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Abstract 
Timely and Efficient Facilitation of Coordination of 

Software Developers’ Activities 
Kelly Coyle Blincoe 

Advisors: Giuseppe Valetto, Ph.D. and Daniela Damian, Ph.D. 
 
 
 
 
When software developers fail to coordinate, build failures, duplication of work, 

schedule slips and software defects can result. However, developers are often unaware 

when they need to coordinate, and existing methods and tools that help make 

developers aware of their coordination needs do not provide timely awareness or 

efficient recommendations. Without timely awareness, developers cannot act on their 

coordination needs while development is underway. Further, existing tools 

recommend only which developers should coordinate. This introduces inefficiencies 

since developers are often working on multiple tasks in parallel. This dissertation 

describes a set of techniques that aim at improving the timeliness and efficiency of 

coordination recommendations. It introduces a method that provides timely 

coordination recommendations by analyzing developer actions as they occur using 

IDE monitoring facilities. It presents an approach that identifies coordination needs 

between pairs of tasks and leverages additional task properties and machine learning 

to identify a subset of the coordination needs that are more critical for the developers’ 

work. This dissertation describes a series of investigations of coordination needs on 

eight releases of the Mylyn project. Our techniques were validated through a mixed 

methods approach including statistical analysis, in-depth examination of task records, 

and developer interviews. Our research shows that coordination recommendations can 

be made both timely and efficient by applying the techniques described in this thesis. 
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CHAPTER 1: INTRODUCTION 

 
 
 
 
This chapter motivates the research described in this dissertation. It introduces the 

importance of coordination in software development projects and describes how a 

developer’s lack of awareness of coordination needs can introduce problems and 

inefficiencies into the development process. It provides a high level summary of the 

focus of this dissertation and highlights its contributions. It concludes by describing 

the organization of the remaining chapters. 

1.1 Research Problem 

Today’s software development projects are becoming increasingly large and 

complex. Large software projects have a large number of work dependencies [115], 

which are the technical dependencies that exist in software projects. Examples of 

technical dependencies are syntactic or semantic dependencies between software 

artifacts. Dependencies exist between tasks when those tasks involve dependent 

artifacts. Work dependencies between development tasks can lead to coordination 

needs between the assignees of those tasks [27], [28], [30], [44], [73]. It is well 

recognized that work dependencies must be managed in software development 

projects to avoid integration problems and software failures [29], [73], [120]. Initially, 

beginning with Parnas’ recognition of the workflow implications of modularization 

[105], research focused on ways to streamline the technical dependencies between 

modules as a way to maximize task parallelism [7], [139]. However, it is not possible 

to eliminate all inter-module dependencies in large software projects. Therefore, 

research began to focus on ways to satisfy, as opposed to reduce, work dependencies 
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through coordination [73]. Communication is the main form of coordination in 

software teams [87], and software developers spend a large amount of time 

communicating [106]. It has been found that a decrease in communication can cause 

team members to be unaware of work dependencies resulting in coordination 

problems [43], [63], [72]. Herbsleb et al. found that when developers are willing to 

communicate directly, integration problems are reduced [71]. Kwan et al. found that 

aligning the coordination in software teams based on the tasks they must complete can 

bring about productivity benefits [89]. This is in line with the intuition by Conway 

[33], who was the first to describe the possibility of such an alignment in software 

engineering projects.  

However, even if developers are willing and able to coordinate, they may 

often be unaware of their coordination needs. This can be complicated by the fact that 

developers’ coordination needs are often fluid and change throughout the course of 

development [42]. This fluidity contributes to a lack of awareness of coordination 

needs among developers. Dourish [47] defines awareness as “an understanding of the 

activities of others, which provides a context for your own activity.”  

A lack of awareness of coordination needs can lead to missed coordination, 

which can result in build failures, duplication of work, schedule slips and software 

defects [27], [28], [30], [39], [41], [44]. Therefore, providing awareness of 

coordination needs can help improve software productivity and quality. To be 

effective, awareness must be timely, and it must provide enough information to allow 

developers to fully understand their coordination needs and act on them efficiently.  

Achieving timely awareness of coordination needs in large software 

engineering projects remains an open problem. Configuration management conflict 
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detection tools, like Palantír [111], [112] and CollabVS [45], were among the first 

attempts to provide such awareness. They help alert developers of possible conflicts 

by letting them know which other developers are making changes to the files they are 

currently modifying (direct conflicts). They also provide only limited support for 

indirect conflicts where one developer makes a change in one artifact that affects 

another developer’s work in a separate artifact. For example, Palantír includes only 

one very specific type of indirect conflicts that occur when class signatures are 

conflicting. However, these conflicts are only a subset of all possible coordination 

needs, so tools like these do not provide a comprehensive view of coordination needs 

to developers. Cataldo et al. [27], [28], [30] were the first to introduce a framework 

for establishing a more comprehensive view of coordination requirements between 

developers. Many awareness tools [10], [44], [97], [110] have been created based on 

their method. However, their method relies on commit data. This data is typically 

available only towards the end of the development work for a task, so the awareness 

this approach provides may not be timely. Without timely awareness of coordination 

needs1, developers are not able to focus their coordination to reap the proven 

performance and quality benefits. 

Existing approaches also provide inefficient recommendations since they 

require developers to take time away from their development efforts to better 

understand their coordination needs. The configuration management conflict detection 

tools provide a stream of notifications regarding each potential conflict at the source 

code level. This approach is likely to cause information overload for developers, 

                                                

1  The terms “coordination needs” and “coordination requirements” are used 
interchangeably throughout this dissertation. 
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especially since any concurrent modification to the same artifact will generate a 

notification regardless of complexity. This brings about inefficiency since the 

developers are potentially required to sift through a large number of notifications to 

determine which conflicts really matter. The coordination requirement detection tools 

also risk information overload, especially when the team is large [26], [40]. 

Moreover, they provide awareness of only which pairs of developers should 

coordinate. Since developers may work on multiple tasks in parallel, coordination 

requirements at the developer level may encompass the work dependencies of many 

tasks. This puts the burden on the developers to identify which tasks require 

coordination and introduce inefficiency.  

This work focuses on providing timely and efficient awareness of coordination 

needs by identifying coordination needs at the task level and focusing on the more 

critical coordination needs. 

1.2 Research Questions and Methodology 

This dissertation focuses on solving these issues of current coordination 

requirement detection methods and providing timely and efficient coordination 

recommendations. We first sought to explore techniques for providing timely 

awareness of coordination needs to software developers. Current methods rely on 

commit data, thus are not timely. Without timely awareness, developers are not able 

to act on their coordination needs. Our first research question addresses this problem: 

RQ1: Is timely coordination requirement detection possible? 

We developed a new method and metric, called Proximity, which detects coordination 

needs between pairs of developers in a timely way. This timely detection of 

coordination needs provides awareness to developers while their work is still 
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underway. Developers can act upon and resolve their coordination needs as they 

surface. In the words of one senior developer that we interviewed, “If you find out 

next week that you should have talked to this guy last week, that’s not helpful. Real-

time collaboration is a better choice.” Chapter 4 describes the Proximity metric in 

detail, shows how it is timelier than existing methods, and shows how it can be even 

more accurate in identifying actual coordination requirements. 

Developers are often working on many tasks in parallel, so being aware of 

only which other developers they need to coordinate with does not provide enough 

context to allow for focused and efficient coordination. We address this with our 

second research question: 

RQ2: Can coordination requirements be identified efficiently at the task level 

of granularity? 

Ko et al. [85] found that developers are especially interested in awareness about what 

information was relevant to their tasks. Additionally, through developer interviews, 

we found that developers would prefer awareness of coordination needs that exist 

between pairs of tasks, since tasks are their unit of work. We adjusted Proximity to 

identify coordination requirements between pairs of tasks - instead of developers - to 

provide better-scoped awareness and allow for more efficient coordination. However, 

current coordination requirement detection algorithms (including Proximity) cast too 

wide a net when computed at the task level, since they consider all work dependencies 

between pairs of tasks as potential coordination needs. Therefore, to provide efficient 

recommendations at the task level, we introduced ProximityML, an approach to 

reduce the set of coordination recommendations by identifying the more critical 
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coordination needs. We measure criticality of coordination requirements by task 

complexity (change size) and task performance (task duration).  

To devise ProximityML, we examined several task properties that could 

enhance measures like Proximity to identify the more critical coordination needs 

between task pairs. ProximityML uses machine learning on Proximity and those other 

identified task properties to reduce the set of coordination needs, while focusing on 

the more critical ones.  

To evaluate the accuracy of the ProximityML results, we compared its results 

to the actual coordination needs experienced by the software development team. Since 

current software project repositories only partially capture this information [6], we 

established a method and a set of guidelines to extract the ground truth of 

coordination requirements experienced by the team from the task records obtained 

from the software repositories. We used this ground truth to evaluate our results. 

Chapter 5 describes our ProximityML approach and shows how it is able to detect a 

set of the more critical coordination needs.  

Finally, we analyzed whether the ProximityML approach allows for timely 

detection of coordination needs as they emerge. This analysis aims at answering our 

third and final research question:  

RQ3: Are the more critical coordination needs actionable? 

To answer this research question, we streamed each event (developer actions and task 

updates) in a time-ordered sequence and re-ran the ProximityML approach after each 

event. This allowed us to evaluate the exact moment when ProximityML first 

recognizes a coordination need. Chapter 6 describes this evaluation exercise, which 

assesses the consistency of the results over the duration of one major project release 
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as well as the timeliness of the coordination needs detected by ProximityML. It also 

addresses the usability and actionability of the coordination recommendations made 

by our approach through developer interviews. 

1.3 Contributions 

This dissertation describes a set of techniques that aim to provide timely and 

efficient coordination recommendations. Furthermore, it evaluates those techniques 

through a mixed-methods approach and describes a number of studies that show that 

timely and efficient coordination recommendations are possible. The key 

contributions of this dissertation are: 

1. It provides a method for timely and accurate detection of coordination 

needs between software developers. 

2. It provides an approach for timely and accurate detection of coordination 

needs at the level of tasks to provide more granular and efficient 

recommendations. 

3. It provides an approach to avoid information overload by identifying a set 

of the more critical coordination needs at the task level. 

4. It describes a method for identifying the ground truth of coordination 

needs experienced during development work by examining task reports. 

5. It discusses developer needs gathered through interviews and discusses the 

implications of our work for research in coordination within software 

teams and the design of support tools for collaborative software 

development. 
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1.3 Dissertation Roadmap 

The rest of this dissertation is organized as follows: Chapter 2 outlines related 

research on 1) coordination in software engineering, 2) modularity of software design, 

3) awareness in software engineering, and 4) providing awareness of coordination 

needs. Chapter 3 describes our research setting, research questions and methodology. 

Chapter 4 describes our approach for providing timely coordination 

recommendations. Chapter 5 describes our approach for efficient coordination 

recommendations. Chapter 6 evaluates the feasibility and usability of a tool that could 

be implemented using our methods. Chapter 7 discusses the contributions and how 

our approach can be applied to larger contexts. Finally, Chapter 8 concludes with a 

discussion on the implications for research in coordination and tool design and points 

out opportunities for future work. 
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CHAPTER 2: BACKGROUND 

 
 
 
 
This chapter provides an overview of the main areas of research that are relevant to 

the research in this dissertation: 1) coordination in software engineering, 2) 

modularity of software design, 3) awareness in software engineering, and 4) providing 

awareness of coordination needs. 

2.1 Coordination in Software Engineering 

2.1.1 Need for Coordination 

In their seminal paper, Kraut and Streeter [87] argued that tight coordination is 

required among development team members in order to deliver a successful software 

system. Unfortunately, they found that there are several problems inherent in software 

development projects that make such coordination difficult. They note several 

software characteristics – scale, interdependence, and uncertainty – that cause 

unavoidable coordination problems. 

Scale: Software systems are becoming increasingly large, thus making scale a 

particularly significant characteristic. Often, projects involve millions of lines of code 

and the development cycle spans multiple years. The size of these projects makes it 

impossible for any one individual or even a small group of individuals to fully 

understand all details of the system being developed. When projects become large, it 

is necessary to divide the development work among several teams of developers. This 

can create efficiency by allowing teams to work in parallel. However, parallel streams 

of work must eventually be integrated, which introduces additional coordination 
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needs. Moreover, developers are often separated by geographic, organizational or 

social boundaries, and these boundaries can create coordination barriers [87]. 

Interdependence: Software that has been broken into small components to be 

developed independently by many teams or developers must eventually be integrated 

into one deliverable software system. There are often many dependencies between the 

various components. In order for the end system to function correctly, the components 

must work together properly. Integration of software must be very precise. Lack of 

coordination among developers working on dependent components can lead to 

integration problems [71], [87]. 

Uncertainty: Software development work is subject to continuous change, 

which causes many difficulties and produces ongoing coordination needs. 

Requirements can change over time due to changes in user needs, hardware changes 

or changing business needs. Requirements also tend to be incomplete, usually due to 

the requirement engineers’ lack of domain knowledge. The developer responsible for 

implementing an incomplete requirement frequently interprets the requirement 

incorrectly. Also, requirement engineers often introduce errors into requirements 

when translating the many needs and points of view of all the different stakeholders 

into requirements [87]. 

These characteristics are inherent in modern software projects and introduce 

coordination overhead. While steps can be taken to reduce this coordination overhead, 

the need to coordinate cannot be completely eliminated in any project [87]. 
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2.1.2 Types of Coordination 

2.1.2.1$Explicit$Coordination$

Explicit coordination is direct coordination such as email, chat, face-to-face 

meetings, or phone calls. Kraut and Streeter [87] found that communication - both 

formal and informal - is the main form of coordination that occurs during software 

development. Perry found that software developers spend a large part of their work 

time communicating [106]. Both formal and informal communications are useful 

coordination mechanisms. Formal communication, including written documents like 

requirement specifications and structured meetings, is useful during routine software 

development. Informal communication is most valuable whenever high levels of 

uncertainty are present in the project. Informal communication is often more personal 

and interactive than formal communication, including telephone calls, emails or 

impromptu face-to-face discussions between a pair of individuals or within a small 

group. Informal communication is more likely to occur between individuals who are 

in close physical proximity. While this form of communication is valuable, it can 

often be inefficient or imprecise [87].  

2.1.2.2$Implicit$Coordination$

Implicit coordination consists of consequential communication – obtaining 

information about a task by watching another developer as they complete that task – 

and feedthrough – obtaining information about a task by examining changes to 

artifacts [66]. The latter is an example of implicit coordination via stigmergy. “A 

process is stigmergic if the work done by one agent provides a stimulus that entices 

other agents to continue the job” [74]. In software development, stigmergic 
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coordination occurs when enough information is contained within a software artifact 

to enable a new developer to pick up that software artifact and complete a task that is 

already underway or start a new dependent task without resorting to explicit 

coordination. This type of coordination happens very frequently in open source 

development [74]. Elliot [52] argued that stigmergy is most important on large open 

source development teams (> 25 people). 

Stigmergy can be direct or indirect. Direct stigmergy occurs when the content 

of the software artifact promotes or facilitates later contributions. The simplest 

example of direct stigmergy in software development is code comments. Indirect 

stigmergy occurs when the side effects of work being performed cause additional 

work to be completed [74]. Examples of indirect stigmergy are posting comments on 

a development task and the modification of its state within a bug tracking tool. Bolici 

et al. [17] investigated how trading zones and boundary objects are being used as 

stigmergic forms of coordination on software development teams. A trading zone 

facilitates cross-boundary coordination by agreeing on common terms and processes 

[81]. A boundary object is an artifact that allows coordination of different 

perspectives across multiple stakeholders [122], [123].  

Recently, many software development tools have shifted from supporting the 

work of an individual developer to encouraging team-based and social software 

development. Features like tags, feeds, and microblogging made popular through 

social media sites such as Facebook and Twitter have been incorporated into software 

development tools. Many of these features support implicit coordination. 
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Tags 

A tag is a user-defined keyword that is attached to an item to help describe it. 

Yew et al. [144] described social tagging as “the collaborative activity of marking 

shared content with keywords, or tags, as a way to organize content for future 

navigation, filtering or search.” Tags have been introduced into numerous software 

development tools. One of the first ways to tag source code was through the use of 

Java code annotations, such as TODO, FIXME, or HACK. Storey et al. [126] found 

that developers use these annotations to help manage their tasks.  

In the IBM® Rational Team Concert team-oriented software development 

environment, also known as Jazz, developers can create source code annotations using 

snippets of chat conversations to help document important decisions made through 

informal communication channels [77]. Jazz also allows developers to tag work items. 

A work item is equivalent to a bug report, modification request or change request in 

other development environments. Work items are assigned to developers as tasks in 

the Jazz environment. Developers use tags mainly to organize and categorize [129], 

[130]. While developers indicated that tags are not used to directly communicate with 

other members of the team, developers tag not only their own work items, but also the 

work items of other developers [129], [130]. This could indicate that tags are being 

used for various forms of stigmergic collaboration. 

TagSea, an Eclipse plug-in, is another tool that provides a tagging feature 

through a feature called Waypoints [125]. Waypoints are implemented as a series of 

tags that can be used to save locations of interest and create a “map” or an itinerary 

through the code base. A series of Waypoints, called a route, can help guide 

developers through the code. Developers can share Waypoints as a form of 
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collaboration. A preliminary evaluation of TagSea found that developers used tags 

and Waypoints to: 1) temporarily mark areas of code they are changing; 2) relay 

information about code changes to other team members; and 3) implement similar 

tasks by following Waypoint routes created by other developers. 

