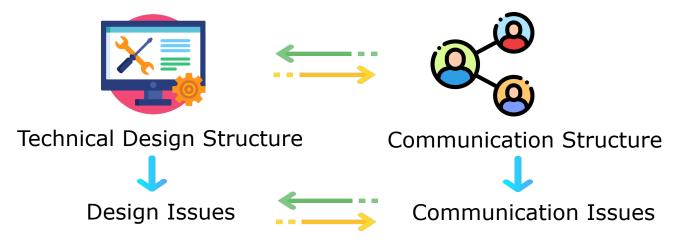
Tuesday, 27 September 2022

Analyzing the Relationship between Community and Design Smells in Open-Source Software Projects: An Empirical Study

<u>Haris Mumtaz</u>¹, Paramvir Singh², Kelly Blincoe¹

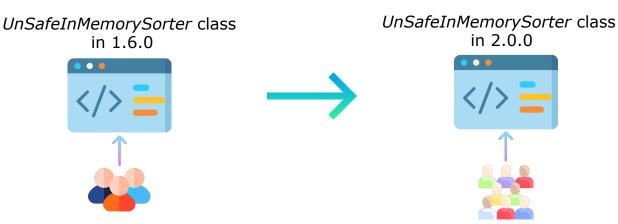
¹Department of Electrical, Computer, and Software Engineering ²School of Computer Science

FNGTNFFRING



Motivation

Conway's Law: "Organizations, which design systems, are constrained to produce designs which are copies of the communication structures of these organizations" [1].



Motivation

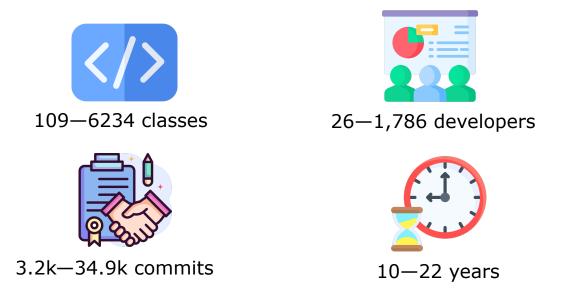
- ♦ Large teams in social design \rightarrow communication issues [2].
- ✤ Large components in technical design → Maintainability issues [3].

[2] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci. Refactoring community smells in the wild: The practitioner's field manual. *ICSE* 2020.
[3] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for software design smells. *ACM SIGSOFT Software Engineering Notes*, 2015.

Research Question

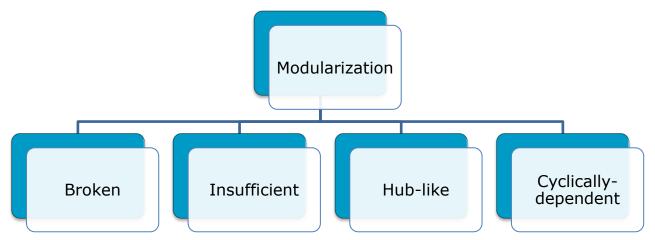
RQ

Is there a relationship between community and design smells in software projects?



Data

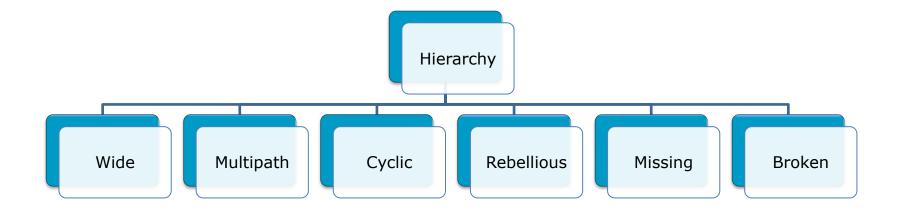
Extract design and community smells from 100 releases of 10 opensource Apache projects (10 recent releases each).



Design Smells

- Sub-optimal patterns in software design [3].
- Analyze common modularization smells in software design [3].

[3] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for software design smells. ACM SIGSOFT Software Engineering Notes, 2015.



