o | Waipapa

'S [aumata Rau

University
of Auckland

Finding Your Fit

How Your Thinking Style Shapes Your Software Engineering Experience

Associate Professor Kelly Blincoe, University of Auckland
BRIDGES Summer School in the South Pacific, 9 January 2026

Waipapa
Taumata Rau
University
of Auckland

About Me

+ Associate Professor of Software Engineering at the
University of Auckland in New Zealand

+ Chair of Software Innovation New Zealand
+ Member-at-large ot ACM SIGOSFT
+ Ruthertord Discovery Fellow

+ Research topics: human and social aspects of
software engineering, software dependencies and
ecosystems, diversity and inclusion in software
engineering, inclusive software

Career journey

+ 2004: Bachelor of Engineering
+ 2004-2012: Software Engineer
+ 2009-2014: PhD, Drexel University

+ 2014-2015: Postdoctoral tellowship, University of
Victoria

Taumata Rau
University
of Auckland

2+ 2015-now: Academic laaa\ Waipapa

Waipapa
Taumata Rau
University
of Auckland

.-@D:
; CE s
> [\
S
"),
G
- .“ t .
o>
07 g 2
"y g :
el e St
e e g
<
\. i oy

Image source: https://www.pngitem.com/download/oihJow_world-map-outline-png-transparent-png/

Tech in Aotearoa New Zealand

+ Tech sector is one of the country’s largest and fastest-growing industries

+ In 2024:
+ contributed $23.8 billion to GDP (8% of the economy)
+ employed more than 119,000 people (4.8% of the workforce)

+ generated $11.4 billion in exports (New Zealand’s third-largest export
earner after dairy and tourism)

Source: https://technewzealand.org.nz/nzs-tech-sector/

Gender diversity problem

} Tech £23%

Engineering 5 14%

woOoinen

Women in STEM jobs (USA)

70 — 60,
— Total employed
404 Social scientists
60 — 20} /—'-_ STEM
ol
1970 980 990 2000 201020
SO —
Mathematical workers
Life and physical scientists
40 >
//
30 — 0
Computer workers 25 /O
20 -

Engineers

10 |- 15%

0 L | L | A |
1970 1980 1990 2000 2010 2019

Source: U.S. Census Bureau, 1970, 1980, 1990 and 2000 Censuses; 2010 and 2019 Amerncan Community
Surveys, 1-Year Estimates.

Image source: https://ssti.org/blog/tech-industry-booming-women%E2%80%99s-participation-continues-lag

Engineering Sector Diversity (NZ 2024)

NZ Workforce Senior
Population leadership
Maori 18% 3.2% 3.2%
Pacific Peoples 9% 1.9% 0.9%
LGBTQIA+ 5% 3.0% 3.3%
Disability 25% 2.0% 2.0%
Neurodiverse 20% 4.6% 3.8%

Source: Diversity Agenda 2024 report. Accessed from https://diversityagenda.org/wp-content/uploads/2024/06/Diversity_Agenda_2024_insights.pdf (August 2024)

Benefits of diversity

+ Improved productivity
+ Increased innovation

+ More usable products

Vasilescu et al.,, CHI 2015; Ustergaard et al., Research Policy 2011; Burnett et al., CHI 2016

Image: http://www.theinclusionsolution.me/what-is-diversity-part-2-diversity-of-thought/

First name:

FranNcols

Your first name must have at least two letters
and no unusual characters

Image: The Noun Project; Created by Kelig Le Luron

Cognitive style — five facets

@ Motivation Why using the software. Task Completion vs.
trying out new features.

@ Self—Efﬁcacy Confidence using the software. Blame self vs.
blame tool.

/-> Information How information is gathered. Comprehensive vs.

PrQC9551ng selective.

@ Learnmg Sty]e How new features are learned. Process orientated
: vs. tinkering.

A Risk Attitude Willingness to try unknown features. Risk-averse
vs. risk-taker.

M. Burnett, S. Stumptf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, W. Jernigan, Gendermag: A method for evaluating
software’s gender inclusiveness, Interacting with Computers 28 (6), (2016) 760—787

11

Cognitive style — five facets

<@/‘) Motivation For task completion To learn new features
@ Self-Efficacy Lower, blames self Higher, blames tech

/ Inform athIl Comprehensive R
Processing

.@. Learmng Style Process oriented Tinkering

A Risk Attitude EESEE it taker

M. Burnett, S. Stumptf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, W. Jernigan, Gendermag: A method for evaluating
software’s gender inclusiveness, Interacting with Computers 28 (6), (2016) 760—787 12

What is your style?