One downfall of using user-defined keywords as tags is that different tags can 

refer to the same concept. This can make searching and filtering on tags more 

difficult, especially in software engineering where domain specific verbiage is often 

used. Wang et al. [135] studied the tags associated to 45,470 projects on Freecode2, a 

project hosting site, and created a similarity metric for the words used in those tags to 

infer semantically related software terms. They used this similarity metric to group 

related tags. Through user studies, they found users agreed with their similarity metric 

and the resulting taxonomy. Other tools, like TagRec [3] and TagCombine [140], 

have proposed techniques that recommend tags based on similar tags that have 

previously been used on related objects. These tools could make tagging objects in 

software development projects easier. 

Feeds 

Feeds broadcast project-related or user events such as build results, 

modifications to tasks or incoming tasks. Treude and Storey [128] found that, in Jazz, 

developers use feeds to track work, get information, and understand common 

practices. On GitHub, users can subscribe to activity feeds by “watching” a project or 

“following” a user. These feeds include information on code related changes, issues 

and comments. 

                                                

2 Freecode: http://freecode.com 
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Calefato et al. [23], [24] introduced a tool called SocialCDE whose goal is to 

increase trust in global software development teams by enhancing the feeds provided 

by current tools with additional social information. SocialCDE displays developer’s 

personal social content obtained from sites like Facebook, Twitter and LinkedIn 

directly within a developer’s development environment.  

The amount of information available within feeds can quickly lead to 

information overload [128]. Yet, Dullemond et al. [48] found distributed software 

engineers are interested in a diverse set of information and the relevant information 

changes frequently. Individual developers often have different opinions on the most 

relevant information [50]. Fritz and Murphy [57] found that developers use four 

factors in determining the relevancy of information within a feed. These factors are: 

1) content, 2) target of content, 3) relation with the creator, and 4) previous 

interaction. Feeds can be improved by considering all of these factors to include only 

relevant information. 

Dashboards 

Jazz also provides web-based dashboards that help keep developers aware of 

what is happening on a software project or within a software team. The Jazz 

dashboard provides high-level project health information and makes it easy to 

navigate and drill down to more complete information. Treude and Storey found that 

developers use dashboards to achieve a high-level overview of project-status and an 

understanding of what other developers/teams are working on [128]. 

Wikis, Blogs and Microblogs 

Software developers have adopted other social media tools like wikis, blogs 

and microblogs for collaboration. Al-asmari and Ya [1] found that wikis are easy to 
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use, reliable and inexpensive when compared to other coordination methods. Several 

wiki tools, like WikiDev 2.0 [9], Galaxy Wiki [142], and Wikigramming [69], have 

been created to specifically support software development activities. Huh et al. [76] 

found that blogging allows easy access to knowledge and can serve as a coordination 

mechanism.  

Microblogging became popular through Twitter. Many companies have 

adopted Yammer, a commercial product that provides features similar to Twitter for 

individual companies. Guzzi et al. [68] created James, an Eclipse plugin, which 

combines microblogging with developer activities collected through IDE monitoring. 

In their study, participants used James to communicate future intentions, indicate the 

status of ongoing and concluded activities, comment, and mark future tasks. They 

found that developers are willing to microblog and that microblogging is helpful in 

maintenance tasks. Dullemond et al. [49] found that distributed software developers 

used microblogging to coordinate. They also found that microblogging helped team 

members become more connected, and it provided easier access to information. Wang 

et al. [136] found that microblogging also plays an important role in open source 

software communities through their analysis of Twitter accounts. 

User profiles 

On GitHub, user profiles are publicly accessible and include identifying 

information, a list of projects the user is currently working on, and the user’s recent 

activity on those projects. SCI [8], a collaborative development environment, also 

incorporates user profiles including information like project activity, technical 

interests, currently active sessions, and availability. CARES [67] populates source 

code files with photos of developers who have recently modified the software artifact. 
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Each photo is augmented with a tooltip containing user profile type information like 

previous code commits, position in the organization, physical location, and 

availability. 

Dabbish et al [37] found that GitHub users make use of the social information 

available in user profiles, in addition to the information collected via feeds, to make 

“a rich set of inferences around commitment, work quality, community significance 

and personal relevance. These inferences support collaboration, learning, and 

reputation management in the community.” Marlow et al [96] found that GitHub 

users use the information from user profiles to form impressions of each other and 

make judgments about potential contributors, which then influence whether or not 

their code contributions are accepted. 

All of the features discussed above have potential as means for implicit 

coordination. The information reported in both feeds and dashboards is generated 

directly from the work done by developers, and no additional work is required on the 

part of the developer to populate these information sources. Up-to-date information is 

then constantly displayed to the rest of the team. Developers are able to gather 

information from these sources without explicitly communicating with any other team 

members. Tags, wikis, blogs, microblogs and user profiles need to be created by 

developers, but this can be done when it is most convenient for the developer. The 

rest of the team can then use the information contained in these sources without the 

need for explicit coordination. These coordination methods can help archive 

important design decisions and task details while development is underway for easy 

referencing on future tasks. More research is still needed on how implicit coordination 
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can be encouraged and facilitated to increase awareness in software development 

teams and reduce the need for more expensive forms of coordination. 

2.1.3 Coordination Problems 

Brooks [20] observed the problems associated with coordination in software 

projects. He famously explained that adding more people to project that is already 

behind schedule further delays the project due to the added project coordination and 

communication overhead. Coordination can be even more difficult when the involved 

developers span team boundaries. Sosa et al. [120] found that when cross-boundary 

dependencies exist, developers often do not coordinate due to a lack of awareness of 

the importance of the coordination as well as a lack of social relationships across 

teams. They found that the lack of coordination resulted in integration problems. In an 

empirical study, Curtis et al. [36] found that coordination is one of the biggest 

problems in large software projects.  

de Souza et al. [44] found that developers are not always aware of their 

coordination needs and that when developers are unaware of the coordination that is 

required to manage their work dependencies, problems can occur. Studies have found 

that unfulfilled coordination needs can result in an increase in task resolution time, an 

increase in software faults, build failures, redundant work, and schedule slips [27], 

[28], [30], [39], [41], [44].  

The literature described here shows that awareness of coordination needs is a 

critical concern in large software projects. 
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2.2 Modularity 

Today’s software systems are increasingly large and complex. It is, therefore, 

necessary to divide the development work among numerous developers. Breaking the 

implementation of a large software program into independent modules is a well-

established software programming technique. Modules are defined as elements of a 

larger system that are independent yet work together [7]. Simon [121] and Alexander 

[5] argued that decomposing a system was a logical, and perhaps the only, response to 

the complexity that was inherent in solving such large problems. Simon [121] said 

nearly decomposable systems, where interactions between the components are weak 

but not negligible, were ideal. Parnas [105] recognized that it is possible to reduce 

coordination needs by minimizing the technical dependencies between software 

modules. Modules can then be developed independently in parallel and later 

integrated to form a complete product.  

Parnas [105] defined modules as “a work assignment unit rather than a 

subprogram.” His definition of modules is based on an earlier definition made by 

Gauthier and Ponto [61], which states “each task forms a separate, distinct program 

module.” Parnas argued that modularization is a mechanism for improving flexibility 

and comprehensibility of a system. He provided criteria for decomposing a system 

into modules based on his information hiding principle. 

Parnas’ information hiding principle [105] was very influential, and it forms 

the foundation for many modern approaches to reduce dependencies between 

modules. He argued that modules should expose only stable interfaces and should 

hide anything that is likely to change. By exposing only the stable interfaces that are 
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not likely to change, changing one module should not impact other parts of the 

software. Once the interfaces have been defined, modules can then be developed 

independently. This allows developers to work in parallel without the need for 

coordination.  

Baldwin and Clark [7] defined design rules as the high-level design decisions 

that secondary decisions depend on. These design rules are stable decisions that are 

not likely to change throughout the project lifecycle. A design rule can describe the 

decisions on 1) a product’s architecture, 2) the interfaces between modules, and 3) the 

integration tests that will ensure modules are working together. Baldwin and Clark [7] 

argued that modularity of a system increases the value of that system by providing 

design options. Modules can be easily swapped for one another when unanticipated 

changes occur to the design. This supports software evolution.  

However, it has been found that designers will rarely choose the optimal 

module decomposition [54]. There are two well-known measures, coupling [32] and 

cohesion [124], that help assess the modularity of a design. Coupling considers the 

number of dependencies between modules. Highly coupled modules have many 

dependencies between them and will result in more coordination needs between the 

developers who implement those modules. Cohesion considers the number of 

dependencies within a module. Higher cohesion means the elements within a module 

are functionally related. The best designs will have low coupling and high cohesion.  

Wong et al. [139] created a Design Rule Hierarchy (DRH) metric to identify 

modules that can be independently assigned to developers for parallel work. DRHs 

are computed from Design Structure Matrices (DSMs) [7]. A DSM is a square matrix 

that identifies technical dependencies between software modules. Consistent with 
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Parnas’ definition of modularization [105], these independent modules can be worked 

on in parallel without incurring coordination overhead. A DRH clusters modules into 

“layers” where each layer depends only on the layers above. The layers can be used to 

differentiate artifacts that represent influential design decisions (design rules) from 

low-level artifacts that depend on those decisions. Wong et al. [139] established three 

categories of work that can be used to differentiate between tasks that can be 

completed independently and those that will require coordination:  

1. Same Layer Same Module (SLSM) pairs: Two tasks include edits to 

artifacts that have a dependency and are in the same module. Tasks that have a SLSM 

relationship may require coordination. 

 2. Across Layer (AL) pairs: Two tasks include edits to artifacts that have 

a dependency and are in different modules and different layers. Tasks that have an AL 

relationship may require coordination. 

3. Same Layer Different Module (SLDM) pairs: Two tasks include edits 

to artifacts that are in different modules of the same layer. By definition, there are no 

dependencies between these artifacts, so tasks with only SLDM relationships should 

be able to be completed independently. 

For illustration purposes, Figure 1 shows an example of a hypothetical two-

layer DRH. The large thick-bordered boxes represent the two different layers while 

the boxes within the layers represent modules. The X’s show the dependencies 

between the modules. Tasks 1 and 2 are an example of an SLSM pair since they are 

operating on the same module. Tasks 2 and 3 are an example of a SLDM pair since 

they are operating on the same layer but on different modules. Tasks 1 and 3 are an 
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example of an AL pair since they are operating on modules in different layers with a 

dependency.  

 
 
 

 

Figure 1: Design Rule Hierarchy Example [139]. 

 
 
 

The SLSM and AL categories can be seen as potential coordination needs 

since dependencies exist between these task pairs. Wong et al. [139] observed that 

developers working on tasks that involve either the same software modules (SLSM) 

or software modules in different layers of a DRH (AL) tend to communicate (a 

dominant form of coordination in software development [87]) significantly more than 

developers working only on modules in the same layer (SLDM). Therefore, Wong et 
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al.’s DRH approach, given an existing software product or design, provides an 

automatic way to identify modules that can be developed independently and in 

parallel, without requiring coordination. 

However, not all technical dependencies can be eliminated, and not all 

modules will be able to be developed in parallel without coordination. Schedule 

optimization algorithms introduced another approach to dealing with dependencies 

between software modules. Rather than satisfying the technical dependencies through 

coordination, modules are developed according to a schedule that will reduce the 

occurrence of conflicts. di Penta et al. [46] found that optimization of project 

scheduling can reduce coordination overhead through evaluation of their search-based 

optimization techniques. More recently, Kasi and Sarma [80] introduced a tool, 

Cassandra, which identifies potential conflicts between tasks based on the files in 

their workspaces and suggests optimal scheduling to avoid those conflicts. While 

these schedule optimization approaches can certainly reduce the coordination needs of 

a development team, they will not be able to fully eliminate the need for coordination. 

This is particularly true when the schedule is tight and large amounts of work need to 

be done in parallel, despite the conflicts that may arise. 

When more work can be done in parallel, the team’s productivity can increase. 

When technical dependencies exist, work is being done in parallel, and the required 

coordination does not occur, problems can occur when integrating the modules [43]. 

Herbsleb et al. [73] argued for computing and fulfilling coordination requirements to 

satisfy these technical dependencies rather than trying to minimize the dependencies 

themselves. However, developers are not always aware of their coordination needs. 
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2.3 Awareness 

Gutwin et al. [65] argued that team members must maintain awareness of each 

other to achieve successful collaboration. Awareness is defined as “an understanding 

of the activities of others, which provides a context for your own activity [47].” 

Awareness is especially important in Software Engineering since Software 

Engineering is a collaborative effort that is often performed in large, distributed 

settings. In large and distributed development projects, it is particularly difficult for 

developers to stay aware [25]. Kiani [84] found that teams are more aware when 

teams are smaller in size, have more experienced members, use agile processes, and 

have frequent interactions between teammates both within and across teams. 

Awareness is especially difficult when teams span organizational boundaries [102].  

In face-to-face settings, team members can naturally become aware of each 

other and each other’s work. However, in distributed settings, teams need tools to 

help support awareness [47]. There have been a slew of awareness tools built to help 

support Software Engineering teams. Portillo-Rodriquez [107] found awareness 

features exist in nearly all types of Software Engineering tools including requirement, 

design, development, configuration management, project planning, process, quality, 

knowledge management and social tools. Some of the awareness features provided by 

these tools help developers understand the team structure [2], [113], review project 

history [59], become aware of ongoing file changes and potential conflicts [12], [21], 

[22], [38], [45], [55], [56], [64], [70], [104], [111], [112], [118], [119], [137], and 

understand technical dependencies and the coordination they may require [10], [44], 

[97], [110], [141].  
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Social- and team-oriented features in software development tools seem to be 

effective in supporting teams to overcome challenges of distance and promoting 

awareness. A study of Jazz, one of the first collaborative software development 

environments, found that task duration is not as strongly impacted by geographic 

distance as found in previous studies [103]. Another study [13] found that geographic 

distance between team members did not significantly affect the number of software 

faults.  

van Gameren et al. [133], [134] have a vision that all awareness information 

can be automatically analyzed, filtered and combined to provide an overall awareness 

picture to developers similar to the awareness obtained in face-to-face settings. This is 

in line with the concept of continuous coordination tools described by Sarma et al. 

[114]. They envision a future where developers will no longer need to use explicit or 

separate coordination tools since their virtual work environment will seamlessly 

combine coordination and work. Redmiles et al. [109] described this as “flexible work 

practices supported by tools that continuously adapt their behavior and functionality 

so coordination problems are minimized in number and impact.” However, this future 

vision of seamless awareness will not be achieved quickly and must evolve through 

incremental improvements in existing tools. 

This work focuses on ways to improve awareness of coordination needs in 

software engineering teams. Herbsleb et al. found that “development work is faster 

when those performing mutually constraining work 1) are on the same team, 2) are 

located at the same site, 3) communicate using an asynchronous text tool, or 4) 

communicate in a chat room.” [73]. This insight suggests that by correctly targeting 

coordination, a software team can see performance benefits. This is in line with the 
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original intuition by Conway [33] who was the first to recognize that the social 

structure of the team plays a role in the design of the software product that team is 

developing. He said, “any organization that designs a system … will produce a design 

whose structure is a copy of the organization's communication structure.” This has 

since been dubbed Conway’s Law. The message behind Conway’s Law is that when a 

dependency exists between two modules, the developers responsible for those 

modules must coordinate to ensure the modules interface correctly with each other. 

Recently, Kwan et al. revisited Conway’s Law, and they found that aligning software 

development organizations based on the tasks that the developers are working can 

provide benefits in the team’s ability to work together [89]. Betz et al. [11] describe 

what they call the “rubber band effect” of Conway’s Law, which states that changes 

in a team’s organization structure will eventually trigger changes in the design of their 

software products. 

It has been found that an increase in communication can bring greater 

awareness of work dependencies and reduce coordination problems [43], [63], [72]. 

Herbsleb et al. found that when developers are willing to communicate directly, 

integration problems are reduced [71]. However, even if developers are willing and 

able to coordinate, they may often be unaware of their coordination needs [44]. This 

can be complicated by the fact that developers’ awareness networks are often fluid 

and change throughout the course of development [42].  

de Souza et al. [44] observed two major types of coordination problems 

prevalent in software development – a lack of awareness of other team members’ 

work and a difficulty in identifying other software developers with whom it would be 

important or interesting to communicate. Specifically, they found that managers lack 
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an awareness of evolving social dependencies within their teams and developers lack 

an awareness of evolving technical dependencies. Developers have difficulties finding 

other developers with the required expertise to answer questions or help guide them in 

their development tasks. They also have difficultly finding developers whose work 

has similar dependencies, for example those who depend on the same interface or 

component. Finding such developers can help, for example, in minimizing duplicate 

work. 

According to Fritz and Murphy, software developers are most interested in 

awareness tools that will help them understand who is working on what and what 

changes are made to the code base [58]. A recent survey of developers at Microsoft 

found that, for a software engineer, the most important form of awareness is locating 

and keeping up to date with other developers whose work is relevant to their own 

[10]. Another study conducted by Ko et al. [85] found that developers are most 

interested in awareness about what information is relevant to their tasks, how artifacts 

changed, and what their co-workers have been doing. 