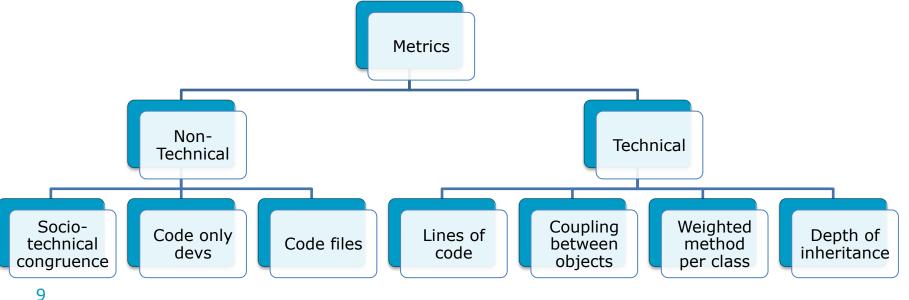
Design Smells

✤ Analyze common hierarchy smells in software design [3].

[3] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for software design smells. ACM SIGSOFT Software Engineering Notes, 2015.

Community Smells

- Sub-optimal patterns in organizational and communication structure [4].
- Investigate frequently occurring community smells in projects [4].


[4] D. A. Tamburri, P. Kruchten, P. Lago, and H. v. Vliet. Social debt in software engineering: Insights from industry. JISA, 2015.

Additional Metrics

- ✤ Non-technical (community) metrics [5].
- Technical (non-community) maintainability metrics.

[5] F. Palomba and D. A. Tamburri. Predicting the emergence of community smells using socio-technical metrics: A machine-learning approach. JSS, 2021.

Data Collection

Designite tool to collect design smells.

https://www.designite-tools.com/

* Kaiaulu tool to compute community smells.

https://github.com/sailuh/kaiaulu

Methods

- Correlation Analysis (Spearman's correlation)
 - Relationship between community and design smells.

Trend Analysis (Mann-Kendall test)

- > Similarity in the trends of community and design smells.
- Statistical Modeling (Information Gain Analysis)
 - > Extent of the dependency of community smells on design smells.

Design smell: community smells + community metrics + technical metrics

Results-Correlation

Modularization Smells

	Broken		Insufficie	ent	Hub-like	9	Cyclically-dependent		
Project	Organizational Silo	Missing Links	Organizational Silo	Missing Links	Organizational Silo	Missing Links	Organizational Silo	Missing Links	
Ant	0.78**	0.74*	0.81**	0.78**	0.74*	0.74*	0.94***	0.89***	
Cassandra	0.14	0.71*	0.5	0.76*	0.28	0.75*	0.2	0.47	
Jackrabbit	0.74*	0.64*	0.22	0.34	0.74*	0.64*	0.31	0.21	
Jena	0.25	-0.02	0.29	-0.08	-0.25	-0.55	0.61*	0.41	
JMeter	-0.04	-0.26	0.32	0.5	0.35	0.53	0.56	0.7*	
Karaf	0.74*	0.71*	0.77**	0.81**	0	0	0.75*	0.76*	
Spark	0.62*	0.7*	0.78**	0.78**	0.9***	0.78**	0.79**	0.77**	
CloudStack	-0.44	-0.65*	0.44	0.63*	0.41	0.41	0.34	0.58	
CXF	0.01	0.76*	0.22	0.73*	0.12	0.78**	-0.13	0.73*	
Nutch	0.09	-0.09	-0.03	-0.14	0	0	0.07	-0.17	

