encountered inclusivity
bugs for specific causes (learnability and discoverability
respectively).

F. Culas et al.: Preprint submitted to Elsevier Page 14 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Figure 3: Facet distribution of all participants with most (in black labels) and least (in white labels) inclusivity bugs (both causes)
encountered highlighted as Abi, Pat, Tim (Here most and least are categorised using Q1 and Q3 as the cut-off. The red line is
the median of the facet distribution.)

5.2.1. Overall - All Inclusivity Bugs
Figure 3 shows the participants who faced the most

number of inclusivity bugs (in black) and those who faced
the least number of inclusivity bugs (in white). As described
in Section 4.7.2, the first and third quartiles were used as
cutoffs for identifying the participants who faced the least
and most inclusivity bugs. When considering all of the
inclusivity bugs, the cut-offs were three or less for those
facing the least number of inclusivity bugs and seven or more
for those facing the most inclusivity bugs.

As illustrated in Figure 3, most participants who encoun-
tered the highest number of inclusivity bugs are clustered
around the Abi and Pat personas (with Pats leaning towards
Abi) for four facets: motivation, self-efficacy, learning style,
and risk attitude, and around the Tim and Pat personas (with
Pats leaning towards Tim) for the information processing
style facet. This suggests that the inclusivity bugs were more
strongly associated with Abi-like and Pat-like participants.
However, this was not uniform. Participants faced less issues
were not limited to a single facet type but were observed
across the spectrum, highlighting individual variation and
the interweaving of multiple facets which we discuss more
in detail in Section 5.2.2.

To investigate deeper into how the facets related to the
inclusivity bugs, we next examine these trends by consider-
ing the two main causes of inclusivity bugs, discoverability
and learnability. We present our findings on learnability first
due to a larger number of participants falling below the first
quartile and above the third quartile, allowing for greater

differentiation between those who faced the most and least
inclusivity bugs for this factor.
5.2.2. Learnability Bugs

The number of learnability inclusivity bugs faced ranged
from zero to six. Figure 4 shows the participants who faced
the most and least learnability bugs. The most, shown in
black, faced three or more (third quartile), while the least,
shown in white, faced one or less (first quartile). There are
21 participants included in this graph based on these cutoffs.

Twelve participants faced three or more learnability
bugs. Of those, we see that for four facets, except information
processing style, Abis and Pats encountered more inclusivity
bugs than Tims(see figure 4). In the motivation facet, 42%
of participants are Abis, 33% are Pats, and 25% are Tims;
among the Pats, half lean toward the Abi end of the spectrum.
In the self-efficacy facet, 33% are Abis, 42% are Pats, and
25% are Tims, with 60% of the Pats leaning toward Abi. For
learning style, 25% of participants are Abis, 58% are Pats,
and 17% are Tims; among the Pats, three toward the Abi
and one toward Tim. For risk attitude, 42% of participants
are Abis, 50% are Pats, and only 1 participant is a Tim.
The only facet where Tim personas encountered more issues
than Abi personas was information processing style, with
five participants compared to Abi’s three. We observe that
white labels (participants who faced the fewest inclusivity
bugs) tend to cluster towards the Tims end for facets such as
motivation, self-efficacy, and risk attitude. In contrast, black
labels (participants who faced the most inclusivity bugs)

F. Culas et al.: Preprint submitted to Elsevier Page 15 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Figure 4: Facet distribution of all participants with most (in black labels) and least (in white labels) inclusivity bugs (learnability
only) encountered highlighted as Abi, Pat, Tim (Here most and least are categorised using Q1 and Q3 as the cut-off. The red
line is the median of the facet distribution.)

cluster towards the Abis end for facets such as motivation,
self-efficacy, learning style and risk attitude. These are just
trends we see with a small sample, so we refrain from
providing any quantitative results for a general population.

To better understand the learnability bugs in relation to
cognitive style, we examine them based on the five Gender-
Mag facets as explained in the methodology in Section 4.7.2.
Here we present our results in detail under each facet with
illustrative quotes and actions. Because individual quotes
do not always map neatly onto a single facet as seen in
previous studies as well [5], throughout this section we
draw on multiple quotes to illustrate the broader patterns
we observed between facet scores and the inclusivity bugs.
Quotes are thus used to support the trends rather than as
definitive evidence of a facet in isolation.

Motivation: As seen in Figure 4, out of the 12 partici-
pants who faced the most learnability inclusivity bugs, five
lie in the Abi region, four lie in the Pat region and three
in the Tim region. Individuals with low motivation tend to
stick to familiar features and avoid exploring additional ones.
However, failing to find or understand additional features
can also make using the other features more difficult. For
example, participants who did not discover how to run or
debug individual test cases found it more difficult to follow
through the state of the code as participants were confused
as to which test case was being run, especially if breakpoints
weren’t in optimum positions. We also observed different
levels of motivation, with some participants not even trying
to look for features and others spending significant time

attempting to find features before giving up and reverting to
familiar features. For instance, when looking for the resume
button, P1 did not try to look for it further.

P1: “so this is one pass of the for loop, can I get
it to do a second pass?” <participant was given a
hint to look at the tool window but does not look
for the resume function and continues with task>

But P9 and P7 spent some time looking for it and
ultimately gave up.

P9: “I want to see the loops its going through. I
wish there was a continue or something” <partic-
ipant looks for resume and gives up.....> “I don’t
even know what I’m debugging.... I’m low key
tempted to console log stuff.”

P7: "I don’t want to step through all 3 lines of the
loop. I know its possible, but how do I do that”.
<Keeps looking for the resume button and then
says> “I’ll just step through every single line”

Self-efficacy: We see a similar trend for self-efficacy
as well. Of the 12 participants who faced the most learn-
ability inclusivity bugs, four are in Abi region, five Pat
and three Tim. Abi and Pat usually display low to medium
self-efficacy. We also observed participants with high self-
efficacy facing more inclusivity bugs, such as P1, P4, and
P19. One possible interpretation is that, for example, P4,

F. Culas et al.: Preprint submitted to Elsevier Page 16 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

despite scoring high on self-efficacy, her risk attitude is low
(Note that Abi-like and Pat-like participants share the same
traits for risk-attitude - See Table 1). She was reluctant to try
to new features to learn what they do. When making sense
of what the stepping buttons so, she said, “I assume I step
over now. I am scared it will take me somewhere else”.

If we take the feature, setting breakpoints, six of them
had difficulty in making sense where to set the breakpoints,
and they were eventually guided to change the breakpoint to
the line that needed to be examined (even though they knew
how to place the breakpoint, they struggled learning how to
use it and placing them in optimum lines). For example, even
after guiding P5 to place breakpoints at an executable line of
code, they continued to express self-doubt:

P5: “I am not sure whether I have put the break-
points correctly or not”

Some participants (for e.g. P3) were very confident of
their actions and their bug fixes indicating high confidence
and self-efficacy:

P3:“pretty sure it will work.”