2.4 Providing Awareness of Coordination Needs 

Two main approaches have been proposed to provide awareness of 

coordination needs in software development teams: 1) configuration management 

conflict detection and 2) coordination requirement detection. 

2.4.1 Conflict Detection 

Configuration management tools have been used for a long time in software 

development to help coordinate concurrent work between developers. Sarma et al. 

defined two classes of configuration management tools, pessimistic and optimistic 
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[111]. Pessimistic tools force developers to lock the files that they are editing to 

ensure that no other developers make edits to that artifact until the lock is released. 

This approach does not allow for direct conflicts (concurrent edits to the same 

artifact), but it does limit the amount of concurrent work that can occur. It also still 

allows indirect conflicts where one developer makes a change in one artifact that 

affects another developer’s work in a separate artifact. Optimistic tools allow 

developers to work concurrently on the same artifacts. A merge must be performed 

when developers are ready to check in their changes into the code repository. 

Developers remain unaware of who else is working on the same artifacts until they 

have completed their work. This approach can result in both direct and indirect 

conflicts. Direct conflicts will be resolved when the merge occurs, but indirect 

conflicts are not detected. 

Gutwin et al. [66] found that distributed software developers obtained 

awareness through monitoring configuration management system check-in logs. 

Many configuration management systems send automatic emails with recent changes 

to subscribed developers. However, the amount of information from check-in logs can 

be overwhelming and requires a significant time commitment for developers to obtain 

awareness. In addition to the email notifications, most configuration management 

tools have commands that allow developers to pull change information for a particular 

file. For example, Git Blame3 allows a developer to identify who has made changes to 

a particular file in the Git4 version control system. However, this requires the 

developer to manually run a command whenever they want to obtain awareness. The 

                                                

3 Git Blame: http://git-scm.com/docs/git-blame 
4 Git: http://git-scm.com 
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awareness obtained from the configuration management system is not timely since 

development work is often complete, or nearly complete, when code is checked-in; 

thus, it may be too late for developers to coordinate effectively once that information 

is obtained. Configuration management conflict detection tools were introduced to 

provide this type of information in a more continuous, timely way. 

Palantír is one of the earliest awareness tools in software engineering and an 

example of a configuration management conflict detection tool. Palantír was 

developed to help alert developers of possible conflicts by letting them know which 

other developers are making changes to the files which they are currently modifying. 

It changed the flow of information from “pull”, where developers only receive 

information when they perform certain interactions with the configuration 

management system, to “push” where information is made continuously available to 

developers regardless of their actions [111].  

Palantír uses notifications to keep a developer abreast with what happens in 

her colleagues’ workspaces [111], [112]. Palantír detects conflicts by making use of 

information from the configuration management system. It looks at the artifacts in 

each developer’s workspace and their state, and it compares them to the state of the 

“master copy” for the same artifacts maintained in the configuration management 

repository. It notifies developers of changes occurring to the artifacts they have in 

their own workspace. While these notifications are timely, they only regard direct 

conflicts on the same artifact and a very specific type of indirect conflicts that occur 

when class signatures are conflicting. These are a narrow subset of the many technical 

reasons that can induce a coordination need.  
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CollabVS is another awareness system that uses notifications. Compared to 

Palantír, it has an expanded model of interest. The CollabVS model captures 

additional conflicts by considering a subset of syntactical dependencies between 

artifacts [45]. It issues instantaneous warnings to developers as an individual instance 

of conflict emerges, but it does not offer a model for quantifying the strength of a 

coordination need. Even with its expanded model of interest, it does not capture all 

coordination needs. So while they are timely, CollabVS and Palantír provide an 

incomplete view of coordination needs, which are not prioritized, quantified or 

filtered in any way. Tukan [118] provides similar conflict support, but it presents 

information only at certain intervals rather than instantaneously, reducing the 

timeliness of the awareness it provides. 

CollabVS and Palantír provide a stream of notifications regarding each 

potential conflict at the source code level. This approach is likely to cause information 

overload [53], [75], [101], [127] for developers, especially since any concurrent 

modification to the same artifact will generate a notification regardless of complexity. 

This brings about inefficiency since the developers are required to sift through a large 

number of notifications to determine which conflicts really matter. Augur [59] is 

another tool built on top of configuration management systems that visualizes 

potential conflicts for each line of code in a software artifact. The level of detail that 

Augur provides does not scale to large projects where it is also likely to cause 

information overload.  

Syde [70] introduced a way to reduce this information overload by reducing 

false positives through abstract syntax tree (AST) modification analysis. This results 

in only flagging potential conflicts when the two developers are working on the same 
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area of code within a large file. However, Syde is limited because it only considers 

direct conflicts. FASTDash [12], Lighthouse [38], Celine [55], Elvin [56], War Room 

Command Console [104], and CASI [119] are other configuration management 

conflict detection tools that provide support for only direct conflicts. 

Crystal [21], [22] identifies conflicts in decentralized version control systems 

like Git. It also finds far fewer false positives than tools like CollabVS and Palantír 

since it waits for code to be committed to a local repository, but it is not timely. It 

examines commits made in a developer’s local repository and integrates those local 

changes into a shadow repository of the main branch. It runs the build and test scripts 

to identify any problems that would occur when merging a developer’s existing local 

changes to the main branch. Therefore, Crystal does not report conflicts until changes 

have already been committed to some repository reducing the timeliness of detection. 

WeCode [64] and Safe-Commit [137] employ similar methods in a more 

timely way. WeCode continuously merges all developers’ uncommitted code into a 

shadow copy to identify any merge conflicts. Safe-Commit runs test scripts to detect 

conflicts without waiting for local commits. It looks at the changes in a developer’s 

local workspace and identifies changes that pass the project’s existing tests. The goal 

of Safe-Commit is to identify changes that can be checked in early with the belief that 

frequent check-ins can decrease duplicate work and decrease merge conflicts. Crystal, 

WeCode and Safe-Commit are still unable to provide a complete view of coordination 

needs since they rely on test cases to detect conflicts. Conflicts that are not covered by 

any test case will not be detected. Therefore, their solutions rely on the quality of the 

test suite of the development team. 
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2.4.2 Conceptualization of Coordination Requirements and Socio-Technical 

Congruence 

Cataldo et al. [27], [28], [30] introduced a framework to detect and quantify a 

more complete view of Coordination Requirements between pairs of software 

developers. They do this by identifying the technical dependencies between software 

artifacts modified during their assigned tasks. They compute those technical 

dependencies through logical coupling [60], which tracks files that have been 

historically checked in together and aims at identifying semantic relationships that 

may not manifest in the syntax of the programmatic implementation of the software 

product. While syntactic dependencies can be identified prior to implementation, 

logical couplings reflect accumulated empirical evidence about how the development 

work unfolds in the project. Cataldo et al. offer empirical evidence that logical 

coupling provides a more reliable representation of the technical dependencies 

relevant for coordination requirement detection than syntactic coupling does [29]. 

Once technical dependencies between artifacts have been established, they compute 

coordination requirements using the following formula: 

CR = TA x TD x TAt 

In this formula [27], [28], [30], TA is a people-by-task matrix representing task 

assignments, and TAt is its transpose. TD is a task-by-task matrix capturing the work 

dependencies between tasks. Those are established by considering the technical 

dependencies occurring between artifacts involved in those tasks. CR is the resulting 

matrix of coordination requirements. According to this formula, a coordination 

requirement between two developers, Alice and Bob, can be represented graphically 

as in Figure 2. Arc TDab represents a technical dependency between software artifacts 
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Sa and Sb. These artifacts are involved in tasks to which Alice and Bob, respectively, 

are assigned (denoted by arcs TAa, TAb). Empirical evidence suggests that when 

coordination activities focus on the identified coordination requirements, productivity 

is likely to improve [27], [28], [30]. 

 
 
 

 

Figure 2: Representation of a Coordination Requirement. 

 
 
 

The conceptualization of coordination requirements led to the concept of 

Socio-Technical Congruence (STC) [27], [28], [30], which states that when 

coordination is focused between the team members with identified coordination 

requirements the project can see performance benefits. STC measures the extent to 

which coordination needs and coordination behavior are aligned in practice. STC is 

expressed as a simple ratio between coordination requirements that are satisfied by 

actual acts of coordination (fulfilled coordination requirements) and the set of 

remaining coordination requirements between developer pairs that are unfulfilled 

(coordination gaps). Recent research has found that having low congruence and many 

coordination gaps can significantly increase the number of software failures in mature 

development settings and in new and dynamic settings alike [27]. 
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The method proposed by Cataldo et al. identifies coordination gaps. If 

developers could be made aware of those gaps in a timely way, they could take action 

to fulfill those gaps therefore increasing software productivity and quality. Since 

developers are often limited in the amount of time they can spend coordinating their 

work, a way to prioritize the list of coordination gaps could be useful. Valetto et al. 

[131] introduced an alternative graph-based algorithm for detecting coordination 

requirements. The graph contains dependencies between software artifacts, the 

connections between the software developers and those artifacts, and the interactions 

that have occurred between the developers. They created an algorithm for analyzing 

the graph to rank the coordination requirements. Since the graph contains information 

on which developer pairs have already engaged in coordination, the gaps can easily be 

highlighted and ranked, helping to focus coordination efforts where it is most needed. 

Tesseract [110] is an awareness tool that similarly highlights coordination gaps by 

considering the developers with evidence of prior coordination. 

However, there are several problems with the way coordination gaps are 

identified. Coordination requirements are counted as fulfilled by any single act of 

coordination. Developers may only have coordinated on a subset of the technical 

dependencies that contribute towards a coordination requirement. In those cases, 

coordination requirements that are considered fulfilled may actually still indicate a 

coordination gap regarding other technical dependencies. Kwan et al. [91] proposed 

an enhanced weighted communication model which counts the number of 

communications that occur and the content of those communications to better 

understand which technical dependencies have been fulfilled. Wolf et al. [138] 

introduced an approach for mining large software repositories to identify task-based 
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communication between developers. However, communications that are not directly 

linked to a task cannot always be easily associated to a particular task. Another 

problem with the conceptualization of coordination gaps is that the absence of direct 

communication between a pair of developers does not always indicate a gap. Ehrlich 

et al. [51] first introduced the idea of coordination brokers in a software development 

team. Brokers are people who act as an intermediary between two developers or 

groups of developers to facilitate coordination. They suggested that brokers may be 

able to mitigate the effect of gaps. Kwan and Damian [90] later introduced a method 

to extend the conceptualization of coordination requirements to account for brokers. 

These coordination requirement detection methods and the STC measure 

highlight the importance of coordination in software teams. However, these methods 

are retrospective and, therefore, not timely. Coordination requirements are identified 

by examining the artifact commits made by developers in the project’s source control 

repository. Commit data is typically available only after the majority of development 

work for a task has been completed. In addition, logical coupling is used to determine 

technical dependencies between artifacts. Computing dependencies in this way is 

based on past project history which is only visible after much work is completed. 

Even when syntactic dependencies are chosen, as done by Ehrlich et al. [51], they 

only become fully known following a commit since dependencies between artifacts 

can change throughout the development process. This lack of timeliness limits the 

potential of coordination requirements as a means to support coordination as the 

development work unfolds. 

In addition, a recent study has shown that in large projects, even when 

coordination requirements are computed simply between pairs of developers, the 
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number of potential coordination requirements that are listed for a given developer 

may be very large [40]. Cataldo and Ehrlich [26] also found that current collaborative 

tools may be sufficient for small teams, but they risk introducing information 

overload when used in larger teams. 

Identifying coordination needs between pairs of developers may also introduce 

inefficiencies. Since developers often work on multiple tasks in parallel, coordination 

requirements at the developer level may encompass the work dependencies of many 

tasks. This puts the burden on the developers to identify which tasks require 

coordination. This can increase coordination overhead and reduce efficiency. 

2.4.3 Applications of Coordination Requirements 

There are many tools that try to achieve awareness by employing abstractions 

similar to, or derived from, the concept of coordination requirements: 

Ariadne [44] pulls data from the configuration management repository and 

uses Cataldo et al.’s algorithm to detect coordination requirements between 

developers. It uses those coordination requirements to create visualizations of socio-

technical networks including a visualization to alert developers of their coordination 

needs, a visualization to allow management of a team’s overall coordination needs, 

and a visualization to show developers that have experience on a given code module.  

EEL [97] also pulls data from the configuration management repository and 

uses Cataldo et al.’s algorithm to detect coordination requirements between 

developers. EEL uses these coordination requirements to display a suggested buddy 

list for each developer, that is, a ranked list of other developers with dependencies – 

and expertise - on the users’ current change set. Ensemble [141] provides a similar 
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suggested buddy list, but filters its recommendations based on the coordination gaps 

that exist by considering project communication records. 

Tesseract [110] uses Cataldo et al.’s coordination requirement detection 

algorithm to graphically display coordination requirements in a dashboard. It pulls 

information from various sources, such as the project’s configuration management 

system, mailing lists and bug tracking system, and it shows the relationships between 

developers and the various software artifacts. Like, Ensemble, Tesseract also uses 

information obtained from project communication records to highlight fulfilled 

coordination requirements as well as gaps. This allows developers and/or managers to 

better focus their coordination efforts, but the accuracy of this feature is limited by the 

amount of communication that can be automatically captured. Tesseract and 

Ensemble do not process the content of communications; they simply mark a 

coordination requirement as fulfilled by any single act of communication between a 

pair of developers. This can be especially troublesome when a coordination 

requirement is comprised of multiple technical dependencies. 

Codebook [10] is a graph-based framework for determining coordination 

requirements between developers. Codebook mines data from many different 

repositories including the configuration management system, email system, bug 

tracking system and employee directory using crawlers designed for each repository. 

A directed graph is then created to capture the relationships between people, code, 

tasks, requirement specifications and other work artifacts. Since Codebook contains 

far more data than is available in just the configuration management system, it can 

provide a much richer set of information than that included in Cataldo et al.’s 

coordination requirement algorithm. 
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Since all of these tools identify coordination requirements between pairs of 

developers by mining commit data from the configuration management system, they 

all suffer from a lack of timeliness and efficiency. 
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CHAPTER 3: RESEARCH QUESTIONS, SETTING, AND METHODOLOGY 

 
 
 
 
This Chapter introduces our research questions, describes the setting of our case 

studies, and provides details of the research methods used while addressing each 

research question. 

3.1 Research Questions 

This dissertation presents a set of methods and techniques that address the two 

main limitations of existing coordination requirement detection methods: lack of 

timeliness and inefficient recommendations. The development of these techniques has 

been guided by three main research questions:  

RQ1: Is timely coordination requirement detection possible? 

RQ2: Can coordination requirements be identified efficiently at the task level 

of granularity? 

RQ3: Are the more critical coordination needs actionable?  

3.2 Research Setting 

To answer these research questions, a series of investigations was performed 

using data from the Mylyn5 open source project. Mylyn is an Eclipse6 plug-in that is 

now bundled in the main Eclipse distributions. It transforms an individual software 

developer’s Integrated Development Environment (IDE) into a task-centric view to 

make context switching between tasks easier. To fulfill its own purposes, Mylyn 

                                                

5 Mylyn: http://www.eclipse.org/mylyn/ 
6 Eclipse: http://www.eclipse.org 
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records all developer interactions within the IDE as they occur. These events are 

stored as context data for the task in focus. We used this context data to solve the lack 

of timeliness of existing approaches since it provides a record of developers’ activities 

as they occur. While there are other tools, such as Cubeon7, which provide IDE 

logging, Mylyn is the most well-known and widely used tool. Tasktop Technologies8 

created and leads the Mylyn open source project. Tasktop also has an enterprise 

version of the Mylyn open source project, called Tasktop Dev, which is available as a 

plugin for Eclipse and Visual Studio and as a standalone application. 

The developers involved in the Mylyn open source project make routine use of 

the Mylyn plugin in their IDE and attach their Mylyn context data, which details 

developer activities, to each change request. There are several types of actions 

captured in the Mylyn context data. For this study, we consider only artifact selection 

(consultation) and edit actions. Other actions used within Mylyn, such as prediction, 

propagation and manipulation, were purposely discarded. Manipulation actions 

represent information that developers can explicitly provide to Mylyn to emphasize 

the importance (or lack thereof) of a given artifact for the task at hand. Prediction and 

propagation events occur when Mylyn itself “suggests” other artifacts, which are not 

included in a developer’s working set, but appear to be structurally relevant. Since 

these event types are specific to Mylyn, including them would make the replication of 

our experiments and findings outside of the Mylyn framework difficult (e.g. in 

projects and environment that employ different IDE logging facilities such as 

                                                

7 Cubeon: http://code.google.com/p/cubeon/ 
8 Tasktop: http://tasktop.com/dev 
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Cubeon). In the remainder, Mylyn context data refers, therefore, only to the artifact 

consultation and edit activities captured within that data. 

We mined the project repositories including the change request repository, 

Bugzilla9, and the configuration management system, CVS10. We collected all 

Bugzilla change requests and developer activities (Mylyn context data) from eight 

releases of the Mylyn project, releases 2.0 to 3.3, which spanned nearly three years of 

development. As shown in Table 1, each release involved two to nine months of 

development. We included all Bugzilla change requests for which development work 

occurred during the release’s development period. We determined the time of 

development for a change request by the artifact selection and edit activity obtained 

through the Mylyn context data attached to the Bugzilla record. 

 
 
 

Table 1 Mylyn Releases. 