*p < 0.05, **p < 0.01, ***p < 0.001

Results-Correlation

Hierarchy Smells

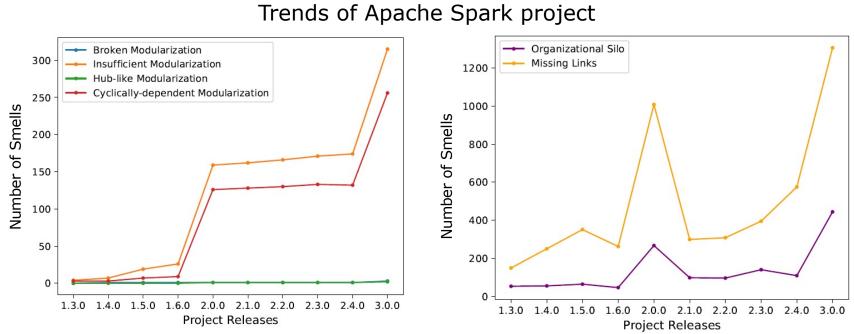
	Wide		Multipath		Cyclic		Rebellious		Missing		Broken	
Project	0_S	M_L	0_S	M_L	0_S	M_L	0_S	M_L	0_S	M_L	0_S	M_L
Ant	0.85**	0.79**	0.86**	0.81**	0.77**	0.72*	0.92***	0.87**	0.59	0.65*	0.89***	0.83**
Cassandra	0.54	0.84**	0.53	0.29	0.56	0.78**	0.81**	0.94***	0.66*	0.91***	0.51	0.76*
Jackrabbit	0.74*	0.64*	0	0	0.74*	0.64*	0.74*	0.64*	0.25	0.32	-0.12	0.13
Jena	0.73*	0.4	-0.14	-0.43	0.31	0.17	-0.32	-0.07	0.47	0.47	0.22	-0.04
JMeter	0.45	0.64*	0.04	0.26	0.45	0.64*	-0.4	-0.35	0	0	0.44	0.67*
Karaf	0.6*	0.69*	0.65*	0.57	0.65*	0.65*	0	0	0	0	0.8**	0.79**
Spark	0.67*	0.67*	0.52	0.52	0.76*	0.61*	0.9***	0.78**	0.85**	0.77**	0.8**	0.79**
CloudStack	0.65*	0.65*	0.3	0.53	0	0	0	0.21	0	0	0.58	0.75*
CXF	-0.11	-0.82**	0.29	0.51	-0.01	0.18	0.31	0.69*	0.21	0.86**	0.22	0.73*
Nutch	0	0	0	0	0.04	-0.03	0	0	-0.1	-0.21	0.24	-0.02

O_S is Organizational Silo and **M_S** is Missing Links

*p < 0.05, **p < 0.01, ***p < 0.001

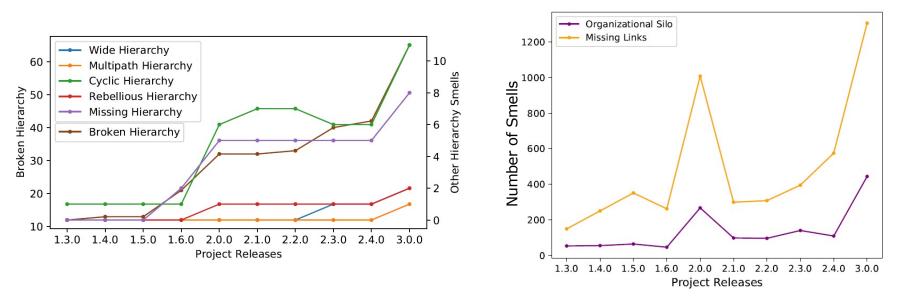
Results-Trends

Smell	Ant	Cassandra	Jackrabbit	Jena	JMeter	Karaf	Spark	CloudStack	CXF	Nutch
Broken Modularization	29[↑]*	[-]	[-]	24[↑]*	[-]	33[↑]**	17[↑]*	[-]	35[↑]**	26[↑]*
Insufficient Modularization	45[↑]***	42[↑]***	29[↑]**	28[↑]*	33[↑]**	45[↑]***	45[↑]***	43[↑]***	45[↑]***	[-]
Hub-like Modularization	32[↑]**	27 [↑]*	[-]	[-]	[-]	[-]	29[↑]**	[-]	40[↑]***	[-]
Cyclically-dependent Modularization	38[↑]***	29[↑]**	[-]	[-]	[-]	41[↑]***	42[↑]***	41 [↑]***	34[↑]**	29[↑]*
Wide Hierarchy	35[↑]**	29[↑]**	[-]	[-]	33[↑]**	37[↑]***	23[↑]*	[-]	22[↓]*	[-]
Multipath Hierarchy	33[↑]**	[-]	[-]	24[↑]*	[-]	24[↑]*	[-]	35[↑]**	31[↑]**	[-]
Cyclic Hierarchy	39[↑]***	41 [↑]***	[-]	[-]	33[↑]**	21[↑]*	27[↑]*	[-]	27[↑]*	[-]
Rebellious Hierarchy	28[↑]*	[-]	[-]	-24[↓]*	[-]	[-]	29[↑]**	24 [↑]*	39[↑]***	[-]
Missing Hierarchy	24[↑]*	25[↑]*	[-]	[-]	[-]	[-]	32[↑]**	[-]	24[↑]*	[-]
Broken Hierarchy	33[↑]**	44[↑]***	35[↑]**	[-]	37[↑]***	41[↑]***	43[↑]***	37[↑]**	45[↑]***	27[↑]**
Organizational Silo	30[↑]**	[-]	[-]	[-]	[-]	28[↑]*	27[↑]*	[-]	[-]	[-]
Missing Links	28[↑]*	25[↑]*	[-]	[-]	[-]	31[↑]**	31[↑]**	[-]	23[↑]*	[-]