Learning style: Here too we see similar trends with 10 of
the participants facing the most learnability bugs lying in the
Abi and Pat region (three Abis, seven Pats and two Tims).
For example, it was not intuitive that breakpoints could be
added during the debugger session without having to restart
the session. This became a disadvantage for process-oriented
learners with low self-efficacy and low tolerance for risk,
leading to less tinkering, such as P10, P11, P16, P20 and
P21, as they kept restarting the debug session which was time
consuming and hard to follow through the code execution.
When participants got confused, they tend to be reluctant to
use the features again as well.

P16: “I need to check days” <changes break point
to 30 and restarts debugger.> “I need to restart
yeah”.

But despite being at the lower end of Abi for learning
style, some were still able to overcome barriers. This high-
lights the role of multiple facets, which we discuss further in
the section on interweaving facets (see Section 5.2.2).

Risk-attitude: This was the most significant barrier where
almost all of the participants who faced the most learnability
inclusivity bugs lie in the Abi and Pat regions, who tend to be
risk-averse. For instance, learning how to set the breakpoint
at the correct line as desired to follow the program execution
was a challenge for seven participants. All seven participants
were risk-averse (aligned with either Abi or Pat).

Another feature which disadvantaged risk-averse partici-
pants was the stepping buttons. Those who found it or needed
help to find it abandoned it due to reluctance to use it as they
got confused of what they actually do. Out of the participants
who were reluctant to use the feature (P1, P4, P17, P20, P8,
P12, P9 and P14), we see that most of them (except P8, P12
and P9) are Abis and Pats, who tend to be risk-averse. While

trying to get the hang of the stepping buttons, P4 expressed
fear despite being Pat-like leaning towards Tim’s end.

P4: "I assume I step over now. I am scared it will
take me somewhere else"

P12, although scoring higher than P4 on risk tolerance,
was reluctant to try new features since the step-into-my-
code function in their code was already working fine. This
could be due to low motivation and a preference for familiar
features, but using just that stepping button eventually led to
confusion.

P12: <sticks to using only one stepping button.
Reluctant to try others>“I’m not entirely sure how
the debugger works”

Resuming program is another features that out of the five
who faced learnability issues, four of them were risk-averse.

P9: “I don’t trust resume program any more. I
don’t know what it does. So I’m gonna step-over
to see”

Information-processing style: Seven out of 12 who faced
the most inclusivity bugs were Abi and Pat like (recall
that Abi-like and Pat-like participants share the same traits
for information processing style - see Table 1). Notably,
almost all Tim-like participants for this facet encountered
the highest number of inclusivity bugs, with five out of
six affected. So, this was the only facet where most of
the Tim-like participants encountered the most learnability
inclusivity bugs. Being selective with information can be a
disadvantage, as not all relevant information may be known.
For example, during Task 5, P10 said:

P10: “what is number of days in the test case?”

He was unable to make sense of the debugging process as
he had not examined the test cases. Inter-weaving of facets:

While our analysis above considered each facet individually,
the facets can influence each other. For example, while
having a low motivation to try new features was seen as a
disadvantage for many, some participants overcame and did
not face many learnability bugs despite having low motiva-
tion. This was likely due to their other facets. For example,
P3 aligned with Tim on all facets except motivation and did
not face any learnability bugs. P12, who also scored low
on motivation, demonstrated a comprehensive information-
processing style, even though their score categorized them
as selective. They thoroughly read all the code and test
cases before starting the tasks and consulted the debugger
documentation, which helped them better understand the
debugger features throughout the tasks. P17 too overcame
their low motivation because of their tendency to tinker. We
also see some of the participants who encountered the fewest
learnability inclusivity bugs (P13, P17, and P23) aligning
with Abi and Pat in self efficacy. They appear at the tinkering

F. Culas et al.: Preprint submitted to Elsevier Page 17 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

end and risk-tolerant which may have been an advantage for
them despite their lower self efficacy.

Conversely, being high in a particular facet does not
mean you will not face inclusivity bugs. For example, P19,
P4 and P1 scored high self-efficacy, yet still faced many
learnability bugs. They all often reached out for help and
were reluctant to use features despite their high self-efficacy.
This may have been due to their risk-averseness. P14, who
was fixated in finding the variables using the watch feature
of the debugger got distracted of the main task in hand due to
his high motivation to find the feature. We also see that other
participants who faced more inclusivity bugs like P5 who
scored a Tim in learning-style, Abi in self-efficacy and low
tolerance to risk, again highlighting the interplay of facets.

Comparing P9, who encountered five learnability in-
clusivity bugs, and P12, who encountered only one, both
showed reluctance to engage with features that caused con-
fusion. Despite their risk tolerance, they tended to rely on
familiar features.

P9:“I don’t trust resume program any more. I
don’t know what it does. So I’m gonna step-over
to see”

P12: <looks at documentation and finds the step
into my code. Continues using that for the rest of
the task5>

They exhibited low to medium self-efficacy and motiva-
tion, which may have amplified their reluctance to continue
using features that were confusing, leading them to stick to
familiar features instead. Risk aversion and low self-efficacy
are related and can amplify each other. For instance, risk-
averse people experimenting with new debugging features
may feel discouraged if their initial attempts are unsuc-
cessful. This can further lead to reduction in self-efficacy,
making the perceived risks of adopting these features even-
greater [33].

It is interesting to note that none of our participants fell
cleanly into one single persona for all five facets.
5.2.3. Discoverability Bugs

The number of discoverability inclusivity bugs faced
ranged from zero to five. However, many of the participants
fell between the first and third quartiles. Considering only
those who faced the most discoverability bugs (scores ≥
third quartile threshold of 4) and the least discoverability
bugs (scores ≤ first quartile threshold of 1), resulted in
only 10 participants being considered for this analysis. The
GenderMag facet plot of all participants who faced the
most and least discoverability inclusivity bugs can be seen
in Figure 5. Again, participants who faced the most are
shown in black and those who faced the least are shown in
white. However, due to the small sample size, it is difficult
to identify trends at each facet level. Instead, we examine
individually the participants who faced the most and least
discoverability inclusivity bugs.

(1) Participants who faced the most inclusivity bugs: The
participants who struggled the most to find features in the
debugger were P1, P4, P10, P16 and P17.

P1 is someone with low motivation, who is risk-averse,
and has a more process-oriented learning style (low tinker-
ing). She has high self-efficacy and has a more selective
information processing style. Despite her high self-efficacy,
she often reached out for help during the tasks, which could
have been due to her attitude towards risk and low moti-
vation to try unknown features. Her selective information
processing style also disadvantaged in her in seeing things.
For instance, she was unable to locate the debug icon, the
resume icon, and the stepping buttons. She needed hints from
the observer to find all of them. When shown the debug
icon, P1 says, “Ah I just don’t see that”, which could have
been due to her selective processing, compounded together
with her reluctance to tinker around, risk averseness, and low
motivation. Her process-oriented learning style was evident
when she hovered over the stepping buttons, trying to learn
more about what they would do, but did not click on them.
Her risk aversion further disadvantaged her in this situation.
She became overwhelmed when looking at the test logs and
said “oh boy”, but she was not motivating to look for another
way (i.e. test runner tab) to explore test results.