Release Start End 
2.0 December 2006 June 2007 
2.1 June 2007 September 2007 
2.2 September 2007 December 2007 
2.3 December 2007 February 2008 
3.0 February 2008 June 2008 
3.1 June 2008 March 2009 
3.2 March 2009 June 2009 
3.3 June 2009 October 2009 

 
 
 

On the Mylyn project, developers are assigned change requests as their unit of 

work and encouraged to deliver their work as code patches that correspond to (and 

                                                

9 Bugzilla: http://www.bugzilla.org 
10 CVS: http://www.nongnu.org/cvs/ 
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resolve) a single change request. The bug-tracking database is the way the Mylyn 

team defines and assigns developer tasks. Therefore, we refer to Bugzilla change 

requests as tasks. 

To better understand the coordination problems of the Mylyn team, we 

interviewed six developers from the Mylyn open source project and Tasktop, the 

enterprise version of Mylyn. The developers told us that they coordinate by ensuring 

all task details are documented on the task report in Bugzilla. They use the “cc” 

feature of Bugzilla to alert another developer of a task. They use the chat feature of 

Skype and also hold Skype video or audio calls when working with distributed team 

members. They believe that their code is sufficiently modular, and they strive for 

small tasks that affect only one or two modules to reduce coordination needs. The 

Mylyn team has 4 core developers and up to 10 other contributors at any time. The 

Tasktop team is comprised of approximately 30 developers. 

While they are a relatively small, well-established team, Mylyn developers 

still experience occasional problems stemming from a lack of coordination. We asked 

the interviewees: “Do you recall any problems due to lack of coordination as you 

completed your development tasks?” The developers all stated that they had 

experienced coordination problems during development. The most common issue 

discussed was duplication of work caused by a lack of awareness of what others are 

working on. Other coordination problems discussed include: 

• Developers are unaware of how their task affects other tasks. 

• Developers are unaware of how other tasks affect their own tasks.  

• Developers incorrectly assume someone else is handling a task, and the 

task is left unmanaged.  
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These are in line with the ‘questions developers commonly ask’ that were identified 

by Fritz and Murphy [58]. The developers’ remarks are all related to a lack of 

awareness of what others are working on, in relation to their own work, and are 

consistent with the hypothesis that inspired our research. 

One developer noted that, although they do not experience a large number of 

coordination problems, “when they do happen, they can be expensive.” The 

interviewees noted that they currently use tests and source code management tools as 

their primary way to deal with coordination problems when they do occur. Both of 

these methods handle problems only after the problem has already been introduced in 

the code base. Efficient upfront coordination or awareness of coordination needs 

could reduce the time spent fixing problems and resolving conflicts. In this 

dissertation, we present ProximityML, an approach that allows for timely detection of 

the more critical coordination needs between pairs of tasks. 

3.3 Research Methods 

RQ1: Is timely coordination requirement detection possible? We developed a 

new method and metric, called Proximity, which detects coordination needs between 

pairs of developers in a timely way. It is timely because it computes coordination 

requirements using data obtained through IDE monitoring tools, like Mylyn, which 

capture developer actions as they occur. We evaluate the accuracy and timeliness of 

the Proximity method by comparing against the Cataldo et al. coordination 

requirement detection method, the most well-known existing method. Chapter 4 

describes the Proximity metric in detail and shows how it is timelier than existing 

methods and can be more accurate in identifying actual coordination requirements. 
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RQ2: Can coordination requirements be identified efficiently at the task level 

of granularity? We adjusted Proximity to identify coordination requirements between 

pairs of tasks. However, computing coordination needs at this level produces a large 

number of potential coordination needs. We identified an approach, ProximityML, 

which identifies the more critical coordination needs to allow for more efficient 

coordination. The accuracy of the ProximityML results was evaluated relative to the 

coordination needs experienced by the team, obtained from a thorough examination of 

task records. The criticality of the ProximityML results was evaluated by considering 

the measures of task complexity (change size) and task performance (task duration). 

Chapter 5 describes our ProximityML approach and shows how it is able to detect a 

set of the more critical coordination needs. 

RQ3: Are the more critical coordination needs actionable? We analyzed 

whether the ProximityML approach allows for timely detection of coordination needs 

as they emerge. We streamed each event over the life of each task (developer actions 

and Bugzilla task updates) in a time-ordered sequence and re-ran the ProximityML 

approach after each event. This allowed us to evaluate exactly when ProximityML 

first recognizes a coordination need. Chapter 6 describes this exercise and evaluates 

the consistency of the results over the duration of the release as well as the timeliness 

of the detected coordination needs. It also addresses the usability and actionability of 

the coordination recommendations made by our approach through developer 

interviews. 
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CHAPTER 4: TIMELY COORDINATION REQUIREMENT DETECTION 

 
 
 
 
This chapter addresses our first research question: RQ1: Is timely coordination 

requirement detection possible? We address this research question by introducing a 

new method for computing coordination needs between software developers, 

Proximity. Proximity is a quantitative measure. It outputs a score for each pair of 

developers indicating the strength of their coordination need. Higher Proximity scores 

denote stronger coordination needs. We evaluate the accuracy and timeliness of 

Proximity scores in relation to the coordination requirements established using the 

best-known existing approach, Cataldo et al.’s method [27], [28], [30]. We evaluate 

the coordination needs over eight releases of the Mylyn project. This investigation has 

been published in the Proceedings of the Conference on Computer Supported 

Cooperative Work and presented at that conference [16]. 

4.1 Approach  

4.1.1 Proximity Method 

Proximity is a method and metric that detects coordination needs between 

pairs of developers. It outputs a score for each pair of developers indicating the 

strength of their coordination need. Higher Proximity scores denote stronger 

coordination needs. 

Proximity computes coordination requirements by monitoring the actions 

developers take in their IDE as they occur, using the data obtained from the Mylyn 

framework [82], [83]. The captured actions can be very granular and, most 
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importantly, are collected while the developers work. That can make Proximity 

timelier than other methods and turn coordination requirements into an actionable 

concept for managing coordination while development is underway. The Proximity 

measure looks at artifact consultation and modification activities and weighs the 

overlap that exists between the working sets associated to pairs of developers. It 

considers all actions recorded for each artifact in each working set in order to apply a 

numeric weight to that artifact’s Proximity contribution. Weights are applied based on 

the type of overlap and are based on the weights Mylyn uses for its degree-of-interest 

(DOI) model [82], [83]. Mylyn’s DOI model prioritizes the presentation of artifacts in 

its task-based interface, and its weighting system has been empirically validated. The 

most weight is given when an artifact is edited in both working sets (weight = 1) and 

the least amount of weight is given when an artifact is simply consulted in both 

working sets (weight = 0.59). When an artifact is edited in one working set and 

consulted in the other working set, we consider this a mixed overlap (weight = 0.79).  

Figure 3 illustrates an example Proximity computation. The algorithm 

computes the ratio of actual to potential overlap. Actual overlap is calculated as the 

intersection of the two working sets. Potential overlap represents the maximum 

possible Proximity score had there been perfect overlap between the two sets of 

actions and is calculated as the union of the two working sets. Proximity scores can be 

scaled based on the number of overlapping events to place greater weight on complex 

tasks that are likely to require coordination. Proximity scores range from zero to 

infinity where a score > 0 indicates a coordination need. Higher Proximity scores 

denote stronger coordination needs.  
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Figure 3: Proximity Algorithm Example. 

 
 
 

4.1.2 ProxiScientia Tool 

Proximity is supported by a tool, ProxiScientia [19], which provides a 

visualization of coordination requirements in software teams. It was developed in 

collaboration between Drexel University and University of Victoria. The tool was 

developed as a plugin for IBM’s Jazz development environment, and it has a 

client/server architecture. The server component has a shared central database for 

each development team. The client component is built on top of Mylyn and is hosted 
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within the developer’s IDE. It automatically stores Mylyn context information for 

each developer and pushes the events to the server as they occur. The Proximity 

calculation is then performed on the server. When new Proximity relationships are 

detected, they are pushed back to the client for display in each developer’s IDE. This 

allows Proximity relationships to be computed and continuously updated as 

development is underway with no effort on the part of the developers. The tool 

demonstrates the feasibility of such a method in detecting coordination requirements 

using data similar to that collected from the Mylyn context events. 

 
 
 

 

Figure 4: ProxiScientia Visualization Example. 

 
 
 
ProxiScientia provides a developer-centric visualization of coordination 

requirements. Figure 4 shows a sample visualization generated for the developer Sue 

(highlighted in green). The edges denote the reciprocal values of the Proximity scores 
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for a more intuitive visualization. This allows the highest Proximity scores (strongest 

coordination needs) to appear closest to the developer in focus. The tool visualizes 

only the strongest coordination needs. The default configuration, which is 

customizable, displays Proximity scores that are greater than two standard deviations 

from the mean. Developers for which there is no coordination need or coordination 

needs that do not meet the threshold are left out of the visualization to minimize the 

amount of information the developer must process.  

4.2 Evaluation Methodology 

To answer our first research question – RQ1: Is timely coordination 

requirement detection possible? – we evaluated the coordination needs on eight 

releases of the Mylyn project. We evaluated the accuracy and timeliness of our 

Proximity method. Proximity scores were evaluated relative to the coordination 

requirements established using Cataldo et al.’s method [27], [28], [30]. The Cataldo et 

al. method was selected for comparison since it is the most well-known method for 

detecting coordination requirements, and many of the awareness tools created to 

detect coordination requirements are based on this method. 

4.3 Analysis and Results 

4.3.1 Description of Data Set 

For our evaluation, data was collected from the development of the eight 

releases of the Mylyn project. Data was gathered for all tasks in those releases that 

had Mylyn context data (attached to the task). There were 1,970 tasks in this data set. 

There were 51 distinct developers who attached Mylyn context data to these tasks 

(context attachers). The data we collected was separated into three data sets. 
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Data Set 1 (DS1): Commit data is required for computing the Cataldo et al. 

coordination requirements, so all commit data was collected. Over all eight releases, 

there were 8 distinct developers who committed code (committers). In our data set, 

92.8% of all commits are associated with a particular task through an explicit link 

included by committers in their commit comment. There are 1,127 tasks which have 

both context data attached and associated commit records. This set includes 10,647 

artifact commits and 450,757 context events related to Java source code artifacts.  

We found that commits are not always matched by any proof of editing of the 

involved file in the associated Mylyn context data by the developer who committed 

the change. There are two possible reasons for this misalignment of activity: (1) the 

developer who committed the change did not attach their Mylyn context data to the 

task, or (2) the developer who committed the change was not the developer who 

contributed it. Since commit rights are often limited to a small set of developers on 

open source projects, there are typically many developers who contribute code 

without commit privileges. These developers submit their code contributions for 

another developer with commit rights to commit to the code base. The developer who 

contributes the code also attaches Mylyn context data to the task. 

We split DS1 in two: DS1-a includes the 4,140 commits for which we have 

matching events within the Mylyn task context data; DS1-b includes the other 6,507 

commits. DS1-a, therefore, is the set of commits that were both contributed by and 

committed by the same developer. DS1-b provides a less homogenous data set since 

the Mylyn context events do not align with the artifacts that were committed for the 

associated developers. 
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Data Set 2 (DS2): In each release in our data set, there were 4 to 6 

committers, but 10 to 32 context attachers. While Proximity allows coordination 

needs to be calculated between the actual code contributors, the Cataldo et al. 

approach can only detect coordination needs between those developers who have 

committed code. Therefore, using commit data, we are only able to compare the 

coordination requirements for a small set of developers. To expand our evaluation, we 

compiled an additional data set by considering patch descriptions (attached to the 

task). Patch descriptions are semantically equivalent to commits: they report the diff 

information for all artifacts that were modified as part of a patch. They are attached to 

tasks by the developers who contribute code but do not have commit privileges. We 

use these patch descriptions to compute Cataldo et al. coordination requirements as a 

proxy for commit data for those developers without commit access. There are 936 

tasks with attached patch description files. Those tasks have 345,521 associated 

consultation and edit context events related to java source code artifacts. There are 

1,387 file changes detailed in those patch description files that are matched by proof 

of editing of the same file in the Mylyn context data for these tasks. Thirty-four 

developers contributed these patch description files. 

DS1 and DS2 are disjoint since there is only a single developer common to 

both sets. This ensures there are no overlapping pairs of developers between the two 

sets. Therefore, DS1 and DS2 represent complementary analyses over the full picture 

of the project activity. The 1,387 patch file changes in DS2 represent substantially 

different development work from what is captured in DS1. The one common 

developer is responsible for 219 changes in DS2, and a manual inspection revealed 

that only 11 of the 219 changes overlap with commits made by that developer in DS1. 
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Data Set 3 (DS3): Finally, we combined DS1-a and DS2 into a third data set 

DS3, which incorporates all records of file changes (either via commit traces or patch 

diff files) and all context events. Our three data sets are summarized in Table 2.  

 
 
 

Table 2 Summary of RQ1 Data Sets. 

Data Set Actors Artifact Info Context 
Events 

Commit/Patch 
 Matches Context 

Data 

DS1 a 8 Committers 4,140 commits 450,757  YES 
b 6,507 commits 450,757  NO 

DS2 34 Contributors  1,387 edits 345,521  YES 
DS3 DS1-a and DS2 combined YES 

 
 
 

4.3.2 Accuracy of Proximity Scores 

Proximity scores and coordination requirements detected by the algorithm 

proposed by Cataldo et al. [30] were calculated for each pair of developers in each 

release. Work in each release was analyzed separately, since releases are a logical unit 

of concurrency for tasks in an open source project. To evaluate the accuracy of our 

Proximity scores, we (1) computed correlations between the Proximity scores and the 

Cataldo et al. coordination requirements, (2) ran a regression model, (3) computed 

precision and recall against the Cataldo et al. coordination requirements, and (4) 

manually evaluated the cases where Proximity scores do not align with Cataldo et al. 

coordination requirements. 
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4.3.2.1$Correlations$

For each data set, two correlation tests were performed: (1) a point-biserial 

correlation with Proximity scores and a binary vector denoting the presence of a 

Cataldo et al. coordination requirement and (2) a Spearman correlation between the 

count of Cataldo et al. coordination requirements for each developer pair and the 

Proximity scores. We used a Spearman correlation because both the Cataldo et al. 

coordination requirement counts and Proximity scores are not normally distributed 

and strongly skewed.  

The Mylyn context events used for the Proximity calculation provide more 

granular information than is available from commit data. The Mylyn context data 

identifies the file name, class name and even the name of the class element (method 

or attribute). This allows Proximity to determine coordination needs more granularly, 

for example, to see whether two developers were working on the same area of code 

within a large file. This is not possible when looking only at commit information 

unless diff information for each commit is processed and analyzed, which is not done 

in existing coordination requirement detection techniques. We, therefore, ran the two 

correlation tests at two different units of work: (1) File and (2) Granular. At the file 

level, we computed Proximity scores considering only the file associated with each 

Mylyn context event since Cataldo et al.’s method calculates coordination 

requirements at the file level. At the granular level, we computed Proximity at the 

lowest granularity level for artifacts reported in Mylyn context events. The Cataldo et 

al. coordination requirements were still calculated at the file level since that method 

does not consider a more granular calculation. 
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In all data sets, higher values of proximity correlate with the likelihood of a 

Cataldo et al. coordination requirement (Point-biserial test) and with the count of 

Cataldo et al. coordination requirements (Spearman test) at both units of work, as 

shown in Table 3. In most cases, the granular tests have slightly lower levels of 

correlation. This is in line with expectations since we are comparing coordination 

requirements calculated using slightly different data between the two approaches for 

the granular tests. 

 
 
 

Table 3 Proximity vs. Cataldo et al. Correlations 

Data Set Test Unit of Work Rho 

DS1-a 

Spearman File 0.69** 
Point-biserial File 0.55** 

Spearman Granular 0.62** 
Point-biserial Granular 0.49** 

DS1-b 

Spearman File 0.60** 
Point-biserial File 0.59** 

Spearman Granular 0.54** 
Point-biserial Granular 0.55** 

DS2 

Spearman File 0.55** 
Point-biserial File 0.54** 

Spearman Granular 0.57** 
Point-biserial Granular 0.55** 

DS3 

Spearman File 0.68** 
Point-biserial File 0.66** 

Spearman Granular 0.68** 
Point-biserial Granular 0.66** 

(* p < 0.01, ** p < 0.001) 

 
 
 

4.3.2.2$Regression$Model$

Using our largest data set, DS3, we further investigated the relationship 

between Cataldo et al. coordination requirements and Proximity scores by means of a 
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regression model. We employed a zero-inflated negative binomial regression (zinb) 

since the Cataldo et al. coordination requirement count is highly skewed and presents 

many zeroes (264 out of 347 developer pairs have no coordination requirements). The 

zinb model is statistically significant (χ2=161.69, df=2, p < 0.001). Results from the 

regression are shown in Table 4 for both the count and the excess zeroes portions of 

the model (white and grey rows, respectively). In particular, a one-unit increase in 

Proximity (a large increase in the Proximity scale for this data set) causes a 2.20-times 

increase in the log of expected Cataldo et al. coordination requirement count. That is 

an expected ~9-times increase in Cataldo et al. coordination requirements for each 

one-unit increase in proximity.  