Cognitive style — five facets

<@/‘) Motivation For task completion To learn new features
@ Self-Efficacy Lower, blames self Higher, blames tech

/ Inform athIl Comprehensive R
Processing

.@. Learmng Style Process oriented Tinkering

A Risk Attitude EESEE it taker

M. Burnett, S. Stumptf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, W. Jernigan, Gendermag: A method for evaluating
software’s gender inclusiveness, Interacting with Computers 28 (6), (2016) 760—787 14

Maintenance / PFele e 0y

Requirement gathering
and analysis

The Software
llevelonment

llfe Gyele

Deployment :\0 et

Testing

Implementation

15

Building inclusive software with GenderMag

+ Three personas based on the cognitive facets (Abi, Pat, and Tim)

+ Teams do a cognitive walkthrough role playing using their software to
complete certain tasks using the personas

+ Inclusivity bug: can’t complete the task or face disproportionate barriers
along the way

+ 17 software teams using GenderMag teams found inclusivity bugs in 12%-
100% of their software (average 32%).

M. Burnett, S. Stumptf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, W. Jernigan, Gendermag: A method for evaluating
software’s gender inclusiveness, Interacting with Computers 28 (6), (2016) 760—787 16

Building inclusive software with GenderMag

Abi (Abigail/Abishek)

Motivation: Uses technology to accomplish their tasks.

Computer self-efficacy: Lower self-confidence than their peers about doing unfamiliar com-
puting tasks. Blames themselves for problems.

Attitude toward risk: Risk-averse about using unfamiliar technologies that might require a
lot of time

Information processing style: Comprehensive

Learning style: Process-orientated learning

M. Burnett, S. Stumptf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, W. Jernigan, Gendermag: A method for evaluating
software’s gender inclusiveness, Interacting with Computers 28 (6), (2016) 760—787

17

Software tools

+ Software engineers use software to create and maintain software

+ Inclusivity bugs also found in SE tools like GitHub and code review tools

t:l base: main ¥

& Update CC ResearchPlugin / README.md Cancel

Tooltip

| ® @ -
write <> Edit file ® Preview changes Spaces & | 2 & | Softwap 3

v

Leave a com 1 # ResearchPlugin

2 Chrome extension to add tooltips on GitHub pages when creating pull requests, or

creating an issue report in any repository to help newcomers contribute to open
source proijects.

I. Santos, J. F. Pimentel, I. Wiese, 1. Steinmacher, A. Sarma and M. A. Gerosa, "Designing for Cognitive Diversity: Improving the GitHub

Experience for Newcomers," 2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Society (ICSE-

SEIS), Melbourne, Australia, 2023, pp. 1-12 18

Our recent studies

GitHub
Copillot

Lizzie Matusov [- 2nd 4+ Follow

Co-founder/CEQO at Quotient | Research...
Visit my website

1d-®

—
-

=
T

The Al honeymoon phase in engineering is over—and
that's good news.

Stack Overflow's 2025 Developer Survey polled 49,000+
developers and revealed a fascinating tension: Al usage
hit 51% daily adoption among professional developers,
yet favorable sentiment dropped from 70% to 60% in just
one year.

The reality check? 66% of developers are frustrated with
"almost right" solutions that require time-consuming
debugging. It basically means we're moving from hype to
realism.

Where Al actually works: Searching and learning new
codebases Documentation and boilerplate generation

Exploratory work

Where developers still don't trust it: x Deployment
decisions)(Architecture planning High-stakes
production code

And maybe my favorite... 78% of engineers say "vibe
coding" isn't how they work. Despite the narrative,
professional developers aren't blindly accepting Al
suggestions—they're evaluating, verifying, and
maintaining human oversight.

The takeaway for engineering leaders: Al tools are here to
stay, but success requires setting realistic expectations,
reserving Al for appropriate use cases, and investing in
teams' ability to critically evaluate Al output. 19

What we did)

+ Lab experiments: one-hour, individual session for each participant.

+ Think-aloud protocol: Participants verbalized their thought processes
while performing tasks of increasing complexity.

+ Data Capture: audio and screen recordings were collected and transcribed

+ Analysis: We used reflexive thematic analysis to identity inclusivity bugs
and the GenderMag ftacet questionnaire to analyze results through a
cognitive inclusivity lens.

24 Participants

20 Participants
Copilot 2

What we found

@ -
g

\

21 inclusivity bugs across 13 ditferent features with two main causes

Discoverability: “I can’t find it”
The degree to which users can independently locate features.
Caused by: Cluttered interfaces, poor placement, lack of visual cues,
hidden elements, and poor labeling.

Learnability: “I found it, but [don’t understand how to use it”

The degree to which users can understand and effectively use a new
feature.

Caused by: Insufficient or unclear feedback from the tool.

241;

Setting breakpoints

def __init__(self, speed=0):
selLf.speed = speed
self.odometer = O
self.time=0

def accelerate(self):

self.speed += 5

def brake(self):
if self.speed >= 5:

self.speed -= 5
else:
self.speed = 0

22

Starting the debugger

I> - RIS Ao e e i
> Run 'car (1)" ~{R
L* Debug 'car (1)’ ~OD

(2 Run 'car (1)" with Coverage

P
(R Profile 'car (1) ould I do? [A]ccelerate,

. | or len(action) != 1:
=& Concurrency Diagram for 'car (1)'
Modify Run Configuration... te()
print("Accelerating...")

elif action == 'B':
my_car.brake()
print("Braking...")
elif action == '0':
print("The car has driven {} kilometers'