P4 is also someone with high self-efficacy, but with
somewhat higher motivation than P1. She is a tinkerer but
gathers information comprehensively and is somewhat risk-
averse. She was able to find some features that P1 could not
find, like the stepping buttons and the test runner tab after
a bit of tinkering. However, she had difficulty in finding
the variables pane as her tinkering led her into the wrong
frame. While she was very thorough when observing what
happened when she was using the debugger, she expressed
confusion when desired test cases weren’t running. She was
not motivated to find a way to run test cases individually.

P4: “I want the first test case to fail. I don’t know
why its going to the last test case. It has already
passed”

P16 had high motivation, but had low self-efficacy, was
risk-adverse, and had a process-oriented learning style. She
had difficulty in figuring out how to start the debugger
session itself. She was motivated to figure out how to start the
debugger and consulted the documentation, but struggled to
add a breakpoint on the gutter. Her process-oriented learning
style might have disadvantaged here as there was no clear
instruction how to add breakpoints and the gutter seemed
unclickable. When clicking on the gutter didn’t work, she
continued to be motivated and looked for another alternative
way by clicking the “view breakpoints” window. Despite
her high motivation to look for alternative methods, her risk
averseness and low tinkering eventually led her to express
difficulty and reach out for help.

P16: “I want to put a breakpoint in line 12 but its
very difficult for me”

F. Culas et al.: Preprint submitted to Elsevier Page 18 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Figure 5: Facet distribution of all participants with most (in black labels) and least (in white labels) inclusivity bugs (discoverability
only) encountered highlighted as Abi, Pat, Tim (Here most and least are categorised using Q1 and Q3 as the cut-off. The red
line is the median of the facet distribution.)

P17 had low motivation and low self-efficacy, and was
very comprehensive in gathering information. He was a
tinkerer and was also risk averse. When looking for the
variables tab, he could not find it and eventually gave up and
needed help. His low motivation and low-self-efficacy might
have contributed to this. He kept apologizing again and again
as well.

P17: <keeps looking for variables in the logs and
gives up.> Just let me see. I see it. Oh, maybe I
have no see very useful information. I didn’t see
the useful information.

P10 also gave up when looking for the variables pane.
He has medium motivation, low self efficacy, is process
oriented, more risk tolerant (a Pat but more towards Tim),
and very selective. Even though he is risk-tolerant, his other
four facets (more Abi and Pat like) could have disadvantaged
him.

P10: <starts looking for the variables pane.
Clicks some buttons in the debug tool window but
doesn’t see variables pane>. “sorry not able to
find.”

(2) Participants who faced the least inclusivity bugs:
The participants who encountered the least discoverability
inclusivity bugs were P3, P7, P18, P20 and P21.

Both P3 and P21 faced zero discoverability bugs. While
P3 had little debugger experience, P21 had never used them
before. P3 is more selective in processing information, but
tinkers and has a high tolerance to risk. They were willing
to click around in the debugger no matter what the outcome
was. P21, even though he was a Abi or a Pat for all facets,
carefully tinkered throughout the experiment and was able
to find the required features for the tasks.

P18 had similar personas as P21, but also exhibited
tinkering throughout the experiment. She was also very
observant when run configurations changed and was able to
fix them successfully. She was not able to find the test runner
tab but found how to run test cases individually to overcome
that barrier.

P18: “I couldn’t clearly find which test case fails
OK. In when I run whole code. OK OK, so I’m now
debugging 1 by 1, OK running test case. This is 1
by 1”

P7 scored a Tim for all facets except information process-
ing style. P7 only had difficulty in finding the resume button.
He was motivated to keep looking for the resume for some
time, and was tinkering around the debugger, but eventually
gave up looking for it to continue with the tasks.

F. Culas et al.: Preprint submitted to Elsevier Page 19 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

P7: "I don’t want to step through all 3 lines of the
loop. I know its possible, but how do I do that”.
<Keeps looking for the resume button and then
says> “I’ll just step through every single line”

Even though P20 is more towards Abi for all facets ex-
cept information gathering, he faced only one discoverability
inclusivity bug (finding evaluate expression).

P20: <steps into and comes to main function line
28> “But this is right, so that’s fine.” <participant
doesn’t sound so sure if it the function returns true
and tries to find a way to see what the helper
function returns. Eventually asks for help> “Is
there a way you can know what this is returning?”

With the exception of that one feature, he was very
intuitive in finding all needed features even though he had
never used debuggers before.

Overall, we found that tinkering was most useful for
avoiding Discoverability bugs. Even participants who were
Pat-like tinkered. Low self-efficacy and risk-averseness,
compounded with selective information processing, con-
tributed to more discoverability bugs.

RQ2
How do the inclusivity bugs identified in the debug-
ger relate to the GenderMag facets?

Answer: We identified trends for the learnability
bugs, which showed that Abi and Pat were the
most disadvantaged with respect to Self-efficacy,
Learning Style, Motivation, and Risk attitude. With
respect to Information Processing Style, it was Tim
who encountered the most learnability bugs. Discov-
erability bugs were spread more evenly across the
facets. Tinkering helped reduce discoverability bugs.

6. Discussion
In this section we interpret the results, discuss the im-

plications of our findings for researchers and practitioners,
explain the limitations and threats to validity of the study,
and discuss potential future work.
6.1. Consistency with Prior Studies

Our findings align with prior studies on applying Gen-
derMag to SE tools, reaffirming that Abi encounters more
challenges. In our study, we did not focus solely on Abi and
Tim; we also examined the Pat persona. The findings suggest
that participants who shared characteristics with Abi and
Pat in terms of self-efficacy, learning style, motivation, and
risk attitude were most likely to encounter inclusivity bugs,
indicating that the tool often fails to support Abi-like traits.
Additionally, participants with a Tim-like information pro-
cessing style also experienced a high number of inclusivity

bugs, highlighting that even some traits associated with the
Tim persona are not well supported by the tool.

Similar to prior research, our participants often had a
combination of facets and did not align strictly to a single
GenderMag persona [5, 10]. By analysing the facets individ-
ually, we showed how different combinations of facets can
either disadvantage or benefit users while using the debug-
ger. For example, both P1 and P4 encountered difficulty in
finding the stepping buttons. P1, who had low self-efficacy
a process-oriented learning style (both Abi traits), was not
able to find the buttons on her own. However, P4, who had
a tinkering learning style (a Tim trait), clicked around for
some time and eventually found the stepping buttons with
no assistance. This illustrates the need for the debugger to
be modified to suit different cognitive styles more equitably.