 
 
 
Table 4 ZINB Regression: Proximity vs. Cataldo et al. Correlations 

 Estimate Std. Error Z 
(Intercept) 5.22 0.37 14.17** 
Proximity 2.20 0.51   4.33** 
Log (theta) -2.01 0.14 -14.53** 
(Intercept) 2.32 0.30    7.61** 
Proximity -106.49 33.18 -3.21* 

(* p < 0.01, ** p < 0.001) 

 
 
 
The edit events contained within the Mylyn context data can be viewed as a 

super-set to the data available from commits. They are a super-set since not all artifact 

edits result in a commit. The consultation events are not as closely related to the 

commit data. Developers are likely to consult, but not edit, many files as part of their 

development work. Since this activity cannot be detected from commit data, the 

inclusion of consultation events is a difference in the Proximity method compared to 
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other existing methods. To investigate the influence of the consultation events in 

defining our Proximity metric, we recomputed Proximity including only edit event 

overlaps. We then ran the same zinb regression and obtained a new model. This new 

model captures only direct edit conflicts and is, therefore, similar to what could be 

observed with conflict detection tools, such as Palantír. That model is still statistically 

significant (χ2=157.17, df=2, p < 0.001). We then compared the AIC scores of the 

new model and our original model. We found that our original model has 

considerably better support since it has a lower AIC. The difference in the AIC scores 

is 4.51. That means that our original Proximity model, which includes consultation 

events, is almost 10 times as likely as the edit event only model to minimize 

information loss. This indicates that the consultation event information included in 

Mylyn context data provides valuable insight for the detection of coordination needs. 

4.3.2.3$Precision/Recall$

We computed precision and recall, comparing Proximity scores against the 

Cataldo et al. coordination requirements. We observed high levels of precision and 

recall for each data set (Table 5). 

 
 
 

Table 5 Proximity vs. Cataldo et al. Precision/Recall (Granular Unit of Work) 

Data Set Number of Pairs Precision Recall 
DS1-a 70 42/58 = 0.72 42/46 = 0.91 
DS1-b 75 33/61 = 0.54 33/33 = 1 
DS2 277 24/40 = 0.6 24/37 = 0.65 
DS3 347 70/100 = 0.7 70/97 = 0.72 
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4.3.2.2$Examination$of$False$Positives/Negatives$

We thoroughly examined the cases for DS1-a where Proximity scores and the 

Cataldo et al. coordination requirements do not align and found that Proximity can be 

even more accurate than the Cataldo et al. baseline. In the case of the 16 potential 

false negatives (Proximity score > 0 but no Cataldo et al. coordination requirement), 

15 are missed by the Cataldo et al. approach simply because work by one or both of 

the developers was never committed to the code base. However, context events prove 

that those developers were, for some time, engaged in development on the very same 

artifacts - the epitome of a coordination requirement. The other potential false 

negative is missed by the Cataldo et al. method since that method does not know 

which artifacts are consulted by a developer while completing a task. In that case, 

involving developers 3 and 7 during release 3.3, proximity contributions came 

exclusively by selection and mixed overlaps. The pair had seven mixed overlaps and 

six selection overlaps. Meaning that developers 3 and 7 viewed 13 of the same 

artifacts, of which seven were edited at some point by either developer 3 or developer 

7, but no single artifact was edited by both developer 3 and developer 7. Since there 

were no overlapping commits, the Cataldo et al. method does not allow for a 

coordination requirement to be detected. However, our algorithm picks up what is 

likely to be an actual work dependency. Developer 3 and developer 7 repeatedly 

examined the same area of the software code base and consulted each other’s code 

during their work for release 3.3. 

In the case of the 4 potential false positives (Cataldo et al. coordination 

requirement but Proximity score = 0), the Cataldo et al. method identified a 

coordination requirement due to a technical dependency between two semantically 
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unrelated tasks because they involved files that had been historically changed together 

by other developers often enough to cause a logical dependency to be established. For 

example, a coordination requirement is established between developers 6 and 7 in 

release 3.2 using the Cataldo et al. method. Developer 6 committed 

BugzillaClient.java, while developer 7 committed BugzillaTaskEditorPage.java. The 

changes by developer 6 involve a character encoding method that is private to the 

BugzillaClient class. Developer 7 added a new section to the Mylyn task editor. 

Although we could ascertain those changes were semantically unrelated, the two 

involved files had been historically changed together by other developers often 

enough to cause a logical dependency to be established by the Cataldo et al. detection 

algorithm. We noticed analogous incidents in the other three cases in DS1-a. Those 

coordination requirements are therefore false positives of the traditional method that 

our Proximity algorithm correctly eliminates. 

All cases examined in DS1-a turned out to be false positives or negatives of 

the traditional coordination requirement detection method. More importantly, they 

highlight drawbacks of that method’s reliance on post-mortem information and 

dependency conceptualizations. We conclude that Proximity can be more accurate 

than existing methods. 

4.3.3 Timeliness of Proximity Scores 

To evaluate the timeliness of our Proximity method, we compared the time 

Proximity scores >0 appear against the time when Cataldo et al.’s method identifies a 

coordination requirement. For this analysis, we used the two data sets for which we 

have task context data associated with file changes (DS1-a and DS2). We considered 
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all pairs of developers who have a Cataldo et al. coordination requirement and have a 

granular proximity score > 0. There are 36 such pairs in DS1-a and 18 in DS2. 

Proximity scores are calculated using events garnered instantaneously; while, 

Cataldo et al.’s method waits for changes to be committed. We obtained the date 

when the first contribution to the Proximity score occurred, by considering the 

timestamp for the first overlapping event for a developer pair recorded in the Mylyn 

context data. Similarly, we considered the time the Cataldo et al.’s method first 

identifies a coordination requirement, by considering the timestamp when the first 

technical dependency appears in the commits for a developer pair. For DS1-a, the first 

evidence of Proximity is detected on average 14.2 days after parallel work begins. 

The first Cataldo et al. coordination requirement detection happens 60.7 days on 

average after the beginning of concurrent work by a pair (a delay of 46.5 days). To 

put this in perspective, parallel work intervals last 102 days on average. The average 

“advance notice” provided by Proximity is, therefore, 87.8 days, compared to 55.5 

days for the Cataldo et al. approach showing that Proximity significantly improves the 

timeliness of detection. For DS2, the first evidence of Proximity is detected on 

average 6.2 days after parallel work begins. The first Cataldo et al. coordination 

requirement is detected 17.9 days after the concurrent work begins (a delay of 11.7 

days). Parallel work intervals last 31.4 days on average in this data set providing 25.2 

days “advanced notice”.  
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Figure 5: Proximity Algorithm Timeliness. 

 
 
 

Figure 5 shows the probability density functions of Proximity detection, 

Cataldo et al. coordination requirement detection and task duration for DS1-a. It 

illustrates that Proximity can be detected much earlier than Cataldo et al. coordination 

requirements. Similarly distributed probability densities were seen in DS2. 

4.3.4 Proximity Applied to Groups 

The original proximity algorithm computes only dyadic relationships (between 

pairs). Often, as large software projects progress, groups begin to emerge, and 

coordination becomes a group activity. We extended our work on the proximity 

algorithm to detect groups by looking at the intersections of multiple working sets 
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[62], [132]. We constructed a weighted bi-partite network revolving around the 

development tasks. The nodes in the bi-partite network represent (1) the developers 

involved in the tasks and (2) each set of overlapping artifacts between a pair of tasks. 

The edges link together the developers with those artifact intersections. The edges are 

weighted according to the number of artifacts in that intersection for which the 

developer consulted or edited for each of her tasks. 

We used the arcs in the bi-partite network with weights above the median to 

construct bi-cliques [17]. These bi-cliques capture the groups of developers who tend 

to consult and manipulate the same artifact sets. Based on this set of bi-cliques, we 

computed a structural correlation matrix between developers. This matrix is a 

developer-by-developer network in which the weights between nodes represent the 

Pearson correlation between any two developers and signify how similar those two 

developers are in terms of the bi-cliques they are part of. To identify cohesive 

subgroups, we filtered out weak correlations using a cutoff point of 0.4 correlation 

between developers. In each of those simplified networks, the groups can be identified 

simply by visual inspection. 

To evaluate this approach, we constructed these networks for eight releases of 

Mylyn development. We validated the groups established in these networks with 

qualitative information that was easily collected from Mylyn repositories on the web, 

such as conversations and developer profiles. We confirmed with this information the 

organizational structures and groups that were identified by our analysis. For 

additional validation and analysis, we used the communication traces of the team to 

construct alternate social networks. We used these “talk” social networks for 

comparison to the “work” networks constructed with our approach. These alternate 



62 

   

 

 

networks constructed based only on communications that have occurred offer a 

confirmatory view of the Mylyn team obtained through our analysis. The results of 

these two validation methods show that the groups we identified do represent 

emergent groups within the Mylyn development team [62], [132]. 

4.4 Discussion 

Our results suggest that coordination needs between developers can be 

determined accurately based exclusively on the similarity of developer’s consultation 

and edit activities on software artifacts. Unlike methods that rely on data that is 

available after work has been completed (commits), these developer activities are 

accessible while development is underway using IDE monitoring facilities like 

Mylyn. Our method, Proximity, adequately models the presence and intensity of 

coordination requirements independent of any conceptualization of technical 

dependencies. Proximity is not only timelier, but it can also be richer and more 

accurate. The timeliness and comprehensiveness that our Proximity measure provides 

is not currently available in other awareness tools for software engineering. 

Our method uses both artifact selection and edit events to calculate Proximity 

scores. We speculate that developers could use a tool, like ProxiScientia, that is built 

using our Proximity method to identify coordination needs prior to beginning 

development work. The developer would simply need to open the source files that are 

likely involved in some task within their IDE. The use of selection events would 

allow Proximity to be calculated prior to any file edits. The developer, therefore, 

could be provided with a list of developers with high Proximity simply by identifying 

the set of artifacts that must be modified. 
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However, Proximity is limited in that it recommends only which developers 

need to coordinate. As developers often work on many tasks in parallel, this leaves 

the developers to identify which tasks require coordination and introduces 

inefficiencies. In the next chapters, we extend the Proximity method to provide more 

efficient recommendations. 

4.4.1 Threats to Validity 

One limitation is that we considered any Proximity score >0 as an indicator of 

a possible coordination requirement. However, conceptually, a threshold of 0 seems 

sensible for comparison against the Cataldo et al. method as done in our study. The 

lowest possible Cataldo et al. coordination requirement score of 1 indicates that a 

developer pair worked on only one pair of dependent files. The lowest proximity 

score of 0.01 also indicates (at least) one artifact overlapping in the developers’ 

working sets, which is conceptually similar. 

Another possible limitation is that our analysis considered concurrent work at 

the release level. When considering finer grained temporal units, the outlook on 

coordination requirements and/or Proximity may differ. However, the Mylyn project 

does track tasks at the release level, so releases are likely a good unit for 

consideration of concurrent work. In addition, the major release cycle of the Mylyn 

project during the period of study is relatively short with an average release length of 

four months. 

Finally, there may be issues of repeatability. Although Mylyn is widely 

adopted in open source as well as industrial settings, its consistent use by all 

developers during all of the project activities is not guaranteed. Currently, Mylyn 

context data must be manually attached to tasks by developers since a tool, like 
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ProxiScientia, that automatically sends Mylyn context data to a central database has 

not yet been adopted. The Mylyn team makes a consistent effort to attach their 

context data, but finding another project for an additional case study that also makes 

consistent use of the Mylyn plug-in may prove difficult. However, there are 108 

projects in the Eclipse community alone that freely report Mylyn context data. 

Additionally, data analogous to what we obtained from the Mylyn context data and 

used in our study can easily be obtained from the other available IDE monitoring 

facilities, like Cubeon or Tasktop Dev. 

4.5 Conclusion 

We conclude this chapter by answering our first research question: RQ1: Is 

timely coordination requirement detection possible? Timely coordination requirement 

detection is possible with our Proximity method, which obtains developer actions as 

they occur through existing IDE monitoring facilities and analyzes the overlap of 

those actions to detect coordination needs. 
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CHAPTER 5: EFFICIENT COORDINATION REQUIREMENT DETECTION 

 
 
 
 
This chapter addresses our second research question: RQ2: Can coordination 

requirements be identified efficiently at the task level of granularity? When 

developers are working on multiple tasks concurrently, methods that recommend only 

which pairs of developers should coordinate may not provide enough information to 

allow for efficient coordination. Developers are left to decide which of their tasks 

require coordination. Identifying pairs of tasks that require coordination can provide 

more useful context for the involved developers and facilitate their coordination more 

efficiently. We explored the application of our Proximity method between pairs of 

tasks with the goal of avoiding information overload. We evaluated our results against 

the ground truth of coordination needs experienced by the team that we garnered by 

examining task records obtained from Bugzilla. A preliminary version of this 

investigation was published in the Proceedings of the 9th Joint Meeting on 

Foundations of Software Engineering and presented at that conference [14]. 

5.1 Approach 

5.1.1 Applying Proximity to Identify Coordination Needs Between Tasks 

Many of the senior Mylyn developers we interviewed mentioned that 

awareness of coordination requirements would be more beneficial at the task level. 

When asked if a tool that recommended who to coordinate with would be useful, one 

developer stated “if there was a lot more, than just talk to Joe. If it said like a new 
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defect was filed or look at this related bug, and Joe is the assignee. Then I would 

consider it and decide if it makes sense for me.”  

To compute coordination needs between pairs of tasks, we applied Proximity 

as described in Chapter 4 to Mylyn release 3.2 at the individual task level rather than 

at the developer level by aggregating the captured developer actions at the individual 

task level. The Mylyn release 3.2 had 245 tasks (29,890 task pairs). Since the events 

were aggregated at the task level, a Proximity score >0 indicates a coordination need 

between the tasks in the pair and the score itself denotes the strength of this 

coordination need. 

We found 2,209 task pairs with Proximity scores > 0, and 226 of the 245 tasks 

were found to require coordination with at least one other task. This large number of 

coordination needs signals likely information overload when applying Proximity at 

the task level. It is unrealistic to expect that more than 92% of all tasks require 

coordination, and our interviews with senior Mylyn developers confirmed this. When 

looking at a potential coordination need, one developer stated, “[the two tasks] are 

both working on the same area of code, but I don’t see a direct need for 

coordination.” Another developer focused on the simplicity of some tasks regardless 

of their technical dependencies saying on simple tasks, “I wouldn’t consider 

coordinating anything with anyone. I would just go in fix it, close the bug and be done 

with it.” 

This led us to believe that Proximity, when applied at the task level as opposed 

to the developer level, signaled coordination needs between too many task pairs. We, 

therefore, considered coordination needs identified by Proximity as the set of 
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potential coordination needs and investigated ways to identify a smaller set of the 

more critical coordination requirements.  

5.1.1.1$Defining$Critical$Coordination$Needs$

While previous research has proposed ways to rank the most important 

coordination needs at the developer level by considering the number of task 

dependencies involved in those coordination requirements [51], [91], no prior 

research has examined the criticality of coordination needs at the task level. We 

consider two measures to evaluate the criticality of coordination needs at the task 

level: task duration and change size.  

First, fulfilling coordination needs has been shown to reduce task resolution 

time [27], [28], [30], therefore we examined the durations of the tasks involved in the 

coordination needs. We compute task duration using the Mylyn context events. Since 

these events detail exactly when developers begin and complete their consultation and 

modification of artifacts for each task, using these context events allows us to 

compute the duration of the actual period of time developers spent working on a task. 

Long-duration tasks with coordination needs are likely those that can benefit the most 

from the productivity benefits provided by increased awareness and focused 

coordination. 

Second, since the Mylyn team noted that they do not coordinate on simple or 

trivial tasks, we examined the complexity of the tasks involved in coordination needs. 

Cataldo et al. found that change size, measured as the number of code files modified 

during the course of development on a task, is an accurate measure of task complexity 

[30]. We, therefore, adopted change size as our metric of task complexity. 
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Task complexity is one of many factors that may influence a task’s duration. 

Change size and task duration are strongly correlated in our data set (Spearman rho = 

0.58, p < 0.001). Considering complexity as well as task duration helps us to avoid a 

bias towards tasks whose long duration may be due to some other factors that would 

not benefit as much from awareness and coordination, like low priority or 

inexperienced developers. 

We, therefore, define critical coordination needs as those that involve complex 

tasks and can cause the most disruption to task duration. 

5.1.1.2$Criticality$of$Proximity$Coordination$Needs$

We evaluated the criticality of the coordination needs identified by Proximity 

using change size and task duration. While Proximity identifies potential coordination 

needs with longer task durations, it is not able to discriminate task complexity (Table 

6). Therefore, we investigated how to provide more efficient recommendations by 

focusing our method on the identification of a smaller set of the more critical 

coordination requirements. 

 
 
 

Table 6 Criticality of Potential Coordination Requirements  
Identified by Proximity 

 Potential 
Coordination 
Requirements 

No  
Coordination 
Requirements 

Mann-Whitney 
Test 

Number of Tasks 226 19 -- 
Change Size  4.3 files 4.0 files W=28731.5* 

Task Duration 9.1 days 0.7 days W=02799.0* 
(* p < 0.01, ** p < 0.001) 
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5.1.2 Detecting the More Critical Coordination Needs 

To better understand the characteristics of critical coordination needs, we 

manually examined a subset of task records to identify the actual critical coordination 

needs experienced by the team between that subset of tasks. We describe how we 

identified these critical coordination needs, which we use as our ground truth for 

evaluation, in Section 5.1.2.2. After a thorough analysis of that ground truth, we 

identified additional task properties that characterize the critical coordination needs 

experienced by the team (Section 5.1.2.3). We describe our approach, ProximityML, 

which enhances Proximity with these additional properties and leverages machine 

learning to automatically identify a reduced set of the more critical coordination needs 

(Section 5.1.2.4). We evaluated the accuracy of the results of ProximityML against 

the ground truth set of critical coordination needs experienced by the team, and we 

evaluated the criticality using change size and task duration. 