23

Examining suspended program

> if __name__ == '_ main__"':

my_car = Car() my_car: <__main__.Car object at 0x105daa@70>

@ print("I'm a car!")

while Trvue:
action = input("What should I do? [Alccelerate, [Blrake, ""show [0]dometer, or show average [
if action not in "ABOS" or len(action) != 1:
1f action == 'A':
my_car.accelerate()
print("Accelerating...")
& car —
1] ALY Y O g Threads & Variables Console -

MainThread Evaluate expression (&) or add a watch ({%®) v

) <module>, car.py:31 v = my_car = {Car} <__main__.Car object at 0x105daa070>

o5 odometer = {int} 0

32 speed = {int} 0

o5 time = {int} O

> o Protected Attributes

> BH Special Variables

O CarTest > & car.py <no default server> 31:1 @& LF UTF-8 4 spaces Python 3.9 (CarTest)

(

(((0,

o)

24

Stepping through the program

Debug @ car —

—

Threads & Variables Console 1D I 24 ’I\ O Yo B

v Evaluate expressierf () or add a Magtch ({389) v

ﬂ \l/ \l/ /I\ ct at Ox1024ebd90>

@ MainThreac

] <module

o1 time = {int} 1
> Protected Attributes

Switch frames from an... X » oo Special Variables

25

Stepping through a program

+ Stepping is the process of controlling step-by-step execution of the
program.

/Al Step over: goes to next line and skips method calls

i Step into: goes to called methods (even library methods)
Vv

—_Step into my code: goes to called methods in your code only

i Step out: goes out of the current method and back to the caller method

26

Table 4
Number of participants who encountered inclusivity bugs categorised by debugger feature and cause (discoverability and
learnability). - indicates no inclusivity bug

Feature description Discoverability bug Learnability bug
1 Setting breakpoint and starting debugger session 5 2
2 Finding the debugger icon to start the debugger 3 -
3 Stopping debugger session 1 -
4 Setting breakpoint at the correct line - 7
5 Following the execution point 1 2
7 Examining variables 4 4
8 Managing breakpoints in the middle of a debug session - 7
O Evaluating expressions 6 7
10 Resuming program 4 5
11 Exploring test results 13 1
12 Running or debugging tests 14 -
13 Changing run configurations 6 3

Total instances of inclusivity bugs 60 59

Culas, F., Singh, A., Arankalle, A., Dhopade, P., & Blincoe, K. (2025). Newcomers’ experiences during debugging: A cognitive inclusivity perspective using
GenderMag. Information and Software Technology, 107932.

Who faced the most inclusivity bugs

v

@ Motivation B To learn new features

@ Self-Efficacy SEs Bl el e

_/-> Information SOMEReRELE Sie Selective
Processing ¢

@ Learning Style ﬁ“’ces“’”e”ted Tinkering

A Risk Attitude —EESEE ik taker

M. Burnett, S. Stumptf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, W. Jernigan, Gendermag: A method for evaluating
software’s gender inclusiveness, Interacting with Computers 28 (6), (2016) 760—787

28

What we found

+ 10 inclusivity bugs Copilot

+ Autocomplete-Style Suggestion Mode: prioritises rapid acceptance,
lacks explanations, can be disruptive, and limits creative control

JavaScript (L

function calculateDaysBetweenDates(begin, end) {

GitHub Copilot will automatically suggest the rest of the function. To accept the suggestion, press
Tab .

+ Chat Mode: verbose chat responses

Parasrampuria, A., Kerr, G., Culas, F., Blincoe, K. (2026). Work in progress 29

Conclusion

+ Many different ways of thinking — no one right way

+ Software engineers should design for inclusion
+ Software often has inclusivity bugs

+ It's not you —it’s the software

+ We need more diversity in software engineering so we can build better
software

30

Waipapa
'3 aumata Rau
LY University

x of Auckland

Thanks

Questions?

Kelly Blincoe

k.blincoe@auckland.ac.nz

	Slide 1: Finding Your Fit
	Slide 2: About Me
	Slide 3: Career journey
	Slide 4
	Slide 5: Tech in Aotearoa New Zealand
	Slide 6: Gender diversity problem
	Slide 7: Women in STEM jobs (USA)
	Slide 8: Engineering Sector Diversity (NZ 2024)
	Slide 9: Benefits of diversity
	Slide 10: Exclusion issue in real world
	Slide 11: Cognitive style – five facets
	Slide 12: Cognitive style – five facets
	Slide 13: What is your style?
	Slide 14: Cognitive style – five facets
	Slide 15
	Slide 16: Building inclusive software with GenderMag
	Slide 17: Building inclusive software with GenderMag
	Slide 18: Software tools
	Slide 19: Our recent studies
	Slide 20: What we did
	Slide 21: What we found
	Slide 22: Setting breakpoints
	Slide 23: Starting the debugger
	Slide 24: Examining suspended program
	Slide 25: Stepping through the program
	Slide 26: Stepping through a program
	Slide 27
	Slide 28: Who faced the most inclusivity bugs
	Slide 29: What we found
	Slide 30: Conclusion
	Slide 31