Past research has shown that women tend to skew to-
wards Abi and men towards Tim, thus leading to gender
bias [10, 43, 6]. Vorvoreanu et al [10] conducted a qualitative
study with 20 participants on the use of search engine
with and without GenderMag treatment. Eleven identified
as women and nine as men. Their results show that in
the original version, women had failure rates twice that as
men and after the GenderMag treatment on the software,
the gender gap was eliminated completely. Murphy-Hill et
al. [6] conducted a large scale investigation of GenderMag at
Google on the code review tool. They report data from over
30,000 users. They too found that before the GenderMag
redesign, it took women more time to discover the feature
than men. But after the redesign with GenderMag, the gen-
der gap disappeared. We did not see this clear difference
between genders in our 24 participants. However, out of
the seven participants who faced the most inclusivity bugs,
five of them were women, while out of the eight who faced
the least, only two were women. While these findings are
based on a a small sample and not statistically generalizable,
they align with trends reported in prior research on gender
bias in software tools. Our results reinforce the importance
of considering inclusivity in the design and evaluation of
software engineering tools and practices to suit all ways of
thinking.
6.2. Limitations of GenderMag

While GenderMag is a useful framework and has proven
effective in identifying inclusivity bugs, it has limitations,
which we discuss here.
The scope of inclusivity is gender focused: GenderMag,
which is grounded in empirical research on gender-related
cognitive differences, focuses solely on one dimension -
gender. This limitation has been addressed through introduc-
ing InclusiveMag, which generalizes GenderMag to handle
multiple dimensions of diversity beyond gender [44]. The
InclusiveMag process can be used to develop evaluations
specific to other dimensions of diversity, such as age, socio-
cultural aspects, or ethnicity. Our study focuses on gender
differences, but future work exploring additional dimensions

F. Culas et al.: Preprint submitted to Elsevier Page 20 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

of diversity can build upon InclusiveMag.
Binary or limited gender representation: Although Gender-
Mag aims to make software more gender inclusive, the re-
search on which it is grounded is primarily focused on binary
gender only. GenderMag has acknowledged limitations in its
binary and limited gender representation, primarily focusing
on "masculine" and "feminine" cognitive style clusters rather
than capturing the full spectrum of gender identities. Much
of the underlying psychological research, including that
which informs GenderMag, has similarly been constrained
by limited gender representation. However, recent studies
have begun to address this gap. For example, a study extend-
ing GenderMag by including transgender and non-binary
personas found that gender and appearance do influence the
GenderMag evaluation process [45].

Lab-based experiments, such as ours, are not limited to
binary gender if participants are diverse across the gender
spectrum, but the analysis is still constrained by the Gender-
Mag framework that was based on binary gender. Research
in cognition has found that transgender individuals often ex-
hibit cognitive patterns that align with their gender identity
rather than assigned sex [46]. Joel et al. [47] demonstrate
that most individuals possess a "mosaic" of masculine and
feminine cognitive traits rather than purely binary patterns.
Morgenroth et al. [48] propose to move beyond gender
binaries in cognitive research entirely, a perspective that
challenges frameworks like GenderMag to evolve toward
more intersectional, identity-inclusive approaches and to
update their personas in line with new cognition research.
Persona perception and stereotyping effects: Currently, Gen-
derMag uses multiple photos to represent each persona as a
way to mitigate stereotyping without reducing engagement
with the persona. However, research shows that when per-
sonas have no specific gender is assigned, users often default
to assuming the persona is male [25]. We addressed this
concern by using actual participants to identify inclusivity
bugs rather than employing the cognitive walkthrough with
predetermined personas. However, we acknowledge that
categorizing participants into three personas for analysis
inevitably leads to some oversimplification and cannot fully
capture the nuances of individual differences [20].
Using the median to categorize Abis and Tims: In the Gen-
derMag method, facets are assigned based on the median.
Scores to the right of the median are Tim-like and scores
to the left of the median are Abi-like. This median-based
approach, however, overlooks nuances among participants
whose scores fall near the boundary between personas.
To address this limitation of GenderMag and to add more
nuance to personas across the spectrum, we included the
first quartile and third quartile boundaries in addition to the
median. This way, we can differentiate Abi-like Pats and
also Tim-like Pats. However, we observed a considerable
proportion of participants clustering on or near the quartile
boundaries, including the median. This highlights that, while

personas provide a useful heuristic, categorizing individuals
into discrete groups risks overlooking subtle but meaningful
differences among users whose characteristics fall adjacent
on a spectrum. We identify the treatment of individuals
on quartile boundaries as a key area for future research,
particularly in developing methods that better account for
users at the edges of persona categories.
Facet mapping with in-situation behaviour was not always
exact: Although participants were assigned to a persona
based on their questionnaire scores, their behaviour dur-
ing the experiments did not always align with their as-
signed persona classification. While GenderMag has val-
idated its questionnaire, other studies have also reported
imperfect alignment, with only 78% of participants’ in-situ
facet verbalizations corresponding to their questionnaire
responses [5]. This behaviour could be due to several factors.
The experimental setting itself may alter participants’ natu-
ral behaviour. Moreover, the GenderMag persona scores are
not objective but rather relative to the sample. GenderMag
was originally validated on a more general population of
software users, where there may be more diversity across
cognitive styles [25]. In contrast, our participant pool con-
sisted of software engineering and computer science stu-
dents. In our participants, we observed a greater inclination
for tinkering, high self-efficacy and more comprehensive
information processing. In samples with skewed distribu-
tions, using the median may inaccurately allocate a person
to another end of the spectrum simply because they are,
for example, more Abi-like than other participants in the
sample. Misalignments could have also stemmed from the
interplay of multiple facets. These findings underscore the
importance of examining diverse populations and exploring
how different facets interact, highlighting the need for future
work to refine and extend GenderMag.

6.3. Implications
Implications for Tools: Tools are essential and crucial

for software engineering and if they pose barriers for peo-
ple with certain cognitive styles it becomes unjust and in-
equitable as some people will face a “cognitive tax” while
using the tool. IDEs like Visual Studio Code, IntelliJ IDEA,
and Eclipse combine essential functionalities, such as code
editing, debugging and version controlling, into an inte-
grated platform. Debugging, in particular, is an essential
practice that supports developers in reading and understand-
ing code [26]. Our results highlight that debugging tools,
due to issues of discoverability and learnability, may fail to
accommodate diverse cognitive styles. Consequently, they
can disadvantage certain users beyond the typical challenges
faced by newcomers. The inclusivity bugs we identified
provides actionable insights on how debuggers can be made
more inclusive. For example, if a debugger is started without
any breakpoints, the user could be notified. This would
benefit Abi-like process-oriented learners to know that the
debugger requires a breakpoint to start, and it would benefit

F. Culas et al.: Preprint submitted to Elsevier Page 21 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

Tim-like tinkerers to not get distracted trying to figure out
why the debugger didn’t start. A debugging study with stu-
dents reported that debugging is usually not the first choice to
find bugs. This is most likely due to general lack of familiar-
ity with debuggers, compounded with challenges associated
with using them [49]. They also found that tinkering can
be advantageous, as it encourages curiosity and exploration
of the debugger; however, excessive tinkering can become
unproductive and waste time. Another recent study using
a commonly used debugger in education, the PythonTu-
tor debugger, found that participants who slowly stepped
through every line of code performed better than those who
were more selective and skipped lines [23]. One participant
in their study mentions, “I feel like, with the whole like
visualization, it gets a little confusing for me.” This again
underscores the importance of accommodating diverse cog-
nitive styles. Beyond implications for performance, these
findings also point to issues of cognitive inclusiveness that
may stem from the design of the software tool itself.