5.1.2.1$Description$of$Data$Set$

We collected data from the development of two releases of Mylyn, Releases 

3.1 and 3.2. For each release, we gathered data for all tasks for which we were able to 

obtain Mylyn context data attached to the task. There were 485 such tasks (117,370 

task pairs) in Release 3.1 and 245 tasks (29,890 task pairs) in Release 3.2. We used 

the tasks from these releases to develop and analyze our techniques. 

5.1.2.2$Establishing$Ground$Truth$Critical$Coordination$Needs$

A reliable way of capturing coordination needs is not currently available in 

any existing software repositories. Bugzilla and other bug tracking repositories allow 

developers to indicate dependencies between tasks, but this relationship may not 
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capture all coordination needs. In addition, a recent study by Aranda and Venolia [6] 

found repositories like Bugzilla often provide incomplete information because of 

omission, oversight, or simply because of project conventions. Therefore, we 

performed a thorough analysis of a set of task records to identify the ground truth of 

the coordination needs on the Mylyn team. We turned to content analysis and manual 

coding techniques that are well established in other research fields [88] and have 

recently been used in Software Engineering [95]. We used manual coding to develop 

a better understanding of critical coordination needs and provide us with a more 

accurate and exhaustive approximation of ground truth for a subset of the task pairs in 

our data set, which we could use when evaluating the results of our algorithms. 

To perform the manual coding, we developed a coding scheme that provides 

detailed task pair scoring criteria. We used a data driven method and reviewed several 

task pairs in which the need for coordination is explicitly discussed within the task 

reports. Through analysis of these task pairs, we established a set of four 

characteristics that appeared within the task reports indicating the coordination need. 

These were: (1) task summary similarity, (2) task discussion similarity, (3) evidence 

of task conflict, and (4) artifact overlap. A preliminary version of our coding scheme, 

which includes each of these four characteristics, and a description of the manual 

coding method was published in the proceedings of the International Workshop on 

Social Software Engineering and presented at that workshop [15]. 

We obtained practical validation of these four characteristics through 

interviews with the Mylyn developers. Without indicating our identified 

characteristics, we asked three senior Mylyn developers what they would look for 

within the task reports to identify tasks with a coordination need. All three developers 
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stated they would review the discussion threads on the task reports looking for 

references to similar features or problems, similar areas of the code, or conflicts 

occurring between the tasks. Two of the developers did not think the task summary 

would provide enough information since the summary is often incomplete or 

inaccurate. None of the developers suggested looking at the overlapping artifacts 

between the two tasks. Artifact overlap suffers from the same problem that we are 

trying to solve, that is, it considers too many task pairs as having coordination needs. 

We, therefore, removed two task characteristics and established the two 

characteristics – task discussion similarity and evidence of task conflict – that allow 

for the identification of coordination requirements between tasks. We put together a 

coding scheme that provided guidance on how each task pair should be rated for the 

two characteristics. The guidelines, which rate each characteristic on a three-point 

scale, are shown in Table 7. 

To perform the content analysis, we used the relevant task information 

collected from the Bugzilla tasks. Each task was summarized in an easily digestible 

format, which allowed for two tasks to easily be viewed side-by-side for comparison. 

 
 
 

  



72 

   

 

 

Table 7 Manual Coding Guidelines 

NO COORDINATION NEED  CRITICAL COORDINATION NEED 

Characteristic No Somewhat Very 
Task Discussion 
Similarity: Task 
discussions often 
include details of 
the task and any 
problems that 
have been 
encountered. We 
asked the coders 
to rate the 
similarity of the 
discussions 
occurring on 
each task.  

The 
discussions 
of the two 
tasks do not 
share any of 
the same 
concepts. 

The two task discussions 
refer to common aspects of 
the system from the 
perspective of EITHER the 
user (system features) or 
the system architecture 
(specific reference to code, 
modules, etc.)  
OR  
The two task discussions 
indicate that the problems 
may be occurring in the 
same area of the code. 

The two task 
discussions refer to 
common aspects of 
the system from the 
perspective of 
BOTH the user 
(system features) 
and the system 
architecture 
(specific reference 
to code, modules, 
etc.)  
OR  
The two task 
discussions refer to 
the same or similar 
problems. 

Evidence of 
Task Conflict: 
Task conflict is 
the epitome of a 
coordination 
need and often 
indications of 
conflicts exist in 
the task 
discussions 
(explicitly or 
implicitly). We 
asked the coders 
to look for such 
evidence. 

The 
discussion in 
the two tasks 
does not 
seem to 
indicate that 
the two tasks 
were 
conflicting in 
any way. 

The discussion in one of the 
tasks does not explicitly 
mention a conflict between 
the two tasks. However, 
based on reviewing the 
timing of the tasks and their 
discussions, it seems there 
may have been a conflict 
between the two tasks that 
the team may not have been 
not aware of at the time. 

It is apparent based 
on the timing of the 
tasks and the 
discussion thread 
that there was a 
conflict between 
the pair of tasks. 
The conflict is 
clearly discussed 
and may or may 
not explicitly link 
the two tasks by 
ID. 

 
 
 
To prepare the set of task pairs, we identified each task pair as either a 

potential critical coordination need or not. We considered a pair of tasks as a potential 

critical coordination need if the pair met one or more of the following criteria: the 

tasks had a high Proximity score where high is greater than mean + (2 x stddev) of 
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Proximity scores over all pairs; the tasks were explicitly marked as dependent or 

duplicate within their Bugzilla records; the tasks were cross-referenced in their 

discussions; the tasks were dependent on the same task (the Mylyn team often uses 

this relationship to track subtasks of a large task); or the tasks were marked with the 

same tag. Once each task pair was designated as either a potential coordination need 

or not, we used a random number generator to select pairs from each set. We selected 

155 potential critical coordination needs and 195 that were likely not coordination 

needs for a total set of 350 pairs. The number of pairs included in the manual coding 

was based on the time availability of the coders.  We choose to include a large 

number of potential critical coordination needs because we suspected that many of 

those potential needs would not be confirmed as critical coordination needs through 

manual coding. 

We used two external people familiar with software development practices to 

perform the manual coding. To ensure higher confidence, the two coders performed 

the content analysis and coding independently. After each of the coders completed 12 

task pairs, the two coders compared their findings and discussed differences as a way 

to calibrate between each other. Another comparison and calibration round was 

carried out after 100 task pairs. We checked intercoder reliability with Krippendorff’s 

alpha measure [88]. We obtained a Krippendorff score of .91 for task discussion 

similarity and .87 for evidence of task conflict after one coding run. Those sores are 

indicative of high intercoder reliability. We did not perform a second reconciliation 

pass considering this high intercoder reliability. Instead, we removed the task pairs 

where there was disagreement between the coders. 
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We considered any task pair that was rated positively (a score of either 

“somewhat” or “very” on our three-point scale in Table 7) for either characteristic as 

a coordination need experienced by the team. We removed the task pairs for which 

the coders had a conflicting outcome leaving us with 313 task pairs. These task pairs 

serve as our approximated ground truth, which we use for evaluation purposes in the 

rest of the analysis described in this dissertation. Among these 313 task pairs, 32 

(10.2%) were identified as coordination needs by the coders. 

To examine whether these 32 coordination needs identified by the coders are 

critical, we analyzed the task duration and change size (our measures of criticality) of 

the 52 individual tasks involved in those 32 pairs. Those tasks have significant 

differences in both measures (results in Table 8). This suggests that the coders were 

successful – using the coding scheme we devised - in identifying the more critical 

coordination needs experienced by the team. 

 
 
 

Table 8 Criticality: Manual Coding Results 

 Coordination 
Requirements 

No  
Coordination 
Requirements 

Mann-Whitney 
Test 

Number of Tasks 208 52 -- 
Change Size 8.2 files 5.3 files W=9398** 

Task Duration 26.8 days 19.9 days W=8603** 
(* p < 0.01, ** p < 0.001) 
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5.1.2.3$Analysis$of$Task$Pair$Properties$

We examined task pair properties of the ground truth critical coordination 

needs identified through manual coding and compared them to all other task pairs to 

identify properties that can be used to distinguish the more critical coordination needs. 

The task properties we examined include (1) architecture-related properties available 

from the project’s change request database such as: the affected product, component, 

platform and operating system (OS) of the task and (2) modularity characteristics of 

the software artifacts involved in each task. 

We examined the architecture-related properties by checking, for each task 

pair, if the tasks involved in that pair shared any of those properties (i.e. if they affect 

the same product, component, platform, or OS). A Chi-squared test of difference in 

proportion for each property shows that there is a significant difference between the 

ground truth critical coordination needs and all other task pairs for all but one of the 

tested properties: there is not a statistically significant difference for the number of 

task pairs marked for the same product (results in Table 9).  
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Table 9 Task Property Comparison 

Property Coordination 
Requirements 

Other Task 
Pairs 

Chi-Squared Test 

Task Pair Count 18 29,890 -- 
# with Proximity 15 2,209             x2 = 150.70** 

# with same Product 13 21,082             x2 =     0.03 
# with same Component 12 6,450             x2 =   21.60** 

# with same Platform 16 13,858             x2 =   13.10** 
# with Same OS 13 9,713             x2 =   12.90** 

   Mann-Whitney Test 
Mean SLSM 3.67 0.28           W=399713.0** 
Mean SLDM 6.94 3.27           W=301919.5 

Mean AL 3.89 0.51           W=436253.5** 
(* p < 0.01, ** p < 0.001) 

 
 
 

To consider the modularity characteristics of the software artifacts involved in 

each task, we derived a Design Rule Hierarchy (DRH) [139] of the Mylyn code base 

for the two releases of interest. We choose the DRH among the various metrics that 

describe a project’s code base and its modularity since it was conceived specifically to 

identify modules that can be independently assigned to developers for parallel work. 

A DRH (described in detail in Chapter 2) assigns software artifacts to modules and 

layers based on technical dependencies within the code. We use the DRH modules 

and layers to identify potential coordination needs by considering three categories of 

work: (1) Same Layer Same Module (SLSM) pairs, (2) Across Layer (AL) pairs, and 

(3) Same Layer Different Module (SLDM) pairs. The SLSM and AL categories are 

potential coordination needs since dependencies exist between these task pairs. 

The Mylyn Project DRH of release 3.1 consists of 11 layers and 671 modules. 

The DRH of release 3.2 consists of 11 layers and 786 modules. We identified the 

associated DRH layer and module for each java artifact edit action captured in the 
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Mylyn context data. Using this information, we obtained the number of SLSMs, 

SLDMs, and ALs for each task pair. 

We analyzed each of these properties to identify any that appear significantly 

different between the ground truth critical coordination needs and all other task pairs. 

A Mann-Whitney test of difference in distribution shows that the difference is 

statistically significant for both the number of SLSMs and ALs, but there is not a 

significant difference for the number of SLDMs (results shown in Table 9). This is 

consistent with the semantics of DRH and the empirical results by Wong et al. [139] 

that found developers engaged in SLSM and AL pairs communicate (a dominant form 

of coordination in software development [87]) significantly more than those engaged 

in SLDM pairs. 

We, therefore, determined the following set of task pair properties that 

differentiate task pairs with ground truth critical coordination needs from all other 

task pairs: 

• Within same component 

• Within same platform 

• Within same operating system 

• Number of SLSMs 

• Number of ALs 

5.1.2.4$ProximityML$

We developed ProximityML, which enhances the Proximity method with 

these identified properties to find a reduced set of coordination needs that includes the 

more critical coordination needs. ProximityML uses the Support Vector Machine 
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(SVM) classification technique [34]. An SVM is a supervised machine learning 

classification algorithm. Given a training set, it produces a model that can be used to 

predict the classification of unknown instances given a set of known parameters of 

those unknown instances [34]. SVM was selected because of its accuracy in general 

and its tolerance to noise and irrelevant, redundant and interdependent attributes [86].  

In earlier attempts to leverage machine learning [14], we used the k-nearest 

neighbor algorithm [35] due to the simplicity of implementing the algorithm and the 

exploratory nature of that study. We also previously looked at the DRH properties 

differently, simply considering the number of overlapping layers and modules 

between task pairs. We found that looking at the number of SLSMs and ALs is a 

much better predictor of coordination needs since these types of overlaps are directly 

related to dependencies in the code base. The results we achieved using the SLSM 

and AL characteristics and adopting SVM far surpass those achieved using the k-

nearest neighbor algorithm, where we achieved high recall but a precision score of 

only 0.09. 

We used LIBSVM [31] as our implementation of the SVM algorithm. 

LIBSVM is a java software package that provides support vector classification. It 

performs data scaling, parameter selection and model creation automatically. It 

ensures the data scaling is consistent across all data sets based on the range of each 

parameter in each set. For example, if a parameter in the training set had a range of [-

10, +10] and the same parameter had a range of [-9, +12] in the test set, that 

parameter would be scaled to a range of [-1, +1] in the training set and to a range of [-

0.9, +1.2] in the test set. The LIBSVM library uses the RBF (radial basis function) 

kernel. To perform parameter selection, it estimates the accuracy of each combination 
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of parameters through cross validation (CV). The parameter combination with the 

highest CV score is selected. 

We used the properties determined to have statistical significance in Section 

5.1.2.3 as the known parameters. We used the ground truth dataset that had been 

manually coded through content analysis (313 total task pairs, with 32 coded as 

critical coordination needs) to train and evaluate the machine learning algorithm. The 

subset of task pairs from the ground truth data set from release 3.1 (200 task pairs 

with 18 critical coordination needs) was used as a training set. We classified each of 

the 29,890 task pairs from Release 3.2 using ProximityML. The subset of the pairs 

from that release that are part of the ground truth data set (113 task pairs with 14 

critical coordination needs) was used to evaluate our results. Each parameter in our 

training set was linearly scaled to the range [-1, +1]. The parameters in the unknown 

and evaluation sets were scaled accordingly based on their range compared to the 

training set values.  

5.2 Evaluation Methodology 

To answer our second research question – RQ2: Can coordination 

requirements be identified efficiently at the task level of granularity? – we evaluated 

the coordination needs at the task level on Release 3.2 of the Mylyn project. We 

evaluated the accuracy and criticality of the ProximityML coordination needs. 

Accuracy was evaluated relative to the ground truth critical coordination needs 

established through content analysis and manual coding. Criticality was evaluated 

using change size and task duration as described in Section 5.1.1.1. 
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5.3 Analysis and Results 

5.3.1 Accuracy of ProximityML 

ProximityML significantly reduced the number of predicted coordination 

needs compared to Proximity alone. Proximity identified 2,209 coordination needs, 

while ProximityML predicted only 394 coordination requirements, a reduction of 

82%.  

 
 
 

Table 10 Accuracy: Ground Truth Critical Coordination Needs  
vs. Proximity and ProximityML Coordination Needs 

 Precision Recall F1-score 

Proximity 0.33 1 0.5 

ProximityML 0.77 0.71 0.74 

 
 
 

We compared the task level coordination requirements identified by both 

Proximity and ProximityML with the ground truth critical coordination needs 

established through content analysis and manual coding. The differences in precision, 

recall, and f1-score of Proximity and ProximityML are shown in Table 10 for the 113 

task pairs in our evaluation set, which included 14 ground truth critical coordination 

needs. In this small evaluation set, ProximityML had both high precision (low false 

positives) and recall (low false negatives) resulting in high overall accuracy, as shown 

by the f1-score. While a small number of coordination needs may be missed when 

employing ProximityML, it does not risk introducing a large number of false 
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positives. On the other hand, Proximity has no false negatives, but a high number of 

false positives. Overall, the accuracy of ProximityML is much higher than Proximity.  

To select the model parameters, we performed a grid search using 

exponentially growing sequences of C and γ using five-fold cross-validation. Five-

fold cross validation distributes the training set into five subsets of equal size. Each 

subset is tested using a model that is trained with the training instances from the other 

four subsets. The cross-validation (CV) rate is the percentage of the training set 

instances that are correctly classified. The grid search selects various pairs of the C 

and γ parameters and selects the pair with the best CV rate [78]. 

The selection of the C parameter introduces a trade off between error and over 

fitting [34], [79]. Low values of C may obtain a high error rate. High values of C may 

obtain better results for the given data set, but the model may not generalize well to 

other data. The γ parameter defines how much a single instance in the training set 

influences the produced model [4]. Training set instances have greater influence with 

lower γ values. We obtained an average CV rate of 93.0 with the best c=211 and γ=2-7 

(Figure 6). This high CV rate indicates we have a stable model that is able to 

accurately predict different samples; thus, we have avoided over fitting our model. To 

create our model, we used the best C and γ parameters selected using the grid search. 
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Figure 6: Grid Search Parameter Selection Results. 

 
 
 

A Receiver Operating Characteristic (ROC) curve plots the true positive rate 

against the false positive rate for a binary classifier. The ROC curve shown in Figure 

7 illustrates the high performance of our classifier with the Area Under the Curve 

(AUC) equal to 0.8452. 
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Figure 7: ROC Curve. 