 $[\uparrow] = Increasing trend; [\downarrow] = Decreasing trend; [-] = No trend$

*p <0.05, **p <0.01, ***p <0.001

Results-Trends



Results-Trends

Trends of Apache Spark project

Results-Gain Analysis

Design smell: community smells + community metrics + technical metrics

Control factors

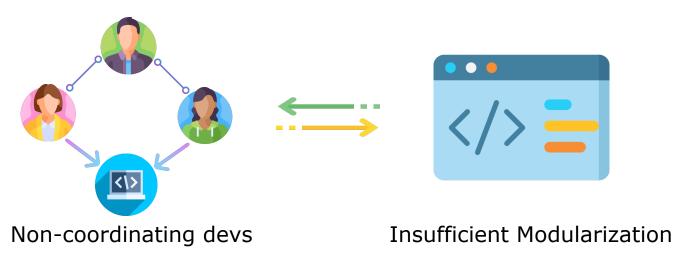
Missing Links is the most dependent community smell on design smells.

Answer to RQ

RQ

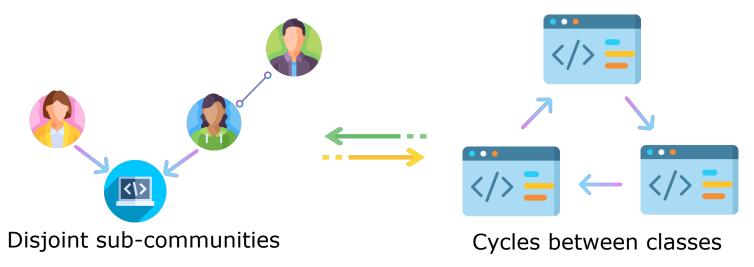
Is there a relationship between community and design smells in software projects?

Answer


The Missing Links smell has demonstrated more significant correlations and trend similarities with the design smells in the analyzed projects.

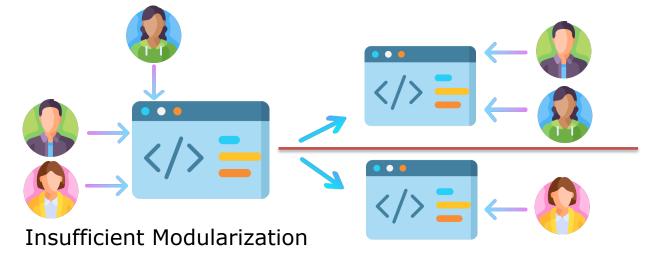
Main Takeaways

Missing Links has demonstrated relationships with the design structures that are either not implemented at all (i.e., missing) or implemented when not required (i.e., broken).



Main Takeaways

Design smells that focus on cycles between the classes (e.g., Cyclicallydependent Modularization and Cyclic Hierarchy) have a relationship with Organizational Silo.



Main Takeaways

- Community-aware development is also important alongside technical development.
- Community and technical issues should be refactored together.

Conclusion

- Conway's law suggests correlation between social and technical aspects.
- Previous studies had analyzed the relationship at code and architecture levels.
- ✤ We investigate such relationship in software design using smells.
- ✤ Our results show relationship between design and community smells.
- ✤ We propose collective refactoring of social and technical (design) aspects.

Thank you!

Haris Mumtaz hmum126@aucklanduni.ac.nz HarisMumtaz_ Paramvir Singh p.singh@auckland.ac.nz ParamvirSingh_ Kelly Blincoe k.blincoe@auckland.ac.nz