In our future work, we plan to design fixes for some of
the inclusivity bugs we have identified and to perform further
experiments to validate whether those fixes have improved
the inclusivity of the debugger.

Implications for Researchers: There is a still a lack of
understanding on the cognitive inclusivity in many different
tools used in SE. Many of the tools have been developed and
improved over the years without empirical evidence. Prior
research has examined inclusivity bugs through the lens
of the GenderMag personas. We have also shown that lab
experiments, using a think-aloud protocol, can be successful
in identifying inclusivity bugs. Given the large number of
inclusivity bugs found in our study and prior studies, we
amplify the call to action made by Mendez et al. [11] and
encourage more research to investigate how further software
engineering tools can be made more cognitively inclusive.

Implications for Educators: Debugging in particular is
given very little to no emphasis in courses [50, 29, 30].
Our findings reveal difficulties faced by newcomers when
debugging. These insights can be used to improve curricu-
lum around debugging. Moreover, educators must be aware
of cognitive differences among students. Tailoring teaching
methods to support these differences, and making students
aware of the existing inclusivity bugs in debuggers can
improve outcomes for students. Some of our participants
expressed a lack of confidence and were quick to give up
or blame themselves when they faced with challenges with
the debugger. By helping students to understand that the tool
itself is not supporting all ways of thinking can foster a more
supportive learning environment.

Implications for Practitioners: Software practitioners
should also be aware of the differences in cognitive styles
and how newcomer barriers exist in many SE tools. This
can result in an inclusive onboarding process. This is not
only a matter of fairness but also one of fostering a diverse
and thriving workforce. It also raises awareness about how
software tools are used and draws attention to different
cognitive processing styles that have not been known before.

6.4. Threats to validity
In this section, we discuss the threats to validity of the

study.
Construct validity: Our experiment was conducted in a

controlled lab setting with an observer, which helped ensure
consistency across participants. However, this controlled
environment may not fully reflect how developers debug
in real-world settings. Factors such as having an observer
present and knowing that the tasks had a set completion
point may have influenced how participants approached the
tasks. This limits the construct validity of our findings,
as debugging behaviours might differ in more naturalistic
settings. We encourage future field research of inclusivity
of debuggers.

While we did pilot the study, we had only four par-
ticipants in the pilot, which was not sufficient to cover all
variations of cognitive styles of potential participants. Tasks
1 and Task 2 served as a warm-up to familiarise participants
with the IDE and debugger. We acknowledge that warm-
up tasks may affect participants differently depending on
their cognitive styles. It is possible that these warm-up tasks
may have reduced the number of inclusivity bugs for some
cognitive style types, which caused us to underestimate the
number of inclusivity bugs that would be faced by some
newcomers in real world scenarios. Replication studies can
further validate our results across more diverse participants.

Also a potential construct validity threat arises from the
focus of this study on cognitive differences based on gender
differences. GenderMag is designed to identify cognitive
factors that influence problem-solving, but it particularly
investigating gender differences. We acknowledge the need
for additional studies to examine additional diversity di-
mensions like socioeconomic status and neurodivergence to
enhance construct validity.

As mentioned in Section 6.2, we addressed the limitation
of the median-based tagging of personas using quartiles. But
this can cause a threat to validity, as this approach may still
not accurately capture the personas.

Another threat to construct validity, as common in think-
aloud studies, is that participants’ verbalizations may not
have fully captured their internal reasoning processes, and
speaking aloud may have influenced their natural debugging
behaviour. Some participants went completely silent and had
to be prompted to think out loud. Also, the interpretation of
think-aloud data introduces a degree of subjectivity, despite
our efforts to apply consistent coding practices.

Internal validity: The experiment was conducted in a
controlled lab setting. Participants had no to minimal debug-
ging experience. All participants were Software Engineer-
ing or Computer Science students, so they had some prior
knowledge of debugging concepts. However, participants
had varying levels of programming experience. To mitigate
this, the tasks were designed with simple syntaxes to keep
the focus on debugging rather than programming skills.
However, we cannot exclude the presence of confounding
factors.

F. Culas et al.: Preprint submitted to Elsevier Page 22 of 25

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

External validity: The relatively small number of partici-
pants (24 in total), necessary for the tractability of qualitative
analysis, poses a limitation to generalizability. In addition,
all participants were self-selected and were students at the
University of Auckland. The sample may not be represen-
tative of all newcomers. To mitigate this, we conducted the
experiment in phases and stopped collecting data only after
reaching theoretical saturation with no new inclusivity bugs
being identified in a data collection round. Despite this, we
do not know if the findings generalise beyond our participant
sample as discussed in Section 6.2.

The debugging tasks were designed to reflect realistic
issues, but may not fully capture the complexity and diversity
of real-world debugging scenarios. This is an inherent threat
in all lab experiments. Again, we encourage future field
studies to validate our findings. Also, the experiment was
conducted using a specific tool, the debugger integrated into
the PyCharm IDE. While most of the features are common
across all debugging tools, we do not know how our results
generalise to other debuggers.

Although our sample included diverse cognitive styles,
future research should examine whether these findings gen-
eralize to broader populations, including individuals with
diverse gender identities, neurodiverse participants, etc. We
emphasize that the insights presented here are not prescrip-
tive design rules but rather empirically grounded direc-
tions that can inform further work. Notably, past efforts to
redesign tools based on similar studies have successfully
improved inclusivity across cognitive styles [6, 3, 5], under-
scoring the potential of our findings to contribute in similar
ways. We therefore encourage future research to replicate
and extend this study while being mindful of the contextual
factors that shape cognitive inclusivity.

Conclusion validity: Given the small sample size, we
were unable to examine statistical differences across the
GenderMag facets. Our qualitative analysis provided a richer
understanding of the inclusivity bugs. Future research could
employ other quantitative methods. For example, now that
we have identified a set of inclusivity bugs, an online ques-
tionnaire could be designed to probe the impact of these
bugs across a larger population, enabling statistical analysis
across GenderMag facets.

7. Conclusion
In this study, we observed 24 students with little to no

experience in debugging perform some debugging tasks in
a controlled lab setting. We found 21 inclusivity bugs in
the PyCharm debugger. The inclusivity bugs had the two
causes - discoverability and learnability. We showed that
these inclusivity bugs affect certain cognitive characteristics,
specifically those aligning towards the GenderMag Abi and
Pat personas. However, the Tim persona was disadvantaged
for one of the GenderMag facets, information processing
style. Our insights shed light on the lack of inclusivity in SE
tools and their impact on the fairness across diverse cogni-
tive styles. As we move forward, our future work will focus

on addressing these issues and evaluating the effectiveness
of fixing these inclusivity bugs to improve fairness in SE
tools.

Acknowldegments
This work was supported by a Rutherford Discovery

Fellowship, administered by the Royal Society Te Apārangi,
New Zealand.