 
 
 

5.3.2 Evaluating Criticality of Coordination Needs with ProximityML 

We examined the ProximityML coordination requirements using our two 

measures of criticality described in Section 5.1.1.1: change size and task duration. We 

see a strong, significant difference in both change size and task duration between the 

ProximityML coordination requirements and those tasks pairs without ProximityML 

coordination requirements (Table 11).  
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Table 11 Criticality: ProximityML Coordination Requirements  
vs. ProximityML Non-Coordination Requirements 

 Coordination 
Requirements 

No  
Coordination 
Requirements 

Mann-Whitney 
Test 

Number of Tasks 152 93 -- 
Change Size 5.6 files 4.0 files W = 22709** 

Task Duration 12.16 days 2.3 days W =   9666** 
(* p < 0.01, ** p < 0.001) 

 
 
 

In addition, Mann-Whitney tests show both the change size and task durations 

of the tasks involved in the coordination requirements detected through the 

ProximityML approach are significantly different than when considering the 

Proximity method (Table 12). The mean task durations are significantly longer and 

the mean change size is significantly bigger than the means of the Proximity method. 

This suggests that the properties used to enhance the Proximity metric and the use of 

the machine learning techniques described in this dissertation are identifying the more 

critical coordination needs when criticality is conceptualized using change size and 

task duration.  

 
 
 

Table 12 Coordination Requirements Criticality: ProximityML vs. Proximity  

 Proximity  ProximityML  Mann-Whitney 
Test 

Change Size 4.3 files 5.6 files W = 20294.5** 
Task Duration 9.1 days 12.16 days W =   7829.0** 

(* p < 0.01, ** p < 0.001) 
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5.4 Discussion 

This is the first research to explore and exploit the differences that exist 

between potential coordination requirements at the task level. Through developer 

interviews, we confirmed that developers do not believe that all technical 

dependencies require coordination. However, all other existing methods and tools 

(besides ProximityML) are based on that assumption (that all technical dependencies 

require coordination). 

We investigated techniques to identify the more critical coordination needs in 

a software project. To provide developers with more efficient recommendations on 

their coordination needs, we computed Proximity scores between tasks rather than 

between developers. To avoid information overload, we enhanced Proximity with 

additional task properties and machine learning techniques to identify a set of the 

more critical coordination needs. The resulting approach, ProximityML, identified a 

subset of the coordination requirements that appear more critical, as measured by 

change size and task duration.  

In addition, we have shown how code modularization properties that can be 

derived from the system DRH are also useful indicators of coordination needs. These 

findings build upon and reinforce previous empirical results that found that DRHs are 

adept at highlighting the intertwined relationships between issues of coordination and 

issues of modularity [139]. 

An approach that is able to narrow the set of coordination needs to those that 

are more critical has implications for both research and practice. In the next chapter, 

we will evaluate the reliability, timeliness and usefulness of ProximityML. 
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5.4.1 Threats to Validity 

One threat to validity is that we were limited in the number of task and code 

properties that we could investigate. There may be additional, or even better, 

properties that could be used to differentiate the overall set of potential coordination 

requirements and highlight the more critical ones. The properties that are relevant in 

this case study may not be relevant in others. In addition, all properties may not be 

portable across different bug tracking systems. 

Our measure of task duration, which we used to evaluate the criticality of 

coordination needs between tasks, could be affected by other factors, such as the 

priority of the tasks, workload of the team, physical location of the developers, and 

experience level of the developers. However, we considered task complexity in 

addition to task duration to evaluate the criticality of coordination needs between 

tasks, which helps us to avoid a bias towards tasks whose long duration may be due to 

these other factors. In addition, previous empirical studies, such as the study by 

Cataldo et al. [27], found that while these factors impact development time, the 

impact of unmanaged coordination needs is also highly significant. In our Mylyn 

study, this risk is further mitigated by the characteristics of the Mylyn project itself 

and the general nature of open source projects. The Mylyn team is comprised of well-

established, experienced developers. Open source projects are accustomed to working 

in distributed environments [98], [116], and developer overload is not a large concern, 

since contributors choose which tasks to work on [98], [143].  

Finally, although we cannot exclude that our results could be caused by some 

other hidden factors that underlie the properties we selected, this threat is mitigated by 

the large size and diversity of our data set (29,890 task pairs). 
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5.5 Conclusion 

We conclude this chapter by answering our second research question: RQ2: 

Can coordination requirements be identified efficiently at the task level of 

granularity? By using additional task properties, our approach, ProximityML, was 

able to efficiently identify coordination needs by identifying coordination needs 

between pairs of tasks and focusing on the more critical coordination needs. Of 

course, we cannot conclude that we have identified all coordination needs or all of the 

most critical ones. However, we have shown that ProximityML can identify a subset 

of the more critical coordination needs, and that ProximityML is an approach with a 

low number of both false positives and false negatives. Thus, ProximityML is an 

efficient method of identifying coordination requirements. 

  



88 

   

 

 

CHAPTER 6: TIMELY DETECTION OF CRITICAL 
COORDINATION REQUIREMENTS 

 
 
 
 
This chapter addresses our last research question: RQ3: Are the more critical 

coordination needs actionable? We evaluated the ProximityML approach described 

in Chapter 5, which identifies the more critical coordination needs between tasks. In 

this chapter, we examined the (1) reliability of the ProximityML recommendations 

over time and (2) timeliness of the recommendations. We also evaluated our approach 

with a number of Mylyn developers. We asked the developers to comment on how 

actionable the recommendations made by a tool that implements our approach would 

be and how they would use such a tool in their project.  

6.1 Evaluation Methodology 

To evaluate the reliability and timeliness of ProximityML, we ran our machine 

learning techniques on our time-ordered data, which included each Mylyn context 

event and Bugzilla update event (task creation and task modifications). We streamed 

the data, one event at a time, to replicate the actual progression of development work 

and live collection of the data. We ran the machine learning algorithms to calculate 

coordination needs after every event. We performed this exercise on the data collected 

for Mylyn release 3.2. The machine learning algorithm was pre-trained with the 

training set from release 3.1. Since data was streamed one event at a time, the 

machine learner initially had no knowledge of any data beyond the training set. This 

also allowed us to evaluate the start-up behavior of ProximityML. 

It should be noted that we did not take task start or end times into 

consideration when computing ProximityML coordination requirements within a 
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release. This means that coordination needs could be found between any pair of tasks 

within the release regardless of when in the release those tasks were completed. We 

did not decay ProximityML coordination requirements in any way as the involved 

tasks aged meaning that if a coordination need appears in the beginning of the release, 

it will not go away when those tasks have been completed. While these could be 

potential features of a tool that would implement ProximityML, they were not needed 

for this analysis since we are not presenting these coordination needs to developers as 

recommendations. 

6.2 Analysis and Results 

6.2.1 Reliability of ProximityML 

To evaluate the reliability of our approach, we recomputed the ProximityML 

coordination needs after each event. Reliability is important because a tool that 

continuously changes its recommendations would not be trusted. Murphy and 

Murphy-Hill [99] found that users’ trust immediately drops when a recommender tool 

produces an irrelevant recommendation. A recommendation must only be made once 

it is firmly established as a critical coordination need. 

After each event, we examined the number of ProximityML coordination 

requirements that had been identified. At each point in time, we identified which 

predicted coordination requirements were not included in the final set of 

ProximityML coordination requirements (those detected after all events have been 

streamed). We consider any predicted coordination need that does not appear in the 

final set of ProximityML coordination requirements a false positive for the purposes 

of this exercise. Figure 8 shows the number of coordination requirements as well as 
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false positives over the duration of the entire dataset. We observe that there is a short 

period of unreliability during the early stage of the data streaming, but after that very 

brief initialization period, the results are reliable and contain a minimal number of 

false positives. Also, once a ProximityML coordination requirement is recommended, 

it tends to remain a recommendation. 

 
 
 

 

Figure 8: Evolution of ProximityML Coordination Requirements Over Time. 
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6.2.2 Timeliness of ProximityML 

To examine the timeliness of the detection of ProximityML coordination 

requirements, we identified the timestamp when each of the 394 ProximityML 

coordination requirements was first identified by ProximityML. We examined the 19 

coordination requirements in this set that were recognized by the team in the Bugzilla 

task reports. To identify task pairs that had been considered dependent by the 

development team, we consulted several areas of the Bugzilla task reports and 

identified three types of dependencies that can be mined: (1) the explicitly marked 

“depends on/blocks” relationship, (2) the “duplicate” relationship between tasks, and 

(3) the task cross-referencing relationship. There were 57 task pairs that were 

identified as dependencies within the task records when considering these three 

recorded dependency types. 

Sixteen of these 19 recognized coordination requirements were known 

dependencies immediately at the time of the second task creation. These tasks 

represent either task/subtask relationships or offshoot tasks where some new task is 

created based on something that was discovered during the development of the first 

task. In these cases, we cannot expect ProximityML to perform better than the 

development team. Still, in all but one case, ProximityML automatically identifies 

these recognized coordination requirements promptly after the creation of the second 

task: as shown in Figure 9, most are identified on the same day or the day after the 

second task is created. The remaining three recognized coordination requirements 

were not identified by the team until sometime later during the development of the 

second task. ProximityML identifies two of these recognized coordination 

requirements on the same day as the team. The remaining one recognized 
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coordination requirement is identified by ProximityML more than one month before 

the team.  

 
 
 

 

Figure 9: Coordination Need Detection Timeliness for Recognized Dependencies. 

 
 
 

While this represents only a very small set of recognized coordination 

requirements, it shows the promise of ProximityML to automatically provide timely 

awareness to the development team. Since it provides both accurate detection and 

early recognition, ProximityML delivers recommendations that are actionable. This is 

especially important when those coordination needs are not immediately evident to 

the team members. 

The remaining coordination requirements in our case study do not seem to 

have been recognized by the team based on the data within the Bugzilla records. It is 

certainly possible (though we do not have any recorded evidence) that some of these 

coordination needs were documented or managed in some other way. However, it is 
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likely that many of the ProximityML coordination requirements were unknown by the 

development team and, therefore, unmanaged. 

Since we have no direct way to compare the time of detection for the 

remaining 375 unrecognized coordination requirements, we instead analyzed the 

timeliness of the detection of coordination requirements relative to the start of 

overlapping work. The start of overlapping work was calculated by considering the 

timestamp of overlapping Mylyn context events for each coordination requirement. 

ProximityML coordination requirements are identified on average 3.6 days after the 

start of overlapping work with the median detection occurring on the same day as the 

start of overlapping work. This provides actionable recommendations considering the 

average development duration for tasks in this data set is nearly 25 days. Figure 10 

illustrates the timeliness with probability density functions showing that ProximityML 

typically detects coordination needs when overlapping work starts or shortly after. 

This early detection makes the ProximityML coordination requirements actionable.  
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Figure 10: ProximityML Timeliness Probability Density. 

 
 
 

6.2.3 Usefulness of ProximityML: Developer Interviews 

We further evaluated the usefulness of ProximityML by conducting semi-

structured interviews with six developers of the Mylyn project (one junior and five 

senior developers). The goal was to understand their perspective on the actionability 

of timely coordination recommendations. Three interviews were conducted in person, 

one was conducted through Skype and two were completed asynchronously through 

email. The interviews lasted 45 minutes on average. We asked these main questions:  
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• If you had a tool to recommend coordination needs as they emerge, how 

would it be useful? What features would it have? 

• How would you decide if you were going to act on the coordination needs it 

suggested?  

• What type of time window for recommending coordination needs do you 

think would be useful and why?  

• How would it help with your coordination? 

All developers believed that such a tool would be useful in their work and that 

coordination needs are most useful at the task level. They also stated that the number 

of recommendations would need to be small. A large number of recommendations 

would overwhelm the developer. This could affect the efficiency of the developers 

and cause them to ignore all recommendations. This is in line with previous research 

on the risk of information overload in awareness tools [53], [75], [101], [127]. 

While keeping the number of recommendations small is important for 

efficiency, extremely relevant recommendations should not be disregarded simply 

because of the amount of time that has elapsed since the completion of the other task. 

One developer noted that “of course, the more recent tasks are generally more 

interesting because they are people you can actually do real coordination with, but 

from the point of view of understanding similarities, having a history of things that 

happened, there is something really interesting about.” For example, he said “you 

may be doing something that someone tried 5 years ago, and they have information 

about why it failed and that’s something that could be completely lost because of 

turnover or forgetfulness. And that is huge information even though it is 5 years ago, 

so having the whole time window is useful.” Having awareness of that older, very 
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relevant task can prevent developers from repeating mistakes and increase efficiency 

on the current task. 

Interestingly, nearly all of the developers indicated that simply being aware of 

the tasks that are identified as coordination requirements would suffice as a form of 

coordination. The developers would avoid interrupting the assignee of that task 

through explicit coordination methods like email or chat. One developer stated “just 

by looking at the bug report too, you can rule out your potential need to go interrupt 

that person or figure out, alright I’ll just hold off my development until they are done 

or whatever the case may be, instead of actually going and interrupting that person. 

So you can glean a lot of information from that report just by being aware of the 

similar reports you should be looking at.”  

Of course, while avoiding direct communication can be efficient, it is not 

always possible. One developer cautioned that a tool that provides both coordination 

recommendations and built-in coordination mechanisms could cause projects experts 

(who may be involved in a large number of coordination recommendations) to be 

overwhelmed with coordination requests. He suggested a way for experienced team 

members to flag themselves as busy during certain time periods when they cannot 

afford to be interrupted. 

The developers thought timely coordination need awareness would be most 

useful for large teams. They stated that recommendations would be particularly useful 

for task pairs that span across teams within a project since they are less aware of what 

other teams are working on. They also believed more experienced developers would 

benefit the most from awareness of coordination needs since they have the knowledge 

to understand the related tasks. This is in line with the feedback we received from the 
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junior developer who thought the most useful recommendations would be those that 

addressed essentially the same problem, so the other task could be used as a model for 

the current task. The junior developer did not see the value in being made aware of 

potentially conflicting tasks since she assumed that senior project personnel, such as 

her supervisor, would make her aware of any conflicts that required coordination. 

6.3 Discussion 

We showed that ProximityML provides timely coordination recommendations 

that are reliable and consistent over time. Through developer interviews, we found 

that our approach is useful for developers. The developers stressed the need to keep 

the number of recommendations small, confirming that it is necessary to narrow the 

set of recommendations to those that are more critical. However, they also stated that 

even recommendations for tasks that were completed significantly before the current 

task are useful when they are extremely relevant to help understand project history. 

This reinforces the fact that the machine learning component of our approach must be 

able to focus on the most relevant coordination needs. Identifying an appropriate 

training set is extremely important. In Chapter 8, we discuss how the machine 

learning algorithm may even be trained individually for each developer to ensure 

developers obtain recommendations they are most likely to utilize. Also in Chapter 8, 

we describe several avenues for future research that can improve the accuracy of our 

approach. 

6.3.1 Usefulness 

Existing awareness tools that provide recommendations of coordination needs 

to developers have not yet been largely adopted in practice. Awareness provided by 
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such a tool has the potential to help avoid coordination breakdowns and decrease task 

resolution time, software faults, build failures, redundant work, and schedule slips 

[27], [28], [30], [39], [41], [44]. However, the state of the art for these tools suffers 

from two main limitations that we believe are hindering their adoption: lack of timely 

support and inefficient recommendations.  

Thus, identifying a more timely and efficient approach to coordination need 

detection is useful. We have shown that our approach is timely and accurate. It 

focuses on the more critical coordination needs at the task level. Such 

recommendations are efficient and the preferred level of detail for developers. We 

have also shown that our approach is reliable and consistent over time.  

Our approach could be implemented into an awareness tool that provides 

coordination recommendations for developers. Through developer interviews, we 

found that a tool implementing our approach would be useful for developers. We 

discuss recommendations and guidelines for such a tool in Chapter 8. 

6.3.1 Threats to Validity 

This Chapter presents additional analysis on the ProximityML approach 

described in Chapter 5. Therefore, the threats to validity described in Section 5.4.1 

also apply here. In addition, our interviews were limited to a small set of developers 

who volunteered to discuss coordination. The views of those developers may not 

reflect the majority. However, our interviews did span a wide range of individuals 

including a junior developer, senior developers including a Tasktop scrum master, and 

one developer who has recently taken a management position. Furthermore, some of 

our interviewees were physically located at the Tasktop office in Vancouver, Canada 

and some were distributed. 
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6.4 Conclusion 

We conclude this chapter by answering our last research question: RQ3: Are the 

more critical coordination needs actionable? ProximityML’s more critical 

coordination recommendations are actionable since they are reliable, timely and 

useful for developers. 
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CHAPTER 7: DISCUSSION OF RESEARCH CONTRIBUTIONS 

 
 
 
 
This chapter revisits our research questions, techniques and results. It describes how 

our approach can be used in other projects and discusses our contributions. It 

concludes with a discussion on the limitations of our studies. 

7.1 Summary 

In this dissertation, we described a number of techniques for providing timely 

and efficient coordination recommendations in software teams. To summarize our 

studies and results, we revisit each of our research questions: 

RQ1: Is timely coordination requirement detection possible? 

To identify timely coordination requirements, we developed Proximity, which 

uses IDE monitoring to consider the overlap between developer artifact consultation 

and edit activities in a working set and infers coordination needs between developers. 