References
[1] C. Sadowski, E. Söderberg, L. Church, M. Sipko, A. Bacchelli,

Modern code review: A case study at google, 2018 Ieee/Acm 40th
International Conference on Software Engineering - Software En-
gineering in Practice Track (Icse-Seip 2018) (2018) 181–190doi:
10.1145/3183519.3183525.
URL <GotoISI>://WOS:000576755600021

[2] D. Ford, J. Smith, P. J. Guo, C. Parnin, Paradise unplugged: Iden-
tifying barriers for female participation on stack overflow, Fse’16:
Proceedings of the 2016 24th Acm Sigsoft International Symposium
on Foundations of Software Engineering (2016) 846–857doi:10.
1145/2950290.2950331.
URL <GotoISI>://WOS:000391133400076

[3] I. Santos, J. F. Pimentel, I. Wiese, I. Steinmacher, A. Sarma, M. A.
Gerosa, Designing for cognitive diversity: Improving the github expe-
rience for newcomers, in: 2023 IEEE/ACM 45th International Con-
ference on Software Engineering: Software Engineering in Society
(ICSE-SEIS), IEEE, 2023, pp. 1–12. doi:10.1109/icse-seis58686.

2023.00007.
[4] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Hor-

vath, C. Hill, L. Simpson, N. Patil, A. Sarma, M. Burnett, Open source
barriers to entry, revisited: a sociotechnical perspective, in: Proceed-
ings of the 40th International Conference on Software Engineering,
ICSE ’18, Association for Computing Machinery, New York, NY,
USA, 2018, p. 1004–1015. doi:10.1145/3180155.3180241.
URL https://doi.org/10.1145/3180155.3180241

[5] M. Guizani, I. Steinmacher, J. Emard, A. Fallatah, M. Burnett,
A. Sarma, How to debug inclusivity bugs?, in: Proceedings of the
2022 ACM/IEEE 44th International Conference on Software Engi-
neering: Software Engineering in Society, ACM, 2022, pp. 90–101.
doi:10.1145/3510458.3513009.

[6] E. Murphy-Hill, A. Elizondo, A. Murillo, M. Harbach, B. Vasilescu,
D. Carlson, F. Dessloch, Gendermag improves discoverability in the
field, especially for women, in: Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ACM, 2024. doi:
10.1145/3597503.3639097.

[7] M. H. Ashcraft, Cognition, Prentice Hall, 2002.
[8] F. Fagerholm, M. Felderer, D. Fucci, M. Unterkalmsteiner, B. Mar-

culescu, M. Martini, L. G. W. Tengberg, R. Feldt, B. Lehtelä,
B. Nagyváradi, J. Khattak, Cognition in software engineering: A
taxonomy and survey of a half-century of research, ACM Computing
Surveys 54 (11s) (2022) 1–36. doi:10.1145/3508359.

[9] M. Burnett, S. D. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Fa-
rooq, V. Grigoreanu, M. Czerwinski, Gender differences and pro-
gramming environments, in: Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement, ACM, 2010. doi:10.1145/1852786.1852824.

[10] M. Vorvoreanu, L. Y. Zhang, Y. H. Huang, C. Hilderbrand, Z. Steine-
Hanson, M. Burnett, From gender biases to gender-inclusive design:
An empirical investigation, Chi 2019: Proceedings of the 2019 Chi
Conference on Human Factors in Computing SystemsBn1he Times
Cited:51 Cited References Count:63 (2019). doi:10.1145/3290605.

3300283.
URL <GotoISI>://WOS:000474467900053

[11] C. Mendez, A. Sarma, M. Burnett, Gender in open source software:
What the tools tell, in: Proceedings of the 1st International Workshop

F. Culas et al.: Preprint submitted to Elsevier Page 23 of 25

<Go to ISI>://WOS:000576755600021
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
<Go to ISI>://WOS:000576755600021
<Go to ISI>://WOS:000391133400076
<Go to ISI>://WOS:000391133400076
https://doi.org/10.1145/2950290.2950331
https://doi.org/10.1145/2950290.2950331
<Go to ISI>://WOS:000391133400076
https://doi.org/10.1109/icse-seis58686.2023.00007
https://doi.org/10.1109/icse-seis58686.2023.00007
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1145/3510458.3513009
https://doi.org/10.1145/3597503.3639097
https://doi.org/10.1145/3597503.3639097
https://doi.org/10.1145/3508359
https://doi.org/10.1145/1852786.1852824
<Go to ISI>://WOS:000474467900053
<Go to ISI>://WOS:000474467900053
https://doi.org/10.1145/3290605.3300283
https://doi.org/10.1145/3290605.3300283
<Go to ISI>://WOS:000474467900053

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

on Gender Equality in Software Engineering, ACM, 2018, pp. 21–24.
doi:10.1145/3195570.3195572.

[12] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[13] S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy, B. Simon,
L. Thomas, C. Zander, Debugging: finding, fixing and flailing, a
multi-institutional study of novice debuggers, Computer Science Ed-
ucation 18 (2) (2008) 93–116. doi:10.1080/08993400802114508.

[14] H. A. Witkin, C. A. Moore, D. R. Goodenough, P. W. Cox, Field-
dependent and field-independent cognitive styles and their educa-
tional implications, Review of Educational Research 47 (1) (1977)
1–64.
URL http://www.jstor.org/stable/1169967

[15] J. Kagan, Reflection-impulsivity and reading ability in primary grade
children, Child Development 36 (3) (1965) 609–628.
URL http://www.jstor.org/stable/1126908

[16] J. S. Hyde, The gender similarities hypothesis, Am Psychol 60 (6)
(2005) 581–592, hyde, Janet Shibley Comparative Study Jour-
nal Article Research Support, U.S. Gov’t, Non-P.H.S. Review
United States 2005/09/22 Am Psychol. 2005 Sep;60(6):581-592. doi:
10.1037/0003-066X.60.6.581. doi:10.1037/0003-066x.60.6.581.

[17] C. M. Steele, A threat in the air. how stereotypes shape intellectual
identity and performance, Am Psychol 52 (6) (1997) 613–29, steele,
C M MH51977/MH/NIMH NIH HHS/United States Journal Article
Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t,
P.H.S. United States 1997/06/01 Am Psychol. 1997 Jun;52(6):613-
29. doi: 10.1037//0003-066x.52.6.613. doi:10.1037//0003-066x.52.