Since IDE monitoring captures developer actions as they occur, Proximity enables the 

timely identification of coordination needs. Through an empirical study of eight 

releases of the Mylyn open source project, we found that Proximity scores adequately 

model the presence and intensity of coordination requirements when compared 

against the Cataldo et al. method [27], [28], [30] by examining correlations, precision, 

recall and a regression model. We showed that Proximity provides for more timely 

identification of coordination needs when using the Cataldo et al. method as a 

baseline. 

RQ2: Can coordination requirements be identified efficiently at the task level 

of granularity? To provide more efficient recommendations, we adjusted Proximity to 
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detect coordination needs between pairs of tasks, that is one level of analysis more 

granular than the developer level. To avoid information overload and a high number 

of false positives, we used a set of task properties that distinguished the ground truth 

coordination needs to enhance the Proximity metric in our ProximityML approach. 

ProximityML uses machine learning on those task properties and Proximity scores to 

filter recommendations to the more critical coordination needs, providing a smaller 

number of more critical coordination recommendations (394 ProximityML 

coordination needs compared to 2,209 Proximity coordination needs in our study). 

We validated our techniques on the tasks from one release of the Mylyn project.  

We compared the ProximityML coordination requirements with the ground 

truth critical coordination needs established through content analysis and manual 

coding. We showed that ProximityML is accurate in terms of precision, recall and f1-

scores. We plotted the true positive rate against the false positive rate in an ROC 

curve and verified that our machine learning classifier is accurately predicting the 

more critical coordination needs. We found that the coordination needs identified by 

ProximityML are more critical, as measured by change size and task duration. 

RQ3: Are the more critical coordination needs actionable?  

Finally, we evaluated the reliability and timeliness of ProximityML by 

streaming each event (developer action and Bugzilla task update) in a time-ordered 

sequence and re-running the ProximityML approach after each event. We found that 

ProximityML is able to identify coordination needs shortly after overlapping work 

begins and that when a coordination need is established, it tends to stay a coordination 

need. Through developer interviews, we confirmed that our approach is useful for 

developers.  
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7.2 Contributions 

This dissertation described a set of techniques for providing timely and 

efficient coordination recommendations in software teams. The key contributions of 

this dissertation are: 

1. A method for timely and accurate identification of coordination needs 

between software developers, Proximity.  

2. An approach for identifying coordination needs at the level of tasks.  

3. A method for identifying the ground truth of coordination needs 

experienced during development work by examining task reports. 

4. An analysis of task properties that are indicative of critical coordination 

needs. 

The final outcome, the ProximityML approach, represents a systematic 

approach to use task properties and machine learning techniques in a software project 

for timely and efficient coordination needs recommendation. The key contributions of 

ProximityML are: 

5. It provides timely and accurate detection of coordination needs. 

6. It considers coordination needs at the task level instead of developer level 

to provide more granular recommendations. 

7. It avoids information overload by identifying a set of the more critical 

coordination needs.  

8. It can be applied to many software projects as described in Section 7.3. 

Finally, we also contribute to the growing body of research on coordination needs 

through our detailed discussions: 

9. A discussion on developer needs gathered through interviews.  
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10. A discussion on the implications of our work for both research in 

coordination and tool design in Sections 8.1 and 8.2. 

11. A discussion on avenues for future research in this area in Section 8.3. 

7.3 Using our Approach in Other Projects 

Our approach is feasible to any software project in which IDE monitoring and 

logging is possible. Coordination recommendations can be identified timely and 

efficiently in other projects by considering each component of our approach: (1) a 

ground truth of critical coordination needs, (2) task properties that distinguish critical 

coordination needs, and (3) an SVM machine learning algorithm.  

Develop Ground Truth: First, a set of task pairs with known critical 

coordination needs and task pairs that do not require coordination must be identified. 

If this information is not reliably or completely available within the repositories of the 

project, it can be established using the manual coding guidelines we developed in 

Section 5.1.2.2 or through consultation with the development team. The ground truth 

will be used to analyze task properties and to train the machine learning algorithm.  

Identify Relevant Task Properties: A list of properties that helps distinguish 

critical coordination needs must be identified for the project. While it is likely that the 

properties described in our analysis of the Mylyn project data will also apply to other 

projects, they may not be universally applicable due to specific project processes or 

conventions. A list of project-specific task properties can be identified by comparing 

the ground truth critical coordination needs with task pairs that do not require 

coordination as we described in Section 5.1.2.3 for the Mylyn project. A statistical 

evaluation can identify properties that differ significantly for the known critical 

coordination needs for the project.  



104 

   

 

 

SVM machine learning algorithm: With the ground truth (training set) and 

task properties, the approach described in Section 5.1.2.4 can be applied. The input to 

the SVM machine learning algorithm is the training set where each instance of the 

training set is classified (critical coordination requirement or not) and described by 

each of the selected properties. After training the machine learning algorithm, 

unknown task pairs can be classified by providing the values of the selected 

properties. When task pairs are classified as critical coordination needs, coordination 

recommendations can be made to the developers assigned to those tasks. 

7.4 Threats to Validity 

Our findings derive from a single case study of the Mylyn project with a 

relatively moderate number of developers and tasks. Our results could be affected by 

specificities of the case. To mitigate this risk, we performed a detailed analysis of 

Proximity using eight versions of the Mylyn project. ProximityML was evaluated 

using a release with a large number of tasks (245 tasks over four months of 

development). Our analysis consisted of a mixed methods approach including 

statistical investigations, in-depth examinations of coordination needs and developer 

interviews to understand the team’s coordination practices and problems. Our detailed 

analysis of this project allowed us to better understand when coordination is necessary 

and how to identify critical coordination needs.  
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CHAPTER 8: CONCLUSIONS 

 
 
 
 
This chapter describes implications of our work for research in coordination and a set 

of guidelines for tool design. It also highlights avenues worth pursuing in future 

research in this area.  

8.1 Implications for Coordination Research 

ProximityML provides coordination recommendations at the task level. This is 

in line with previous research that found that developers are interested in awareness 

about information relevant to their tasks [85] and that it is most productive to align 

software teams based on the tasks they must complete [89]. The developers we 

interviewed stated that the recommendation of coordination needs is most useful 

between pairs of tasks.  

Implication #1: Identifying only the more critical coordination needs is 

important. At the more granular level of tasks, there can be many potential 

coordination needs, and it is especially important to focus on critical 

recommendations to prevent information overload. More research is needed to 

identify ways to further refine our ProximityML approach to further reduce the false 

positive rate. While, we have achieved high levels of precision (0.77) and recall 

(0.71), future work could improve those false positive and false negative rates. We 

describe several future research avenues in this direction in Section 8.3.  

Implication #2: Awareness of tasks leads to forms of implicit coordination. 

An important finding emerging from the interviews was how the developers said they 

would attend to coordination needs. All of the senior developers indicated that, upon 
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receiving a recommendation of a coordination need between tasks, they would review 

the related task to obtain details of how that task impacts their own work as a first 

step. This review would result in awareness of the related task. They would prefer to 

avoid interrupting the developer assigned to the other task, even if it meant delaying 

their own task. In the Mylyn development environment, reviewing the appropriate 

related tasks could be seen as a form of stigmergic coordination [17], [52] considering 

that the team does encourage documentation of all task details within the task report. 

With timely and efficient coordination recommendations, this practice could be 

extended to other development environments. We discuss how our approach can 

support implicit and stigmergic coordination in Implications for Tool Design (Section 

8.2).  

Implication #3: Effects of implicit coordination in software engineering needs 

further study. Many existing empirical studies on team coordination examine explicit 

means of communication such as email, chat or meetings, largely because they are 

more easily traceable. We believe it is equally important to take into account other 

means of coordination. For example, studies that use measures for Socio-Technical 

Congruence (STC) [27], [28], [30], [92] could be improved by also considering 

metrics for awareness about tasks as sufficient coordination to fulfill a coordination 

need. Future studies could examine this possibility by considering either tasks that 

developers are watching or have subscribed to or tasks that have been reviewed by 

developers, which could also be obtained through IDE monitoring facilities. 

Additionally, further information on developer awareness of tasks or of other 

developers can be garnered from “social” features that have recently been introduced 

in software repositories and development communities like GitHub [37]. 
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8.2 Implications for Tool Support 

Existing awareness tools that detect coordination needs are not timely enough 

to enable developers to act on their coordination needs. Additionally, they identify 

only the developer pairs that should coordinate. This puts the burden on the 

developers to identify which tasks require coordination among possibly many 

concurrent development tasks. Our work shows the potential of a support tool for 

developers, based on the approach described in this dissertation, which automatically 

recognizes coordination needs between pairs of tasks as they emerge. Such a tool 

could be used to provide coordination awareness both within and across teams, 

support coordination among developers, and automate task dependency management.  

The envisioned tool could incrementally and unobtrusively learn from 

evidence of coordination actions taken by the team (discussions, cross-referencing of 

task pairs, etc.) to continuously improve the machine learning accuracy. It should 

have a large pool of potential task properties and perform task property selection 

based on incremental learning to ensure that the properties selected are best suited for 

the development processes and practices of the team. Our work indicates some main 

design guidelines for such a tool.  

Guideline #1: The tool must be unobtrusive. The developers we interviewed 

suggested displaying coordination recommendations either within the task reports 

themselves, which developers often consult throughout development, or within an 

IDE plug-in. The recommendations should include links to the other task reports and 

any other relevant task information to allow the developer to easily gather information 

about the task on their own without interrupting the other task assignee. It could also 

include an easy way to display the areas of code that are overlapping or conflicting. 
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There should be in-tool coordination mechanisms including email, Skype, Yammer or 

other communication software used by the project. However, developers should have 

a way to flag themselves as busy to avoid interruption when necessary. A tool might 

also consider the priority of a task when making recommendations or when displaying 

the available options on how to fulfill the coordination need. Perhaps – for low-

priority tasks – only implicit types of coordination would be suggested. 

Guideline #2: The tool must balance the relevance and timeliness of the 

coordination need to provide the most valuable recommendations. A tool would 

likely decay coordination requirements as the involved tasks aged. It would also need 

to identify a time window of interest for tasks to incur a coordination requirement (i.e. 

only overlapping tasks or tasks where development work occurs no more than two 

weeks apart). This time window should be a tunable attribute since different 

developers may have different preferences. From our interviews, we learned that 

understanding very relevant tasks that were completed much earlier in the project’s 

timeframe could still be useful in some cases. For example, when the new task is 

attempting to tackle the same issue as a previous unsuccessful task. This illustrates 

another way developers may use such a tool for the awareness of tasks rather than for 

explicit coordination. Especially strong and relevant coordination needs may be 

displayed regardless of the completion status of the other task. Again, this feature 

should be tunable to meet the team’s or individual developer’s needs. 

Guideline #3: The tool should consider the experience level of the developer 

when making recommendations. The developers we interviewed believed more 

experienced developers would benefit the most from awareness of coordination needs 

since they have the knowledge to understand the related tasks. While previous 
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research [117] found that developers consider the expertise of others before initiating 

coordination, our findings suggest that the expertise of the developers themselves may 

impact what coordination they deem necessary. More junior developers may want a 

smaller set of only extremely relevant recommendations. Recommendations, 

therefore, may consider not only the properties of tasks, but also the task assignee.  

Guideline #4: The tool should support implicit coordination [17], [52]. Our 

developer interviewees would prefer to gather task information themselves rather than 

interrupting a task assignee. While the Mylyn/Tasktop team, by convention, makes an 

active effort to record all information related to each task within the corresponding 

task report in Bugzilla, not all projects follow the same convention. Tools to help 

developers easily review all data related to a given task could be devised. There has 

been some research in this area; Rastkar and Murphy [108] use Murray’s 

summarization technique [100] to summarize email threads related to a specific bug 

report. However, there are many other forums that could hold information relevant to 

a task (IRC, Discussion Boards, Yammer, Skype chats, etc.) as well as other 

information sources like design documentation or requirement specifications. The 

awareness tool we described above could be improved by providing a summary for 

each of the tasks involved in coordination needs so the developer can quickly browse 

the information. A tool could summarize the task report [94], as well as all task 

information from these various sources, and prioritize and highlight the most relevant 

information. The developer could view additional details of tasks that require further 

investigation. Such a tool would enable a developer to more efficiently become aware 

of other tasks.  
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Since the tool is encouraging implicit coordination, it should also have ways to 

allow developers to indicate their awareness of other tasks and identify what strategy 

they are taking to diminish any coordination needs. For example, developers may 

indicate that they are waiting on a particular task to be completed to avoid 

coordination. This would prevent the assignees of both tasks unknowingly waiting on 

each other. 

We envision the tool supporting software developers, project managers and 

software architects: 

Software Developers: A tool that helps make developers aware of their 

coordination requirements as they emerge while avoiding a large number of false 

positives and focusing on the more critical coordination needs can allow developers to 

focus their coordination efforts where it is truly needed. Awareness provided by such 

a tool can help avoid coordination breakdowns resulting in decreased task resolution 

time, software faults, build failures, redundant work, and schedule slips [27], [28], 

[30], [39], [41], [44]. 

Project Managers: Such a tool could also provide a project manager view 

visualizing the more critical coordination needs within and across teams. This can 

allow for prioritization of project governance actions aimed at the resolution of 

coordination requirements that improve productivity the most [51]. As an alternative, 

changes could be made to the design or the team structure to eliminate coordination 

requirements [131] lowering the coordination overhead of the project. 

Software Architects: Finally, the tool could provide a software architect view 

that highlights the areas of code that cause the most coordination needs. Such a 

feature would enable software architects to continuously monitor the software design 
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and focus any redesign efforts to reduce coupling and increase cohesion in 

problematic areas of the code. 

8.3 Future Work 

We see three avenues for future research in this area, based on the work we 

presented in this dissertation: 

• Continue Investigation of Task Properties 

• Implement and Deploy Recommender Tool 

• Increase Understanding of Implicit Coordination 

8.3.1 Continue Investigation of Task Properties  

One future research direction could be to continue our investigation of task 

properties and their role in identifying coordination needs by analyzing additional task 

properties beyond those we have described in this dissertation (product, component, 

platform, Operating system, and the DRH SLSM, SLDM and AL counts). Evaluating 

properties that are available on different bug tracking systems and characterize the 

architecture of a task like Trac’s component, Redmine’s category, Jira’s components 

and labels, and GitHub’s labels would be a logical next step. A comprehensive set of 

properties can improve the accuracy of our approach and allow for easier and more 

general adoption of our approach. 

We have identified several other properties that may potentially be useful 

indicators for critical coordination requirements: (1) DRH layers, (2) Key Modules, 

and (3) Additional Granularity of Changes. 

DRH Layers: A DRH clusters modules into “layers” where each layer 

depends only on the layers above. The layers can be used to differentiate artifacts that 
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represent influential design decisions (design rules) from low-level artifacts that 

depend on those decisions. Changes made in the highest layers (most influential 

design decisions) may represent more critical coordination needs. 

Key Modules: Similarly, modules identified as important may also be 

involved in more critical coordination needs. Key modules may be identified in 

several different ways by considering: (1) the coupling and cohesion of each module, 

(2) the frequency of change for each module, (3) the frequency of coordination needs 

resulting from each module, (4) the size of each module, or (5) the DRH properties of 

each module. 

Additional Granularity of Changes: The lowest level of granularity 

available from the Mylyn context data is the class element (method or attribute). 

Additional granularity could be useful: the event could indicate if an edit was made to 

the method’s API or within the method body. Changes made to a method’s API may 

indicate more critical coordination needs. While this information is not currently 

available from Mylyn context data, it would be a relatively simple change within the 

Mylyn project to make this type of data available.  

8.3.2 Implement and Deploy Recommender Tool 

A tool that implements the ProximityML approach we presented and validated 

in this dissertation could be implemented. The tool could build upon the ProxiScientia 

prototype [19]. The implementation should follow the guidelines and 

recommendations in Section 8.2. With an implemented tool, further studies of 

coordination needs in the field could be performed to improve the accuracy of the 

recommendations. The tool could be deployed in a project and run in the background 

only, so that the developers on the team are not aware of the recommendations made 
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during the period of the study. The study could examine the recommendations made 

by the tool while researchers shadow the development team to understand their 

coordination needs and problems. The insights gained through such a study would 

allow for the possible refinement of the training set or selected task properties and, 

hopefully, increase the accuracy in recommendations. 

8.3.3 Increase Understanding of Implicit Coordination 

Empirical studies on coordination often do not include implicit coordination 

mechanisms since they are not as traceable and, therefore, not easily understood. 

However, the developers we interviewed stated a preference for implicit coordination. 

As researchers, we must identify ways to better understand and identify implicit 

coordination. Studies on coordination that do not include implicit mechanisms risk 

incomplete results. With IDE logging facilities and the introduction of “social” 

features into many software repositories, implicit coordination may become easier to 

trace.  

8.4 Conclusion 

In this dissertation, we described a number of techniques for providing timely 

and efficient coordination recommendations in software teams and a number of 

studies that evaluated those techniques. Our approach is timely since it analyses data 

obtained from IDE monitoring facilities, which can be obtained as developer activities 

occur. Our approach is efficient since it makes recommendations at the task level (the 

developers unit of work) and focuses on the more critical coordination needs reducing 

information overload. We also discussed the implications of our work for research in 
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coordination, a set of guidelines for tool design, and possible directions for future 

research based on this work.  
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