6.613.
[18] A. Saini, Inferior: How Science Got Women Wrong-and the New

Research That’s Rewriting the Story, Beacon Press, 2017.
URL https://books.google.co.nz/books?id=U5DEDgAAQBAJ

[19] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan,
A. Peters, W. Jernigan, Gendermag: A method for evaluating soft-
ware’s gender inclusiveness, Interacting with Computers 28 (6)
(2016) 760–787, ed1hp Times Cited:104 Cited References Count:91.
doi:10.1093/iwc/iwv046.
URL <GotoISI>://WOS:000388596300004

[20] N. Marsden, M. Haag, Stereotypes and politics: Reflections on per-
sonas, in: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, ACM, 2016, pp. 4017–4031. doi:10.1145/

2858036.2858151.
[21] C. G. Hill, M. Haag, A. Oleson, C. Mendez, N. Marsden, A. Sarma,

M. Burnett, Gender-inclusiveness personas vs. stereotyping: Can we
have it both ways?, in: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, CHI ’17, Association for
Computing Machinery, New York, NY, USA, 2017, p. 6658–6671.
doi:10.1145/3025453.3025609.
URL https://doi.org/10.1145/3025453.3025609

[22] L. O’Brien, T. Kanij, J. Grundy, Assessing gender bias in the
software used in computer science and software engineering
education, Journal of Systems and Software 219 (2025/01/01).
doi:10.1016/j.jss.2024.112225.
URL https://www.sciencedirect.com/science/article/pii/

S0164121224002693?via%3Dihub

[23] M. Hassan, G. Zeng, C. Zilles, Evaluating how novices utilize de-
buggers and code execution to understand code, in: Proceedings of
the 2024 ACM Conference on International Computing Education
Research - Volume 1, Vol. 5, ACM, 2024, pp. 65–83. doi:10.1145/

3632620.3671126.
[24] R. Minelli, A. Mocci, M. Lanza, I know what you did last summer

- an investigation of how developers spend their time, in: 2015 IEEE
23rd International Conference on Program Comprehension, 2015, pp.
25–35. doi:10.1109/ICPC.2015.12.

[25] M. Burnett, A. Peters, C. Hill, N. Elarief, Finding gender-
inclusiveness software issues with gendermag: A field investigation,
34th Annual Chi Conference on Human Factors in Computing Sys-
tems, Chi 2016 (2016) 2586–2598This paper presents the ability to
find gender inclusiveness issues in software using GenderMag. 25

doi:10.1145/2858036.2858274.
URL <GotoISI>://WOS:000380532902057

[26] W. Maalej, R. Tiarks, T. Roehm, R. Koschke, On the comprehension
of program comprehension, ACM Trans. Softw. Eng. Methodol.
23 (4) (2014) 1–37.

[27] T. Michaeli, R. Romeike, Improving debugging skills in the class-
room, in: Proceedings of the 14th Workshop in Primary and Sec-
ondary Computing Education, ACM. doi:10.1145/3361721.3361724.

[28] S. N. Liao, S. Valstar, K. Thai, C. Alvarado, D. Zingaro, W. G. Gris-
wold, L. Porter, Behaviors of higher and lower performing students in
cs1, in: Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’19, Association
for Computing Machinery, New York, NY, USA, 2019, p. 196–202.
doi:10.1145/3304221.3319740.
URL https://doi.org/10.1145/3304221.3319740

[29] Y. Noller, E. Chandra, S. HC, K. Choo, C. Jegourel, O. Kurniawan,
C. M. Poskitt, Simulated interactive debugging (2025). arXiv:2501.

09694.
URL https://arxiv.org/abs/2501.09694

[30] A. Kanaya, T. Migo, H. Hashiura, A proposal for a debugging learning
support environment for undergraduate students majoring in com-
puter science (2024). arXiv:2407.17743.
URL https://arxiv.org/abs/2407.17743

[31] A. Deiner, G. Fraser, Nuzzlebug: Debugging block-based programs
in scratch, in: Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ACM, pp. 1–13. doi:10.1145/

3597503.3623331.
[32] Y.-T. Lin, C.-C. Wu, T.-Y. Hou, Y.-C. Lin, F.-Y. Yang, C.-H.

Chang, Tracking students’ cognitive processes during program debug-
ging—an eye-movement approach, IEEE Transactions on Education
59 (3) (2016) 175–186. doi:10.1109/te.2015.2487341.

[33] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, I. Kwan,
End-user debugging strategies: A sensemaking perspective, ACM
Trans. Comput.-Hum. Interact. 19 (1) (2012). doi:10.1145/2147783.

2147788.
URL https://doi.org/10.1145/2147783.2147788

[34] M. E. Fonteyn, B. Kuipers, S. J. Grobe, A description of think aloud
method and protocol analysis, Qualitative Health Research 3 (4)
(1993) 430–441. doi:10.1177/104973239300300403.

[35] E. Tempero, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, D. Kirk,
J. Leinonen, A. Shakil, R. Sheehan, J. Tizard, Y.-C. Tu, B. Wünsche,
On the comprehensibility of functional decomposition: An empirical
study, 2024 Ieee/Acm 32nd International Conference on Program
Comprehension(ICPC 2024) (2024). doi:10.1145/3643916.3644432.

[36] N. Alzahrani, F. Vahid, Common logic errors for programming
learners: A three-decade literature survey, in: ASEE Virtual Annual
Conference Content Access, ASEE Conferences, Virtual Conference,
2021.
URL https://peer.asee.org/36814

[37] F. Culas, A. Singh, A. Arankalle, P. Dhopade, K. Blincoe,
Replication package for "newcomer experience during debugging: A
cognitive inclusivity perspective", https://auckland.figshare.com/

collections/Replication_package_-_Newcomer_Experience_during_

Debugging/7756889, not public yet. (2025).
[38] M. M. Hamid, A. Chatterjee, M. Guizani, A. Anderson, F. Moussaoui,

S. Yang, I. Escobar, A. Sarma, M. Burnett, How to Measure Diversity
Actionably in Technology, Apress, Berkeley, CA, 2024, pp. 469–485.
doi:10.1007/978-1-4842-9651-6_27.
URL https://doi.org/10.1007/978-1-4842-9651-6_27

[39] G. Guest, A. Bunce, L. Johnson, How many interviews are enough?:
An experiment with data saturation and variability, Field Methods
18 (1) (2006) 59–82. doi:10.1177/1525822X05279903.
URL https://doi.org/10.1177/1525822X05279903

[40] V. Braun, V. C. and, Using thematic analysis in psychology,
Qualitative Research in Psychology 3 (2) (2006) 77–101. arXiv:

https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa,
doi:10.1191/1478088706qp063oa.
URL https://www.tandfonline.com/doi/abs/10.1191/

F. Culas et al.: Preprint submitted to Elsevier Page 24 of 25

https://doi.org/10.1145/3195570.3195572
https://doi.org/10.1080/08993400802114508
http://www.jstor.org/stable/1169967
http://www.jstor.org/stable/1169967
http://www.jstor.org/stable/1169967
http://www.jstor.org/stable/1169967
http://www.jstor.org/stable/1126908
http://www.jstor.org/stable/1126908
http://www.jstor.org/stable/1126908
https://doi.org/10.1037/0003-066x.60.6.581
https://doi.org/10.1037//0003-066x.52.6.613
https://doi.org/10.1037//0003-066x.52.6.613
https://books.google.co.nz/books?id=U5DEDgAAQBAJ
https://books.google.co.nz/books?id=U5DEDgAAQBAJ
https://books.google.co.nz/books?id=U5DEDgAAQBAJ
<Go to ISI>://WOS:000388596300004
<Go to ISI>://WOS:000388596300004
https://doi.org/10.1093/iwc/iwv046
<Go to ISI>://WOS:000388596300004
https://doi.org/10.1145/2858036.2858151
https://doi.org/10.1145/2858036.2858151
https://doi.org/10.1145/3025453.3025609
https://doi.org/10.1145/3025453.3025609
https://doi.org/10.1145/3025453.3025609
https://doi.org/10.1145/3025453.3025609
https://www.sciencedirect.com/science/article/pii/S0164121224002693?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0164121224002693?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0164121224002693?via%3Dihub
https://doi.org/10.1016/j.jss.2024.112225
https://www.sciencedirect.com/science/article/pii/S0164121224002693?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0164121224002693?via%3Dihub
https://doi.org/10.1145/3632620.3671126
https://doi.org/10.1145/3632620.3671126
https://doi.org/10.1109/ICPC.2015.12
<Go to ISI>://WOS:000380532902057
<Go to ISI>://WOS:000380532902057
https://doi.org/10.1145/2858036.2858274
<Go to ISI>://WOS:000380532902057
https://doi.org/10.1145/3361721.3361724
https://doi.org/10.1145/3304221.3319740
https://doi.org/10.1145/3304221.3319740
https://doi.org/10.1145/3304221.3319740
https://doi.org/10.1145/3304221.3319740
https://arxiv.org/abs/2501.09694
http://arxiv.org/abs/2501.09694
http://arxiv.org/abs/2501.09694
https://arxiv.org/abs/2501.09694
https://arxiv.org/abs/2407.17743
https://arxiv.org/abs/2407.17743
https://arxiv.org/abs/2407.17743
http://arxiv.org/abs/2407.17743
https://arxiv.org/abs/2407.17743
https://doi.org/10.1145/3597503.3623331
https://doi.org/10.1145/3597503.3623331
https://doi.org/10.1109/te.2015.2487341
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1177/104973239300300403
https://doi.org/10.1145/3643916.3644432
https://peer.asee.org/36814
https://peer.asee.org/36814
https://peer.asee.org/36814
https://auckland.figshare.com/collections/Replication_package_-_Newcomer_Experience_during_Debugging/7756889
https://auckland.figshare.com/collections/Replication_package_-_Newcomer_Experience_during_Debugging/7756889
https://auckland.figshare.com/collections/Replication_package_-_Newcomer_Experience_during_Debugging/7756889
https://doi.org/10.1007/978-1-4842-9651-6_27
https://doi.org/10.1007/978-1-4842-9651-6_27
https://doi.org/10.1007/978-1-4842-9651-6_27
https://doi.org/10.1007/978-1-4842-9651-6_27
https://doi.org/10.1177/1525822X05279903
https://doi.org/10.1177/1525822X05279903
https://doi.org/10.1177/1525822X05279903
https://doi.org/10.1177/1525822X05279903
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

Newcomers’ Experiences during Debugging: A Cognitive Inclusivity Perspective using GenderMag

1478088706qp063oa

[41] V. Braun, V. C. and, One size fits all? what counts as quality practice
in (reflexive) thematic analysis?, Qualitative Research in Psychology
18 (3) (2021) 328–352. arXiv:https://doi.org/10.1080/14780887.

2020.1769238, doi:10.1080/14780887.2020.1769238.
URL https://doi.org/10.1080/14780887.2020.1769238

[42] P. Pirolli, S. Card, The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis, 2005.

[43] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan,
A. Peters, W. Jernigan, Gendermag: A method for evaluating soft-
ware’s gender inclusiveness, Interacting with Computers 28 (6)
(2016) 760–787. doi:10.1093/iwc/iwv046.

[44] C. Mendez, L. Letaw, M. Burnett, S. Stumpf, A. Sarma, C. Hilder-
brand, From gendermag to inclusivemag: An inclusive design meta-
method (2019). arXiv:1905.02812.
URL https://arxiv.org/abs/1905.02812

[45] L. Witzel, Extending and applying gendermag with a transgen-
der and a non-binary persona, Bachelor’s thesis, University of
Zurich, uRL: https://capuana.ifi.uzh.ch/publications/PDFs/20600_

Bachelorarbeit.pdf (2020).
[46] C. Richards, W. P. Bouman, L. Seal, M. J. Barker, T. O. Nieder,

G. T’Sjoen, Non-binary or genderqueer genders, Int Rev Psychiatry
28 (1) (2016) 95–102. doi:10.3109/09540261.2015.1106446.

[47] D. Joel, Z. Berman, I. Tavor, N. Wexler, O. Gaber, Y. Stein, N. Shefi,
J. Pool, S. Urchs, D. S. Margulies, F. Liem, J. Hänggi, L. Jäncke,
Y. Assaf, Sex beyond the genitalia: The human brain mosaic, Pro-
ceedings of the National Academy of Sciences 112 (50) (2015)
15468–15473. arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.

1509654112, doi:10.1073/pnas.1509654112.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1509654112

[48] T. Morgenroth, M. K. Ryan, The effects of gender trouble: An inte-
grative theoretical framework of the perpetuation and disruption of
the gender/sex binary, Perspectives on Psychological Science 16 (6)
(2021) 1113–1142, pMID: 32375012. arXiv:https://doi.org/10.

1177/1745691620902442, doi:10.1177/1745691620902442.
URL https://doi.org/10.1177/1745691620902442

[49] S. Fitzgerald, R. Mccauley, B. Hanks, L. Murphy, B. Simon, C. Zan-
der, Debugging from the student perspective, IEEE Transactions on
Education 53 (3) (2010) 390–396. doi:10.1109/te.2009.2025266.

[50] J. Whalley, A. Settle, A. Luxton-Reilly, A think-aloud study of novice
debugging, ACM Transactions on Computing Education 23 (2)
(2023) 1–38. doi:10.1145/3589004.

F. Culas et al.: Preprint submitted to Elsevier Page 25 of 25

https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
http://arxiv.org/abs/https://doi.org/10.1080/14780887.2020.1769238
http://arxiv.org/abs/https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1093/iwc/iwv046
https://arxiv.org/abs/1905.02812
https://arxiv.org/abs/1905.02812
http://arxiv.org/abs/1905.02812
https://arxiv.org/abs/1905.02812
https://capuana.ifi.uzh.ch/publications/PDFs/20600_Bachelorarbeit.pdf
https://capuana.ifi.uzh.ch/publications/PDFs/20600_Bachelorarbeit.pdf
https://doi.org/10.3109/09540261.2015.1106446
https://www.pnas.org/doi/abs/10.1073/pnas.1509654112
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1509654112
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1509654112
https://doi.org/10.1073/pnas.1509654112
https://www.pnas.org/doi/abs/10.1073/pnas.1509654112
https://doi.org/10.1177/1745691620902442
https://doi.org/10.1177/1745691620902442
https://doi.org/10.1177/1745691620902442
http://arxiv.org/abs/https://doi.org/10.1177/1745691620902442
http://arxiv.org/abs/https://doi.org/10.1177/1745691620902442
https://doi.org/10.1177/1745691620902442
https://doi.org/10.1177/1745691620902442
https://doi.org/10.1109/te.2009.2025266
https://doi.org/10.1145/3589004

